Commit graph

2047 commits

Author SHA1 Message Date
He Fengqing
07058fb18d bpf: Fix possible race in inc_misses_counter
[ Upstream commit 0e3135d3bf ]

It seems inc_misses_counter() suffers from same issue fixed in
the commit d979617aa8 ("bpf: Fixes possible race in update_prog_stats()
for 32bit arches"):
As it can run while interrupts are enabled, it could
be re-entered and the u64_stats syncp could be mangled.

Fixes: 9ed9e9ba23 ("bpf: Count the number of times recursion was prevented")
Signed-off-by: He Fengqing <hefengqing@huawei.com>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/r/20220122102936.1219518-1-hefengqing@huawei.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-03-08 19:12:40 +01:00
Eric Dumazet
aa5040691c bpf: Use u64_stats_t in struct bpf_prog_stats
[ Upstream commit 61a0abaee2 ]

Commit 316580b69d ("u64_stats: provide u64_stats_t type")
fixed possible load/store tearing on 64bit arches.

For instance the following C code

stats->nsecs += sched_clock() - start;

Could be rightfully implemented like this by a compiler,
confusing concurrent readers a lot:

stats->nsecs += sched_clock();
// arbitrary delay
stats->nsecs -= start;

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20211026214133.3114279-4-eric.dumazet@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-03-08 19:12:40 +01:00
Eric Dumazet
8628f489b7 bpf: Add schedule points in batch ops
commit 75134f16e7 upstream.

syzbot reported various soft lockups caused by bpf batch operations.

 INFO: task kworker/1:1:27 blocked for more than 140 seconds.
 INFO: task hung in rcu_barrier

Nothing prevents batch ops to process huge amount of data,
we need to add schedule points in them.

Note that maybe_wait_bpf_programs(map) calls from
generic_map_delete_batch() can be factorized by moving
the call after the loop.

This will be done later in -next tree once we get this fix merged,
unless there is strong opinion doing this optimization sooner.

Fixes: aa2e93b8e5 ("bpf: Add generic support for update and delete batch ops")
Fixes: cb4d03ab49 ("bpf: Add generic support for lookup batch op")
Reported-by: syzbot <syzkaller@googlegroups.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Stanislav Fomichev <sdf@google.com>
Acked-by: Brian Vazquez <brianvv@google.com>
Link: https://lore.kernel.org/bpf/20220217181902.808742-1-eric.dumazet@gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-03-02 11:47:56 +01:00
Hou Tao
5e457aeab5 bpf: Use VM_MAP instead of VM_ALLOC for ringbuf
commit b293dcc473 upstream.

After commit 2fd3fb0be1d1 ("kasan, vmalloc: unpoison VM_ALLOC pages
after mapping"), non-VM_ALLOC mappings will be marked as accessible
in __get_vm_area_node() when KASAN is enabled. But now the flag for
ringbuf area is VM_ALLOC, so KASAN will complain out-of-bound access
after vmap() returns. Because the ringbuf area is created by mapping
allocated pages, so use VM_MAP instead.

After the change, info in /proc/vmallocinfo also changes from
  [start]-[end]   24576 ringbuf_map_alloc+0x171/0x290 vmalloc user
to
  [start]-[end]   24576 ringbuf_map_alloc+0x171/0x290 vmap user

Fixes: 457f44363a ("bpf: Implement BPF ring buffer and verifier support for it")
Reported-by: syzbot+5ad567a418794b9b5983@syzkaller.appspotmail.com
Signed-off-by: Hou Tao <houtao1@huawei.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20220202060158.6260-1-houtao1@huawei.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-02-08 18:34:11 +01:00
Naveen N. Rao
0bcd484587 bpf: Guard against accessing NULL pt_regs in bpf_get_task_stack()
commit b992f01e66 upstream.

task_pt_regs() can return NULL on powerpc for kernel threads. This is
then used in __bpf_get_stack() to check for user mode, resulting in a
kernel oops. Guard against this by checking return value of
task_pt_regs() before trying to obtain the call chain.

Fixes: fa28dcb82a ("bpf: Introduce helper bpf_get_task_stack()")
Cc: stable@vger.kernel.org # v5.9+
Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/d5ef83c361cc255494afd15ff1b4fb02a36e1dcf.1641468127.git.naveen.n.rao@linux.vnet.ibm.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-02-01 17:26:59 +01:00
Daniel Borkmann
95429d6b64 bpf: Mark PTR_TO_FUNC register initially with zero offset
commit d400a6cf1c upstream.

Similar as with other pointer types where we use ldimm64, clear the register
content to zero first, and then populate the PTR_TO_FUNC type and subprogno
number. Currently this is not done, and leads to reuse of stale register
tracking data.

Given for special ldimm64 cases we always clear the register offset, make it
common for all cases, so it won't be forgotten in future.

Fixes: 69c087ba62 ("bpf: Add bpf_for_each_map_elem() helper")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-01-27 11:05:26 +01:00
Yafang Shao
20ceec871b bpf: Fix mount source show for bpffs
commit 1e9d74660d upstream.

We noticed our tc ebpf tools can't start after we upgrade our in-house kernel
version from 4.19 to 5.10. That is because of the behaviour change in bpffs
caused by commit d2935de7e4 ("vfs: Convert bpf to use the new mount API").

In our tc ebpf tools, we do strict environment check. If the environment is
not matched, we won't allow to start the ebpf progs. One of the check is whether
bpffs is properly mounted. The mount information of bpffs in kernel-4.19 and
kernel-5.10 are as follows:

- kernel 4.19
$ mount -t bpf bpffs /sys/fs/bpf
$ mount -t bpf
bpffs on /sys/fs/bpf type bpf (rw,relatime)

- kernel 5.10
$ mount -t bpf bpffs /sys/fs/bpf
$ mount -t bpf
none on /sys/fs/bpf type bpf (rw,relatime)

The device name in kernel-5.10 is displayed as none instead of bpffs, then our
environment check fails. Currently we modify the tools to adopt to the kernel
behaviour change, but I think we'd better change the kernel code to keep the
behavior consistent.

After this change, the mount information will be displayed the same with the
behavior in kernel-4.19, for example:

$ mount -t bpf bpffs /sys/fs/bpf
$ mount -t bpf
bpffs on /sys/fs/bpf type bpf (rw,relatime)

Fixes: d2935de7e4 ("vfs: Convert bpf to use the new mount API")
Suggested-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Christian Brauner <christian.brauner@ubuntu.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Link: https://lore.kernel.org/bpf/20220108134623.32467-1-laoar.shao@gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-01-27 11:05:26 +01:00
Kris Van Hees
2fbd466952 bpf: Fix verifier support for validation of async callbacks
[ Upstream commit a5bebc4f00 ]

Commit bfc6bb74e4 ("bpf: Implement verifier support for validation of async callbacks.")
added support for BPF_FUNC_timer_set_callback to
the __check_func_call() function.  The test in __check_func_call() is
flaweed because it can mis-interpret a regular BPF-to-BPF pseudo-call
as a BPF_FUNC_timer_set_callback callback call.

Consider the conditional in the code:

	if (insn->code == (BPF_JMP | BPF_CALL) &&
	    insn->imm == BPF_FUNC_timer_set_callback) {

The BPF_FUNC_timer_set_callback has value 170.  This means that if you
have a BPF program that contains a pseudo-call with an instruction delta
of 170, this conditional will be found to be true by the verifier, and
it will interpret the pseudo-call as a callback.  This leads to a mess
with the verification of the program because it makes the wrong
assumptions about the nature of this call.

Solution: include an explicit check to ensure that insn->src_reg == 0.
This ensures that calls cannot be mis-interpreted as an async callback
call.

Fixes: bfc6bb74e4 ("bpf: Implement verifier support for validation of async callbacks.")
Signed-off-by: Kris Van Hees <kris.van.hees@oracle.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20220105210150.GH1559@oracle.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-01-27 11:03:51 +01:00
Daniel Borkmann
a65df848db bpf: Don't promote bogus looking registers after null check.
[ Upstream commit e60b0d12a9 ]

If we ever get to a point again where we convert a bogus looking <ptr>_or_null
typed register containing a non-zero fixed or variable offset, then lets not
reset these bounds to zero since they are not and also don't promote the register
to a <ptr> type, but instead leave it as <ptr>_or_null. Converting to a unknown
register could be an avenue as well, but then if we run into this case it would
allow to leak a kernel pointer this way.

Fixes: f1174f77b5 ("bpf/verifier: rework value tracking")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-01-27 11:03:51 +01:00
Hou Tao
832d478ccd bpf: Disallow BPF_LOG_KERNEL log level for bpf(BPF_BTF_LOAD)
[ Upstream commit 866de40744 ]

BPF_LOG_KERNEL is only used internally, so disallow bpf_btf_load()
to set log level as BPF_LOG_KERNEL. The same checking has already
been done in bpf_check(), so factor out a helper to check the
validity of log attributes and use it in both places.

