Commit graph

217 commits

Author SHA1 Message Date
Boris Burkov
7a2339058e btrfs: fix read corruption due to race with extent map merging
In debugging some corrupt squashfs files, we observed symptoms of
corrupt page cache pages but correct on-disk contents. Further
investigation revealed that the exact symptom was a correct page
followed by an incorrect, duplicate, page. This got us thinking about
extent maps.

commit ac05ca913e ("Btrfs: fix race between using extent maps and merging them")
enforces a reference count on the primary `em` extent_map being merged,
as that one gets modified.

However, since,
commit 3d2ac99224 ("btrfs: introduce new members for extent_map")
both 'em' and 'merge' get modified, which started modifying 'merge'
and thus introduced the same race.

We were able to reproduce this by looping the affected squashfs workload
in parallel on a bunch of separate btrfs-es while also dropping caches.
We are still working on a simple enough reproducer to make into an fstest.

The simplest fix is to stop modifying 'merge', which is not essential,
as it is dropped immediately after the merge. This behavior is simply
a consequence of the order of the two extent maps being important in
computing the new values. Modify merge_ondisk_extents to take prev and
next by const* and also take a third merged parameter that it puts the
results in. Note that this introduces the rather odd behavior of passing
'em' to merge_ondisk_extents as a const * and as a regular ptr.

Fixes: 3d2ac99224 ("btrfs: introduce new members for extent_map")
CC: stable@vger.kernel.org # 6.11+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-10-22 16:10:13 +02:00
Filipe Manana
ab094670fa btrfs: reduce size and overhead of extent_map_block_end()
At extent_map_block_end() we are calling the inline functions
extent_map_block_start() and extent_map_block_len() multiple times, which
results in expanding their code multiple times, increasing the compiled
code size and repeating the computations those functions do.

Improve this by caching their results in local variables.

The size of the module before this change:

   $ size fs/btrfs/btrfs.ko
      text	   data	    bss	    dec	    hex	filename
   1755770	 163800	  16920	1936490	 1d8c6a	fs/btrfs/btrfs.ko

And after this change:

   $ size fs/btrfs/btrfs.ko
      text	   data	    bss	    dec	    hex	filename
   1755656	 163800	  16920	1936376	 1d8bf8	fs/btrfs/btrfs.ko

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10 16:51:12 +02:00
Filipe Manana
ae1e766f62 btrfs: only run the extent map shrinker from kswapd tasks
Currently the extent map shrinker can be run by any task when attempting
to allocate memory and there's enough memory pressure to trigger it.

To avoid too much latency we stop iterating over extent maps and removing
them once the task needs to reschedule. This logic was introduced in commit
b3ebb9b7e9 ("btrfs: stop extent map shrinker if reschedule is needed").

While that solved high latency problems for some use cases, it's still
not enough because with a too high number of tasks entering the extent map
shrinker code, either due to memory allocations or because they are a
kswapd task, we end up having a very high level of contention on some
spin locks, namely:

1) The fs_info->fs_roots_radix_lock spin lock, which we need to find
   roots to iterate over their inodes;

2) The spin lock of the xarray used to track open inodes for a root
   (struct btrfs_root::inodes) - on 6.10 kernels and below, it used to
   be a red black tree and the spin lock was root->inode_lock;

3) The fs_info->delayed_iput_lock spin lock since the shrinker adds
   delayed iputs (calls btrfs_add_delayed_iput()).

Instead of allowing the extent map shrinker to be run by any task, make
it run only by kswapd tasks. This still solves the problem of running
into OOM situations due to an unbounded extent map creation, which is
simple to trigger by direct IO writes, as described in the changelog
of commit 956a17d9d0 ("btrfs: add a shrinker for extent maps"), and
by a similar case when doing buffered IO on files with a very large
number of holes (keeping the file open and creating many holes, whose
extent maps are only released when the file is closed).

