Impact: extend and enable the function graph tracer to 64-bit x86
This patch implements the support for function graph tracer under x86-64.
Both static and dynamic tracing are supported.
This causes some small CPP conditional asm on arch/x86/kernel/ftrace.c I
wanted to use probe_kernel_read/write to make the return address
saving/patching code more generic but it causes tracing recursion.
That would be perhaps useful to implement a notrace version of these
function for other archs ports.
Note that arch/x86/process_64.c is not traced, as in X86-32. I first
thought __switch_to() was responsible of crashes during tracing because I
believed current task were changed inside but that's actually not the
case (actually yes, but not the "current" pointer).
So I will have to investigate to find the functions that harm here, to
enable tracing of the other functions inside (but there is no issue at
this time, while process_64.c stays out of -pg flags).
A little possible race condition is fixed inside this patch too. When the
tracer allocate a return stack dynamically, the current depth is not
initialized before but after. An interrupt could occur at this time and,
after seeing that the return stack is allocated, the tracer could try to
trace it with a random uninitialized depth. It's a prevention, even if I
hadn't problems with it.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Tim Bird <tim.bird@am.sony.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: fix "no output from tracer" bug caused by ftrace_update_pid_func()
When disabling single thread function trace using
"echo -1 > set_ftrace_pid", the normal function trace
has to restore to original function, otherwise the normal
function trace will not work well.
Without this commit, something like below:
$ ps |grep 850
850 root 2556 S -/bin/sh
$ echo 850 > /debug/tracing/set_ftrace_pid
$ echo function > /debug/tracing/current_tracer
$ echo 1 > /debug/tracing/tracing_enabled
$ sleep 1
$ echo 0 > /debug/tracing/tracing_enabled
$ cat /debug/tracing/trace_pipe |wc -l
59704
$ echo -1 > /debug/tracing/set_ftrace_pid
$ echo 1 > /debug/tracing/tracing_enabled
$ sleep 1
$ echo 0 > /debug/tracing/tracing_enabled
$ more /debug/tracing/trace_pipe
<====== nothing output now!
it should output trace record.
Signed-off-by: Liming Wang <liming.wang@windriver.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: make ftrace position computing more sane
First remove useless ->pos field. Then we needn't check seq_printf
in .show like other place.
Signed-off-by: Liming Wang <liming.wang@windriver.com>
Reviewed-by: Bruce Ashfield <bruce.ashfield@windriver.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: feature
This patch enables function tracing and function return to run together.
I've tested this by enabling the stack tracer and return tracer, where
both the function entry and function return are used together with
dynamic ftrace.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: more efficient code for ftrace graph tracer
This patch uses the dynamic patching, when available, to patch
the function graph code into the kernel.
This patch will ease the way for letting both function tracing
and function graph tracing run together.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: feature to function trace a single thread
This patch adds the ability to function trace a single thread.
The file:
/debugfs/tracing/set_ftrace_pid
contains the pid to trace. Valid pids are any positive integer.
Writing any negative number to this file will disable the pid
tracing and the function tracer will go back to tracing all of
threads.
This feature works with both static and dynamic function tracing.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: feature
This patch sets a C-like output for the function graph tracing.
For this aim, we now call two handler for each function: one on the entry
and one other on return. This way we can draw a well-ordered call stack.
The pid of the previous trace is loosely stored to be compared against
the one of the current trace to see if there were a context switch.
Without this little feature, the call tree would seem broken at
some locations.
We could use the sched_tracer to capture these sched_events but this
way of processing is much more simpler.
2 spaces have been chosen for indentation to fit the screen while deep
calls. The time of execution in nanosecs is printed just after closed
braces, it seems more easy this way to find the corresponding function.
If the time was printed as a first column, it would be not so easy to
find the corresponding function if it is called on a deep depth.
I plan to output the return value but on 32 bits CPU, the return value
can be 32 or 64, and its difficult to guess on which case we are.
I don't know what would be the better solution on X86-32: only print
eax (low-part) or even edx (high-part).
Actually it's thee same problem when a function return a 8 bits value, the
high part of eax could contain junk values...