Fixes: 8580ac9404 ("bpf: Process in-kernel BTF")
Signed-off-by: Hou Tao <houtao1@huawei.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20211203053001.740945-1-houtao1@huawei.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-01-27 11:03:27 +01:00
Alexei Starovoitov
2571173d3e bpf: Adjust BTF log size limit.
[ Upstream commit c5a2d43e99 ]

Make BTF log size limit to be the same as the verifier log size limit.
Otherwise tools that progressively increase log size and use the same log
for BTF loading and program loading will be hitting hard to debug EINVAL.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20211201181040.23337-7-alexei.starovoitov@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-01-27 11:03:27 +01:00
Daniel Borkmann
e8efe83699 bpf: Fix out of bounds access from invalid *_or_null type verification
[ no upstream commit given implicitly fixed through the larger refactoring
  in c25b2ae136 ]

While auditing some other code, I noticed missing checks inside the pointer
arithmetic simulation, more specifically, adjust_ptr_min_max_vals(). Several
*_OR_NULL types are not rejected whereas they are _required_ to be rejected
given the expectation is that they get promoted into a 'real' pointer type
for the success case, that is, after an explicit != NULL check.

One case which stands out and is accessible from unprivileged (iff enabled
given disabled by default) is BPF ring buffer. From crafting a PoC, the NULL
check can be bypassed through an offset, and its id marking will then lead
to promotion of mem_or_null to a mem type.

bpf_ringbuf_reserve() helper can trigger this case through passing of reserved
flags, for example.

  func#0 @0
  0: R1=ctx(id=0,off=0,imm=0) R10=fp0
  0: (7a) *(u64 *)(r10 -8) = 0
  1: R1=ctx(id=0,off=0,imm=0) R10=fp0 fp-8_w=mmmmmmmm
  1: (18) r1 = 0x0
  3: R1_w=map_ptr(id=0,off=0,ks=0,vs=0,imm=0) R10=fp0 fp-8_w=mmmmmmmm
  3: (b7) r2 = 8
  4: R1_w=map_ptr(id=0,off=0,ks=0,vs=0,imm=0) R2_w=invP8 R10=fp0 fp-8_w=mmmmmmmm
  4: (b7) r3 = 0
  5: R1_w=map_ptr(id=0,off=0,ks=0,vs=0,imm=0) R2_w=invP8 R3_w=invP0 R10=fp0 fp-8_w=mmmmmmmm
  5: (85) call bpf_ringbuf_reserve#131
  6: R0_w=mem_or_null(id=2,ref_obj_id=2,off=0,imm=0) R10=fp0 fp-8_w=mmmmmmmm refs=2
  6: (bf) r6 = r0
  7: R0_w=mem_or_null(id=2,ref_obj_id=2,off=0,imm=0) R6_w=mem_or_null(id=2,ref_obj_id=2,off=0,imm=0) R10=fp0 fp-8_w=mmmmmmmm refs=2
  7: (07) r0 += 1
  8: R0_w=mem_or_null(id=2,ref_obj_id=2,off=1,imm=0) R6_w=mem_or_null(id=2,ref_obj_id=2,off=0,imm=0) R10=fp0 fp-8_w=mmmmmmmm refs=2
  8: (15) if r0 == 0x0 goto pc+4
   R0_w=mem(id=0,ref_obj_id=0,off=0,imm=0) R6_w=mem(id=0,ref_obj_id=2,off=0,imm=0) R10=fp0 fp-8_w=mmmmmmmm refs=2
  9: R0_w=mem(id=0,ref_obj_id=0,off=0,imm=0) R6_w=mem(id=0,ref_obj_id=2,off=0,imm=0) R10=fp0 fp-8_w=mmmmmmmm refs=2
  9: (62) *(u32 *)(r6 +0) = 0
   R0_w=mem(id=0,ref_obj_id=0,off=0,imm=0) R6_w=mem(id=0,ref_obj_id=2,off=0,imm=0) R10=fp0 fp-8_w=mmmmmmmm refs=2
  10: R0_w=mem(id=0,ref_obj_id=0,off=0,imm=0) R6_w=mem(id=0,ref_obj_id=2,off=0,imm=0) R10=fp0 fp-8_w=mmmmmmmm refs=2
  10: (bf) r1 = r6
  11: R0_w=mem(id=0,ref_obj_id=0,off=0,imm=0) R1_w=mem(id=0,ref_obj_id=2,off=0,imm=0) R6_w=mem(id=0,ref_obj_id=2,off=0,imm=0) R10=fp0 fp-8_w=mmmmmmmm refs=2
  11: (b7) r2 = 0
  12: R0_w=mem(id=0,ref_obj_id=0,off=0,imm=0) R1_w=mem(id=0,ref_obj_id=2,off=0,imm=0) R2_w=invP0 R6_w=mem(id=0,ref_obj_id=2,off=0,imm=0) R10=fp0 fp-8_w=mmmmmmmm refs=2
  12: (85) call bpf_ringbuf_submit#132
  13: R6=invP(id=0) R10=fp0 fp-8=mmmmmmmm
  13: (b7) r0 = 0
  14: R0_w=invP0 R6=invP(id=0) R10=fp0 fp-8=mmmmmmmm
  14: (95) exit

  from 8 to 13: safe
  processed 15 insns (limit 1000000) max_states_per_insn 0 total_states 1 peak_states 1 mark_read 0
  OK

All three commits, that is b121b341e5 ("bpf: Add PTR_TO_BTF_ID_OR_NULL support"),
457f44363a ("bpf: Implement BPF ring buffer and verifier support for it"), and the
afbf21dce6 ("bpf: Support readonly/readwrite buffers in verifier") suffer the same
cause and their *_OR_NULL type pendants must be rejected in adjust_ptr_min_max_vals().

Make the test more robust by reusing reg_type_may_be_null() helper such that we catch
all *_OR_NULL types we have today and in future.

Note that pointer arithmetic on PTR_TO_BTF_ID, PTR_TO_RDONLY_BUF, and PTR_TO_RDWR_BUF
is generally allowed.

Fixes: b121b341e5 ("bpf: Add PTR_TO_BTF_ID_OR_NULL support")
Fixes: 457f44363a ("bpf: Implement BPF ring buffer and verifier support for it")
Fixes: afbf21dce6 ("bpf: Support readonly/readwrite buffers in verifier")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-01-16 09:12:41 +01:00
Daniel Borkmann
f87a6c160e bpf: Fix kernel address leakage in atomic cmpxchg's r0 aux reg
commit a82fe085f3 upstream.

The implementation of BPF_CMPXCHG on a high level has the following parameters:

  .-[old-val]                                          .-[new-val]
  BPF_R0 = cmpxchg{32,64}(DST_REG + insn->off, BPF_R0, SRC_REG)
                          `-[mem-loc]          `-[old-val]

Given a BPF insn can only have two registers (dst, src), the R0 is fixed and
used as an auxilliary register for input (old value) as well as output (returning
old value from memory location). While the verifier performs a number of safety
checks, it misses to reject unprivileged programs where R0 contains a pointer as
old value.

Through brute-forcing it takes about ~16sec on my machine to leak a kernel pointer
with BPF_CMPXCHG. The PoC is basically probing for kernel addresses by storing the
guessed address into the map slot as a scalar, and using the map value pointer as
R0 while SRC_REG has a canary value to detect a matching address.

Fix it by checking R0 for pointers, and reject if that's the case for unprivileged
programs.

Fixes: 5ffa25502b ("bpf: Add instructions for atomic_[cmp]xchg")
Reported-by: Ryota Shiga (Flatt Security)
Acked-by: Brendan Jackman <jackmanb@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-12-22 09:32:35 +01:00
Daniel Borkmann
dbda060d50 bpf: Make 32->64 bounds propagation slightly more robust
commit e572ff80f0 upstream.

Make the bounds propagation in __reg_assign_32_into_64() slightly more
robust and readable by aligning it similarly as we did back in the
__reg_combine_64_into_32() counterpart. Meaning, only propagate or
pessimize them as a smin/smax pair.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-12-22 09:32:35 +01:00
Daniel Borkmann
f77d7a35d4 bpf: Fix signed bounds propagation after mov32
commit 3cf2b61eb0 upstream.

For the case where both s32_{min,max}_value bounds are positive, the
__reg_assign_32_into_64() directly propagates them to their 64 bit
counterparts, otherwise it pessimises them into [0,u32_max] universe and
tries to refine them later on by learning through the tnum as per comment
in mentioned function. However, that does not always happen, for example,
in mov32 operation we call zext_32_to_64(dst_reg) which invokes the
__reg_assign_32_into_64() as is without subsequent bounds update as
elsewhere thus no refinement based on tnum takes place.

Thus, not calling into the __update_reg_bounds() / __reg_deduce_bounds() /
__reg_bound_offset() triplet as we do, for example, in case of ALU ops via
adjust_scalar_min_max_vals(), will lead to more pessimistic bounds when
dumping the full register state:

Before fix:

  0: (b4) w0 = -1
  1: R0_w=invP4294967295
     (id=0,imm=ffffffff,
      smin_value=4294967295,smax_value=4294967295,
      umin_value=4294967295,umax_value=4294967295,
      var_off=(0xffffffff; 0x0),
      s32_min_value=-1,s32_max_value=-1,
      u32_min_value=-1,u32_max_value=-1)

  1: (bc) w0 = w0
  2: R0_w=invP4294967295
     (id=0,imm=ffffffff,
      smin_value=0,smax_value=4294967295,
      umin_value=4294967295,umax_value=4294967295,
      var_off=(0xffffffff; 0x0),
      s32_min_value=-1,s32_max_value=-1,
      u32_min_value=-1,u32_max_value=-1)

Technically, the smin_value=0 and smax_value=4294967295 bounds are not
incorrect, but given the register is still a constant, they break assumptions
about const scalars that smin_value == smax_value and umin_value == umax_value.

