When inspecting a vague code inside prctl(PR_SET_MM_MEM) call (which
testing the RLIMIT_DATA value to figure out if we're allowed to assign
new @start_brk, @brk, @start_data, @end_data from mm_struct) it's been
commited that RLIMIT_DATA in a form it's implemented now doesn't do
anything useful because most of user-space libraries use mmap() syscall
for dynamic memory allocations.
Linus suggested to convert RLIMIT_DATA rlimit into something suitable
for anonymous memory accounting. But in this patch we go further, and
the changes are bundled together as:
* keep vma counting if CONFIG_PROC_FS=n, will be used for limits
* replace mm->shared_vm with better defined mm->data_vm
* account anonymous executable areas as executable
* account file-backed growsdown/up areas as stack
* drop struct file* argument from vm_stat_account
* enforce RLIMIT_DATA for size of data areas
This way code looks cleaner: now code/stack/data classification depends
only on vm_flags state:
VM_EXEC & ~VM_WRITE -> code (VmExe + VmLib in proc)
VM_GROWSUP | VM_GROWSDOWN -> stack (VmStk)
VM_WRITE & ~VM_SHARED & !stack -> data (VmData)
The rest (VmSize - VmData - VmStk - VmExe - VmLib) could be called
"shared", but that might be strange beast like readonly-private or VM_IO
area.
- RLIMIT_AS limits whole address space "VmSize"
- RLIMIT_STACK limits stack "VmStk" (but each vma individually)
- RLIMIT_DATA now limits "VmData"
Signed-off-by: Konstantin Khlebnikov <koct9i@gmail.com>
Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Cc: Vegard Nossum <vegard.nossum@oracle.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Willy Tarreau <w@1wt.eu>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Kees Cook <keescook@google.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Pavel Emelyanov <xemul@virtuozzo.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mark those kmem allocations that are known to be easily triggered from
userspace as __GFP_ACCOUNT/SLAB_ACCOUNT, which makes them accounted to
memcg. For the list, see below:
- threadinfo
- task_struct
- task_delay_info
- pid
- cred
- mm_struct
- vm_area_struct and vm_region (nommu)
- anon_vma and anon_vma_chain
- signal_struct
- sighand_struct
- fs_struct
- files_struct
- fdtable and fdtable->full_fds_bits
- dentry and external_name
- inode for all filesystems. This is the most tedious part, because
most filesystems overwrite the alloc_inode method.
The list is far from complete, so feel free to add more objects.
Nevertheless, it should be close to "account everything" approach and
keep most workloads within bounds. Malevolent users will be able to
breach the limit, but this was possible even with the former "account
everything" approach (simply because it did not account everything in
fact).
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull cgroup updates from Tejun Heo:
- cgroup v2 interface is now official. It's no longer hidden behind a
devel flag and can be mounted using the new cgroup2 fs type.
Unfortunately, cpu v2 interface hasn't made it yet due to the
discussion around in-process hierarchical resource distribution and
only memory and io controllers can be used on the v2 interface at the
moment.
- The existing documentation which has always been a bit of mess is
relocated under Documentation/cgroup-v1/. Documentation/cgroup-v2.txt
is added as the authoritative documentation for the v2 interface.
- Some features are added through for-4.5-ancestor-test branch to
enable netfilter xt_cgroup match to use cgroup v2 paths. The actual
netfilter changes will be merged through the net tree which pulled in
the said branch.
- Various cleanups
* 'for-4.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cgroup: rename cgroup documentations
cgroup: fix a typo.
cgroup: Remove resource_counter.txt in Documentation/cgroup-legacy/00-INDEX.
cgroup: demote subsystem init messages to KERN_DEBUG
cgroup: Fix uninitialized variable warning
cgroup: put controller Kconfig options in meaningful order
cgroup: clean up the kernel configuration menu nomenclature
cgroup_pids: fix a typo.
Subject: cgroup: Fix incomplete dd command in blkio documentation
cgroup: kill cgrp_ss_priv[CGROUP_CANFORK_COUNT] and friends
cpuset: Replace all instances of time_t with time64_t
cgroup: replace unified-hierarchy.txt with a proper cgroup v2 documentation
cgroup: rename Documentation/cgroups/ to Documentation/cgroup-legacy/
cgroup: replace __DEVEL__sane_behavior with cgroup2 fs type
In the following commit:
7675104990 ("sched: Implement lockless wake-queues")
we gained lockless wake-queues.
The -RT kernel managed to lockup itself with those. There could be multiple
attempts for task X to enqueue it for a wakeup _even_ if task X is already
running.
The reason is that task X could be runnable but not yet on CPU. The the
task performing the wakeup did not leave the CPU it could performe
multiple wakeups.
With the proper timming task X could be running and enqueued for a
wakeup. If this happens while X is performing a fork() then its its
child will have a !NULL `wake_q` member copied.
This is not a problem as long as the child task does not participate in
lockless wakeups :)
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Davidlohr Bueso <dbueso@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 7675104990 ("sched: Implement lockless wake-queues")
Link: http://lkml.kernel.org/r/20151221171710.GA5499@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The cputime can only be updated by the current task itself, even in
vtime case. So we can safely use seqcount instead of seqlock as there
is no writer concurrency involved.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Hiroshi Shimamoto <h-shimamoto@ct.jp.nec.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E . McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1447948054-28668-8-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
VTIME_SLEEPING state happens either when:
1) The task is sleeping and no tickless delta is to be added on the task
cputime stats.
