Some trivial conflicts due to other various merges
adding to the end of common lists sooner than this one.
arch/ia64/Kconfig
arch/powerpc/Kconfig
arch/x86/Kconfig
lib/Kconfig
lib/Makefile
Signed-off-by: Len Brown <len.brown@intel.com>
This version of the gen_pool memory allocator supports lockless
operation.
This makes it safe to use in NMI handlers and other special
unblockable contexts that could otherwise deadlock on locks. This is
implemented by using atomic operations and retries on any conflicts.
The disadvantage is that there may be livelocks in extreme cases. For
better scalability, one gen_pool allocator can be used for each CPU.
The lockless operation only works if there is enough memory available.
If new memory is added to the pool a lock has to be still taken. So
any user relying on locklessness has to ensure that sufficient memory
is preallocated.
The basic atomic operation of this allocator is cmpxchg on long. On
architectures that don't have NMI-safe cmpxchg implementation, the
allocator can NOT be used in NMI handler. So code uses the allocator
in NMI handler should depend on CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Len Brown <len.brown@intel.com>
[ This patch has already been accepted as commit 0ac0c0d0f8 but later
reverted (commit 35926ff5fb) because it itroduced arch specific
__node_random which was defined only for x86 code so it broke other
archs. This is a followup without any arch specific code. Other than
that there are no functional changes.]
Some workloads that create a large number of small files tend to assign
too many pages to node 0 (multi-node systems). Part of the reason is
that the rotor (in cpuset_mem_spread_node()) used to assign nodes starts
at node 0 for newly created tasks.
This patch changes the rotor to be initialized to a random node number
of the cpuset.
[akpm@linux-foundation.org: fix layout]
[Lee.Schermerhorn@hp.com: Define stub numa_random() for !NUMA configuration]
[mhocko@suse.cz: Make it arch independent]
[akpm@linux-foundation.org: fix CONFIG_NUMA=y, MAX_NUMNODES>1 build]
Signed-off-by: Jack Steiner <steiner@sgi.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Paul Menage <menage@google.com>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Jack Steiner <steiner@sgi.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Paul Menage <menage@google.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Robin Holt <holt@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Manually adjusting the smp_affinity for IRQ's becomes unwieldy when the
cpu count is large.
Setting smp affinity to cpus 256 to 263 would be:
echo 000000ff,00000000,00000000,00000000,00000000,00000000,00000000,00000000 > smp_affinity
instead of:
echo 256-263 > smp_affinity_list
Think about what it looks like for cpus around say, 4088 to 4095.
We already have many alternate "list" interfaces:
/sys/devices/system/cpu/cpuX/indexY/shared_cpu_list
/sys/devices/system/cpu/cpuX/topology/thread_siblings_list
/sys/devices/system/cpu/cpuX/topology/core_siblings_list
/sys/devices/system/node/nodeX/cpulist
/sys/devices/pci***/***/local_cpulist
Add a companion interface, smp_affinity_list to use cpu lists instead of
cpu maps. This conforms to other companion interfaces where both a map
and a list interface exists.
This required adding a bitmap_parselist_user() function in a manner
similar to the bitmap_parse_user() function.
[akpm@linux-foundation.org: make __bitmap_parselist() static]
Signed-off-by: Mike Travis <travis@sgi.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Andy Shevchenko <andy.shevchenko@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts commit 0ac0c0d0f8, which
caused cross-architecture build problems for all the wrong reasons.
IA64 already added its own version of __node_random(), but the fact is,
there is nothing architectural about the function, and the original
commit was just badly done. Revert it, since no fix is forthcoming.
Requested-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Some workloads that create a large number of small files tend to assign
too many pages to node 0 (multi-node systems). Part of the reason is that
the rotor (in cpuset_mem_spread_node()) used to assign nodes starts at
node 0 for newly created tasks.
This patch changes the rotor to be initialized to a random node number of
the cpuset.
[akpm@linux-foundation.org: fix layout]
[Lee.Schermerhorn@hp.com: Define stub numa_random() for !NUMA configuration]
Signed-off-by: Jack Steiner <steiner@sgi.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Paul Menage <menage@google.com>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This introduces new bitmap functions:
bitmap_set: Set specified bit area
bitmap_clear: Clear specified bit area
bitmap_find_next_zero_area: Find free bit area
These are mostly stolen from iommu helper. The differences are:
- Use find_next_bit instead of doing test_bit for each bit
- Rewrite bitmap_set and bitmap_clear
Instead of setting or clearing for each bit.
- Check the last bit of the limit
iommu-helper doesn't want to find such area
- The return value if there is no zero area
find_next_zero_area in iommu helper: returns -1
bitmap_find_next_zero_area: return >= bitmap size
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Cc: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Greg Kroah-Hartman <gregkh@suse.de>
Cc: Lothar Wassmann <LW@KARO-electronics.de>
Cc: Roland Dreier <rolandd@cisco.com>
Cc: Yevgeny Petrilin <yevgenyp@mellanox.co.il>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When 'and'ing two bitmasks (where 'andnot' is a variation on it), some
cases want to know whether the result is the empty set or not. In
particular, the TLB IPI sending code wants to do cpumask operations and
determine if there are any CPU's left in the final set.