Reported-by: kzd <kzd@56709.net>
Link: https://bugzilla.kernel.org/show_bug.cgi?id=219121
Reported-by: Octavia Togami <octavia.togami@gmail.com>
Link: https://lore.kernel.org/linux-btrfs/CAHPNGSSt-a4ZZWrtJdVyYnJFscFjP9S7rMcvEMaNSpR556DdLA@mail.gmail.com/
Fixes: 956a17d9d0 ("btrfs: add a shrinker for extent maps")
CC: stable@vger.kernel.org # 6.10+
Tested-by: kzd <kzd@56709.net>
Tested-by: Octavia Togami <octavia.togami@gmail.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-08-13 13:43:28 +02:00
Linus Torvalds
e4fc196f5b for-6.11-rc1-tag
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmapmOQACgkQxWXV+ddt
 WDsXVhAAi4X+xt3o4jcN3IAu08JCQAAyXnFWC3lvn7sqYjSrcccI6ZT4/gAbHss+
 qrifakRGoYQ7fAjYBmhw48HqPmHtI2OQjIUDaIqHQOS68aXShBo9HiE460HRY4GT
 QV/KT0w37E2/R0EDR9gyjLq3ZA3/raxN1n+LNCFhRWmtsAEZrk4XzsADWb05YkIq
 1QBa92DzEhVpd04X8YHIYBgRidWbcYST6xhoWdyL9VZ1pzZsISq5LH67D4f/J1KU
 gXNf+ZnF9DXsQnptJrMsjhx61seJ2F0/vozFZ+l6SjRr0jeysmrJI0dxqQc/hUga
 gbLmdha6ztKdn03JOIL+lfdZYzICFl/2fekSWI2SNcag+TYszACjlFOyHusOgKsa
 3qQwzVB699FheWO5nrOOvOtgq0ZqGsrIvhIXLhA7/bVpNavPnUB7IQCcs8n89ImQ
 hUIebfX1FZnYXTrB6Hhm92LUb0lyLSlW1we3SSmaAMiy1TiXHG7hO2G/sIbOPAJC
 5VzdHf0DEjzEdjmTrGOV7JBfy5JmMK56oN8viZS95p70DYxNGvEOhLs/8n5twpri
 MWV8GElcOjjC+KnGnUH72spsnEKONpdzyccG9kiZEgkEi4csgHSxrkSmAehYD6i6
 MFYk+i7jvZ1VsbOulmdGOLbHS7whxi9pWb/CT3KKF1Ei5/v07bU=
 =JdOX
 -----END PGP SIGNATURE-----

Merge tag 'for-6.11-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux

Pull btrfs fixes from David Sterba:

 - fix regression in extent map rework when handling insertion of
   overlapping compressed extent

 - fix unexpected file length when appending to a file using direct io
   and buffer not faulted in

 - in zoned mode, fix accounting of unusable space when flipping
   read-only block group back to read-write

 - fix page locking when COWing an inline range, assertion failure found
   by syzbot

 - fix calculation of space info in debugging print

 - tree-checker, add validation of data reference item

 - fix a few -Wmaybe-uninitialized build warnings

* tag 'for-6.11-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
  btrfs: initialize location to fix -Wmaybe-uninitialized in btrfs_lookup_dentry()
  btrfs: fix corruption after buffer fault in during direct IO append write
  btrfs: zoned: fix zone_unusable accounting on making block group read-write again
  btrfs: do not subtract delalloc from avail bytes
  btrfs: make cow_file_range_inline() honor locked_page on error
  btrfs: fix corrupt read due to bad offset of a compressed extent map
  btrfs: tree-checker: validate dref root and objectid
2024-07-30 19:28:36 -07:00
Filipe Manana
de9f46cb00 btrfs: fix corrupt read due to bad offset of a compressed extent map
If we attempt to insert a compressed extent map that has a range that
overlaps another extent map we have in the inode's extent map tree, we
can end up with an incorrect offset after adjusting the new extent map at
merge_extent_mapping() because we don't update the extent map's offset.

For example consider the following scenario:

1) We have a file extent item for a compressed extent covering the file
   range [108K, 144K) and currently there's no corresponding extent map
   in the inode's extent map tree;

2) The inode's size is 141K;

3) We have an encoded write (compressed) into the file range [120K, 128K),
   which overlaps the existing file extent item. The encoded write creates
   a matching extent map, adds it to the inode's extent map tree and
   creates an ordered extent for it.

   Note that the corresponding file extent item is added to the subvolume
   tree only when the ordered extent completes (when executing
   btrfs_finish_one_ordered());

4) We have a write into the file range [160K, 164K).

   This writes increases the i_size of the file, and there's a hole
   between the current i_size (141K) and the start offset of this write,
   and since the old i_size is in the middle of the block [140K, 144K),
   we have to write zeroes to the range [141K, 144K) (3072 bytes) and
   therefore dirty that page.

   We then call btrfs_set_extent_delalloc() with a start offset of 140K.
   We then end up at btrfs_find_new_delalloc_bytes() which will call
   btrfs_get_extent() for the range [140K, 144K);

5) The btrfs_get_extent() doesn't find any extent map in the inode's
   extent map tree covering the range [140K, 144K), so it searches the
   subvolume tree for any file extent items covering that range.