2) The CPU isn't running vtime at all, so the same properties of 1) applies.
Lets rename the vtime symbol to reflect both states.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Hiroshi Shimamoto <h-shimamoto@ct.jp.nec.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E . McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1447948054-28668-4-git-send-email-fweisbec@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Now that nobody use the "priv" arg passed to can_fork/cancel_fork/fork we can
kill CGROUP_CANFORK_COUNT/SUBSYS_TAG/etc and cgrp_ss_priv[] in copy_process().
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
If the new child migrates to another cgroup before cgroup_post_fork() calls
subsys->fork(), then both pids_can_attach() and pids_fork() will do the same
pids_uncharge(old_pids) + pids_charge(pids) sequence twice.
Change copy_process() to call threadgroup_change_begin/threadgroup_change_end
unconditionally. percpu_down_read() is cheap and this allows other cleanups,
see the next changes.
Also, this way we can unify cgroup_threadgroup_rwsem and dup_mmap_sem.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Zefan Li <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Merge patch-bomb from Andrew Morton:
- inotify tweaks
- some ocfs2 updates (many more are awaiting review)
- various misc bits
- kernel/watchdog.c updates
- Some of mm. I have a huge number of MM patches this time and quite a
lot of it is quite difficult and much will be held over to next time.
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (162 commits)
selftests: vm: add tests for lock on fault
mm: mlock: add mlock flags to enable VM_LOCKONFAULT usage
mm: introduce VM_LOCKONFAULT
mm: mlock: add new mlock system call
mm: mlock: refactor mlock, munlock, and munlockall code
kasan: always taint kernel on report
mm, slub, kasan: enable user tracking by default with KASAN=y
kasan: use IS_ALIGNED in memory_is_poisoned_8()
kasan: Fix a type conversion error
lib: test_kasan: add some testcases
kasan: update reference to kasan prototype repo
kasan: move KASAN_SANITIZE in arch/x86/boot/Makefile
kasan: various fixes in documentation
kasan: update log messages
kasan: accurately determine the type of the bad access
kasan: update reported bug types for kernel memory accesses
kasan: update reported bug types for not user nor kernel memory accesses
mm/kasan: prevent deadlock in kasan reporting
mm/kasan: don't use kasan shadow pointer in generic functions
mm/kasan: MODULE_VADDR is not available on all archs
...
The cost of faulting in all memory to be locked can be very high when
working with large mappings. If only portions of the mapping will be used
this can incur a high penalty for locking.
For the example of a large file, this is the usage pattern for a large
statical language model (probably applies to other statical or graphical
models as well). For the security example, any application transacting in
data that cannot be swapped out (credit card data, medical records, etc).
This patch introduces the ability to request that pages are not
pre-faulted, but are placed on the unevictable LRU when they are finally
faulted in. The VM_LOCKONFAULT flag will be used together with VM_LOCKED
and has no effect when set without VM_LOCKED. Setting the VM_LOCKONFAULT
flag for a VMA will cause pages faulted into that VMA to be added to the
unevictable LRU when they are faulted or if they are already present, but
will not cause any missing pages to be faulted in.
Exposing this new lock state means that we cannot overload the meaning of
the FOLL_POPULATE flag any longer. Prior to this patch it was used to
mean that the VMA for a fault was locked. This means we need the new
FOLL_MLOCK flag to communicate the locked state of a VMA. FOLL_POPULATE
will now only control if the VMA should be populated and in the case of
VM_LOCKONFAULT, it will not be set.
Signed-off-by: Eric B Munson <emunson@akamai.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Shuah Khan <shuahkh@osg.samsung.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull cgroup updates from Tejun Heo:
"The cgroup core saw several significant updates this cycle:
- percpu_rwsem for threadgroup locking is reinstated. This was
temporarily dropped due to down_write latency issues. Oleg's
rework of percpu_rwsem which is scheduled to be merged in this
merge window resolves the issue.
- On the v2 hierarchy, when controllers are enabled and disabled, all
operations are atomic and can fail and revert cleanly. This allows
->can_attach() failure which is necessary for cpu RT slices.
- Tasks now stay associated with the original cgroups after exit
until released. This allows tracking resources held by zombies
(e.g. pids) and makes it easy to find out where zombies came from
on the v2 hierarchy. The pids controller was broken before these
changes as zombies escaped the limits; unfortunately, updating this
behavior required too many invasive changes and I don't think it's
a good idea to backport them, so the pids controller on 4.3, the
first version which included the pids controller, will stay broken
at least until I'm sure about the cgroup core changes.
- Optimization of a couple common tests using static_key"
* 'for-4.4' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (38 commits)
cgroup: fix race condition around termination check in css_task_iter_next()
blkcg: don't create "io.stat" on the root cgroup
cgroup: drop cgroup__DEVEL__legacy_files_on_dfl
cgroup: replace error handling in cgroup_init() with WARN_ON()s
cgroup: add cgroup_subsys->free() method and use it to fix pids controller
cgroup: keep zombies associated with their original cgroups
cgroup: make css_set_rwsem a spinlock and rename it to css_set_lock
cgroup: don't hold css_set_rwsem across css task iteration
cgroup: reorganize css_task_iter functions
cgroup: factor out css_set_move_task()
cgroup: keep css_set and task lists in chronological order
cgroup: make cgroup_destroy_locked() test cgroup_is_populated()
cgroup: make css_sets pin the associated cgroups
cgroup: relocate cgroup_[try]get/put()
cgroup: move check_for_release() invocation
cgroup: replace cgroup_has_tasks() with cgroup_is_populated()
cgroup: make cgroup->nr_populated count the number of populated css_sets
cgroup: remove an unused parameter from cgroup_task_migrate()
cgroup: fix too early usage of static_branch_disable()
cgroup: make cgroup_update_dfl_csses() migrate all target processes atomically
...
cgroup_exit() is called when a task exits and disassociates the
exiting task from its cgroups and half-attach it to the root cgroup.
