The 'struct resource' in 'struct dev_pagemap' is only used for holding
resource span information. The other fields, 'name', 'flags', 'desc',
'parent', 'sibling', and 'child' are all unused wasted space.
This is in preparation for introducing a multi-range extension of
devm_memremap_pages().
The bulk of this change is unwinding all the places internal to libnvdimm
that used 'struct resource' unnecessarily, and replacing instances of
'struct dev_pagemap'.res with 'struct dev_pagemap'.range.
P2PDMA had a minor usage of the resource flags field, but only to report
failures with "%pR". That is replaced with an open coded print of the
range.
[dan.carpenter@oracle.com: mm/hmm/test: use after free in dmirror_allocate_chunk()]
Link: https://lkml.kernel.org/r/20200926121402.GA7467@kadam
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> [xen]
Cc: Paul Mackerras <paulus@ozlabs.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Ben Skeggs <bskeggs@redhat.com>
Cc: David Airlie <airlied@linux.ie>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: "Jérôme Glisse" <jglisse@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brice Goglin <Brice.Goglin@inria.fr>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Hulk Robot <hulkci@huawei.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Cc: Jason Yan <yanaijie@huawei.com>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Jia He <justin.he@arm.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: kernel test robot <lkp@intel.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Wei Yang <richard.weiyang@linux.alibaba.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lkml.kernel.org/r/159643103173.4062302.768998885691711532.stgit@dwillia2-desk3.amr.corp.intel.com
Link: https://lkml.kernel.org/r/160106115761.30709.13539840236873663620.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
ioremap has provided non-cached semantics by default since the Linux 2.6
days, so remove the additional ioremap_nocache interface.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Arnd Bergmann <arnd@arndb.de>
The dev field in struct dev_pagemap is only used to print dev_name in two
places, which are at best nice to have. Just remove the field and thus
the name in those two messages.
Link: https://lore.kernel.org/r/20190818090557.17853-3-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Tested-by: Bharata B Rao <bharata@linux.ibm.com>
Reviewed-by: Jason Gunthorpe <jgg@mellanox.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
Provide an internal refcounting logic if no ->ref field is provided
in the pagemap passed into devm_memremap_pages so that callers don't
have to reinvent it poorly.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Tested-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
Passing the actual typed structure leads to more understandable code
vs just passing the ref member.
Reported-by: Logan Gunthorpe <logang@deltatee.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Logan Gunthorpe <logang@deltatee.com>
Reviewed-by: Jason Gunthorpe <jgg@mellanox.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Tested-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
The dev_pagemap is a growing too many callbacks. Move them into a
separate ops structure so that they are not duplicated for multiple
instances, and an attacker can't easily overwrite them.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Logan Gunthorpe <logang@deltatee.com>
Reviewed-by: Jason Gunthorpe <jgg@mellanox.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Tested-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
Logan noticed that devm_memremap_pages_release() kills the percpu_ref
drops all the page references that were acquired at init and then
immediately proceeds to unplug, arch_remove_memory(), the backing pages
for the pagemap. If for some reason device shutdown actually collides
with a busy / elevated-ref-count page then arch_remove_memory() should
be deferred until after that reference is dropped.
As it stands the "wait for last page ref drop" happens *after*
devm_memremap_pages_release() returns, which is obviously too late and
can lead to crashes.
Fix this situation by assigning the responsibility to wait for the
percpu_ref to go idle to devm_memremap_pages() with a new ->cleanup()
callback. Implement the new cleanup callback for all
devm_memremap_pages() users: pmem, devdax, hmm, and p2pdma.
Link: http://lkml.kernel.org/r/155727339156.292046.5432007428235387859.stgit@dwillia2-desk3.amr.corp.intel.com
Fixes: 41e94a8513 ("add devm_memremap_pages")
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Reported-by: Logan Gunthorpe <logang@deltatee.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Logan Gunthorpe <logang@deltatee.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: "Jérôme Glisse" <jglisse@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of version 2 of the gnu general public license as
published by the free software foundation this program is
distributed in the hope that it will be useful but without any
warranty without even the implied warranty of merchantability or
fitness for a particular purpose see the gnu general public license
for more details
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 64 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190529141901.894819585@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The last step before devm_memremap_pages() returns success is to allocate
a release action, devm_memremap_pages_release(), to tear the entire setup
down. However, the result from devm_add_action() is not checked.