   There it finds the file extent item for the range [108K, 144K),
   creates a compressed extent map for that range and then calls
   btrfs_add_extent_mapping() with that extent map and passes the
   range [140K, 144K) via the "start" and "len" parameters;

6) The call to add_extent_mapping() done by btrfs_add_extent_mapping()
   fails with -EEXIST because there's an extent map, created at step 2
   for the [120K, 128K) range, that covers that overlaps with the range
   of the given extent map ([108K, 144K)).

   Then it does a lookup for extent map from step 2 add calls
   merge_extent_mapping() to adjust the input extent map ([108K, 144K)).
   That adjust the extent map to a start offset of 128K and a length
   of 16K (starting just after the extent map from step 2), but it does
   not update the offset field of the extent map, leaving it with a value
   of zero instead of updating to a value of 20K (128K - 108K = 20K).

   As a result any read for the range [128K, 144K) can return
   incorrect data since we read from a wrong section of the extent (unless
   both the correct and incorrect ranges happen to have the same data).

So fix this by changing merge_extent_mapping() to update the extent map's
offset even if it's compressed. Also add a test case to the self tests.
This didn't happen before the patchset that does big changes in the extent
map structure (which includes the commit in the Fixes tag below) because
we kept track of the original start offset in the extent map (member
"orig_start") so we could always calculate the correct offset by
subtracting that offset from the start offset.

A test case for fstests that triggered this problem using send/receive
with compressed writes will be added soon.

Fixes: 3d2ac99224 ("btrfs: introduce new members for extent_map")
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-25 23:54:06 +02:00
Linus Torvalds
a1b547f0f2 for-6.11-tag
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmaVN3MACgkQxWXV+ddt
 WDtpIRAAl+1NjsEj8e5V/UYn8Jr06ujTOnrkR3PCTICxDHbUaMLkQEw21H0K/ogQ
 3fOiEVpSlZOfKdYXtXaMQbC0jd/Af2eA10Uht96nAEjAtxu1uJ4cFZGu2meNdXZP
 xUioivJ/CElMPH2aluG6FaQvUTqmhrEr8tSoYbxzQmUd434q9kqqyjtw1tfzYDG1
 VDn2f7ykhpB/8P0aoqgWSshWTmaCzG0GkuI28o1o0iZUIF/P9TKdzxlLRW6BVHE7
 T2oGLEQjN1GQbCH75L4IeNJDkCBVfcDcbZkUDJ/ae4Pt/jJQTFY53YIP9wXFZQnd
 mdfHmK7Atpsk75ATftYSq+ENkbQ5fsuut5CD63u54gAqA4M1FncDXTAWS1Y30F76
 P8juSCmsSy0o3gTflDIo/IMdntoh/JmncwwStF6oKzmyUZZzzarsqM8mc1P03ZNt
 3ttlnbY7lC1TDAlD5J2wXE0INCT2pN+4C9IToWdRypeuLu6qrI7cQ0oylyp9OVQM
 t9umTXm0B6s1cyqEDjJf0xJZS/JTHYwu7S4EmAJwicgiLpOjABVTmO8021rVmDJy
 TAUu6yEhSsrTT6Dxm7/2Et1EEOKFF5hhsG1SiGD9oUIZK6B5+0waT+rbkEWl7osR
 4/TAv2zX6tuCc7HIW0fQloM/6/Gyd5wcDVaQNDUzFA075uKstwY=
 =k5d3
 -----END PGP SIGNATURE-----

Merge tag 'for-6.11-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux

Pull btrfs updates from David Sterba:
 "The highlights are new logic behind background block group reclaim,
  automatic removal of qgroup after removing a subvolume and new
  'rescue=' mount options.

  The rest is optimizations, cleanups and refactoring.