After fix:

  0: (b4) w0 = -1
  1: R0_w=invP4294967295
     (id=0,imm=ffffffff,
      smin_value=4294967295,smax_value=4294967295,
      umin_value=4294967295,umax_value=4294967295,
      var_off=(0xffffffff; 0x0),
      s32_min_value=-1,s32_max_value=-1,
      u32_min_value=-1,u32_max_value=-1)

  1: (bc) w0 = w0
  2: R0_w=invP4294967295
     (id=0,imm=ffffffff,
      smin_value=4294967295,smax_value=4294967295,
      umin_value=4294967295,umax_value=4294967295,
      var_off=(0xffffffff; 0x0),
      s32_min_value=-1,s32_max_value=-1,
      u32_min_value=-1,u32_max_value=-1)

Without the smin_value == smax_value and umin_value == umax_value invariant
being intact for const scalars, it is possible to leak out kernel pointers
from unprivileged user space if the latter is enabled. For example, when such
registers are involved in pointer arithmtics, then adjust_ptr_min_max_vals()
will taint the destination register into an unknown scalar, and the latter
can be exported and stored e.g. into a BPF map value.

Fixes: 3f50f132d8 ("bpf: Verifier, do explicit ALU32 bounds tracking")
Reported-by: Kuee K1r0a <liulin063@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-12-22 09:32:35 +01:00
Daniel Borkmann
423628125a bpf: Fix kernel address leakage in atomic fetch
commit 7d3baf0afa upstream.

The change in commit 37086bfdc7 ("bpf: Propagate stack bounds to registers
in atomics w/ BPF_FETCH") around check_mem_access() handling is buggy since
this would allow for unprivileged users to leak kernel pointers. For example,
an atomic fetch/and with -1 on a stack destination which holds a spilled
pointer will migrate the spilled register type into a scalar, which can then
be exported out of the program (since scalar != pointer) by dumping it into
a map value.

The original implementation of XADD was preventing this situation by using
a double call to check_mem_access() one with BPF_READ and a subsequent one
with BPF_WRITE, in both cases passing -1 as a placeholder value instead of
register as per XADD semantics since it didn't contain a value fetch. The
BPF_READ also included a check in check_stack_read_fixed_off() which rejects
the program if the stack slot is of __is_pointer_value() if dst_regno < 0.
The latter is to distinguish whether we're dealing with a regular stack spill/
fill or some arithmetical operation which is disallowed on non-scalars, see
also 6e7e63cbb0 ("bpf: Forbid XADD on spilled pointers for unprivileged
users") for more context on check_mem_access() and its handling of placeholder
value -1.

One minimally intrusive option to fix the leak is for the BPF_FETCH case to
initially check the BPF_READ case via check_mem_access() with -1 as register,
followed by the actual load case with non-negative load_reg to propagate
stack bounds to registers.

Fixes: 37086bfdc7 ("bpf: Propagate stack bounds to registers in atomics w/ BPF_FETCH")
Reported-by: <n4ke4mry@gmail.com>
Acked-by: Brendan Jackman <jackmanb@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-12-22 09:32:35 +01:00
Maxim Mikityanskiy
b4fb67fd1a bpf: Fix the off-by-two error in range markings
commit 2fa7d94afc upstream.

The first commit cited below attempts to fix the off-by-one error that
appeared in some comparisons with an open range. Due to this error,
arithmetically equivalent pieces of code could get different verdicts
from the verifier, for example (pseudocode):

  // 1. Passes the verifier:
  if (data + 8 > data_end)
      return early
  read *(u64 *)data, i.e. [data; data+7]

  // 2. Rejected by the verifier (should still pass):
  if (data + 7 >= data_end)
      return early
  read *(u64 *)data, i.e. [data; data+7]

The attempted fix, however, shifts the range by one in a wrong
direction, so the bug not only remains, but also such piece of code
starts failing in the verifier:

  // 3. Rejected by the verifier, but the check is stricter than in #1.
  if (data + 8 >= data_end)
      return early
  read *(u64 *)data, i.e. [data; data+7]

The change performed by that fix converted an off-by-one bug into
off-by-two. The second commit cited below added the BPF selftests
written to ensure than code chunks like #3 are rejected, however,
they should be accepted.

This commit fixes the off-by-two error by adjusting new_range in the
right direction and fixes the tests by changing the range into the
one that should actually fail.

Fixes: fb2a311a31 ("bpf: fix off by one for range markings with L{T, E} patterns")
Fixes: b37242c773 ("bpf: add test cases to bpf selftests to cover all access tests")
Signed-off-by: Maxim Mikityanskiy <maximmi@nvidia.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20211130181607.593149-1-maximmi@nvidia.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-12-14 10:57:09 +01:00
Dmitrii Banshchikov
439b99314b bpf: Forbid bpf_ktime_get_coarse_ns and bpf_timer_* in tracing progs
commit 5e0bc3082e upstream.

Use of bpf_ktime_get_coarse_ns() and bpf_timer_* helpers in tracing
progs may result in locking issues.

bpf_ktime_get_coarse_ns() uses ktime_get_coarse_ns() time accessor that
isn't safe for any context:
======================================================
WARNING: possible circular locking dependency detected
5.15.0-syzkaller #0 Not tainted
------------------------------------------------------
syz-executor.4/14877 is trying to acquire lock:
ffffffff8cb30008 (tk_core.seq.seqcount){----}-{0:0}, at: ktime_get_coarse_ts64+0x25/0x110 kernel/time/timekeeping.c:2255

but task is already holding lock:
ffffffff90dbf200 (&obj_hash[i].lock){-.-.}-{2:2}, at: debug_object_deactivate+0x61/0x400 lib/debugobjects.c:735

which lock already depends on the new lock.

the existing dependency chain (in reverse order) is:

-> #1 (&obj_hash[i].lock){-.-.}-{2:2}:
       lock_acquire+0x19f/0x4d0 kernel/locking/lockdep.c:5625
       __raw_spin_lock_irqsave include/linux/spinlock_api_smp.h:110 [inline]
       _raw_spin_lock_irqsave+0xd1/0x120 kernel/locking/spinlock.c:162
       __debug_object_init+0xd9/0x1860 lib/debugobjects.c:569
       debug_hrtimer_init kernel/time/hrtimer.c:414 [inline]
       debug_init kernel/time/hrtimer.c:468 [inline]
       hrtimer_init+0x20/0x40 kernel/time/hrtimer.c:1592
       ntp_init_cmos_sync kernel/time/ntp.c:676 [inline]
       ntp_init+0xa1/0xad kernel/time/ntp.c:1095
       timekeeping_init+0x512/0x6bf kernel/time/timekeeping.c:1639
       start_kernel+0x267/0x56e init/main.c:1030
       secondary_startup_64_no_verify+0xb1/0xbb

-> #0 (tk_core.seq.seqcount){----}-{0:0}:
       check_prev_add kernel/locking/lockdep.c:3051 [inline]
       check_prevs_add kernel/locking/lockdep.c:3174 [inline]
       validate_chain+0x1dfb/0x8240 kernel/locking/lockdep.c:3789
       __lock_acquire+0x1382/0x2b00 kernel/locking/lockdep.c:5015
       lock_acquire+0x19f/0x4d0 kernel/locking/lockdep.c:5625
       seqcount_lockdep_reader_access+0xfe/0x230 include/linux/seqlock.h:103
       ktime_get_coarse_ts64+0x25/0x110 kernel/time/timekeeping.c:2255
       ktime_get_coarse include/linux/timekeeping.h:120 [inline]
       ktime_get_coarse_ns include/linux/timekeeping.h:126 [inline]
       ____bpf_ktime_get_coarse_ns kernel/bpf/helpers.c:173 [inline]
       bpf_ktime_get_coarse_ns+0x7e/0x130 kernel/bpf/helpers.c:171
       bpf_prog_a99735ebafdda2f1+0x10/0xb50
       bpf_dispatcher_nop_func include/linux/bpf.h:721 [inline]
       __bpf_prog_run include/linux/filter.h:626 [inline]
       bpf_prog_run include/linux/filter.h:633 [inline]
       BPF_PROG_RUN_ARRAY include/linux/bpf.h:1294 [inline]
       trace_call_bpf+0x2cf/0x5d0 kernel/trace/bpf_trace.c:127
       perf_trace_run_bpf_submit+0x7b/0x1d0 kernel/events/core.c:9708
       perf_trace_lock+0x37c/0x440 include/trace/events/lock.h:39
       trace_lock_release+0x128/0x150 include/trace/events/lock.h:58
       lock_release+0x82/0x810 kernel/locking/lockdep.c:5636
       __raw_spin_unlock_irqrestore include/linux/spinlock_api_smp.h:149 [inline]
       _raw_spin_unlock_irqrestore+0x75/0x130 kernel/locking/spinlock.c:194
       debug_hrtimer_deactivate kernel/time/hrtimer.c:425 [inline]
       debug_deactivate kernel/time/hrtimer.c:481 [inline]
       __run_hrtimer kernel/time/hrtimer.c:1653 [inline]
       __hrtimer_run_queues+0x2f9/0xa60 kernel/time/hrtimer.c:1749
       hrtimer_interrupt+0x3b3/0x1040 kernel/time/hrtimer.c:1811
       local_apic_timer_interrupt arch/x86/kernel/apic/apic.c:1086 [inline]
       __sysvec_apic_timer_interrupt+0xf9/0x270 arch/x86/kernel/apic/apic.c:1103
       sysvec_apic_timer_interrupt+0x8c/0xb0 arch/x86/kernel/apic/apic.c:1097
       asm_sysvec_apic_timer_interrupt+0x12/0x20
       __raw_spin_unlock_irqrestore include/linux/spinlock_api_smp.h:152 [inline]
       _raw_spin_unlock_irqrestore+0xd4/0x130 kernel/locking/spinlock.c:194
       try_to_wake_up+0x702/0xd20 kernel/sched/core.c:4118
       wake_up_process kernel/sched/core.c:4200 [inline]
       wake_up_q+0x9a/0xf0 kernel/sched/core.c:953
       futex_wake+0x50f/0x5b0 kernel/futex/waitwake.c:184
       do_futex+0x367/0x560 kernel/futex/syscalls.c:127
       __do_sys_futex kernel/futex/syscalls.c:199 [inline]
       __se_sys_futex+0x401/0x4b0 kernel/futex/syscalls.c:180
       do_syscall_x64 arch/x86/entry/common.c:50 [inline]
       do_syscall_64+0x44/0xd0 arch/x86/entry/common.c:80
       entry_SYSCALL_64_after_hwframe+0x44/0xae