Checking the error from devm_add_action() is not enough. The api
currently relies on the fact that the percpu_ref it is using is killed by
the time the devm_memremap_pages_release() is run. Rather than continue
this awkward situation, offload the responsibility of killing the
percpu_ref to devm_memremap_pages_release() directly. This allows
devm_memremap_pages() to do the right thing relative to init failures and
shutdown.
Without this change we could fail to register the teardown of
devm_memremap_pages(). The likelihood of hitting this failure is tiny as
small memory allocations almost always succeed. However, the impact of
the failure is large given any future reconfiguration, or disable/enable,
of an nvdimm namespace will fail forever as subsequent calls to
devm_memremap_pages() will fail to setup the pgmap_radix since there will
be stale entries for the physical address range.
An argument could be made to require that the ->kill() operation be set in
the @pgmap arg rather than passed in separately. However, it helps code
readability, tracking the lifetime of a given instance, to be able to grep
the kill routine directly at the devm_memremap_pages() call site.
Link: http://lkml.kernel.org/r/154275558526.76910.7535251937849268605.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Fixes: e8d5134833 ("memremap: change devm_memremap_pages interface...")
Reviewed-by: "Jérôme Glisse" <jglisse@redhat.com>
Reported-by: Logan Gunthorpe <logang@deltatee.com>
Reviewed-by: Logan Gunthorpe <logang@deltatee.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
devm_memremap_pages() is a facility that can create struct page entries
for any arbitrary range and give drivers the ability to subvert core
aspects of page management.
Specifically the facility is tightly integrated with the kernel's memory
hotplug functionality. It injects an altmap argument deep into the
architecture specific vmemmap implementation to allow allocating from
specific reserved pages, and it has Linux specific assumptions about page
structure reference counting relative to get_user_pages() and
get_user_pages_fast(). It was an oversight and a mistake that this was
not marked EXPORT_SYMBOL_GPL from the outset.
Again, devm_memremap_pagex() exposes and relies upon core kernel internal
assumptions and will continue to evolve along with 'struct page', memory
hotplug, and support for new memory types / topologies. Only an in-kernel
GPL-only driver is expected to keep up with this ongoing evolution. This
interface, and functionality derived from this interface, is not suitable
for kernel-external drivers.
Link: http://lkml.kernel.org/r/154275557457.76910.16923571232582744134.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: "Jérôme Glisse" <jglisse@redhat.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This new interface is similar to how struct device (and many others)
work. The caller initializes a 'struct dev_pagemap' as required
and calls 'devm_memremap_pages'. This allows the pagemap structure to
be embedded in another structure and thus container_of can be used. In
this way application specific members can be stored in a containing
struct.
This will be used by the P2P infrastructure and HMM could probably
be cleaned up to use it as well (instead of having it's own, similar
'hmm_devmem_pages_create' function).
Signed-off-by: Logan Gunthorpe <logang@deltatee.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
acpi_evaluate_dsm() and friends take a pointer to a raw buffer of 16
bytes. Instead we convert them to use guid_t type. At the same time we
convert current users.
acpi_str_to_uuid() becomes useless after the conversion and it's safe to
get rid of it.