  User visible features:

   - dynamic block group reclaim:
      - tunable framework to avoid situations where eager data
        allocations prevent creating new metadata chunks due to lack of
        unallocated space
      - reuse sysfs knob bg_reclaim_threshold (otherwise used only in
        zoned mode) for a fixed value threshold
      - new on/off sysfs knob "dynamic_reclaim" calculating the value
        based on heuristics, aiming to keep spare working space for
        relocating chunks but not to needlessly relocate partially
        utilized block groups or reclaim newly allocated ones
      - stats are exported in sysfs per block group type, files
        "reclaim_*"
      - this may increase IO load at unexpected times but the corner
        case of no allocatable block groups is known to be worse

   - automatically remove qgroup of deleted subvolumes:
      - adjust qgroup removal conditions, make sure all related
        subvolume data are already removed, or return EBUSY, also take
        into account setting of sysfs drop_subtree_threshold
      - also works in squota mode

   - mount option updates: new modes of 'rescue=' that allow to mount
     images (read-only) that could have been partially converted by user
     space tools
      - ignoremetacsums  - invalid metadata checksums are ignored
      - ignoresuperflags - super block flags that track conversion in
                           progress (like UUID or checksums)

  Core:

   - size of struct btrfs_inode is now below 1024 (on a release config),
     improved memory packing and other secondary effects

   - switch tracking of open inodes from rb-tree to xarray, minor
     performance improvement

   - reduce number of empty transaction commits when there are no dirty
     data/metadata

   - memory allocation optimizations (reduced numbers, reordering out of
     critical sections)

   - extent map structure optimizations and refactoring, more sanity
     checks

   - more subpage in zoned mode preparations or fixes

   - general snapshot code cleanups, improvements and documentation

   - tree-checker updates: more file extent ram_bytes fixes, continued

   - raid-stripe-tree update (not backward compatible):
      - remove extent encoding field from the structure, can be inferred
        from other information
      - requires btrfs-progs 6.9.1 or newer

   - cleanups and refactoring
      - error message updates
      - error handling improvements
      - return type and parameter cleanups and improvements"

* tag 'for-6.11-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (152 commits)
  btrfs: fix extent map use-after-free when adding pages to compressed bio
  btrfs: fix bitmap leak when loading free space cache on duplicate entry
  btrfs: remove the BUG_ON() inside extent_range_clear_dirty_for_io()
  btrfs: move extent_range_clear_dirty_for_io() into inode.c
  btrfs: enhance compression error messages
  btrfs: fix data race when accessing the last_trans field of a root
  btrfs: rename the extra_gfp parameter of btrfs_alloc_page_array()
  btrfs: remove the extra_gfp parameter from btrfs_alloc_folio_array()
  btrfs: introduce new "rescue=ignoresuperflags" mount option
  btrfs: introduce new "rescue=ignoremetacsums" mount option
  btrfs: output the unrecognized super block flags as hex
  btrfs: remove unused Opt enums
  btrfs: tree-checker: add extra ram_bytes and disk_num_bytes check
  btrfs: fix the ram_bytes assignment for truncated ordered extents
  btrfs: make validate_extent_map() catch ram_bytes mismatch
  btrfs: ignore incorrect btrfs_file_extent_item::ram_bytes
  btrfs: cleanup the bytenr usage inside btrfs_extent_item_to_extent_map()
  btrfs: fix typo in error message in btrfs_validate_super()
  btrfs: move the direct IO code into its own file
  btrfs: pass a btrfs_inode to btrfs_set_prop()
  ...
2024-07-17 12:38:04 -07:00
Filipe Manana
4484940514 btrfs: avoid races when tracking progress for extent map shrinking
We store the progress (root and inode numbers) of the extent map shrinker
in fs_info without any synchronization but we can have multiple tasks
calling into the shrinker during memory allocations when there's enough
memory pressure for example.

This can result in a task A reading fs_info->extent_map_shrinker_last_ino
after another task B updates it, and task A reading
fs_info->extent_map_shrinker_last_root before task B updates it, making
task A see an odd state that isn't necessarily harmful but may make it
skip certain inode ranges or do more work than necessary by going over
the same inodes again. These unprotected accesses would also trigger
warnings from tools like KCSAN.

So add a lock to protect access to these progress fields.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11 16:50:54 +02:00
Filipe Manana
b3ebb9b7e9 btrfs: stop extent map shrinker if reschedule is needed
The extent map shrinker can be called in a variety of contexts where we
are under memory pressure, and of them is when a task is trying to
allocate memory. For this reason the shrinker is typically called with a
value of struct shrink_control::nr_to_scan that is much smaller than what
we return in the nr_cached_objects callback of struct super_operations
(fs/btrfs/super.c:btrfs_nr_cached_objects()), so that the shrinker does
not take a long time and cause high latencies. However we can still take
a lot of time in the shrinker even for a limited amount of nr_to_scan:

1) When traversing the red black tree that tracks open inodes in a root,
   as for example with millions of open inodes we get a deep tree which
   takes time searching for an inode;

2) Iterating over the extent map tree, which is a red black tree, of an
   inode when doing the rb_next() calls and when removing an extent map
   from the tree, since often that requires rebalancing the red black
   tree;

3) When trying to write lock an inode's extent map tree we may wait for a
   significant amount of time, because there's either another task about
   to do IO and searching for an extent map in the tree or inserting an
   extent map in the tree, and we can have thousands or even millions of
   extent maps for an inode. Furthermore, there can be concurrent calls
   to the shrinker so the lock might be busy simply because there is
   already another task shrinking extent maps for the same inode;

4) We often reschedule if we need to, which further increases latency.