Here is an example of trace:
sys_read() {
fget_light() {
} 526
vfs_read() {
rw_verify_area() {
security_file_permission() {
cap_file_permission() {
} 519
} 1564
} 2640
do_sync_read() {
pipe_read() {
__might_sleep() {
} 511
pipe_wait() {
prepare_to_wait() {
} 760
deactivate_task() {
dequeue_task() {
dequeue_task_fair() {
dequeue_entity() {
update_curr() {
update_min_vruntime() {
} 504
} 1587
clear_buddies() {
} 512
add_cfs_task_weight() {
} 519
update_min_vruntime() {
} 511
} 5602
dequeue_entity() {
update_curr() {
update_min_vruntime() {
} 496
} 1631
clear_buddies() {
} 496
update_min_vruntime() {
} 527
} 4580
hrtick_update() {
hrtick_start_fair() {
} 488
} 1489
} 13700
} 14949
} 16016
msecs_to_jiffies() {
} 496
put_prev_task_fair() {
} 504
pick_next_task_fair() {
} 489
pick_next_task_rt() {
} 496
pick_next_task_fair() {
} 489
pick_next_task_idle() {
} 489
------------8<---------- thread 4 ------------8<----------
finish_task_switch() {
} 1203
do_softirq() {
__do_softirq() {
__local_bh_disable() {
} 669
rcu_process_callbacks() {
__rcu_process_callbacks() {
cpu_quiet() {
rcu_start_batch() {
} 503
} 1647
} 3128
__rcu_process_callbacks() {
} 542
} 5362
_local_bh_enable() {
} 587
} 8880
} 9986
kthread_should_stop() {
} 669
deactivate_task() {
dequeue_task() {
dequeue_task_fair() {
dequeue_entity() {
update_curr() {
calc_delta_mine() {
} 511
update_min_vruntime() {
} 511
} 2813
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: cleanup
This patch changes the name of the "return function tracer" into
function-graph-tracer which is a more suitable name for a tracing
which makes one able to retrieve the ordered call stack during
the code flow.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: use deeper function tracing depth safely
Some tests showed that function return tracing needed a more deeper depth
of function calls. But it could be unsafe to store these return addresses
to the stack.
So these arrays will now be allocated dynamically into task_struct of current
only when the tracer is activated.
Typical scheme when tracer is activated:
- allocate a return stack for each task in global list.
- fork: allocate the return stack for the newly created task
- exit: free return stack of current
- idle init: same as fork
I chose a default depth of 50. I don't have overruns anymore.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: make output of available_filter_functions complete
phenomenon:
The first value of dyn_ftrace_total_info is not equal with
`cat available_filter_functions | wc -l`, but they should be equal.
root cause:
When printing functions with seq_printf in t_show, if the read buffer
is just overflowed by current function record, then this function
won't be printed to user space through read buffer, it will
just be dropped. So we can't see this function printing.
So, every time the last function to fill the read buffer, if overflowed,
will be dropped.
This also applies to set_ftrace_filter if set_ftrace_filter has
more bytes than read buffer.
fix:
Through checking return value of seq_printf, if less than 0, we know
this function doesn't be printed. Then we decrease position to force
this function to be printed next time, in next read buffer.
Another little fix is to show correct allocating pages count.
Signed-off-by: walimis <walimisdev@gmail.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch adds the support for dynamic tracing on the function return tracer.
The whole difference with normal dynamic function tracing is that we don't need
to hook on a particular callback. The only pro that we want is to nop or set
dynamically the calls to ftrace_caller (which is ftrace_return_caller here).
Some security checks ensure that we are not trying to launch dynamic tracing for
return tracing while normal function tracing is already running.
An example of trace with getnstimeofday set as a filter:
ktime_get_ts+0x22/0x50 -> getnstimeofday (2283 ns)
ktime_get_ts+0x22/0x50 -> getnstimeofday (1396 ns)
ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns)
ktime_get_ts+0x22/0x50 -> getnstimeofday (1825 ns)
ktime_get_ts+0x22/0x50 -> getnstimeofday (1426 ns)
ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns)
ktime_get_ts+0x22/0x50 -> getnstimeofday (1524 ns)
ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns)
ktime_get_ts+0x22/0x50 -> getnstimeofday (1382 ns)
ktime_get_ts+0x22/0x50 -> getnstimeofday (1434 ns)
ktime_get_ts+0x22/0x50 -> getnstimeofday (1464 ns)
ktime_get_ts+0x22/0x50 -> getnstimeofday (1502 ns)
ktime_get_ts+0x22/0x50 -> getnstimeofday (1404 ns)
ktime_get_ts+0x22/0x50 -> getnstimeofday (1397 ns)
ktime_get_ts+0x22/0x50 -> getnstimeofday (1051 ns)
ktime_get_ts+0x22/0x50 -> getnstimeofday (1314 ns)
ktime_get_ts+0x22/0x50 -> getnstimeofday (1344 ns)
ktime_get_ts+0x22/0x50 -> getnstimeofday (1163 ns)
ktime_get_ts+0x22/0x50 -> getnstimeofday (1390 ns)
ktime_get_ts+0x22/0x50 -> getnstimeofday (1374 ns)
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: set filtered functions at time the filter is set
It can be confusing when the set_filter_functions is set (or cleared)
and the functions being recorded by the dynamic tracer does not
match.