So this just makes the bitmask (and cpumask) functions return a boolean
for whether the result has any bits set.
Cc: stable@kernel.org (2.6.30, needed by TLB shootdown fix)
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Impact: reduce text size
bitmap_zero et al have a fastpath for nbits <= BITS_PER_LONG, but this
should really only apply where the nbits is known at compile time.
This only saves about 1200 bytes on an allyesconfig kernel, but with
cpumasks going variable that number will increase.
text data bss dec hex filename
35327852 5035607 6782976 47146435 2cf65c3 vmlinux-before
35326640 5035607 6782976 47145223 2cf6107 vmlinux-after
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
* 'for-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/dvrabel/uwb: (47 commits)
uwb: wrong sizeof argument in mac address compare
uwb: don't use printk_ratelimit() so often
uwb: use kcalloc where appropriate
uwb: use time_after() when purging stale beacons
uwb: add credits for the original developers of the UWB/WUSB/WLP subsystems
uwb: add entries in the MAINTAINERS file
uwb: depend on EXPERIMENTAL
wusb: wusb-cbaf (CBA driver) sysfs ABI simplification
uwb: document UWB and WUSB sysfs files
uwb: add symlinks in sysfs between radio controllers and PALs
uwb: dont tranmit identification IEs
uwb: i1480/GUWA100U: fix firmware download issues
uwb: i1480: remove MAC/PHY information checking function
uwb: add Intel i1480 HWA to the UWB RC quirk table
uwb: disable command/event filtering for D-Link DUB-1210
uwb: initialize the debug sub-system
uwb: Fix handling IEs with empty IE data in uwb_est_get_size()
wusb: fix bmRequestType for Abort RPipe request
wusb: fix error path for wusb_set_dev_addr()
wusb: add HWA host controller driver
...
bitmap_scnprintf_len() is not used now, so we remove it.
Otherwise we have to maintain it and make its return
value always equal to bitmap_scnprintf()'s return value.
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Paul Menage <menage@google.com>
Cc: Paul Jackson <pj@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
bitmap_copy_le() copies a bitmap, putting the bits into little-endian
order (i.e., each unsigned long word in the bitmap is put into
little-endian order).
The UWB stack used bitmaps to manage Medium Access Slot availability,
and these bitmaps need to be written to the hardware in LE order.
Signed-off-by: David Vrabel <david.vrabel@csr.com>
Short enough reads from /proc/irq/*/smp_affinity return -EINVAL for no
good reason.
This became noticed with NR_CPUS=4096 patches, when length of printed
representation of cpumask becase 1152, but cat(1) continued to read with
1024-byte chunks. bitmap_scnprintf() in good faith fills buffer, returns
1023, check returns -EINVAL.
Fix it by switching to seq_file, so handler will just fill buffer and
doesn't care about offsets, length, filling EOF and all this crap.
For that add seq_bitmap(), and wrappers around it -- seq_cpumask() and
seq_nodemask().
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Reviewed-by: Paul Jackson <pj@sgi.com>
Cc: Mike Travis <travis@sgi.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
They aren't used. They were briefly used as part of some other patches to
provide an alternative format for displaying some /proc and /sys cpumasks.
They probably should have been removed when those other patches were dropped,
in favor of a different solution.
Signed-off-by: Paul Jackson <pj@sgi.com>
Cc: "Mike Travis" <travis@sgi.com>
Cc: "Bert Wesarg" <bert.wesarg@googlemail.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: WANG Cong <xiyou.wangcong@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The following adds two more bitmap operators, bitmap_onto() and bitmap_fold(),
with the usual cpumask and nodemask wrappers.
The bitmap_onto() operator computes one bitmap relative to another. If the
n-th bit in the origin mask is set, then the m-th bit of the destination mask
will be set, where m is the position of the n-th set bit in the relative mask.
The bitmap_fold() operator folds a bitmap into a second that has bit m set iff
the input bitmap has some bit n set, where m == n mod sz, for the specified sz
value.
There are two substantive changes between this patch and its
predecessor bitmap_relative:
1) Renamed bitmap_relative() to be bitmap_onto().
2) Added bitmap_fold().
The essential motivation for bitmap_onto() is to provide a mechanism for
converting a cpuset-relative CPU or Node mask to an absolute mask. Cpuset
relative masks are written as if the current task were in a cpuset whose CPUs
or Nodes were just the consecutive ones numbered 0..N-1, for some N. The
bitmap_onto() operator is provided in anticipation of adding support for the
first such cpuset relative mask, by the mbind() and set_mempolicy() system
calls, using a planned flag of MPOL_F_RELATIVE_NODES. These bitmap operators
(and their nodemask wrappers, in particular) will be used in code that
converts the user specified cpuset relative memory policy to a specific system
node numbered policy, given the current mems_allowed of the tasks cpuset.
Such cpuset relative mempolicies will address two deficiencies
of the existing interface between cpusets and mempolicies:
1) A task cannot at present reliably establish a cpuset
relative mempolicy because there is an essential race
condition, in that the tasks cpuset may be changed in
between the time the task can query its cpuset placement,
and the time the task can issue the applicable mbind or
set_memplicy system call.