So improve on this by stopping the extent map shrinking code whenever we
need to reschedule and make it skip an inode if we can't immediately lock
its extent map tree.

Reported-by: Mikhail Gavrilov <mikhail.v.gavrilov@gmail.com>
Reported-by: Andrea Gelmini <andrea.gelmini@gmail.com>
Link: https://lore.kernel.org/linux-btrfs/CABXGCsMmmb36ym8hVNGTiU8yfUS_cGvoUmGCcBrGWq9OxTrs+A@mail.gmail.com/
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11 16:45:42 +02:00
Filipe Manana
68a3ebd18b btrfs: use delayed iput during extent map shrinking
When putting an inode during extent map shrinking we're doing a standard
iput() but that may take a long time in case the inode is dirty and we are
doing the final iput that triggers eviction - the VFS will have to wait
for writeback before calling the btrfs evict callback (see
fs/inode.c:evict()).

This slows down the task running the shrinker which may have been
triggered while updating some tree for example, meaning locks are held
as well as an open transaction handle.

Also if the iput() ends up triggering eviction and the inode has no links
anymore, then we trigger item truncation which requires flushing delayed
items, space reservation to start a transaction and that may trigger the
space reclaim task and wait for it, resulting in deadlocks in case the
reclaim task needs for example to commit a transaction and the shrinker
is being triggered from a path holding a transaction handle.

Syzbot reported such a case with the following stack traces:

   ======================================================
   WARNING: possible circular locking dependency detected
   6.10.0-rc2-syzkaller-00010-g2ab795141095 #0 Not tainted
   ------------------------------------------------------
   kswapd0/111 is trying to acquire lock:
   ffff88801eae4610 (sb_internal#3){.+.+}-{0:0}, at: btrfs_commit_inode_delayed_inode+0x110/0x330 fs/btrfs/delayed-inode.c:1275

   but task is already holding lock:
   ffffffff8dd3a9a0 (fs_reclaim){+.+.}-{0:0}, at: balance_pgdat+0xa88/0x1970 mm/vmscan.c:6924

   which lock already depends on the new lock.

   the existing dependency chain (in reverse order) is:

   -> #3 (fs_reclaim){+.+.}-{0:0}:
          __fs_reclaim_acquire mm/page_alloc.c:3783 [inline]
          fs_reclaim_acquire+0x102/0x160 mm/page_alloc.c:3797
          might_alloc include/linux/sched/mm.h:334 [inline]
          slab_pre_alloc_hook mm/slub.c:3890 [inline]
          slab_alloc_node mm/slub.c:3980 [inline]
          kmem_cache_alloc_lru_noprof+0x58/0x2f0 mm/slub.c:4019
          btrfs_alloc_inode+0x118/0xb20 fs/btrfs/inode.c:8411
          alloc_inode+0x5d/0x230 fs/inode.c:261
          iget5_locked fs/inode.c:1235 [inline]
          iget5_locked+0x1c9/0x2c0 fs/inode.c:1228
          btrfs_iget_locked fs/btrfs/inode.c:5590 [inline]
          btrfs_iget_path fs/btrfs/inode.c:5607 [inline]
          btrfs_iget+0xfb/0x230 fs/btrfs/inode.c:5636
          create_reloc_inode+0x403/0x820 fs/btrfs/relocation.c:3911
          btrfs_relocate_block_group+0x471/0xe60 fs/btrfs/relocation.c:4114
          btrfs_relocate_chunk+0x143/0x450 fs/btrfs/volumes.c:3373
          __btrfs_balance fs/btrfs/volumes.c:4157 [inline]
          btrfs_balance+0x211a/0x3f00 fs/btrfs/volumes.c:4534
          btrfs_ioctl_balance fs/btrfs/ioctl.c:3675 [inline]
          btrfs_ioctl+0x12ed/0x8290 fs/btrfs/ioctl.c:4742
          __do_compat_sys_ioctl+0x2c3/0x330 fs/ioctl.c:1007
          do_syscall_32_irqs_on arch/x86/entry/common.c:165 [inline]
          __do_fast_syscall_32+0x73/0x120 arch/x86/entry/common.c:386
          do_fast_syscall_32+0x32/0x80 arch/x86/entry/common.c:411
          entry_SYSENTER_compat_after_hwframe+0x84/0x8e