This patch causes the code to be updated if the function tracer is
enabled and the filter is changed.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: correct implementation of dyn ftrace filter
The old decisions made by the filter algorithm was complex and incorrect.
This lead to inconsistent enabling or disabling of functions when
the filter was used.
This patch simplifies that code and in doing so, corrects the usage
of the filters.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: make ftrace_convert_nops() more permissive
Due to the way different architecture linkers combine the data sections
of the mcount_loc (the section that lists all the locations that
call mcount), there may be zeros added in that section. This is usually
due to strange alignments that the linker performs, that pads in zeros.
This patch makes the conversion code to nops skip any pointer in
the mcount_loc section that is NULL.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: allow archs more flexibility on dynamic ftrace implementations
Dynamic ftrace has largly been developed on x86. Since x86 does not
have the same limitations as other architectures, the ftrace interaction
between the generic code and the architecture specific code was not
flexible enough to handle some of the issues that other architectures
have.
Most notably, module trampolines. Due to the limited branch distance
that archs make in calling kernel core code from modules, the module
load code must create a trampoline to jump to what will make the
larger jump into core kernel code.
The problem arises when this happens to a call to mcount. Ftrace checks
all code before modifying it and makes sure the current code is what
it expects. Right now, there is not enough information to handle modifying
module trampolines.
This patch changes the API between generic dynamic ftrace code and
the arch dependent code. There is now two functions for modifying code:
ftrace_make_nop(mod, rec, addr) - convert the code at rec->ip into
a nop, where the original text is calling addr. (mod is the
module struct if called by module init)
ftrace_make_caller(rec, addr) - convert the code rec->ip that should
be a nop into a caller to addr.
The record "rec" now has a new field called "arch" where the architecture
can add any special attributes to each call site record.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: keep from converting freed records
When the tracer is started or stopped, it converts all code pointed
to by the saved records into callers to ftrace or nops. When modules
are unloaded, their records are freed, but they still exist within
the record pages.
This patch changes the code to skip over freed records.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: robust feature to disable ftrace on start or stop tracing on error
Currently only the initial conversion to nops will disable ftrace
on an anomaly. But if an anomaly happens on start or stopping of the
tracer, it will silently fail.
This patch adds a check there too, to disable ftrace and warn if the
conversion fails.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: let module functions be recorded when dyn ftrace not enabled
When dynamic ftrace had a daemon and a hash to record the locations
of mcount callers at run time, the recording needed to stop when
ftrace was disabled. But now that the recording is done at compile time
and the ftrace_record_ip is only called at boot up and when a module
is loaded, we no longer need to check if ftrace_enabled is set.
In fact, this breaks module load if it is not set because we skip
over module functions.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Because it has goto out before ftrace_list == &ftrace_list_end,
that's to say, we never meet this condition.
Signed-off-by: walimis <walimisdev@gmail.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: enable/disable ring buffer recording API added
Several kernel developers have requested that there be a way to stop
recording into the ring buffers with a simple switch that can also
be enabled from userspace. This patch addes a new kernel API to the
ring buffers called:
tracing_on()
tracing_off()
When tracing_off() is called, all ring buffers will not be able to record
into their buffers.
tracing_on() will enable the ring buffers again.
These two act like an on/off switch. That is, there is no counting of the
number of times tracing_off or tracing_on has been called.
A new file is added to the debugfs/tracing directory called
tracing_on
This allows for userspace applications to also flip the switch.
echo 0 > debugfs/tracing/tracing_on
disables the tracing.
echo 1 > /debugfs/tracing/tracing_on
enables it.
Note, this does not disable or enable any tracers. It only sets or clears
a flag that needs to be set in order for the ring buffers to write to
their buffers. It is a global flag, and affects all ring buffers.
The buffers start out with tracing_on enabled.
There are now three flags that control recording into the buffers:
tracing_on: which affects all ring buffer tracers.
buffer->record_disabled: which affects an allocated buffer, which may be set
if an anomaly is detected, and tracing is disabled.
cpu_buffer->record_disabled: which is set by tracing_stop() or if an
anomaly is detected. tracing_start can not reenable this if
an anomaly occurred.
