Commit graph

10 commits

Author SHA1 Message Date
Tejun Heo
636b927eba workqueue: Make unbound workqueues to use per-cpu pool_workqueues
A pwq (pool_workqueue) represents an association between a workqueue and a
worker_pool. When a work item is queued, the workqueue selects the pwq to
use, which in turn determines the pool, and queues the work item to the pool
through the pwq. pwq is also what implements the maximum concurrency limit -
@max_active.

As a per-cpu workqueue should be assocaited with a different worker_pool on
each CPU, it always had per-cpu pwq's that are accessed through wq->cpu_pwq.
However, unbound workqueues were sharing a pwq within each NUMA node by
default. The sharing has several downsides:

* Because @max_active is per-pwq, the meaning of @max_active changes
  depending on the machine configuration and whether workqueue NUMA locality
  support is enabled.

* Makes per-cpu and unbound code deviate.

* Gets in the way of making workqueue CPU locality awareness more flexible.

This patch makes unbound workqueues use per-cpu pwq's the same way per-cpu
workqueues do by making the following changes:

* wq->numa_pwq_tbl[] is removed and unbound workqueues now use wq->cpu_pwq
  just like per-cpu workqueues. wq->cpu_pwq is now RCU protected for unbound
  workqueues.

* numa_pwq_tbl_install() is renamed to install_unbound_pwq() and installs
  the specified pwq to the target CPU's wq->cpu_pwq.

* apply_wqattrs_prepare() now always allocates a separate pwq for each CPU
  unless the workqueue is ordered. If ordered, all CPUs use wq->dfl_pwq.
  This makes the return value of wq_calc_node_cpumask() unnecessary. It now
  returns void.

* @max_active now means the same thing for both per-cpu and unbound
  workqueues. WQ_UNBOUND_MAX_ACTIVE now equals WQ_MAX_ACTIVE and
  documentation is updated accordingly. WQ_UNBOUND_MAX_ACTIVE is no longer
  used in workqueue implementation and will be removed later.

* All unbound pwq operations which used to be per-numa-node are now per-cpu.

For most unbound workqueue users, this shouldn't cause noticeable changes.
Work item issue and completion will be a small bit faster, flush_workqueue()
would become a bit more expensive, and the total concurrency limit would
likely become higher. All @max_active==1 use cases are currently being
audited for conversion into alloc_ordered_workqueue() and they shouldn't be
affected once the audit and conversion is complete.

One area where the behavior change may be more noticeable is
workqueue_congested() as the reported congestion state is now per CPU
instead of NUMA node. There are only two users of this interface -
drivers/infiniband/hw/hfi1 and net/smc. Maintainers of both subsystems are
cc'd. Inputs on the behavior change would be very much appreciated.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Dennis Dalessandro <dennis.dalessandro@cornelisnetworks.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Leon Romanovsky <leon@kernel.org>
Cc: Karsten Graul <kgraul@linux.ibm.com>
Cc: Wenjia Zhang <wenjia@linux.ibm.com>
Cc: Jan Karcher <jaka@linux.ibm.com>
2023-08-07 15:57:23 -10:00
Tejun Heo
8a1dd1e547 workqueue: Track and monitor per-workqueue CPU time usage
Now that wq_worker_tick() is there, we can easily track the rough CPU time
consumption of each workqueue by charging the whole tick whenever a tick
hits an active workqueue. While not super accurate, it provides reasonable
visibility into the workqueues that consume a lot of CPU cycles.
wq_monitor.py is updated to report the per-workqueue CPU times.

v2: wq_monitor.py was using "cputime" as the key when outputting in json
    format. Use "cpu_time" instead for consistency with other fields.

Signed-off-by: Tejun Heo <tj@kernel.org>
2023-05-17 17:02:09 -10:00
Tejun Heo
616db8779b workqueue: Automatically mark CPU-hogging work items CPU_INTENSIVE
If a per-cpu work item hogs the CPU, it can prevent other work items from
starting through concurrency management. A per-cpu workqueue which intends
to host such CPU-hogging work items can choose to not participate in
concurrency management by setting %WQ_CPU_INTENSIVE; however, this can be
error-prone and difficult to debug when missed.

This patch adds an automatic CPU usage based detection. If a
concurrency-managed work item consumes more CPU time than the threshold
(10ms by default) continuously without intervening sleeps, wq_worker_tick()
which is called from scheduler_tick() will detect the condition and
automatically mark it CPU_INTENSIVE.

The mechanism isn't foolproof:

* Detection depends on tick hitting the work item. Getting preempted at the
  right timings may allow a violating work item to evade detection at least
  temporarily.

* nohz_full CPUs may not be running ticks and thus can fail detection.

* Even when detection is working, the 10ms detection delays can add up if
  many CPU-hogging work items are queued at the same time.