   -> #2 (btrfs_trans_num_extwriters){++++}-{0:0}:
          join_transaction+0x164/0xf40 fs/btrfs/transaction.c:315
          start_transaction+0x427/0x1a70 fs/btrfs/transaction.c:700
          btrfs_rebuild_free_space_tree+0xaa/0x480 fs/btrfs/free-space-tree.c:1323
          btrfs_start_pre_rw_mount+0x218/0xf60 fs/btrfs/disk-io.c:2999
          open_ctree+0x41ab/0x52e0 fs/btrfs/disk-io.c:3554
          btrfs_fill_super fs/btrfs/super.c:946 [inline]
          btrfs_get_tree_super fs/btrfs/super.c:1863 [inline]
          btrfs_get_tree+0x11e9/0x1b90 fs/btrfs/super.c:2089
          vfs_get_tree+0x8f/0x380 fs/super.c:1780
          fc_mount+0x16/0xc0 fs/namespace.c:1125
          btrfs_get_tree_subvol fs/btrfs/super.c:2052 [inline]
          btrfs_get_tree+0xa53/0x1b90 fs/btrfs/super.c:2090
          vfs_get_tree+0x8f/0x380 fs/super.c:1780
          do_new_mount fs/namespace.c:3352 [inline]
          path_mount+0x6e1/0x1f10 fs/namespace.c:3679
          do_mount fs/namespace.c:3692 [inline]
          __do_sys_mount fs/namespace.c:3898 [inline]
          __se_sys_mount fs/namespace.c:3875 [inline]
          __ia32_sys_mount+0x295/0x320 fs/namespace.c:3875
          do_syscall_32_irqs_on arch/x86/entry/common.c:165 [inline]
          __do_fast_syscall_32+0x73/0x120 arch/x86/entry/common.c:386
          do_fast_syscall_32+0x32/0x80 arch/x86/entry/common.c:411
          entry_SYSENTER_compat_after_hwframe+0x84/0x8e

   -> #1 (btrfs_trans_num_writers){++++}-{0:0}:
          join_transaction+0x148/0xf40 fs/btrfs/transaction.c:314
          start_transaction+0x427/0x1a70 fs/btrfs/transaction.c:700
          btrfs_rebuild_free_space_tree+0xaa/0x480 fs/btrfs/free-space-tree.c:1323
          btrfs_start_pre_rw_mount+0x218/0xf60 fs/btrfs/disk-io.c:2999
          open_ctree+0x41ab/0x52e0 fs/btrfs/disk-io.c:3554
          btrfs_fill_super fs/btrfs/super.c:946 [inline]
          btrfs_get_tree_super fs/btrfs/super.c:1863 [inline]
          btrfs_get_tree+0x11e9/0x1b90 fs/btrfs/super.c:2089
          vfs_get_tree+0x8f/0x380 fs/super.c:1780
          fc_mount+0x16/0xc0 fs/namespace.c:1125
          btrfs_get_tree_subvol fs/btrfs/super.c:2052 [inline]
          btrfs_get_tree+0xa53/0x1b90 fs/btrfs/super.c:2090
          vfs_get_tree+0x8f/0x380 fs/super.c:1780
          do_new_mount fs/namespace.c:3352 [inline]
          path_mount+0x6e1/0x1f10 fs/namespace.c:3679
          do_mount fs/namespace.c:3692 [inline]
          __do_sys_mount fs/namespace.c:3898 [inline]
          __se_sys_mount fs/namespace.c:3875 [inline]
          __ia32_sys_mount+0x295/0x320 fs/namespace.c:3875
          do_syscall_32_irqs_on arch/x86/entry/common.c:165 [inline]
          __do_fast_syscall_32+0x73/0x120 arch/x86/entry/common.c:386
          do_fast_syscall_32+0x32/0x80 arch/x86/entry/common.c:411
          entry_SYSENTER_compat_after_hwframe+0x84/0x8e