This is unnecessary and undesirable.
No controller actually needs an exiting task to be disassociated with
non-root cgroups. Both cpu and perf_event controllers update the
association to the root cgroup from their exit callbacks just to keep
consistent with the cgroup core behavior.
Also, this disassociation makes it difficult to track resources held
by zombies or determine where the zombies came from. Currently, pids
controller is completely broken as it uncharges on exit and zombies
always escape the resource restriction. With cgroup association being
reset on exit, fixing it is pretty painful.
There's no reason to reset cgroup membership on exit. The zombie can
be removed from its css_set so that it doesn't show up on
"cgroup.procs" and thus can't be migrated or interfere with cgroup
removal. It can still pin and point to the css_set so that its cgroup
membership is maintained. This patch makes cgroup core keep zombies
associated with their cgroups at the time of exit.
* Previous patches decoupled populated_cnt tracking from css_set
lifetime, so a dying task can be simply unlinked from its css_set
while pinning and pointing to the css_set. This keeps css_set
association from task side alive while hiding it from "cgroup.procs"
and populated_cnt tracking. The css_set reference is dropped when
the task_struct is freed.
* ->exit() callback no longer needs the css arguments as the
associated css never changes once PF_EXITING is set. Removed.
* cpu and perf_events controllers no longer need ->exit() callbacks.
There's no reason to explicitly switch away on exit. The final
schedule out is enough. The callbacks are removed.
* On traditional hierarchies, nothing changes. "/proc/PID/cgroup"
still reports "/" for all zombies. On the default hierarchy,
"/proc/PID/cgroup" keeps reporting the cgroup that the task belonged
to at the time of exit. If the cgroup gets removed before the task
is reaped, " (deleted)" is appended.
v2: Build brekage due to missing dummy cgroup_free() when
!CONFIG_CGROUP fixed.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
In the next patch in this series, a new field 'checking_timer' will
be added to 'struct thread_group_cputimer'. Both this and the
existing 'running' integer field are just used as boolean values. To
save space in the structure, we can make both of these fields booleans.
This is a preparatory patch to convert the existing running integer
field to a boolean.
Suggested-by: George Spelvin <linux@horizon.com>
Signed-off-by: Jason Low <jason.low2@hp.com>
Reviewed: George Spelvin <linux@horizon.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: hideaki.kimura@hpe.com
Cc: terry.rudd@hpe.com
Cc: scott.norton@hpe.com
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1444849677-29330-4-git-send-email-jason.low2@hp.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Note: This commit was originally committed as d59cfc09c3 but got
reverted by 0c986253b9 due to the performance regression from
the percpu_rwsem write down/up operations added to cgroup task
migration path. percpu_rwsem changes which alleviate the
performance issue are pending for v4.4-rc1 merge window.
Re-apply.
The cgroup side of threadgroup locking uses signal_struct->group_rwsem
to synchronize against threadgroup changes. This per-process rwsem
adds small overhead to thread creation, exit and exec paths, forces
cgroup code paths to do lock-verify-unlock-retry dance in a couple
places and makes it impossible to atomically perform operations across
multiple processes.
This patch replaces signal_struct->group_rwsem with a global
percpu_rwsem cgroup_threadgroup_rwsem which is cheaper on the reader
side and contained in cgroups proper. This patch converts one-to-one.
This does make writer side heavier and lower the granularity; however,
cgroup process migration is a fairly cold path, we do want to optimize
thread operations over it and cgroup migration operations don't take
enough time for the lower granularity to matter.
Signed-off-by: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/g/55F8097A.7000206@de.ibm.com
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
This reverts commit d59cfc09c3.
d59cfc09c3 ("sched, cgroup: replace signal_struct->group_rwsem with
a global percpu_rwsem") and b5ba75b5fc ("cgroup: simplify
threadgroup locking") changed how cgroup synchronizes against task
fork and exits so that it uses global percpu_rwsem instead of
per-process rwsem; unfortunately, the write [un]lock paths of
percpu_rwsem always involve synchronize_rcu_expedited() which turned
out to be too expensive.
Improvements for percpu_rwsem are scheduled to be merged in the coming
v4.4-rc1 merge window which alleviates this issue. For now, revert
the two commits to restore per-process rwsem. They will be re-applied
for the v4.4-rc1 merge window.
Signed-off-by: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/g/55F8097A.7000206@de.ibm.com
Reported-by: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: stable@vger.kernel.org # v4.2+
These two flags gets set in vma->vm_flags to tell the VM common code
if the userfaultfd is armed and in which mode (only tracking missing
faults, only tracking wrprotect faults or both). If neither flags is
set it means the userfaultfd is not armed on the vma.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Pavel Emelyanov <xemul@parallels.com>
Cc: Sanidhya Kashyap <sanidhya.gatech@gmail.com>
Cc: zhang.zhanghailiang@huawei.com
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: Peter Feiner <pfeiner@google.com>
Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Huangpeng (Peter)" <peter.huangpeng@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This adds the vm_userfaultfd_ctx to the vm_area_struct.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Pavel Emelyanov <xemul@parallels.com>
Cc: Sanidhya Kashyap <sanidhya.gatech@gmail.com>
Cc: zhang.zhanghailiang@huawei.com
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: Peter Feiner <pfeiner@google.com>
Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Huangpeng (Peter)" <peter.huangpeng@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull cgroup updates from Tejun Heo:
- a new PIDs controller is added. It turns out that PIDs are actually
an independent resource from kmem due to the limited PID space.