However, in vast majority of cases, this should be able to detect violations
reliably and provide reasonable protection with a small increase in code
complexity.

If some work items trigger this condition repeatedly, the bigger problem
likely is the CPU being saturated with such per-cpu work items and the
solution would be making them UNBOUND. The next patch will add a debug
mechanism to help spot such cases.

v4: Documentation for workqueue.cpu_intensive_thresh_us added to
    kernel-parameters.txt.

v3: Switch to use wq_worker_tick() instead of hooking into preemptions as
    suggested by Peter.

v2: Lai pointed out that wq_worker_stopping() also needs to be called from
    preemption and rtlock paths and an earlier patch was updated
    accordingly. This patch adds a comment describing the risk of infinte
    recursions and how they're avoided.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
2023-05-17 17:02:08 -10:00
Tejun Heo
725e8ec59c workqueue: Add pwq->stats[] and a monitoring script
Currently, the only way to peer into workqueue operations is through
tracing. While possible, it isn't easy or convenient to monitor
per-workqueue behaviors over time this way. Let's add pwq->stats[] that
track relevant events and a drgn monitoring script -
tools/workqueue/wq_monitor.py.

It's arguable whether this needs to be configurable. However, it currently
only has several counters and the runtime overhead shouldn't be noticeable
given that they're on pwq's which are per-cpu on per-cpu workqueues and
per-numa-node on unbound ones. Let's keep it simple for the time being.

v2: Patch reordered to earlier with fewer fields. Field will be added back
    gradually. Help message improved.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
2023-05-17 17:02:08 -10:00
Ross Zwisler
2abfcd293b docs: ftrace: always use canonical ftrace path
The canonical location for the tracefs filesystem is at /sys/kernel/tracing.

But, from Documentation/trace/ftrace.rst:

  Before 4.1, all ftrace tracing control files were within the debugfs
  file system, which is typically located at /sys/kernel/debug/tracing.
  For backward compatibility, when mounting the debugfs file system,
  the tracefs file system will be automatically mounted at:

  /sys/kernel/debug/tracing

Many parts of Documentation still reference this older debugfs path, so
let's update them to avoid confusion.

Signed-off-by: Ross Zwisler <zwisler@google.com>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Link: https://lore.kernel.org/r/20230125213251.2013791-1-zwisler@google.com
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
2023-01-31 14:02:30 -07:00
Boqun Feng
f9eaaa82b4 workqueue: doc: Call out the non-reentrance conditions
The current doc of workqueue API suggests that work items are
non-reentrant: any work item is guaranteed to be executed by at most one
worker system-wide at any given time. However this is not true, the
following case can cause a work item W executed by two workers at
the same time:

        queue_work_on(0, WQ1, W);
        // after a worker picks up W and clear the pending bit
        queue_work_on(1, WQ2, W);
        // workers on CPU0 and CPU1 will execute W in the same time.

, which means the non-reentrance of a work item is conditional, and
Lai Jiangshan provided a nice summary[1] of the conditions, therefore
use it to describe a work item instance and improve the doc.

[1]: https://lore.kernel.org/lkml/CAJhGHyDudet_xyNk=8xnuO2==o-u06s0E0GZVP4Q67nmQ84Ceg@mail.gmail.com/

Suggested-by: Matthew Wilcox <willy@infradead.org>
Suggested-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2021-10-25 07:18:40 -10:00
Mauro Carvalho Chehab
c9e3d519ee docs: basics.rst: move kernel-doc workqueue markups to workqueue.rst
As there's already a rst file with workqueue markups, containing
part of them, move the other definitions, in order to avoid
warnings with Sphinx.

Signed-off-by: Mauro Carvalho Chehab <mchehab+huawei@kernel.org>
2020-10-15 07:49:41 +02:00
Randy Dunlap
47684e111f Documentation: core-api: minor workqueue.rst cleanups
Clean up workqueue.rst:
- fix minor typos
- put '@' after `` instead of preceding them (one place)
- use "CPU" instead of "cpu" in text consistently
- quote one function name

Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Florian Mickler <florian@mickler.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
2017-09-18 17:29:27 -07:00
Alexei Potashnik
0e0cafcda8 workqueue: doc change for ST behavior on NUMA systems
NUMA rework of workqueue made the combination of max_active of 1 and
WQ_UNBOUND insufficient to guarantee ST behavior system wide.

alloc_ordered_queue should now be used instead.

Signed-off-by: Alexei Potashnik <alexei@purestorage.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2017-07-18 14:34:53 -04:00
Silvio Fricke
e7f08ffb18 Documentation/workqueue.txt: convert to ReST markup
... and move to Documentation/core-api folder.

Signed-off-by: Silvio Fricke <silvio.fricke@gmail.com>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
2016-10-28 10:55:01 -06:00
Renamed from Documentation/workqueue.txt (Browse further)