There is a possible deadlock with bpf_timer_* set of helpers:
hrtimer_start()
  lock_base();
  trace_hrtimer...()
    perf_event()
      bpf_run()
        bpf_timer_start()
          hrtimer_start()
            lock_base()         <- DEADLOCK

Forbid use of bpf_ktime_get_coarse_ns() and bpf_timer_* helpers in
BPF_PROG_TYPE_KPROBE, BPF_PROG_TYPE_TRACEPOINT, BPF_PROG_TYPE_PERF_EVENT
and BPF_PROG_TYPE_RAW_TRACEPOINT prog types.

Fixes: d055126180 ("bpf: Add bpf_ktime_get_coarse_ns helper")
Fixes: b00628b1c7 ("bpf: Introduce bpf timers.")
Reported-by: syzbot+43fd005b5a1b4d10781e@syzkaller.appspotmail.com
Signed-off-by: Dmitrii Banshchikov <me@ubique.spb.ru>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20211113142227.566439-2-me@ubique.spb.ru
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-11-25 09:49:07 +01:00
Daniel Borkmann
a5d1d35222 bpf: Fix toctou on read-only map's constant scalar tracking
[ Upstream commit 353050be4c ]

Commit a23740ec43 ("bpf: Track contents of read-only maps as scalars") is
checking whether maps are read-only both from BPF program side and user space
side, and then, given their content is constant, reading out their data via
map->ops->map_direct_value_addr() which is then subsequently used as known
scalar value for the register, that is, it is marked as __mark_reg_known()
with the read value at verification time. Before a23740ec43, the register
content was marked as an unknown scalar so the verifier could not make any
assumptions about the map content.

The current implementation however is prone to a TOCTOU race, meaning, the
value read as known scalar for the register is not guaranteed to be exactly
the same at a later point when the program is executed, and as such, the
prior made assumptions of the verifier with regards to the program will be
invalid which can cause issues such as OOB access, etc.

While the BPF_F_RDONLY_PROG map flag is always fixed and required to be
specified at map creation time, the map->frozen property is initially set to
false for the map given the map value needs to be populated, e.g. for global
data sections. Once complete, the loader "freezes" the map from user space
such that no subsequent updates/deletes are possible anymore. For the rest
of the lifetime of the map, this freeze one-time trigger cannot be undone
anymore after a successful BPF_MAP_FREEZE cmd return. Meaning, any new BPF_*
cmd calls which would update/delete map entries will be rejected with -EPERM
since map_get_sys_perms() removes the FMODE_CAN_WRITE permission. This also
means that pending update/delete map entries must still complete before this
guarantee is given. This corner case is not an issue for loaders since they
create and prepare such program private map in successive steps.

However, a malicious user is able to trigger this TOCTOU race in two different
ways: i) via userfaultfd, and ii) via batched updates. For i) userfaultfd is
used to expand the competition interval, so that map_update_elem() can modify
the contents of the map after map_freeze() and bpf_prog_load() were executed.
This works, because userfaultfd halts the parallel thread which triggered a
map_update_elem() at the time where we copy key/value from the user buffer and
this already passed the FMODE_CAN_WRITE capability test given at that time the
map was not "frozen". Then, the main thread performs the map_freeze() and
bpf_prog_load(), and once that had completed successfully, the other thread
is woken up to complete the pending map_update_elem() which then changes the
map content. For ii) the idea of the batched update is similar, meaning, when
there are a large number of updates to be processed, it can increase the
competition interval between the two. It is therefore possible in practice to
modify the contents of the map after executing map_freeze() and bpf_prog_load().

One way to fix both i) and ii) at the same time is to expand the use of the
map's map->writecnt. The latter was introduced in fc9702273e ("bpf: Add mmap()
support for BPF_MAP_TYPE_ARRAY") and further refined in 1f6cb19be2 ("bpf:
Prevent re-mmap()'ing BPF map as writable for initially r/o mapping") with
the rationale to make a writable mmap()'ing of a map mutually exclusive with
read-only freezing. The counter indicates writable mmap() mappings and then
prevents/fails the freeze operation. Its semantics can be expanded beyond
just mmap() by generally indicating ongoing write phases. This would essentially
span any parallel regular and batched flavor of update/delete operation and
then also have map_freeze() fail with -EBUSY. For the check_mem_access() in
the verifier we expand upon the bpf_map_is_rdonly() check ensuring that all
last pending writes have completed via bpf_map_write_active() test. Once the
map->frozen is set and bpf_map_write_active() indicates a map->writecnt of 0
only then we are really guaranteed to use the map's data as known constants.
For map->frozen being set and pending writes in process of still being completed
we fall back to marking that register as unknown scalar so we don't end up
making assumptions about it. With this, both TOCTOU reproducers from i) and
ii) are fixed.

Note that the map->writecnt has been converted into a atomic64 in the fix in
order to avoid a double freeze_mutex mutex_{un,}lock() pair when updating
map->writecnt in the various map update/delete BPF_* cmd flavors. Spanning
the freeze_mutex over entire map update/delete operations in syscall side
would not be possible due to then causing everything to be serialized.
Similarly, something like synchronize_rcu() after setting map->frozen to wait
for update/deletes to complete is not possible either since it would also
have to span the user copy which can sleep. On the libbpf side, this won't
break d66562fba1 ("libbpf: Add BPF object skeleton support") as the
anonymous mmap()-ed "map initialization image" is remapped as a BPF map-backed
mmap()-ed memory where for .rodata it's non-writable.

Fixes: a23740ec43 ("bpf: Track contents of read-only maps as scalars")
Reported-by: w1tcher.bupt@gmail.com
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-11-25 09:48:36 +01:00
Alexei Starovoitov
bd45420066 bpf: Fix inner map state pruning regression.
[ Upstream commit 34d11a440c ]

Introduction of map_uid made two lookups from outer map to be distinct.
That distinction is only necessary when inner map has an embedded timer.
Otherwise it will make the verifier state pruning to be conservative
which will cause complex programs to hit 1M insn_processed limit.
Tighten map_uid logic to apply to inner maps with timers only.

Fixes: 3e8ce29850 ("bpf: Prevent pointer mismatch in bpf_timer_init.")
Reported-by: Lorenz Bauer <lmb@cloudflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Tested-by: Lorenz Bauer <lmb@cloudflare.com>
Link: https://lore.kernel.org/bpf/CACAyw99hVEJFoiBH_ZGyy=+oO-jyydoz6v1DeKPKs2HVsUH28w@mail.gmail.com
Link: https://lore.kernel.org/bpf/20211110172556.20754-1-alexei.starovoitov@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-11-25 09:48:33 +01:00
Alexei Starovoitov
d55aca82dd bpf: Fix propagation of signed bounds from 64-bit min/max into 32-bit.
[ Upstream commit 388e2c0b97 ]

Similar to unsigned bounds propagation fix signed bounds.
The 'Fixes' tag is a hint. There is no security bug here.
The verifier was too conservative.

Fixes: 3f50f132d8 ("bpf: Verifier, do explicit ALU32 bounds tracking")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20211101222153.78759-2-alexei.starovoitov@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-11-18 19:16:45 +01:00
Alexei Starovoitov
d03a5b00a3 bpf: Fix propagation of bounds from 64-bit min/max into 32-bit and var_off.
[ Upstream commit b9979db834 ]

Before this fix:
166: (b5) if r2 <= 0x1 goto pc+22
from 166 to 189: R2=invP(id=1,umax_value=1,var_off=(0x0; 0xffffffff))

After this fix:
166: (b5) if r2 <= 0x1 goto pc+22
from 166 to 189: R2=invP(id=1,umax_value=1,var_off=(0x0; 0x1))

While processing BPF_JLE the reg_set_min_max() would set true_reg->umax_value = 1
and call __reg_combine_64_into_32(true_reg).