The userspace debugfs/tracing/tracing_enabled is implemented with
tracing_stop() but the user space code can not enable it if the kernel
called tracing_stop().
Userspace can enable the tracing_on even if the kernel disabled it.
It is just a switch used to stop tracing if a condition was hit.
tracing_on is not for protecting critical areas in the kernel nor is
it for stopping tracing if an anomaly occurred. This is because userspace
can reenable it at any time.
Side effect: With this patch, I discovered a dead variable in ftrace.c
called tracing_on. This patch removes it.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Impact: add new tracing plugin which can trace full (entry+exit) function calls
This tracer uses the low level function return ftrace plugin to
measure the execution time of the kernel functions.
The first field is the caller of the function, the second is the
measured function, and the last one is the execution time in
nanoseconds.
- v3:
- HAVE_FUNCTION_RET_TRACER have been added. Each arch that support ftrace return
should enable it.
- ftrace_return_stub becomes ftrace_stub.
- CONFIG_FUNCTION_RET_TRACER depends now on CONFIG_FUNCTION_TRACER
- Return traces printing can be used for other tracers on trace.c
- Adapt to the new tracing API (no more ctrl_update callback)
- Correct the check of "disabled" during insertion.
- Minor changes...
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: fix of output of set_ftrace_filter
Commit ftrace: do not show freed records in available_filter_functions
Removed a bit too much from the set_ftrace_filter code, where we now see
all functions in the set_ftrace_filter file even when we set a filter.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: quick start and stop of function tracer
This patch adds a way to disable the function tracer quickly without
the need to run kstop_machine. It adds a new variable called
function_trace_stop which will stop the calls to functions from mcount
when set. This is just an on/off switch and does not handle recursion
like preempt_disable().
It's main purpose is to help other tracers/debuggers start and stop tracing
fuctions without the need to call kstop_machine.
The config option HAVE_FUNCTION_TRACE_MCOUNT_TEST is added for archs
that implement the testing of the function_trace_stop in the mcount
arch dependent code. Otherwise, the test is done in the C code.
x86 is the only arch at the moment that supports this.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: corrects a bug which made the non-dyn function tracer not functional
With latest git, the non-dynamic function tracer didn't get any trace.
The problem was the fact that ftrace_enabled wasn't initialized to 1
because ftrace hasn't any init function when DYNAMIC_FTRACE is disabled.
So when a tracer tries to register an ftrace_ops struct,
__register_ftrace_function failed to set the hook.
This patch corrects it by setting an init function to initialize
ftrace during the boot.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
this warning:
kernel/trace/ftrace.c:189: warning: ‘frozen_record_count’ defined but not used
triggers because frozen_record_count is only used in the KCONFIG_MARKERS
case. Move the variable it there.
Alas, this frozen-record facility seems to have little use. The
frozen_record_count variable is not used by anything, nor the flags.
So this section might need a bit of dead-code-removal care as well.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
fix:
kernel/trace/ftrace.c: In function 'ftrace_release':
kernel/trace/ftrace.c:271: error: implicit declaration of function 'ftrace_release_hash'
release_hash is not needed without dftraced.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The ftrace hash was used by the ftrace_daemon code. The record ip function
would place the calling address (ip) into the hash. The daemon would later
read the hash and modify that code.
The hash complicates the code. This patch removes it.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The arch dependent function ftrace_mcount_set was only used by the daemon
start up code. This patch removes it.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The ftrace daemon is complex and error prone. This patch strips it out
of the code.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Add ftrace warn on to disable ftrace as well as report a warning.
[ Thanks to Andrew Morton for suggesting using the WARN_ON return value ]
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
When an anomaly is detected, we need a way to completely disable
ftrace. Right now we have two functions: ftrace_kill and ftrace_kill_atomic.
The ftrace_kill tries to do it in a "nice" way by converting everything
back to a nop.
The "nice" way is dangerous itself, so this patch removes it and only
has the "atomic" version, which is all that is needed.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Have the ftrace_modify_code return error values:
-EFAULT on error of reading the address
-EINVAL if what is read does not match what it expected
-EPERM if the write fails to update after a successful match.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The x86 architecture uses a static recording of mcount caller locations
and is not affected by this patch.
For architectures still using the dynamic ftrace daemon, this patch is
critical. It removes the race between the recording of a function that
calls mcount, the unloading of a module, and the ftrace daemon updating
the call sites.