- more core preparations for the v2 interface. Once cpu side interface
is settled, it should be ready for lifting the devel mask.
for-4.3-unified-base was temporarily branched so that other trees
(block) can pull cgroup core changes that blkcg changes depend on.
- a non-critical idr_preload usage bug fix.
* 'for-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cgroup: pids: fix invalid get/put usage
cgroup: introduce cgroup_subsys->legacy_name
cgroup: don't print subsystems for the default hierarchy
cgroup: make cftype->private a unsigned long
cgroup: export cgrp_dfl_root
cgroup: define controller file conventions
cgroup: fix idr_preload usage
cgroup: add documentation for the PIDs controller
cgroup: implement the PIDs subsystem
cgroup: allow a cgroup subsystem to reject a fork
Pull user namespace updates from Eric Biederman:
"This finishes up the changes to ensure proc and sysfs do not start
implementing executable files, as the there are application today that
are only secure because such files do not exist.
It akso fixes a long standing misfeature of /proc/<pid>/mountinfo that
did not show the proper source for files bind mounted from
/proc/<pid>/ns/*.
It also straightens out the handling of clone flags related to user
namespaces, fixing an unnecessary failure of unshare(CLONE_NEWUSER)
when files such as /proc/<pid>/environ are read while <pid> is calling
unshare. This winds up fixing a minor bug in unshare flag handling
that dates back to the first version of unshare in the kernel.
Finally, this fixes a minor regression caused by the introduction of
sysfs_create_mount_point, which broke someone's in house application,
by restoring the size of /sys/fs/cgroup to 0 bytes. Apparently that
application uses the directory size to determine if a tmpfs is mounted
on /sys/fs/cgroup.
The bind mount escape fixes are present in Al Viros for-next branch.
and I expect them to come from there. The bind mount escape is the
last of the user namespace related security bugs that I am aware of"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
fs: Set the size of empty dirs to 0.
userns,pidns: Force thread group sharing, not signal handler sharing.
unshare: Unsharing a thread does not require unsharing a vm
nsfs: Add a show_path method to fix mountinfo
mnt: fs_fully_visible enforce noexec and nosuid if !SB_I_NOEXEC
vfs: Commit to never having exectuables on proc and sysfs.
Pull scheduler updates from Ingo Molnar:
"The biggest change in this cycle is the rewrite of the main SMP load
balancing metric: the CPU load/utilization. The main goal was to make
the metric more precise and more representative - see the changelog of
this commit for the gory details:
9d89c257df ("sched/fair: Rewrite runnable load and utilization average tracking")
It is done in a way that significantly reduces complexity of the code:
5 files changed, 249 insertions(+), 494 deletions(-)
and the performance testing results are encouraging. Nevertheless we
need to keep an eye on potential regressions, since this potentially
affects every SMP workload in existence.
This work comes from Yuyang Du.
Other changes:
- SCHED_DL updates. (Andrea Parri)
- Simplify architecture callbacks by removing finish_arch_switch().
(Peter Zijlstra et al)
- cputime accounting: guarantee stime + utime == rtime. (Peter
Zijlstra)
- optimize idle CPU wakeups some more - inspired by Facebook server
loads. (Mike Galbraith)
- stop_machine fixes and updates. (Oleg Nesterov)
- Introduce the 'trace_sched_waking' tracepoint. (Peter Zijlstra)
- sched/numa tweaks. (Srikar Dronamraju)
- misc fixes and small cleanups"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (44 commits)
sched/deadline: Fix comment in enqueue_task_dl()
sched/deadline: Fix comment in push_dl_tasks()
sched: Change the sched_class::set_cpus_allowed() calling context
sched: Make sched_class::set_cpus_allowed() unconditional
sched: Fix a race between __kthread_bind() and sched_setaffinity()
sched: Ensure a task has a non-normalized vruntime when returning back to CFS
sched/numa: Fix NUMA_DIRECT topology identification
tile: Reorganize _switch_to()
sched, sparc32: Update scheduler comments in copy_thread()
sched: Remove finish_arch_switch()
sched, tile: Remove finish_arch_switch
sched, sh: Fold finish_arch_switch() into switch_to()
sched, score: Remove finish_arch_switch()
sched, avr32: Remove finish_arch_switch()
sched, MIPS: Get rid of finish_arch_switch()
sched, arm: Remove finish_arch_switch()
sched/fair: Clean up load average references
sched/fair: Provide runnable_load_avg back to cfs_rq
sched/fair: Remove task and group entity load when they are dead
sched/fair: Init cfs_rq's sched_entity load average
...
The code that places signals in signal queues computes the uids, gids,
and pids at the time the signals are enqueued. Which means that tasks
that share signal queues must be in the same pid and user namespaces.
Sharing signal handlers is fine, but bizarre.
So make the code in fork and userns_install clearer by only testing
for what is functionally necessary.
Also update the comment in unshare about unsharing a user namespace to
be a little more explicit and make a little more sense.