Without the fix it would not pass the condition:
if (__reg64_bound_u32(reg->umin_value) && __reg64_bound_u32(reg->umax_value))

since umin_value == 0 at this point.
Before commit 10bf4e8316 the umin was incorrectly ingored.
The commit 10bf4e8316 fixed the correctness issue, but pessimized
propagation of 64-bit min max into 32-bit min max and corresponding var_off.

Fixes: 10bf4e8316 ("bpf: Fix propagation of 32 bit unsigned bounds from 64 bit bounds")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20211101222153.78759-1-alexei.starovoitov@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-11-18 19:16:45 +01:00
Eric Dumazet
677c9ad983 bpf: Fixes possible race in update_prog_stats() for 32bit arches
[ Upstream commit d979617aa8 ]

It seems update_prog_stats() suffers from same issue fixed
in the prior patch:

As it can run while interrupts are enabled, it could
be re-entered and the u64_stats syncp could be mangled.

Fixes: fec56f5890 ("bpf: Introduce BPF trampoline")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20211026214133.3114279-3-eric.dumazet@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-11-18 19:16:42 +01:00
Toke Høiland-Jørgensen
54713c85f5 bpf: Fix potential race in tail call compatibility check
Lorenzo noticed that the code testing for program type compatibility of
tail call maps is potentially racy in that two threads could encounter a
map with an unset type simultaneously and both return true even though they
are inserting incompatible programs.

The race window is quite small, but artificially enlarging it by adding a
usleep_range() inside the check in bpf_prog_array_compatible() makes it
trivial to trigger from userspace with a program that does, essentially:

        map_fd = bpf_create_map(BPF_MAP_TYPE_PROG_ARRAY, 4, 4, 2, 0);
        pid = fork();
        if (pid) {
                key = 0;
                value = xdp_fd;
        } else {
                key = 1;
                value = tc_fd;
        }
        err = bpf_map_update_elem(map_fd, &key, &value, 0);

While the race window is small, it has potentially serious ramifications in
that triggering it would allow a BPF program to tail call to a program of a
different type. So let's get rid of it by protecting the update with a
spinlock. The commit in the Fixes tag is the last commit that touches the
code in question.

v2:
- Use a spinlock instead of an atomic variable and cmpxchg() (Alexei)
v3:
- Put lock and the members it protects into an embedded 'owner' struct (Daniel)

Fixes: 3324b584b6 ("ebpf: misc core cleanup")
Reported-by: Lorenzo Bianconi <lorenzo.bianconi@redhat.com>
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20211026110019.363464-1-toke@redhat.com
2021-10-26 12:37:28 -07:00
Xu Kuohai
fda7a38714 bpf: Fix error usage of map_fd and fdget() in generic_map_update_batch()
1. The ufd in generic_map_update_batch() should be read from batch.map_fd;
2. A call to fdget() should be followed by a symmetric call to fdput().

Fixes: aa2e93b8e5 ("bpf: Add generic support for update and delete batch ops")
Signed-off-by: Xu Kuohai <xukuohai@huawei.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20211019032934.1210517-1-xukuohai@huawei.com
2021-10-22 17:23:54 -07:00
Lorenz Bauer
fadb7ff1a6 bpf: Prevent increasing bpf_jit_limit above max
Restrict bpf_jit_limit to the maximum supported by the arch's JIT.

Signed-off-by: Lorenz Bauer <lmb@cloudflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20211014142554.53120-4-lmb@cloudflare.com
2021-10-22 17:23:53 -07:00
Tatsuhiko Yasumatsu
30e29a9a2b bpf: Fix integer overflow in prealloc_elems_and_freelist()
In prealloc_elems_and_freelist(), the multiplication to calculate the
size passed to bpf_map_area_alloc() could lead to an integer overflow.
As a result, out-of-bounds write could occur in pcpu_freelist_populate()
as reported by KASAN:

[...]
[   16.968613] BUG: KASAN: slab-out-of-bounds in pcpu_freelist_populate+0xd9/0x100
[   16.969408] Write of size 8 at addr ffff888104fc6ea0 by task crash/78
[   16.970038]
[   16.970195] CPU: 0 PID: 78 Comm: crash Not tainted 5.15.0-rc2+ #1
[   16.970878] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014
[   16.972026] Call Trace:
[   16.972306]  dump_stack_lvl+0x34/0x44
[   16.972687]  print_address_description.constprop.0+0x21/0x140
[   16.973297]  ? pcpu_freelist_populate+0xd9/0x100
[   16.973777]  ? pcpu_freelist_populate+0xd9/0x100
[   16.974257]  kasan_report.cold+0x7f/0x11b
[   16.974681]  ? pcpu_freelist_populate+0xd9/0x100
[   16.975190]  pcpu_freelist_populate+0xd9/0x100
[   16.975669]  stack_map_alloc+0x209/0x2a0
[   16.976106]  __sys_bpf+0xd83/0x2ce0
[...]

The possibility of this overflow was originally discussed in [0], but
was overlooked.

Fix the integer overflow by changing elem_size to u64 from u32.

  [0] https://lore.kernel.org/bpf/728b238e-a481-eb50-98e9-b0f430ab01e7@gmail.com/

Fixes: 557c0c6e7d ("bpf: convert stackmap to pre-allocation")
Signed-off-by: Tatsuhiko Yasumatsu <th.yasumatsu@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20210930135545.173698-1-th.yasumatsu@gmail.com
2021-09-30 16:17:23 +02:00
Lorenz Bauer
8a98ae12fb bpf: Exempt CAP_BPF from checks against bpf_jit_limit
When introducing CAP_BPF, bpf_jit_charge_modmem() was not changed to treat
programs with CAP_BPF as privileged for the purpose of JIT memory allocation.
This means that a program without CAP_BPF can block a program with CAP_BPF
from loading a program.

Fix this by checking bpf_capable() in bpf_jit_charge_modmem().

Fixes: 2c78ee898d ("bpf: Implement CAP_BPF")
Signed-off-by: Lorenz Bauer <lmb@cloudflare.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20210922111153.19843-1-lmb@cloudflare.com
2021-09-28 09:28:37 +02:00
Hou Tao
356ed64991 bpf: Handle return value of BPF_PROG_TYPE_STRUCT_OPS prog
Currently if a function ptr in struct_ops has a return value, its
caller will get a random return value from it, because the return
value of related BPF_PROG_TYPE_STRUCT_OPS prog is just dropped.

So adding a new flag BPF_TRAMP_F_RET_FENTRY_RET to tell bpf trampoline
to save and return the return value of struct_ops prog if ret_size of
the function ptr is greater than 0. Also restricting the flag to be
used alone.

Fixes: 85d33df357 ("bpf: Introduce BPF_MAP_TYPE_STRUCT_OPS")
Signed-off-by: Hou Tao <houtao1@huawei.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20210914023351.3664499-1-houtao1@huawei.com
2021-09-14 11:09:50 -07:00
Bixuan Cui
0e6491b559 bpf: Add oversize check before call kvcalloc()
Commit 7661809d49 ("mm: don't allow oversized kvmalloc() calls") add the
oversize check. When the allocation is larger than what kmalloc() supports,
the following warning triggered:

WARNING: CPU: 0 PID: 8408 at mm/util.c:597 kvmalloc_node+0x108/0x110 mm/util.c:597
Modules linked in:
CPU: 0 PID: 8408 Comm: syz-executor221 Not tainted 5.14.0-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
RIP: 0010:kvmalloc_node+0x108/0x110 mm/util.c:597
Call Trace:
 kvmalloc include/linux/mm.h:806 [inline]
 kvmalloc_array include/linux/mm.h:824 [inline]
 kvcalloc include/linux/mm.h:829 [inline]
 check_btf_line kernel/bpf/verifier.c:9925 [inline]
 check_btf_info kernel/bpf/verifier.c:10049 [inline]
 bpf_check+0xd634/0x150d0 kernel/bpf/verifier.c:13759
 bpf_prog_load kernel/bpf/syscall.c:2301 [inline]
 __sys_bpf+0x11181/0x126e0 kernel/bpf/syscall.c:4587
 __do_sys_bpf kernel/bpf/syscall.c:4691 [inline]
 __se_sys_bpf kernel/bpf/syscall.c:4689 [inline]
 __x64_sys_bpf+0x78/0x90 kernel/bpf/syscall.c:4689
 do_syscall_x64 arch/x86/entry/common.c:50 [inline]
 do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80
 entry_SYSCALL_64_after_hwframe+0x44/0xae

Reported-by: syzbot+f3e749d4c662818ae439@syzkaller.appspotmail.com
Signed-off-by: Bixuan Cui <cuibixuan@huawei.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20210911005557.45518-1-cuibixuan@huawei.com
2021-09-13 16:28:15 -07:00
Yonghong Song
2f1aaf3ea6 bpf, mm: Fix lockdep warning triggered by stack_map_get_build_id_offset()
Currently the bpf selftest "get_stack_raw_tp" triggered the warning:

  [ 1411.304463] WARNING: CPU: 3 PID: 140 at include/linux/mmap_lock.h:164 find_vma+0x47/0xa0
  [ 1411.304469] Modules linked in: bpf_testmod(O) [last unloaded: bpf_testmod]
  [ 1411.304476] CPU: 3 PID: 140 Comm: systemd-journal Tainted: G        W  O      5.14.0+ #53
  [ 1411.304479] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
  [ 1411.304481] RIP: 0010:find_vma+0x47/0xa0
  [ 1411.304484] Code: de 48 89 ef e8 ba f5 fe ff 48 85 c0 74 2e 48 83 c4 08 5b 5d c3 48 8d bf 28 01 00 00 be ff ff ff ff e8 2d 9f d8 00 85 c0 75 d4 <0f> 0b 48 89 de 48 8
  [ 1411.304487] RSP: 0018:ffffabd440403db8 EFLAGS: 00010246
  [ 1411.304490] RAX: 0000000000000000 RBX: 00007f00ad80a0e0 RCX: 0000000000000000
  [ 1411.304492] RDX: 0000000000000001 RSI: ffffffff9776b144 RDI: ffffffff977e1b0e
  [ 1411.304494] RBP: ffff9cf5c2f50000 R08: ffff9cf5c3eb25d8 R09: 00000000fffffffe
  [ 1411.304496] R10: 0000000000000001 R11: 00000000ef974e19 R12: ffff9cf5c39ae0e0
  [ 1411.304498] R13: 0000000000000000 R14: 0000000000000000 R15: ffff9cf5c39ae0e0
  [ 1411.304501] FS:  00007f00ae754780(0000) GS:ffff9cf5fba00000(0000) knlGS:0000000000000000
  [ 1411.304504] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  [ 1411.304506] CR2: 000000003e34343c CR3: 0000000103a98005 CR4: 0000000000370ee0
  [ 1411.304508] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
  [ 1411.304510] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
  [ 1411.304512] Call Trace:
  [ 1411.304517]  stack_map_get_build_id_offset+0x17c/0x260
  [ 1411.304528]  __bpf_get_stack+0x18f/0x230
  [ 1411.304541]  bpf_get_stack_raw_tp+0x5a/0x70
  [ 1411.305752] RAX: 0000000000000000 RBX: 5541f689495641d7 RCX: 0000000000000000
  [ 1411.305756] RDX: 0000000000000001 RSI: ffffffff9776b144 RDI: ffffffff977e1b0e
  [ 1411.305758] RBP: ffff9cf5c02b2f40 R08: ffff9cf5ca7606c0 R09: ffffcbd43ee02c04
  [ 1411.306978]  bpf_prog_32007c34f7726d29_bpf_prog1+0xaf/0xd9c
  [ 1411.307861] R10: 0000000000000001 R11: 0000000000000044 R12: ffff9cf5c2ef60e0
  [ 1411.307865] R13: 0000000000000005 R14: 0000000000000000 R15: ffff9cf5c2ef6108
  [ 1411.309074]  bpf_trace_run2+0x8f/0x1a0
  [ 1411.309891] FS:  00007ff485141700(0000) GS:ffff9cf5fae00000(0000) knlGS:0000000000000000
  [ 1411.309896] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  [ 1411.311221]  syscall_trace_enter.isra.20+0x161/0x1f0
  [ 1411.311600] CR2: 00007ff48514d90e CR3: 0000000107114001 CR4: 0000000000370ef0
  [ 1411.312291]  do_syscall_64+0x15/0x80
  [ 1411.312941] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
  [ 1411.313803]  entry_SYSCALL_64_after_hwframe+0x44/0xae
  [ 1411.314223] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
  [ 1411.315082] RIP: 0033:0x7f00ad80a0e0
  [ 1411.315626] Call Trace:
  [ 1411.315632]  stack_map_get_build_id_offset+0x17c/0x260

To reproduce, first build `test_progs` binary:

  make -C tools/testing/selftests/bpf -j60

and then run the binary at tools/testing/selftests/bpf directory:

  ./test_progs -t get_stack_raw_tp

The warning is due to commit 5b78ed24e8 ("mm/pagemap: add mmap_assert_locked()
annotations to find_vma*()") which added mmap_assert_locked() in find_vma()
function. The mmap_assert_locked() function asserts that mm->mmap_lock needs
to be held. But this is not the case for bpf_get_stack() or bpf_get_stackid()
helper (kernel/bpf/stackmap.c), which uses mmap_read_trylock_non_owner()
instead. Since mm->mmap_lock is not held in bpf_get_stack[id]() use case,
the above warning is emitted during test run.

This patch fixed the issue by (1). using mmap_read_trylock() instead of
mmap_read_trylock_non_owner() to satisfy lockdep checking in find_vma(), and
(2). droping lockdep for mmap_lock right before the irq_work_queue(). The
function mmap_read_trylock_non_owner() is also removed since after this
patch nobody calls it any more.

Fixes: 5b78ed24e8 ("mm/pagemap: add mmap_assert_locked() annotations to find_vma*()")
Suggested-by: Jason Gunthorpe <jgg@ziepe.ca>
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Luigi Rizzo <lrizzo@google.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: linux-mm@kvack.org
Link: https://lore.kernel.org/bpf/20210909155000.1610299-1-yhs@fb.com
2021-09-10 22:24:23 +02:00
Daniel Borkmann
49ca615320 bpf: Relicense disassembler as GPL-2.0-only OR BSD-2-Clause
Some time ago we dual-licensed both libbpf and bpftool through commits
1bc38b8ff6 ("libbpf: relicense libbpf as LGPL-2.1 OR BSD-2-Clause")
and 907b223651 ("tools: bpftool: dual license all files"). The latter
missed the disasm.{c,h} which we pull in via kernel/bpf/ such that we
have a single source for verifier as well as bpftool asm dumping, see
also f4ac7e0b5c ("bpf: move instruction printing into a separate file").
It is currently GPL-2.0-only and missed the conversion in 907b223651,
therefore relicense the two as GPL-2.0-only OR BSD-2-Clause as well.

Spotted-by: Quentin Monnet <quentin@isovalent.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@fb.com>
Acked-by: Thomas Graf <tgraf@suug.ch>
Acked-by: Brendan Jackman <jackmanb@google.com>
Acked-by: Jakub Kicinski <kuba@kernel.org>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Simon Horman <simon.horman@corigine.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Xu Kuohai <xukuohai@huawei.com>
Acked-by: Edward Cree <ecree.xilinx@gmail.com>
2021-09-02 14:49:23 +02:00
Jakub Kicinski
19a31d7921 Merge https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
Daniel Borkmann says:

====================
bpf-next 2021-08-31

We've added 116 non-merge commits during the last 17 day(s) which contain
a total of 126 files changed, 6813 insertions(+), 4027 deletions(-).

The main changes are:

1) Add opaque bpf_cookie to perf link which the program can read out again,
   to be used in libbpf-based USDT library, from Andrii Nakryiko.

2) Add bpf_task_pt_regs() helper to access userspace pt_regs, from Daniel Xu.

3) Add support for UNIX stream type sockets for BPF sockmap, from Jiang Wang.

4) Allow BPF TCP congestion control progs to call bpf_setsockopt() e.g. to switch
   to another congestion control algorithm during init, from Martin KaFai Lau.

5) Extend BPF iterator support for UNIX domain sockets, from Kuniyuki Iwashima.

6) Allow bpf_{set,get}sockopt() calls from setsockopt progs, from Prankur Gupta.

7) Add bpf_get_netns_cookie() helper for BPF_PROG_TYPE_{SOCK_OPS,CGROUP_SOCKOPT}
   progs, from Xu Liu and Stanislav Fomichev.

8) Support for __weak typed ksyms in libbpf, from Hao Luo.

9) Shrink struct cgroup_bpf by 504 bytes through refactoring, from Dave Marchevsky.

10) Fix a smatch complaint in verifier's narrow load handling, from Andrey Ignatov.

11) Fix BPF interpreter's tail call count limit, from Daniel Borkmann.

12) Big batch of improvements to BPF selftests, from Magnus Karlsson, Li Zhijian,
    Yucong Sun, Yonghong Song, Ilya Leoshkevich, Jussi Maki, Ilya Leoshkevich, others.

13) Another big batch to revamp XDP samples in order to give them consistent look
    and feel, from Kumar Kartikeya Dwivedi.

* https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (116 commits)
  MAINTAINERS: Remove self from powerpc BPF JIT
  selftests/bpf: Fix potential unreleased lock
  samples: bpf: Fix uninitialized variable in xdp_redirect_cpu
  selftests/bpf: Reduce more flakyness in sockmap_listen
  bpf: Fix bpf-next builds without CONFIG_BPF_EVENTS
  bpf: selftests: Add dctcp fallback test
  bpf: selftests: Add connect_to_fd_opts to network_helpers
  bpf: selftests: Add sk_state to bpf_tcp_helpers.h
  bpf: tcp: Allow bpf-tcp-cc to call bpf_(get|set)sockopt
  selftests: xsk: Preface options with opt
  selftests: xsk: Make enums lower case
  selftests: xsk: Generate packets from specification
  selftests: xsk: Generate packet directly in umem
  selftests: xsk: Simplify cleanup of ifobjects
  selftests: xsk: Decrease sending speed
  selftests: xsk: Validate tx stats on tx thread
  selftests: xsk: Simplify packet validation in xsk tests
  selftests: xsk: Rename worker_* functions that are not thread entry points
  selftests: xsk: Disassociate umem size with packets sent
  selftests: xsk: Remove end-of-test packet
  ...
====================

Link: https://lore.kernel.org/r/20210830225618.11634-1-daniel@iogearbox.net
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-08-30 16:42:47 -07:00
Jakub Kicinski
97c78d0af5 Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
drivers/net/wwan/mhi_wwan_mbim.c - drop the extra arg.

Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-08-26 17:57:57 -07:00
Daniel Xu
eb529c5b10 bpf: Fix bpf-next builds without CONFIG_BPF_EVENTS
This commit fixes linker errors along the lines of:

    s390-linux-ld: task_iter.c:(.init.text+0xa4): undefined reference to `btf_task_struct_ids'`

Fix by defining btf_task_struct_ids unconditionally in kernel/bpf/btf.c
since there exists code that unconditionally uses btf_task_struct_ids.

Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Daniel Xu <dxu@dxuuu.xyz>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/05d94748d9f4b3eecedc4fddd6875418a396e23c.1629942444.git.dxu@dxuuu.xyz
2021-08-25 19:41:39 -07:00
Martin KaFai Lau
eb18b49ea7 bpf: tcp: Allow bpf-tcp-cc to call bpf_(get|set)sockopt
This patch allows the bpf-tcp-cc to call bpf_setsockopt.  One use
case is to allow a bpf-tcp-cc switching to another cc during init().
For example, when the tcp flow is not ecn ready, the bpf_dctcp
can switch to another cc by calling setsockopt(TCP_CONGESTION).

During setsockopt(TCP_CONGESTION), the new tcp-cc's init() will be
called and this could cause a recursion but it is stopped by the
current trampoline's logic (in the prog->active counter).

While retiring a bpf-tcp-cc (e.g. in tcp_v[46]_destroy_sock()),
the tcp stack calls bpf-tcp-cc's release().  To avoid the retiring
bpf-tcp-cc making further changes to the sk, bpf_setsockopt is not
available to the bpf-tcp-cc's release().  This will avoid release()
making setsockopt() call that will potentially allocate new resources.

Although the bpf-tcp-cc already has a more powerful way to read tcp_sock
from the PTR_TO_BTF_ID, it is usually expected that bpf_getsockopt and
bpf_setsockopt are available together.  Thus, bpf_getsockopt() is also
added to all tcp_congestion_ops except release().

When the old bpf-tcp-cc is calling setsockopt(TCP_CONGESTION)
to switch to a new cc, the old bpf-tcp-cc will be released by
bpf_struct_ops_put().  Thus, this patch also puts the bpf_struct_ops_map
after a rcu grace period because the trampoline's image cannot be freed
while the old bpf-tcp-cc is still running.

bpf-tcp-cc can only access icsk_ca_priv as SCALAR.  All kernel's
tcp-cc is also accessing the icsk_ca_priv as SCALAR.   The size
of icsk_ca_priv has already been raised a few times to avoid
extra kmalloc and memory referencing.  The only exception is the
kernel's tcp_cdg.c that stores a kmalloc()-ed pointer in icsk_ca_priv.
To avoid the old bpf-tcp-cc accidentally overriding this tcp_cdg's pointer
value stored in icsk_ca_priv after switching and without over-complicating
the bpf's verifier for this one exception in tcp_cdg, this patch does not
allow switching to tcp_cdg.  If there is a need, bpf_tcp_cdg can be
implemented and then use the bpf_sk_storage as the extended storage.

bpf_sk_setsockopt proto has only been recently added and used
in bpf-sockopt and bpf-iter-tcp, so impose the tcp_cdg limitation in the
same proto instead of adding a new proto specifically for bpf-tcp-cc.

Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210824173007.3976921-1-kafai@fb.com
2021-08-25 17:40:35 -07:00
Daniel Xu
dd6e10fbd9 bpf: Add bpf_task_pt_regs() helper
The motivation behind this helper is to access userspace pt_regs in a
kprobe handler.

uprobe's ctx is the userspace pt_regs. kprobe's ctx is the kernelspace
pt_regs. bpf_task_pt_regs() allows accessing userspace pt_regs in a
kprobe handler. The final case (kernelspace pt_regs in uprobe) is
pretty rare (usermode helper) so I think that can be solved later if
necessary.

More concretely, this helper is useful in doing BPF-based DWARF stack
unwinding. Currently the kernel can only do framepointer based stack
unwinds for userspace code. This is because the DWARF state machines are
too fragile to be computed in kernelspace [0]. The idea behind
DWARF-based stack unwinds w/ BPF is to copy a chunk of the userspace
stack (while in prog context) and send it up to userspace for unwinding
(probably with libunwind) [1]. This would effectively enable profiling
applications with -fomit-frame-pointer using kprobes and uprobes.

[0]: https://lkml.org/lkml/2012/2/10/356
[1]: https://github.com/danobi/bpf-dwarf-walk

Signed-off-by: Daniel Xu <dxu@dxuuu.xyz>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/e2718ced2d51ef4268590ab8562962438ab82815.1629772842.git.dxu@dxuuu.xyz
2021-08-25 10:37:05 -07:00
Daniel Xu
a396eda551 bpf: Extend bpf_base_func_proto helpers with bpf_get_current_task_btf()
bpf_get_current_task() is already supported so it's natural to also
include the _btf() variant for btf-powered helpers.

This is required for non-tracing progs to use bpf_task_pt_regs() in the
next commit.

Signed-off-by: Daniel Xu <dxu@dxuuu.xyz>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/f99870ed5f834c9803d73b3476f8272b1bb987c0.1629772842.git.dxu@dxuuu.xyz
2021-08-25 10:37:05 -07:00
Daniel Xu
33c5cb3601 bpf: Consolidate task_struct BTF_ID declarations
No need to have it defined 5 times. Once is enough.

Signed-off-by: Daniel Xu <dxu@dxuuu.xyz>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/6dcefa5bed26fe1226f26683f36819bb53ec19a2.1629772842.git.dxu@dxuuu.xyz
2021-08-25 10:37:05 -07:00
Andrey Ignatov
d7af7e497f bpf: Fix possible out of bound write in narrow load handling
Fix a verifier bug found by smatch static checker in [0].

This problem has never been seen in prod to my best knowledge. Fixing it
still seems to be a good idea since it's hard to say for sure whether
it's possible or not to have a scenario where a combination of
convert_ctx_access() and a narrow load would lead to an out of bound
write.

When narrow load is handled, one or two new instructions are added to
insn_buf array, but before it was only checked that

	cnt >= ARRAY_SIZE(insn_buf)

And it's safe to add a new instruction to insn_buf[cnt++] only once. The
second try will lead to out of bound write. And this is what can happen
if `shift` is set.

Fix it by making sure that if the BPF_RSH instruction has to be added in
addition to BPF_AND then there is enough space for two more instructions
in insn_buf.

The full report [0] is below:

kernel/bpf/verifier.c:12304 convert_ctx_accesses() warn: offset 'cnt' incremented past end of array
kernel/bpf/verifier.c:12311 convert_ctx_accesses() warn: offset 'cnt' incremented past end of array

kernel/bpf/verifier.c
    12282
    12283 			insn->off = off & ~(size_default - 1);
    12284 			insn->code = BPF_LDX | BPF_MEM | size_code;
    12285 		}
    12286
    12287 		target_size = 0;
    12288 		cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
    12289 					 &target_size);
    12290 		if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
                                        ^^^^^^^^^^^^^^^^^^^^^^^^^^^
Bounds check.

    12291 		    (ctx_field_size && !target_size)) {
    12292 			verbose(env, "bpf verifier is misconfigured\n");
    12293 			return -EINVAL;
    12294 		}
    12295
    12296 		if (is_narrower_load && size < target_size) {
    12297 			u8 shift = bpf_ctx_narrow_access_offset(
    12298 				off, size, size_default) * 8;
    12299 			if (ctx_field_size <= 4) {
    12300 				if (shift)
    12301 					insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
                                                         ^^^^^
increment beyond end of array

    12302 									insn->dst_reg,
    12303 									shift);
--> 12304 				insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
                                                 ^^^^^
out of bounds write

    12305 								(1 << size * 8) - 1);
    12306 			} else {
    12307 				if (shift)
    12308 					insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
    12309 									insn->dst_reg,
    12310 									shift);
    12311 				insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
                                        ^^^^^^^^^^^^^^^
Same.

    12312 								(1ULL << size * 8) - 1);
    12313 			}
    12314 		}
    12315
    12316 		new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
    12317 		if (!new_prog)
    12318 			return -ENOMEM;
    12319
    12320 		delta += cnt - 1;
    12321
    12322 		/* keep walking new program and skip insns we just inserted */
    12323 		env->prog = new_prog;
    12324 		insn      = new_prog->insnsi + i + delta;
    12325 	}
    12326
    12327 	return 0;
    12328 }

[0] https://lore.kernel.org/bpf/20210817050843.GA21456@kili/

v1->v2:
- clarify that problem was only seen by static checker but not in prod;

Fixes: 46f53a65d2 ("bpf: Allow narrow loads with offset > 0")
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210820163935.1902398-1-rdna@fb.com
2021-08-24 14:32:26 -07:00
Dave Marchevsky
6fc88c354f bpf: Migrate cgroup_bpf to internal cgroup_bpf_attach_type enum
Add an enum (cgroup_bpf_attach_type) containing only valid cgroup_bpf
attach types and a function to map bpf_attach_type values to the new
enum. Inspired by netns_bpf_attach_type.

Then, migrate cgroup_bpf to use cgroup_bpf_attach_type wherever
possible.  Functionality is unchanged as attach_type_to_prog_type
switches in bpf/syscall.c were preventing non-cgroup programs from
making use of the invalid cgroup_bpf array slots.