This patch adds the releasing of the hash functions that the daemon uses
to update the mcount call sites. When a module is unloaded, not only
are the replaced call site table update, but now so is the hash recorded
functions that the ftrace daemon will use.
Again, architectures that implement MCOUNT_RECORD are not affected by
this (which currently only x86 has).
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
With the recent updates to ftrace, there should not be any failures when
modifying the code. If there is, then we need to warn about it.
This patch has a cleaned up version of the code that I used to discover
that the weak symbols were causing failures.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
When CONFIG_DYNAMIC_FTRACE isn't used, neither is mcount_addr. This
patch eliminates that warning.
Signed-off-by: Steven Noonan <steven@uplinklabs.net>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This must be brown paper bag week for Steven Rostedt!
While working on ftrace for PPC, I discovered that the hash locking done
when CONFIG_FTRACE_MCOUNT_RECORD is not set, is totally incorrect.
With a cut and paste error, I had the hash lock macro to lock for both
hash_lock _and_ hash_unlock!
This bug did not affect x86 since this bug was introduced when
CONFIG_FTRACE_MCOUNT_RECORD was added to x86.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The mcount record method of ftrace scans objdump for references to mcount.
Using mcount as the reference to test if the calls to mcount being replaced
are indeed calls to mcount, this use of mcount was also caught as a
location to change. Using a variable that points to the mcount address
moves this reference into the data section that is not scanned, and
we do not use a false location to try and modify.
The warn on code was what was used to detect this bug.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
After disabling FTRACE_MCOUNT_RECORD via a patch, a dormant build
failure surfaced:
kernel/trace/ftrace.c: In function 'ftrace_record_ip':
kernel/trace/ftrace.c:416: error: incompatible type for argument 1 of '_spin_lock_irqsave'
kernel/trace/ftrace.c:433: error: incompatible type for argument 1 of '_spin_lock_irqsave'
Introduced by commit 6dad8e07f4c10b17b038e84d29f3ca41c2e55cd0 ("ftrace:
add necessary locking for ftrace records").
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The new design of pre-recorded mcounts and updating the code outside of
kstop_machine has changed the way the records themselves are protected.
This patch uses the ftrace_lock to protect the records. Note, the lock
still does not need to be taken within calls that are only called via
kstop_machine, since the that code can not run while the spin lock is held.
Also removed the hash_lock needed for the daemon when MCOUNT_RECORD is
configured. Also did a slight cleanup of an unused variable.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
If one of the self tests of ftrace has disabled the function tracer,
do not run the code to convert the mcount calls in modules.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
When a mcount pointer is recorded into a table, it is used to add or
remove calls to mcount (replacing them with nops). If the code is removed
via removing a module, the pointers still exist. At modifying the code
a check is always made to make sure the code being replaced is the code
expected. In-other-words, the code being replaced is compared to what
it is expected to be before being replaced.
There is a very small chance that the code being replaced just happens
to look like code that calls mcount (very small since the call to mcount
is relative). To remove this chance, this patch adds ftrace_release to
allow module unloading to remove the pointers to mcount within the module.
Another change for init calls is made to not trace calls marked with
__init. The tracing can not be started until after init is done anyway.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Seems that freed records can appear in the available_filter_functions list.
This patch fixes that.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch enables the loading of the __mcount_section of modules and
changing all the callers of mcount into nops.
The modification is done before the init_module function is called, so
again, we do not need to use kstop_machine to make these changes.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This is the infrastructure to the converting the mcount call sites
recorded by the __mcount_loc section into nops on boot. It also allows
for using these sites to enable tracing as normal. When the __mcount_loc
section is used, the "ftraced" kernel thread is disabled.
This uses the current infrastructure to record the mcount call sites
as well as convert them to nops. The mcount function is kept as a stub
on boot up and not converted to the ftrace_record_ip function. We use the
ftrace_record_ip to only record from the table.
This patch does not handle modules. That comes with a later patch.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
fix:
kernel/trace/ftrace.c:1615: error: 'ftraced_suspend' undeclared (first use in this function)
kernel/trace/ftrace.c:1615: error: (Each undeclared identifier is reported only once
kernel/trace/ftrace.c:1615: error: for each function it appears in.)
Signed-off-by: Ingo Molnar <mingo@elte.hu>
It has been suggested that I add a way to disable the function tracer
on an oops. This code adds a ftrace_kill_atomic. It is not meant to be
used in normal situations. It will disable the ftrace tracer, but will
not perform the nice shutdown that requires scheduling.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Cc: Steven Rostedt <srostedt@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Avoid modifying the mcount call-site if there is a kprobe installed on it.