Acked-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
In the logic in the initial commit of unshare made creating a new
thread group for a process, contingent upon creating a new memory
address space for that process. That is wrong. Two separate
processes in different thread groups can share a memory address space
and clone allows creation of such proceses.
This is significant because it was observed that mm_users > 1 does not
mean that a process is multi-threaded, as reading /proc/PID/maps
temporarily increments mm_users, which allows other processes to
(accidentally) interfere with unshare() calls.
Correct the check in check_unshare_flags() to test for
!thread_group_empty() for CLONE_THREAD, CLONE_SIGHAND, and CLONE_VM.
For sighand->count > 1 for CLONE_SIGHAND and CLONE_VM.
For !current_is_single_threaded instead of mm_users > 1 for CLONE_VM.
By using the correct checks in unshare this removes the possibility of
an accidental denial of service attack.
Additionally using the correct checks in unshare ensures that only an
explicit unshare(CLONE_VM) can possibly trigger the slow path of
current_is_single_threaded(). As an explict unshare(CLONE_VM) is
pointless it is not expected there are many applications that make
that call.
Cc: stable@vger.kernel.org
Fixes: b2e0d98705 userns: Implement unshare of the user namespace
Reported-by: Ricky Zhou <rickyz@chromium.org>
Reported-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
While the current code guarantees monotonicity for stime and utime
independently of one another, it does not guarantee that the sum of
both is equal to the total time we started out with.
This confuses things (and peoples) who look at this sum, like top, and
will report >100% usage followed by a matching period of 0%.
Rework the code to provide both individual monotonicity and a coherent
sum.
Suggested-by: Fredrik Markstrom <fredrik.markstrom@gmail.com>
Reported-by: Fredrik Markstrom <fredrik.markstrom@gmail.com>
Tested-by: Fredrik Markstrom <fredrik.markstrom@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Stanislaw Gruszka <sgruszka@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: jason.low2@hp.com
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Don't burden architectures without dynamic task_struct sizing
with the overhead of dynamic sizing.
Also optimize the x86 code a bit by caching task_struct_size.
Acked-and-Tested-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1437128892-9831-3-git-send-email-mingo@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The FPU rewrite removed the dynamic allocations of 'struct fpu'.
But, this potentially wastes massive amounts of memory (2k per
task on systems that do not have AVX-512 for instance).
Instead of having a separate slab, this patch just appends the
space that we need to the 'task_struct' which we dynamically
allocate already. This saves from doing an extra slab
allocation at fork().
The only real downside here is that we have to stick everything
and the end of the task_struct. But, I think the
BUILD_BUG_ON()s I stuck in there should keep that from being too
fragile.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave@sr71.net>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1437128892-9831-2-git-send-email-mingo@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add a new cgroup subsystem callback can_fork that conditionally
states whether or not the fork is accepted or rejected by a cgroup
policy. In addition, add a cancel_fork callback so that if an error
occurs later in the forking process, any state modified by can_fork can
be reverted.
Allow for a private opaque pointer to be passed from cgroup_can_fork to
cgroup_post_fork, allowing for the fork state to be stored by each
subsystem separately.
Also add a tagging system for cgroup_subsys.h to allow for CGROUP_<TAG>
enumerations to be be defined and used. In addition, explicitly add a
CGROUP_CANFORK_COUNT macro to make arrays easier to define.
This is in preparation for implementing the pids cgroup subsystem.
Signed-off-by: Aleksa Sarai <cyphar@cyphar.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Pull cgroup updates from Tejun Heo:
- threadgroup_lock got reorganized so that its users can pick the
actual locking mechanism to use. Its only user - cgroups - is
updated to use a percpu_rwsem instead of per-process rwsem.
This makes things a bit lighter on hot paths and allows cgroups to
perform and fail multi-task (a process) migrations atomically.
Multi-task migrations are used in several places including the
unified hierarchy.
- Delegation rule and documentation added to unified hierarchy. This
will likely be the last interface update from the cgroup core side
for unified hierarchy before lifting the devel mask.
- Some groundwork for the pids controller which is scheduled to be
merged in the coming devel cycle.
* 'for-4.2' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cgroup: add delegation section to unified hierarchy documentation
cgroup: require write perm on common ancestor when moving processes on the default hierarchy
cgroup: separate out cgroup_procs_write_permission() from __cgroup_procs_write()
kernfs: make kernfs_get_inode() public
MAINTAINERS: add a cgroup core co-maintainer
cgroup: fix uninitialised iterator in for_each_subsys_which
cgroup: replace explicit ss_mask checking with for_each_subsys_which
cgroup: use bitmask to filter for_each_subsys
cgroup: add seq_file forward declaration for struct cftype
cgroup: simplify threadgroup locking
sched, cgroup: replace signal_struct->group_rwsem with a global percpu_rwsem
sched, cgroup: reorganize threadgroup locking
cgroup: switch to unsigned long for bitmasks
cgroup: reorganize include/linux/cgroup.h
cgroup: separate out include/linux/cgroup-defs.h
cgroup: fix some comment typos
clone has some of the quirkiest syscall handling in the kernel, with a
pile of special cases, historical curiosities, and architecture-specific
calling conventions. In particular, clone with CLONE_SETTLS accepts a
parameter "tls" that the C entry point completely ignores and some
assembly entry points overwrite; instead, the low-level arch-specific
code pulls the tls parameter out of the arch-specific register captured
as part of pt_regs on entry to the kernel. That's a massive hack, and
it makes the arch-specific code only work when called via the specific
existing syscall entry points; because of this hack, any new clone-like
system call would have to accept an identical tls argument in exactly
the same arch-specific position, rather than providing a unified system
call entry point across architectures.