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Borislav Petkov <bp@suse.de>
Acked-by: Dan Williams <dan.j.williams@intel.com>
Cc: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
Reviewed-by: Jani Nikula <jani.nikula@intel.com>
Acked-by: Jani Nikula <jani.nikula@intel.com>
Cc: Ben Skeggs <bskeggs@redhat.com>
Acked-by: Benjamin Tissoires <benjamin.tissoires@redhat.com>
Acked-by: Joerg Roedel <jroedel@suse.de>
Acked-by: Adrian Hunter <adrian.hunter@intel.com>
Cc: Yisen Zhuang <yisen.zhuang@huawei.com>
Acked-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Felipe Balbi <felipe.balbi@linux.intel.com>
Acked-by: Mathias Nyman <mathias.nyman@linux.intel.com>
Reviewed-by: Heikki Krogerus <heikki.krogerus@linux.intel.com>
Acked-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
A recent flurry of bug discoveries in the nfit driver's DSM marshalling
routine has highlighted the fact that we do not have unit test coverage
for this routine. Add a self-test of acpi_nfit_ctl() routine before
probing the "nfit_test.0" device. This mocks stimulus to acpi_nfit_ctl()
and if any of the tests fail "nfit_test.0" will be unavailable causing
the rest of the tests to not run / fail.
This unit test will also be a place to land reproductions of quirky BIOS
behavior discovered in the field and ensure the kernel does not regress
against implementations it has seen in practice.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Update nfit_test to handle multiple sub-allocations within a given pmem
region. The mock resource now tracks and un-tracks sub-ranges as they
are requested and released (either explicitly or via devm callback).
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
We have had a couple bugs in this implementation in the past and before
we add another ->notify() implementation for nvdimm devices, lets allow
this routine to be exercised via nfit_test.
Rewrite acpi_nfit_notify() in terms of a generic struct device and
acpi_handle parameter, and then implement a mock acpi_evaluate_object()
that returns a _FIT payload.
Cc: Vishal Verma <vishal.l.verma@intel.com>
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Acked-by: Rafael J. Wysocki <rafael@kernel.org>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
DMA_CMA is incompatible with SWIOTLB used in enterprise distro
configurations. Switch to vmalloc() allocations for all resources.
Acked-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Currently phys_to_pfn_t() is an exported symbol to allow nfit_test to
override it and indicate that nfit_test-pmem is not device-mapped. Now,
we want to enable nfit_test to operate without DMA_CMA and the pmem it
provides will no longer be physically contiguous, i.e. won't be capable
of supporting direct_access requests larger than a page. Make
pmem_direct_access() a weak symbol so that it can be replaced by the
tools/testing/nvdimm/ version, and move phys_to_pfn_t() to a static
inline now that it no longer needs to be overridden.
Acked-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
In preparation for providing an alternative (to block device) access
mechanism to persistent memory, convert pmem_rw_bytes() to
nsio_rw_bytes(). This allows ->rw_bytes() functionality without
requiring a 'struct pmem_device' to be instantiated.
In other words, when ->rw_bytes() is in use i/o is driven through
'struct nd_namespace_io', otherwise it is driven through 'struct
pmem_device' and the block layer. This consolidates the disjoint calls
to devm_exit_badblocks() and devm_memunmap() into a common
devm_nsio_disable() and cleans up the init path to use a unified
pmem_attach_disk() implementation.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
A dma_addr_t is potentially smaller than a phys_addr_t on some archs.
Don't truncate the address when doing the pfn conversion.
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Reported-by: Matthew Wilcox <willy@linux.intel.com>
[willy: fix pfn_t_to_phys as well]
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The unit test infrastructure uses CMA and real memory to emulate nvdimm
resources. The call to devm_memremap_pages() can simply be mocked in
the same manner as memremap and we mock phys_to_pfn_t() to clear PFN_MAP
since these resources are not registered with in the pgmap_radix.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Enable the pmem driver to handle PFN device instances. Attaching a pmem
namespace to a pfn device triggers the driver to allocate and initialize
struct page entries for pmem. Memory capacity for this allocation comes
exclusively from RAM for now which is suitable for low PMEM to RAM
ratios. This mechanism will be expanded later for setting an "allocate
from PMEM" policy.
Cc: Boaz Harrosh <boaz@plexistor.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
This should result in a pretty sizeable performance gain for reads. For
rough comparison I did some simple read testing using PMEM to compare
reads of write combining (WC) mappings vs write-back (WB). This was
done on a random lab machine.