These records are not marked as failed however. This allowed the filter
rules on them to remain up-to-date. Whenever the kprobe on the corresponding
record is removed, the record gets updated as normal.
Signed-off-by: Abhishek Sagar <sagar.abhishek@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Let records identified as being kprobe'd be marked as "frozen". The trouble
with records which have a kprobe installed on their mcount call-site is
that they don't get updated. So if such a function which is currently being
traced gets its tracing disabled due to a new filter rule (or because it
was added to the notrace list) then it won't be updated and continue being
traced. This patch allows scanning of all frozen records during tracing to
check if they should be traced.
Signed-off-by: Abhishek Sagar <sagar.abhishek@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Record the address of the mcount call-site. Currently all archs except sparc64
record the address of the instruction following the mcount call-site. Some
general cleanups are entailed. Storing mcount addresses in rec->ip enables
looking them up in the kprobe hash table later on to check if they're kprobe'd.
Signed-off-by: Abhishek Sagar <sagar.abhishek@gmail.com>
Cc: davem@davemloft.net
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This is a fix to give notrace filter rules priority over "set_ftrace_filter"
rules.
This fix ensures that functions which are set to be filtered and are
concurrently marked as "notrace" don't get recorded. As of now, if
a record is marked as FTRACE_FL_FILTER and is enabled, then the notrace
flag is not checked. Tested on x86-32.
Signed-off-by: Abhishek Sagar <sagar.abhishek@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Steven Rostedt wrote:
> If we unload a module and reload it, will it ever get converted again?
The intent was always to filter core kernel functions to prevent their freeing.
Here's a fix which should allow re-recording of module call-sites.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Identify functions which had their mcount call-site updates failed. This can
help us track functions which ftrace shouldn't fiddle with, and are thus not
being traced. If there is no race with any external agent which is modifying
the mcount call-site, then this file displays no entries (normal case).
Signed-off-by: Abhishek Sagar <sagar.abhishek@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Prevent freeing of records which cause problems and correspond to function from
core kernel text. A new flag, FTRACE_FL_CONVERTED is used to mark a record
as "converted". All other records are patched lazily to NOPs. Failed records
now also remain on frace_hash table. Each invocation of ftrace_record_ip now
checks whether the traced function has ever been recorded (including past
failures) and doesn't re-record it again.
Signed-off-by: Abhishek Sagar <sagar.abhishek@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
In dynamic ftrace, the mcount function starts off pointing to a stub
function that just returns.
On start up, the call to the stub is modified to point to a "record_ip"
function. The job of the record_ip function is to add the function to
a pre-allocated hash list. If the function is already there, it simply is
ignored, otherwise it is added to the list.
Later, a ftraced daemon wakes up and calls kstop_machine if any functions
have been recorded, and changes the calls to the recorded functions to
a simple nop. If no functions were recorded, the daemon goes back to sleep.
The daemon wakes up once a second to see if it needs to update any newly
recorded functions into nops. Usually it does not, but if a lot of code
has been executed for the first time in the kernel, the ftraced daemon
will call kstop_machine to update those into nops.
The problem currently is that there's no way to stop the daemon from doing
this, and it can cause unneeded latencies (800us which for some is bothersome).
This patch adds a new file /debugfs/tracing/ftraced_enabled. If the daemon
is active, reading this will return "enabled\n" and "disabled\n" when the
daemon is not running. To disable the daemon, the user can echo "0" or
"disable" into this file, and "1" or "enable" to re-enable the daemon.
Since the daemon is used to convert the functions into nops to increase
the performance of the system, I also added that anytime something is
written into the ftraced_enabled file, kstop_machine will run if there
are new functions that have been detected that need to be converted.
This way the user can disable the daemon but still be able to control the
conversion of the mcount calls to nops by simply,
"echo 0 > /debugfs/tracing/ftraced_enabled"
when they need to do more conversions.
To see the number of converted functions:
"cat /debugfs/tracing/dyn_ftrace_total_info"
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Hi Ingo/Steven,
Ftrace currently maintains an update count which includes false updates,
i.e, updates which failed. If anything, such failures should be tracked
by some separate variable, but this patch provides a minimal fix.