The first patch allows architectures to handle the tls argument via
normal C parameter passing, if they opt in by selecting
HAVE_COPY_THREAD_TLS. The second patch makes 32-bit and 64-bit x86 opt
into this.
These two patches came out of the clone4 series, which isn't ready for
this merge window, but these first two cleanup patches were entirely
uncontroversial and have acks. I'd like to go ahead and submit these
two so that other architectures can begin building on top of this and
opting into HAVE_COPY_THREAD_TLS. However, I'm also happy to wait and
send these through the next merge window (along with v3 of clone4) if
anyone would prefer that.
This patch (of 2):
clone with CLONE_SETTLS accepts an argument to set the thread-local
storage area for the new thread. sys_clone declares an int argument
tls_val in the appropriate point in the argument list (based on the
various CLONE_BACKWARDS variants), but doesn't actually use or pass along
that argument. Instead, sys_clone calls do_fork, which calls
copy_process, which calls the arch-specific copy_thread, and copy_thread
pulls the corresponding syscall argument out of the pt_regs captured at
kernel entry (knowing what argument of clone that architecture passes tls
in).
Apart from being awful and inscrutable, that also only works because only
one code path into copy_thread can pass the CLONE_SETTLS flag, and that
code path comes from sys_clone with its architecture-specific
argument-passing order. This prevents introducing a new version of the
clone system call without propagating the same architecture-specific
position of the tls argument.
However, there's no reason to pull the argument out of pt_regs when
sys_clone could just pass it down via C function call arguments.
Introduce a new CONFIG_HAVE_COPY_THREAD_TLS for architectures to opt into,
and a new copy_thread_tls that accepts the tls parameter as an additional
unsigned long (syscall-argument-sized) argument. Change sys_clone's tls
argument to an unsigned long (which does not change the ABI), and pass
that down to copy_thread_tls.
Architectures that don't opt into copy_thread_tls will continue to ignore
the C argument to sys_clone in favor of the pt_regs captured at kernel
entry, and thus will be unable to introduce new versions of the clone
syscall.
Patch co-authored by Josh Triplett and Thiago Macieira.
Signed-off-by: Josh Triplett <josh@joshtriplett.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thiago Macieira <thiago.macieira@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The cgroup side of threadgroup locking uses signal_struct->group_rwsem
to synchronize against threadgroup changes. This per-process rwsem
adds small overhead to thread creation, exit and exec paths, forces
cgroup code paths to do lock-verify-unlock-retry dance in a couple
places and makes it impossible to atomically perform operations across
multiple processes.
This patch replaces signal_struct->group_rwsem with a global
percpu_rwsem cgroup_threadgroup_rwsem which is cheaper on the reader
side and contained in cgroups proper. This patch converts one-to-one.
This does make writer side heavier and lower the granularity; however,
cgroup process migration is a fairly cold path, we do want to optimize
thread operations over it and cgroup migration operations don't take
enough time for the lower granularity to matter.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
While running a database workload, we found a scalability issue with itimers.
Much of the problem was caused by the thread_group_cputimer spinlock.
Each time we account for group system/user time, we need to obtain a
thread_group_cputimer's spinlock to update the timers. On larger systems
(such as a 16 socket machine), this caused more than 30% of total time
spent trying to obtain this kernel lock to update these group timer stats.
This patch converts the timers to 64-bit atomic variables and use
atomic add to update them without a lock. With this patch, the percent
of total time spent updating thread group cputimer timers was reduced
from 30% down to less than 1%.
Note: On 32-bit systems using the generic 64-bit atomics, this causes
sample_group_cputimer() to take locks 3 times instead of just 1 time.
However, we tested this patch on a 32-bit system ARM system using the
generic atomics and did not find the overhead to be much of an issue.
An explanation for why this isn't an issue is that 32-bit systems usually
have small numbers of CPUs, and cacheline contention from extra spinlocks
called periodically is not really apparent on smaller systems.
Signed-off-by: Jason Low <jason.low2@hp.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Aswin Chandramouleeswaran <aswin@hp.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Scott J Norton <scott.norton@hp.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Waiman Long <Waiman.Long@hp.com>
Link: http://lkml.kernel.org/r/1430251224-5764-4-git-send-email-jason.low2@hp.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
ACCESS_ONCE doesn't work reliably on non-scalar types. This patch removes
the rest of the existing usages of ACCESS_ONCE() in the scheduler, and use
the new READ_ONCE() and WRITE_ONCE() APIs as appropriate.
Signed-off-by: Jason Low <jason.low2@hp.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Waiman Long <Waiman.Long@hp.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Aswin Chandramouleeswaran <aswin@hp.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Cc: Scott J Norton <scott.norton@hp.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/1430251224-5764-2-git-send-email-jason.low2@hp.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
sync_buffer() needs the mmap_sem for two distinct operations, both only
occurring upon user context switch handling:
1) Dealing with the exe_file.
2) Adding the dcookie data as we need to lookup the vma that
backs it. This is done via add_sample() and add_data().
This patch isolates 1), for it will no longer need the mmap_sem for
serialization. However, for now, make of the more standard
get_mm_exe_file(), requiring only holding the mmap_sem to read the value,
and relying on reference counting to make sure that the exe file won't
dissappear underneath us while doing the get dcookie.