   -> #0 (sb_internal#3){.+.+}-{0:0}:
          check_prev_add kernel/locking/lockdep.c:3134 [inline]
          check_prevs_add kernel/locking/lockdep.c:3253 [inline]
          validate_chain kernel/locking/lockdep.c:3869 [inline]
          __lock_acquire+0x2478/0x3b30 kernel/locking/lockdep.c:5137
          lock_acquire kernel/locking/lockdep.c:5754 [inline]
          lock_acquire+0x1b1/0x560 kernel/locking/lockdep.c:5719
          percpu_down_read include/linux/percpu-rwsem.h:51 [inline]
          __sb_start_write include/linux/fs.h:1655 [inline]
          sb_start_intwrite include/linux/fs.h:1838 [inline]
          start_transaction+0xbc1/0x1a70 fs/btrfs/transaction.c:694
          btrfs_commit_inode_delayed_inode+0x110/0x330 fs/btrfs/delayed-inode.c:1275
          btrfs_evict_inode+0x960/0xe80 fs/btrfs/inode.c:5291
          evict+0x2ed/0x6c0 fs/inode.c:667
          iput_final fs/inode.c:1741 [inline]
          iput.part.0+0x5a8/0x7f0 fs/inode.c:1767
          iput+0x5c/0x80 fs/inode.c:1757
          btrfs_scan_root fs/btrfs/extent_map.c:1118 [inline]
          btrfs_free_extent_maps+0xbd3/0x1320 fs/btrfs/extent_map.c:1189
          super_cache_scan+0x409/0x550 fs/super.c:227
          do_shrink_slab+0x44f/0x11c0 mm/shrinker.c:435
          shrink_slab+0x18a/0x1310 mm/shrinker.c:662
          shrink_one+0x493/0x7c0 mm/vmscan.c:4790
          shrink_many mm/vmscan.c:4851 [inline]
          lru_gen_shrink_node+0x89f/0x1750 mm/vmscan.c:4951
          shrink_node mm/vmscan.c:5910 [inline]
          kswapd_shrink_node mm/vmscan.c:6720 [inline]
          balance_pgdat+0x1105/0x1970 mm/vmscan.c:6911
          kswapd+0x5ea/0xbf0 mm/vmscan.c:7180
          kthread+0x2c1/0x3a0 kernel/kthread.c:389
          ret_from_fork+0x45/0x80 arch/x86/kernel/process.c:147
          ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244

   other info that might help us debug this:

   Chain exists of:
     sb_internal#3 --> btrfs_trans_num_extwriters --> fs_reclaim

    Possible unsafe locking scenario:

          CPU0                    CPU1
          ----                    ----
     lock(fs_reclaim);
                                  lock(btrfs_trans_num_extwriters);
                                  lock(fs_reclaim);
     rlock(sb_internal#3);

    *** DEADLOCK ***

   2 locks held by kswapd0/111:
    #0: ffffffff8dd3a9a0 (fs_reclaim){+.+.}-{0:0}, at: balance_pgdat+0xa88/0x1970 mm/vmscan.c:6924
    #1: ffff88801eae40e0 (&type->s_umount_key#62){++++}-{3:3}, at: super_trylock_shared fs/super.c:562 [inline]
    #1: ffff88801eae40e0 (&type->s_umount_key#62){++++}-{3:3}, at: super_cache_scan+0x96/0x550 fs/super.c:196