Signed-off-by: Abhishek Sagar <sagar.abhishek@gmail.com>
Cc: rostedt@goodmis.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Hi Steven,
I noticed that concurrent instances of ftrace_record_ip()
have a race between ftrace_hash list traversal during
ftrace_ip_in_hash() (before acquiring ftrace_shutdown_lock)
and ftrace_add_hash(). If it's so then this should fix it.
Signed-off-by: Abhishek Sagar <sagar.abhishek@gmail.com>
Cc: rostedt@goodmis.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
While debugging latencies in the RT kernel, I found that it would be nice
to be able to filter away functions from the trace than just to filter
on functions.
I added a new interface to the debugfs tracing directory called
set_ftrace_notrace
When dynamic frace is enabled, this lets you filter away functions that will
not be recorded in the trace. It is similar to adding 'notrace' to those
functions but by doing it without recompiling the kernel.
Here's how set_ftrace_filter and set_ftrace_notrace interact. Remember, if
set_ftrace_filter is set, it removes all functions from the trace execpt for
those listed in the set_ftrace_filter. set_ftrace_notrace will prevent those
functions from being traced.
If you were to set one function in both set_ftrace_filter and
set_ftrace_notrace and that function was the same, then you would end up
with an empty trace.
the set of functions to trace is:
set_ftrace_filter == empty then
all functions not in set_ftrace_notrace
else
set of the set_ftrace_filter and not in set of set_ftrace_notrace.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
David S. Miller noticed the following bug: the -pg instrumentation
function callback is named differently on each platform. On x86 it
is mcount, on sparc it is _mcount. So the export does not make sense
in kernel/trace/ftrace.c - move it to x86.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
It causes unaligned access traps on platforms like sparc
(ftrace_page may be marked packed, but once we return
a dyn_ftrace sub-object from this array to another piece
of code, the "packed" part of the typing information doesn't
propagate).
But also, it didn't serve any purpose either. Even if packed,
on 64-bit or 32-bit, it didn't give us any more dyn_ftrace
entries per-page.
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Due to debug hooks in the kernel that can change the way smp_processor_id
works, use raw_smp_processor_id in mcount called functions (namely
ftrace_record_ip). Currently we annotate most debug functions from calling
mcount, but we should not rely on that to prevent kernel lockups.
This patch uses the raw_smp_processor_id to prevent a recusive crash
that can happen if a debug hook in smp_processor_id calls mcount.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
When dynamic ftrace fails and sets itself disabled, the ftraced daemon
will go back to sleep everytime it wakes up. The setting of the
ftraced state to UNINTERRUPTIBLE is skipped in this process, and the
daemon takes up 100% of the CPU. This patch makes sure the ftraced daemon
sets itself to UNINTERRUPTIBLE in that loop.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
now that we have a kbuild method for notrace, no need to pollute the
C code with the annotations.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
PowerPC is very fragile when it comes to use of function names
and function addresses. ftrace needs to either use all function
addresses or function names (i.e. my_func as suppose to &my_func).
This patch chooses to use the names and not the addresses, and
makes ftrace consistent.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Since ftrace touches practically every function. If we detect any
anomaly, we want to fully disable ftrace. This patch adds code
to try shutdown ftrace as much as possible without doing any more
harm is something is detected not quite correct.
This only kills ftrace, this patch does have checks for other parts of
the tracer (irqsoff, wakeup, etc.).
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The ftrace dynamic function update allocates a record to store the
instruction pointers that are being modified. If the modified
instruction pointer fails to update, then the record is marked as
failed and nothing more is done.
Worse, if the modification fails, but the record ip function is still
called, it will allocate a new record and try again. In just a matter
of time, will this cause a serious memory leak and crash the system.
This patch plugs this memory leak. When a record fails, it is
included back into the pool of records to be used. Now a record may
fail over and over again, but the number of allocated records will
not increase.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This patch adds a startup self test on dynamic code modification
and filters. The test filters on a specific function, makes sure that
no other function is traced, exectutes the function, then makes sure that
the function is traced.
This patch also fixes a slight bug with the ftrace selftest, where
tracer_enabled was not being set.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This patch adds two files to the debugfs system:
/debugfs/tracing/available_filter_functions
and
/debugfs/tracing/set_ftrace_filter
The available_filter_functions lists all functions that has been
recorded by the ftraced that has called the ftrace_record_ip function.
This is to allow users to see what functions have been converted
to nops and can be enabled for tracing.