As a consequence, for 2) we move the mmap_sem locking into where we really
need it, in lookup_dcookie(). The benefits are twofold: reduce mmap_sem
hold times, and cleaner code.
[akpm@linux-foundation.org: export get_mm_exe_file for arch/x86/oprofile/oprofile.ko]
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Cc: Robert Richter <rric@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Oleg cleverly suggested using xchg() to set the new mm->exe_file instead
of calling set_mm_exe_file() which requires some form of serialization --
mmap_sem in this case. For archs that do not have atomic rmw instructions
we still fallback to a spinlock alternative, so this should always be
safe. As such, we only need the mmap_sem for looking up the backing
vm_file, which can be done sharing the lock. Naturally, this means we
need to manually deal with both the new and old file reference counting,
and we need not worry about the MMF_EXE_FILE_CHANGED bits, which can
probably be deleted in the future anyway.
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Suggested-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch removes mm->mmap_sem from mm->exe_file read side.
Also it kills dup_mm_exe_file() and moves exe_file duplication into
dup_mmap() where both mmap_sems are locked.
[akpm@linux-foundation.org: fix comment typo]
Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: Davidlohr Bueso <dbueso@suse.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Users can change the maximum number of threads by writing to
/proc/sys/kernel/threads-max.
With the patch the value entered is checked against the same limits that
apply when fork_init is called.
Signed-off-by: Heinrich Schuchardt <xypron.glpk@gmx.de>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
PAGE_SIZE is not guaranteed to be equal to or less than 8 times the
THREAD_SIZE.
E.g. architecture hexagon may have page size 1M and thread size 4096.
This would lead to a division by zero in the calculation of max_threads.
With 32-bit calculation there is no solution which delivers valid results
for all possible combinations of the parameters. The code is only called
once. Hence a 64-bit calculation can be used as solution.
[akpm@linux-foundation.org: use clamp_t(), per Oleg]
Signed-off-by: Heinrich Schuchardt <xypron.glpk@gmx.de>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
PAGE_SIZE is not guaranteed to be equal to or less than 8 times the
THREAD_SIZE.
E.g. architecture hexagon may have page size 1M and thread size 4096.
This would lead to a division by zero in the calculation of max_threads.
With this patch the buggy code is moved to a separate function
set_max_threads. The error is not fixed.
After fixing the problem in a separate patch the new function can be
reused to adjust max_threads after adding or removing memory.
Argument mempages of function fork_init() is removed as totalram_pages is
an exported symbol.
The creation of separate patches for refactoring to a new function and for
fixing the logic was suggested by Ingo Molnar.
Signed-off-by: Heinrich Schuchardt <xypron.glpk@gmx.de>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The comment explaining what value max_threads is set to is outdated. The
maximum memory consumption ratio for thread structures was 1/2 until
February 2002, then it was briefly changed to 1/16 before being set to 1/8
which we still use today. The comment was never updated to reflect that
change, it's about time.
Signed-off-by: Jean Delvare <jdelvare@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
copy_process will report any failure in alloc_pid as ENOMEM currently
which is misleading because the pid allocation might fail not only when
the memory is short but also when the pid space is consumed already.
The current man page even mentions this case:
: EAGAIN
:
: A system-imposed limit on the number of threads was encountered.
: There are a number of limits that may trigger this error: the
: RLIMIT_NPROC soft resource limit (set via setrlimit(2)), which
: limits the number of processes and threads for a real user ID, was
: reached; the kernel's system-wide limit on the number of processes
: and threads, /proc/sys/kernel/threads-max, was reached (see
: proc(5)); or the maximum number of PIDs, /proc/sys/kernel/pid_max,
: was reached (see proc(5)).
so the current behavior is also incorrect wrt. documentation. POSIX man
page also suggest returing EAGAIN when the process count limit is reached.
This patch simply propagates error code from alloc_pid and makes sure we
return -EAGAIN due to reservation failure. This will make behavior of
fork closer to both our documentation and POSIX.
alloc_pid might alsoo fail when the reaper in the pid namespace is dead
(the namespace basically disallows all new processes) and there is no
good error code which would match documented ones. We have traditionally
returned ENOMEM for this case which is misleading as well but as per
Eric W. Biederman this behavior is documented in man pid_namespaces(7)
: If the "init" process of a PID namespace terminates, the kernel
: terminates all of the processes in the namespace via a SIGKILL signal.
: This behavior reflects the fact that the "init" process is essential for
: the correct operation of a PID namespace. In this case, a subsequent
: fork(2) into this PID namespace will fail with the error ENOMEM; it is
: not possible to create a new processes in a PID namespace whose "init"
: process has terminated.
and introducing a new error code would be too risky so let's stick to
ENOMEM for this case.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
All users of exec_domain are gone, now we can get rid
of that abandoned feature.
To not break existing userspace we keep a dummy
/proc/execdomains file which will always contain
"0-0 Linux [kernel]".
Signed-off-by: Richard Weinberger <richard@nod.at>
mm->nr_pmds doesn't make sense on !MMU configurations
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The problem is that we check nr_ptes/nr_pmds in exit_mmap() which happens
*before* pgd_free(). And if an arch does pte/pmd allocation in
pgd_alloc() and frees them in pgd_free() we see offset in counters by the
time of the checks.