PMEM reads from a write combining mapping:
# dd of=/dev/null if=/dev/pmem0 bs=4096 count=100000
100000+0 records in
100000+0 records out
409600000 bytes (410 MB) copied, 9.2855 s, 44.1 MB/s
PMEM reads from a write-back mapping:
# dd of=/dev/null if=/dev/pmem0 bs=4096 count=1000000
1000000+0 records in
1000000+0 records out
4096000000 bytes (4.1 GB) copied, 3.44034 s, 1.2 GB/s
To be able to safely support a write-back aperture I needed to add
support for the "read flush" _DSM flag, as outlined in the DSM spec:
http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf
This flag tells the ND BLK driver that it needs to flush the cache lines
associated with the aperture after the aperture is moved but before any
new data is read. This ensures that any stale cache lines from the
previous contents of the aperture will be discarded from the processor
cache, and the new data will be read properly from the DIMM. We know
that the cache lines are clean and will be discarded without any
writeback because either a) the previous aperture operation was a read,
and we never modified the contents of the aperture, or b) the previous
aperture operation was a write and we must have written back the dirtied
contents of the aperture to the DIMM before the I/O was completed.
In order to add support for the "read flush" flag I needed to add a
generic routine to invalidate cache lines, mmio_flush_range(). This is
protected by the ARCH_HAS_MMIO_FLUSH Kconfig variable, and is currently
only supported on x86.
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
[djbw: tools/testing/nvdimm/ and memunmap_pmem support]
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Kill arch_memremap_pmem() and just let the architecture specify the
flags to be passed to memremap(). Default to writethrough by default.
Suggested-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
In preparation for fixing the BLK path to properly use "directed
pcommit" enable the unit test infrastructure to emit mock "flush"
tables. Writes to these flush addresses trigger a memory controller to
flush its internal buffers to persistent media, similar to the x86
"pcommit" instruction.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
In the 4.2-rc1 merge the default_memremap_pmem() implementation switched
from ioremap_nocache() to ioremap_wt(). Add it to the list of mocked
routines to restore the ability to run the unit tests.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
'libnvdimm' is the first driver sub-system in the kernel to implement
mocking for unit test coverage. The nfit_test module gets built as an
external module and arranges for external module replacements of nfit,
libnvdimm, nd_pmem, and nd_blk. These replacements use the linker
--wrap option to redirect calls to ioremap() + request_mem_region() to
custom defined unit test resources. The end result is a fully
functional nvdimm_bus, as far as userspace is concerned, but with the
capability to perform otherwise destructive tests on emulated resources.
Q: Why not use QEMU for this emulation?
QEMU is not suitable for unit testing. QEMU's role is to faithfully
emulate the platform. A unit test's role is to unfaithfully implement
the platform with the goal of triggering bugs in the corners of the
sub-system implementation. As bugs are discovered in platforms, or the
sub-system itself, the unit tests are extended to backstop a fix with a
reproducer unit test.
Another problem with QEMU is that it would require coordination of 3
software projects instead of 2 (kernel + libndctl [1]) to maintain and
execute the tests. The chances for bit rot and the difficulty of
getting the tests running goes up non-linearly the more components
involved.
Q: Why submit this to the kernel tree instead of external modules in
libndctl?
Simple, to alleviate the same risk that out-of-tree external modules
face. Updates to drivers/nvdimm/ can be immediately evaluated to see if
they have any impact on tools/testing/nvdimm/.
Q: What are the negative implications of merging this?
It is a unique maintenance burden because the purpose of mocking an
interface to enable a unit test is to purposefully short circuit the
semantics of a routine to enable testing. For example
__wrap_ioremap_cache() fakes the pmem driver into "ioremap()'ing" a test
resource buffer allocated by dma_alloc_coherent(). The future
maintenance burden hits when someone changes the semantics of
ioremap_cache() and wonders what the implications are for the unit test.
[1]: https://github.com/pmem/ndctl
Cc: <linux-acpi@vger.kernel.org>
Cc: Lv Zheng <lv.zheng@intel.com>
Cc: Robert Moore <robert.moore@intel.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>