To enable functions, simply echo the names (whitespace delimited)
into set_ftrace_filter. Simple wildcards are also allowed.
echo 'scheduler' > /debugfs/tracing/set_ftrace_filter
Will have only the scheduler be activated when tracing is enabled.
echo 'sched_*' > /debugfs/tracing/set_ftrace_filter
Will have only the functions starting with 'sched_' be activated.
echo '*lock' > /debugfs/tracing/set_ftrace_filter
Will have only functions ending with 'lock' be activated.
echo '*lock*' > /debugfs/tracing/set_ftrace_filter
Will have only functions with 'lock' in its name be activated.
Note: 'sched*lock' will not work. The only wildcards that are
allowed is an asterisk and the beginning and or end of the string
passed in.
Multiple names can be passed in with whitespace delimited:
echo 'scheduler *lock *acpi*' > /debugfs/tracing/set_ftrace_filter
is also the same as:
echo 'scheduler' > /debugfs/tracing/set_ftrace_filter
echo '*lock' >> /debugfs/tracing/set_ftrace_filter
echo '*acpi*' >> /debugfs/tracing/set_ftrace_filter
Appending does just that. It appends to the list.
To disable all filters simply echo an empty line in:
echo > /debugfs/tracing/set_ftrace_filter
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This patch replaces the indirect call to the mcount function
pointer with a direct call that will be patched by the
dynamic ftrace routines.
On boot up, the mcount function calls the ftace_stub function.
When the dynamic ftrace code is initialized, the ftrace_stub
is replaced with a call to the ftrace_record_ip, which records
the instruction pointers of the locations that call it.
Later, the ftraced daemon will call kstop_machine and patch all
the locations to nops.
When a ftrace is enabled, the original calls to mcount will now
be set top call ftrace_caller, which will do a direct call
to the registered ftrace function. This direct call is also patched
when the function that should be called is updated.
All patching is performed by a kstop_machine routine to prevent any
type of race conditions that is associated with modifying code
on the fly.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This patch moves the memory management of the ftrace
records out of the arch code and into the generic code
making the arch code simpler.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This patch adds back the sysctl ftrace_enabled. This time it is
defaulted to on, if DYNAMIC_FTRACE is configured. When ftrace_enabled
is disabled, the ftrace function is set to the stub return.
If DYNAMIC_FTRACE is also configured, on ftrace_enabled = 0,
the registered ftrace functions will all be set to jmps, but no more
new calls to ftrace recording (used to find the ftrace calling sites)
will be called.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This patch adds a feature to dynamically replace the ftrace code
with the jmps to allow a kernel with ftrace configured to run
as fast as it can without it configured.
The way this works, is on bootup (if ftrace is enabled), a ftrace
function is registered to record the instruction pointer of all
places that call the function.
Later, if there's still any code to patch, a kthread is awoken
(rate limited to at most once a second) that performs a stop_machine,
and replaces all the code that was called with a jmp over the call
to ftrace. It only replaces what was found the previous time. Typically
the system reaches equilibrium quickly after bootup and there's no code
patching needed at all.
e.g.
call ftrace /* 5 bytes */
is replaced with
jmp 3f /* jmp is 2 bytes and we jump 3 forward */
3:
When we want to enable ftrace for function tracing, the IP recording
is removed, and stop_machine is called again to replace all the locations
of that were recorded back to the call of ftrace. When it is disabled,
we replace the code back to the jmp.
Allocation is done by the kthread. If the ftrace recording function is
called, and we don't have any record slots available, then we simply
skip that call. Once a second a new page (if needed) is allocated for
recording new ftrace function calls. A large batch is allocated at
boot up to get most of the calls there.
Because we do this via stop_machine, we don't have to worry about another
CPU executing a ftrace call as we modify it. But we do need to worry
about NMI's so all functions that might be called via nmi must be
annotated with notrace_nmi. When this code is configured in, the NMI code
will not call notrace.
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
If CONFIG_FTRACE is selected and /proc/sys/kernel/ftrace_enabled is
set to a non-zero value the ftrace routine will be called everytime
we enter a kernel function that is not marked with the "notrace"
attribute.
The ftrace routine will then call a registered function if a function
happens to be registered.
[ This code has been highly hacked by Steven Rostedt and Ingo Molnar,
so don't blame Arnaldo for all of this ;-) ]
Update:
It is now possible to register more than one ftrace function.
If only one ftrace function is registered, that will be the
function that ftrace calls directly. If more than one function
is registered, then ftrace will call a function that will loop
through the functions to call.
Signed-off-by: Arnaldo Carvalho de Melo <acme@ghostprotocols.net>
Signed-off-by: Steven Rostedt <srostedt@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>