As a result struct cgroup_bpf uses 504 fewer bytes relative to when its
arrays were sized using MAX_BPF_ATTACH_TYPE.

bpf_cgroup_storage is notably not migrated as struct
bpf_cgroup_storage_key is part of uapi and contains a bpf_attach_type
member which is not meant to be opaque. Similarly, bpf_cgroup_link
continues to report its bpf_attach_type member to userspace via fdinfo
and bpf_link_info.

To ease disambiguation, bpf_attach_type variables are renamed from
'type' to 'atype' when changed to cgroup_bpf_attach_type.

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210819092420.1984861-2-davemarchevsky@fb.com
2021-08-23 17:50:24 -07:00
Daniel Borkmann
5b029a32cf bpf: Fix ringbuf helper function compatibility
Commit 457f44363a ("bpf: Implement BPF ring buffer and verifier support
for it") extended check_map_func_compatibility() by enforcing map -> helper
function match, but not helper -> map type match.

Due to this all of the bpf_ringbuf_*() helper functions could be used with
a wrong map type such as array or hash map, leading to invalid access due
to type confusion.

Also, both BPF_FUNC_ringbuf_{submit,discard} have ARG_PTR_TO_ALLOC_MEM as
argument and not a BPF map. Therefore, their check_map_func_compatibility()
presence is incorrect since it's only for map type checking.

Fixes: 457f44363a ("bpf: Implement BPF ring buffer and verifier support for it")
Reported-by: Ryota Shiga (Flatt Security)
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
2021-08-23 23:09:10 +02:00
Jakub Kicinski
f444fea789 Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
drivers/ptp/Kconfig:
  55c8fca1da ("ptp_pch: Restore dependency on PCI")
  e5f3155267 ("ethernet: fix PTP_1588_CLOCK dependencies")

Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-08-19 18:09:18 -07:00
Prankur Gupta
2c531639de bpf: Add support for {set|get} socket options from setsockopt BPF
Add logic to call bpf_setsockopt() and bpf_getsockopt() from setsockopt BPF
programs. An example use case is when the user sets the IPV6_TCLASS socket
option, we would also like to change the tcp-cc for that socket.

We don't have any use case for calling bpf_setsockopt() from supposedly read-
only sys_getsockopt(), so it is made available to BPF_CGROUP_SETSOCKOPT only
at this point.

Signed-off-by: Prankur Gupta <prankgup@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20210817224221.3257826-2-prankgup@fb.com
2021-08-20 01:04:52 +02:00
Stanislav Fomichev
44779a4b85 bpf: Use kvmalloc for map keys in syscalls
Same as previous patch but for the keys. memdup_bpfptr is renamed
to kvmemdup_bpfptr (and converted to kvmalloc).

Signed-off-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20210818235216.1159202-2-sdf@google.com
2021-08-20 00:09:49 +02:00
Stanislav Fomichev
f0dce1d9b7 bpf: Use kvmalloc for map values in syscall
Use kvmalloc/kvfree for temporary value when manipulating a map via
syscall. kmalloc might not be sufficient for percpu maps where the value
is big (and further multiplied by hundreds of CPUs).

Can be reproduced with netcnt test on qemu with "-smp 255".

Signed-off-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20210818235216.1159202-1-sdf@google.com
2021-08-20 00:09:38 +02:00
Daniel Borkmann
f9dabe016b bpf: Undo off-by-one in interpreter tail call count limit
The BPF interpreter as well as x86-64 BPF JIT were both in line by allowing
up to 33 tail calls (however odd that number may be!). Recently, this was
changed for the interpreter to reduce it down to 32 with the assumption that
this should have been the actual limit "which is in line with the behavior of
the x86 JITs" according to b61a28cf11 ("bpf: Fix off-by-one in tail call
count limiting").

Paul recently reported:

  I'm a bit surprised by this because I had previously tested the tail call
  limit of several JIT compilers and found it to be 33 (i.e., allowing chains
  of up to 34 programs). I've just extended a test program I had to validate
  this again on the x86-64 JIT, and found a limit of 33 tail calls again [1].

  Also note we had previously changed the RISC-V and MIPS JITs to allow up to
  33 tail calls [2, 3], for consistency with other JITs and with the interpreter.
  We had decided to increase these two to 33 rather than decrease the other
  JITs to 32 for backward compatibility, though that probably doesn't matter
  much as I'd expect few people to actually use 33 tail calls.

  [1] ae78874829
  [2] 96bc4432f5 ("bpf, riscv: Limit to 33 tail calls")
  [3] e49e6f6db0 ("bpf, mips: Limit to 33 tail calls")

Therefore, revert b61a28cf11 to re-align interpreter to limit a maximum of
33 tail calls. While it is unlikely to hit the limit for the vast majority,
programs in the wild could one way or another depend on this, so lets rather
be a bit more conservative, and lets align the small remainder of JITs to 33.
If needed in future, this limit could be slightly increased, but not decreased.

Fixes: b61a28cf11 ("bpf: Fix off-by-one in tail call count limiting")
Reported-by: Paul Chaignon <paul@cilium.io>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Johan Almbladh <johan.almbladh@anyfinetworks.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/CAO5pjwTWrC0_dzTbTHFPSqDwA56aVH+4KFGVqdq8=ASs0MqZGQ@mail.gmail.com
2021-08-19 18:33:37 +02:00
Colin Ian King
8cacfc85b6 bpf: Remove redundant initialization of variable allow
The variable allow is being initialized with a value that is never read, it
is being updated later on. The assignment is redundant and can be removed.

Addresses-Coverity: ("Unused value")

Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210817170842.495440-1-colin.king@canonical.com
2021-08-17 14:09:12 -07:00
Andrii Nakryiko
82e6b1eee6 bpf: Allow to specify user-provided bpf_cookie for BPF perf links
Add ability for users to specify custom u64 value (bpf_cookie) when creating
BPF link for perf_event-backed BPF programs (kprobe/uprobe, perf_event,
tracepoints).

This is useful for cases when the same BPF program is used for attaching and
processing invocation of different tracepoints/kprobes/uprobes in a generic
fashion, but such that each invocation is distinguished from each other (e.g.,
BPF program can look up additional information associated with a specific
kernel function without having to rely on function IP lookups). This enables
new use cases to be implemented simply and efficiently that previously were
possible only through code generation (and thus multiple instances of almost
identical BPF program) or compilation at runtime (BCC-style) on target hosts
(even more expensive resource-wise). For uprobes it is not even possible in
some cases to know function IP before hand (e.g., when attaching to shared
library without PID filtering, in which case base load address is not known
for a library).

This is done by storing u64 bpf_cookie in struct bpf_prog_array_item,
corresponding to each attached and run BPF program. Given cgroup BPF programs
already use two 8-byte pointers for their needs and cgroup BPF programs don't
have (yet?) support for bpf_cookie, reuse that space through union of
cgroup_storage and new bpf_cookie field.

Make it available to kprobe/tracepoint BPF programs through bpf_trace_run_ctx.
This is set by BPF_PROG_RUN_ARRAY, used by kprobe/uprobe/tracepoint BPF
program execution code, which luckily is now also split from
BPF_PROG_RUN_ARRAY_CG. This run context will be utilized by a new BPF helper
giving access to this user-provided cookie value from inside a BPF program.
Generic perf_event BPF programs will access this value from perf_event itself
through passed in BPF program context.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/bpf/20210815070609.987780-6-andrii@kernel.org
2021-08-17 00:45:07 +02:00
Andrii Nakryiko
b89fbfbb85 bpf: Implement minimal BPF perf link
Introduce a new type of BPF link - BPF perf link. This brings perf_event-based
BPF program attachments (perf_event, tracepoints, kprobes, and uprobes) into
the common BPF link infrastructure, allowing to list all active perf_event
based attachments, auto-detaching BPF program from perf_event when link's FD
is closed, get generic BPF link fdinfo/get_info functionality.

BPF_LINK_CREATE command expects perf_event's FD as target_fd. No extra flags
are currently supported.

Force-detaching and atomic BPF program updates are not yet implemented, but
with perf_event-based BPF links we now have common framework for this without
the need to extend ioctl()-based perf_event interface.

One interesting consideration is a new value for bpf_attach_type, which
BPF_LINK_CREATE command expects. Generally, it's either 1-to-1 mapping from
bpf_attach_type to bpf_prog_type, or many-to-1 mapping from a subset of
bpf_attach_types to one bpf_prog_type (e.g., see BPF_PROG_TYPE_SK_SKB or
BPF_PROG_TYPE_CGROUP_SOCK). In this case, though, we have three different
program types (KPROBE, TRACEPOINT, PERF_EVENT) using the same perf_event-based
mechanism, so it's many bpf_prog_types to one bpf_attach_type. I chose to
define a single BPF_PERF_EVENT attach type for all of them and adjust
link_create()'s logic for checking correspondence between attach type and
program type.

The alternative would be to define three new attach types (e.g., BPF_KPROBE,
BPF_TRACEPOINT, and BPF_PERF_EVENT), but that seemed like unnecessary overkill
and BPF_KPROBE will cause naming conflicts with BPF_KPROBE() macro, defined by
libbpf. I chose to not do this to avoid unnecessary proliferation of
bpf_attach_type enum values and not have to deal with naming conflicts.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/bpf/20210815070609.987780-5-andrii@kernel.org
2021-08-17 00:45:07 +02:00