We tried to workaround this by offsetting expected counter value according
to FIRST_USER_ADDRESS for both nr_pte and nr_pmd in exit_mmap(). But it
doesn't work in some cases:
1. ARM with LPAE enabled also has non-zero USER_PGTABLES_CEILING, but
upper addresses occupied with huge pmd entries, so the trick with
offsetting expected counter value will get really ugly: we will have
to apply it nr_pmds, but not nr_ptes.
2. Metag has non-zero FIRST_USER_ADDRESS, but doesn't do allocation
pte/pmd page tables allocation in pgd_alloc(), just setup a pgd entry
which is allocated at boot and shared accross all processes.
The proposal is to move the check to check_mm() which happens *after*
pgd_free() and do proper accounting during pgd_alloc() and pgd_free()
which would bring counters to zero if nothing leaked.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: Tyler Baker <tyler.baker@linaro.org>
Tested-by: Tyler Baker <tyler.baker@linaro.org>
Tested-by: Nishanth Menon <nm@ti.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Dave noticed that unprivileged process can allocate significant amount of
memory -- >500 MiB on x86_64 -- and stay unnoticed by oom-killer and
memory cgroup. The trick is to allocate a lot of PMD page tables. Linux
kernel doesn't account PMD tables to the process, only PTE.
The use-cases below use few tricks to allocate a lot of PMD page tables
while keeping VmRSS and VmPTE low. oom_score for the process will be 0.
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/mman.h>
#include <sys/prctl.h>
#define PUD_SIZE (1UL << 30)
#define PMD_SIZE (1UL << 21)
#define NR_PUD 130000
int main(void)
{
char *addr = NULL;
unsigned long i;
prctl(PR_SET_THP_DISABLE);
for (i = 0; i < NR_PUD ; i++) {
addr = mmap(addr + PUD_SIZE, PUD_SIZE, PROT_WRITE|PROT_READ,
MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
if (addr == MAP_FAILED) {
perror("mmap");
break;
}
*addr = 'x';
munmap(addr, PMD_SIZE);
mmap(addr, PMD_SIZE, PROT_WRITE|PROT_READ,
MAP_ANONYMOUS|MAP_PRIVATE|MAP_FIXED, -1, 0);
if (addr == MAP_FAILED)
perror("re-mmap"), exit(1);
}
printf("PID %d consumed %lu KiB in PMD page tables\n",
getpid(), i * 4096 >> 10);
return pause();
}
The patch addresses the issue by account PMD tables to the process the
same way we account PTE.
The main place where PMD tables is accounted is __pmd_alloc() and
free_pmd_range(). But there're few corner cases:
- HugeTLB can share PMD page tables. The patch handles by accounting
the table to all processes who share it.
- x86 PAE pre-allocates few PMD tables on fork.
- Architectures with FIRST_USER_ADDRESS > 0. We need to adjust sanity
check on exit(2).
Accounting only happens on configuration where PMD page table's level is
present (PMD is not folded). As with nr_ptes we use per-mm counter. The
counter value is used to calculate baseline for badness score by
oom-killer.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Reviewed-by: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Pavel Emelyanov <xemul@openvz.org>
Cc: David Rientjes <rientjes@google.com>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We don't create non-linear mappings anymore. Let's drop code which
handles them in rmap.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__cleanup_sighand() frees sighand without RCU grace period. This is
correct but this looks "obviously buggy" and constantly confuses the
readers, add the comments to explain how this works.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Pranith Kumar <bobby.prani@gmail.com>
Pull scheduler updates from Ingo Molnar:
"The main changes in this cycle were:
- Optimized support for Intel "Cluster-on-Die" (CoD) topologies (Dave
Hansen)
- Various sched/idle refinements for better idle handling (Nicolas
Pitre, Daniel Lezcano, Chuansheng Liu, Vincent Guittot)
- sched/numa updates and optimizations (Rik van Riel)
- sysbench speedup (Vincent Guittot)
- capacity calculation cleanups/refactoring (Vincent Guittot)
- Various cleanups to thread group iteration (Oleg Nesterov)
- Double-rq-lock removal optimization and various refactorings
(Kirill Tkhai)
- various sched/deadline fixes
... and lots of other changes"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (72 commits)
sched/dl: Use dl_bw_of() under rcu_read_lock_sched()
sched/fair: Delete resched_cpu() from idle_balance()
sched, time: Fix build error with 64 bit cputime_t on 32 bit systems
sched: Improve sysbench performance by fixing spurious active migration
sched/x86: Fix up typo in topology detection
x86, sched: Add new topology for multi-NUMA-node CPUs
sched/rt: Use resched_curr() in task_tick_rt()
sched: Use rq->rd in sched_setaffinity() under RCU read lock
sched: cleanup: Rename 'out_unlock' to 'out_free_new_mask'
sched: Use dl_bw_of() under RCU read lock
sched/fair: Remove duplicate code from can_migrate_task()
sched, mips, ia64: Remove __ARCH_WANT_UNLOCKED_CTXSW
sched: print_rq(): Don't use tasklist_lock
sched: normalize_rt_tasks(): Don't use _irqsave for tasklist_lock, use task_rq_lock()
sched: Fix the task-group check in tg_has_rt_tasks()
sched/fair: Leverage the idle state info when choosing the "idlest" cpu
sched: Let the scheduler see CPU idle states
sched/deadline: Fix inter- exclusive cpusets migrations
sched/deadline: Clear dl_entity params when setscheduling to different class
sched/numa: Kill the wrong/dead TASK_DEAD check in task_numa_fault()
...
Dump the contents of the relevant struct_mm when we hit the bug condition.
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>