2) A task cannot at present establish what cpuset relative
mempolicy it would like to have, if it is in a smaller
cpuset than it might have mempolicy preferences for,
because the existing interface only allows specifying
mempolicies for nodes currently allowed by the cpuset.
Cpuset relative mempolicies are useful for tasks that don't distinguish
particularly between one CPU or Node and another, but only between how many of
each are allowed, and the proper placement of threads and memory pages on the
various CPUs and Nodes available.
The motivation for the added bitmap_fold() can be seen in the following
example.
Let's say an application has specified some mempolicies that presume 16 memory
nodes, including say a mempolicy that specified MPOL_F_RELATIVE_NODES (cpuset
relative) nodes 12-15. Then lets say that application is crammed into a
cpuset that only has 8 memory nodes, 0-7. If one just uses bitmap_onto(),
this mempolicy, mapped to that cpuset, would ignore the requested relative
nodes above 7, leaving it empty of nodes. That's not good; better to fold the
higher nodes down, so that some nodes are included in the resulting mapped
mempolicy. In this case, the mempolicy nodes 12-15 are taken modulo 8 (the
weight of the mems_allowed of the confining cpuset), resulting in a mempolicy
specifying nodes 4-7.
Signed-off-by: Paul Jackson <pj@sgi.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Andi Kleen <ak@suse.de>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: <kosaki.motohiro@jp.fujitsu.com>
Cc: <ray-lk@madrabbit.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add a new function cpumask_scnprintf_len() to return the number of
characters needed to display "len" cpumask bits. The current method
of allocating NR_CPUS bytes is incorrect as what's really needed is
9 characters per 32-bit word of cpumask bits (8 hex digits plus the
seperator [','] or the terminating NULL.) This function provides the
caller the means to allocate the correct string length.
Cc: Paul Jackson <pj@sgi.com>
Signed-off-by: Mike Travis <travis@sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
remove BITS_TO_TYPE macro
I realized, that it is actually the same as DIV_ROUND_UP, use it instead.
[akpm@linux-foundation.org: build fix]
Signed-off-by: Jiri Slaby <jirislaby@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
lib/bitmap.c:bitmap_parse() is a library function that received as input a
user buffer. This seemed to have originated from the way the write_proc
function of the /proc filesystem operates.
This has been reworked to not use kmalloc and eliminates a lot of
get_user() overhead by performing one access_ok before using __get_user().
We need to test if we are in kernel or user space (is_user) and access the
buffer differently. We cannot use __get_user() to access kernel addresses
in all cases, for example in architectures with separate address space for
kernel and user.
This function will be useful for other uses as well; for example, taking
input for /sysfs instead of /proc, so it was changed to accept kernel
buffers. We have this use for the Linux UWB project, as part as the
upcoming bandwidth allocator code.
Only a few routines used this function and they were changed too.
Signed-off-by: Reinette Chatre <reinette.chatre@linux.intel.com>
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
Cc: Paul Jackson <pj@sgi.com>
Cc: Joe Korty <joe.korty@ccur.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Paul Mundt <lethal@linux-sh.org> says:
This patch set implements a number of patches to clean up and restructure the
bitmap region code, in addition to extending the interface to support
multiword spanning allocations.
The current implementation (before this patch set) is limited by only being
able to allocate pages <= BITS_PER_LONG, as noted by the strategically
positioned BUG_ON() at lib/bitmap.c:752:
/* We don't do regions of pages > BITS_PER_LONG. The
* algorithm would be a simple look for multiple zeros in the
* array, but there's no driver today that needs this. If you
* trip this BUG(), you get to code it... */
BUG_ON(pages > BITS_PER_LONG);
As I seem to have been the first person to trigger this, the result ends up
being the following patch set with the help of Paul Jackson.
The final patch in the series eliminates quite a bit of code duplication, so
the bitmap code size ends up being smaller than the current implementation as
an added bonus.
After these are applied, it should already be possible to do multiword
allocations with dma_alloc_coherent() out of ranges established by
dma_declare_coherent_memory() on x86 without having to change any of the code,
and the SH store queue API will follow up on this as the other user that needs
support for this.
This patch:
Some code cleanup on the lib/bitmap.c bitmap_*_region() routines:
* spacing
* variable names
* comments
Has no change to code function.
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Signed-off-by: Paul Jackson <pj@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
In the forthcoming task migration support, a key calculation will be
mapping cpu and node numbers from the old set to the new set while
preserving cpuset-relative offset.
For example, if a task and its pages on nodes 8-11 are being migrated to
nodes 24-27, then pages on node 9 (the 2nd node in the old set) should be
moved to node 25 (the 2nd node in the new set.)
As with other bitmap operations, the proper way to code this is to provide
the underlying calculation in lib/bitmap.c, and then to provide the usual
cpumask and nodemask wrappers.
This patch provides that. These operations are termed 'remap' operations.
Both remapping a single bit and a set of bits is supported.
Signed-off-by: Paul Jackson <pj@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!