   stack backtrace:
   CPU: 0 PID: 111 Comm: kswapd0 Not tainted 6.10.0-rc2-syzkaller-00010-g2ab795141095 #0
   Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.2-debian-1.16.2-1 04/01/2014
   Call Trace:
    <TASK>
    __dump_stack lib/dump_stack.c:88 [inline]
    dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:114
    check_noncircular+0x31a/0x400 kernel/locking/lockdep.c:2187
    check_prev_add kernel/locking/lockdep.c:3134 [inline]
    check_prevs_add kernel/locking/lockdep.c:3253 [inline]
    validate_chain kernel/locking/lockdep.c:3869 [inline]
    __lock_acquire+0x2478/0x3b30 kernel/locking/lockdep.c:5137
    lock_acquire kernel/locking/lockdep.c:5754 [inline]
    lock_acquire+0x1b1/0x560 kernel/locking/lockdep.c:5719
    percpu_down_read include/linux/percpu-rwsem.h:51 [inline]
    __sb_start_write include/linux/fs.h:1655 [inline]
    sb_start_intwrite include/linux/fs.h:1838 [inline]
    start_transaction+0xbc1/0x1a70 fs/btrfs/transaction.c:694
    btrfs_commit_inode_delayed_inode+0x110/0x330 fs/btrfs/delayed-inode.c:1275
    btrfs_evict_inode+0x960/0xe80 fs/btrfs/inode.c:5291
    evict+0x2ed/0x6c0 fs/inode.c:667
    iput_final fs/inode.c:1741 [inline]
    iput.part.0+0x5a8/0x7f0 fs/inode.c:1767
    iput+0x5c/0x80 fs/inode.c:1757
    btrfs_scan_root fs/btrfs/extent_map.c:1118 [inline]
    btrfs_free_extent_maps+0xbd3/0x1320 fs/btrfs/extent_map.c:1189
    super_cache_scan+0x409/0x550 fs/super.c:227
    do_shrink_slab+0x44f/0x11c0 mm/shrinker.c:435
    shrink_slab+0x18a/0x1310 mm/shrinker.c:662
    shrink_one+0x493/0x7c0 mm/vmscan.c:4790
    shrink_many mm/vmscan.c:4851 [inline]
    lru_gen_shrink_node+0x89f/0x1750 mm/vmscan.c:4951
    shrink_node mm/vmscan.c:5910 [inline]
    kswapd_shrink_node mm/vmscan.c:6720 [inline]
    balance_pgdat+0x1105/0x1970 mm/vmscan.c:6911
    kswapd+0x5ea/0xbf0 mm/vmscan.c:7180
    kthread+0x2c1/0x3a0 kernel/kthread.c:389
    ret_from_fork+0x45/0x80 arch/x86/kernel/process.c:147
    ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244
    </TASK>

So fix this by using btrfs_add_delayed_iput() so that the final iput is
delegated to the cleaner kthread.

Link: https://lore.kernel.org/linux-btrfs/000000000000892280061a344581@google.com/
Reported-by: syzbot+3dad89b3993a4b275e72@syzkaller.appspotmail.com
Fixes: 956a17d9d0 ("btrfs: add a shrinker for extent maps")
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11 16:45:18 +02:00
Qu Wenruo
1b87d26add btrfs: make validate_extent_map() catch ram_bytes mismatch
Previously validate_extent_map() is only to catch bugs related to
extent_map member cleanups.

But with recent btrfs-check enhancement to catch ram_bytes mismatch with
disk_num_bytes, it would be much better to catch such extent maps
earlier.

So this patch adds extra ram_bytes validation for extent maps.

Please note that, older filesystems with such mismatch won't trigger this error:

- extent_map::ram_bytes is already fixed
  Previous patch has already fixed the ram_bytes for affected file
  extents.

So this enhanced sanity check should not affect end users.

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11 15:33:29 +02:00
Qu Wenruo
c77a8c6100 btrfs: remove extent_map::block_start member
The member extent_map::block_start can be calculated from
extent_map::disk_bytenr + extent_map::offset for regular extents.
And otherwise just extent_map::disk_bytenr.

And this is already validated by the validate_extent_map().  Now we can
remove the member.

However there is a special case in btrfs_create_dio_extent() where we
for NOCOW/PREALLOC ordered extents cannot directly use the resulting
btrfs_file_extent, as btrfs_split_ordered_extent() cannot handle them
yet.

So for that call site, we pass file_extent->disk_bytenr +
file_extent->num_bytes as disk_bytenr for the ordered extent, and 0 for
offset.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11 15:33:21 +02:00
Qu Wenruo
e28b851ed9 btrfs: remove extent_map::block_len member
The extent_map::block_len is either extent_map::len (non-compressed
extent) or extent_map::disk_num_bytes (compressed extent).

Since we already have sanity checks to do the cross-checks between the
new and old members, we can drop the old extent_map::block_len now.

For most call sites, they can manually select extent_map::len or
extent_map::disk_num_bytes, since most if not all of them have checked
if the extent is compressed.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11 15:33:20 +02:00
Qu Wenruo
4aa7b5d178 btrfs: remove extent_map::orig_start member
Since we have extent_map::offset, the old extent_map::orig_start is just
extent_map::start - extent_map::offset for non-hole/inline extents.

And since the new extent_map::offset is already verified by
validate_extent_map() while the old orig_start is not, let's just remove
the old member from all call sites.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11 15:33:20 +02:00
Qu Wenruo
3f255ece2f btrfs: introduce extra sanity checks for extent maps
Since extent_map structure has the all the needed members to represent a
file extent directly, we can apply all the file extent sanity checks to
an extent map.

The new sanity checks will cross check both the old members
(block_start/block_len/orig_start) and the new members
(disk_bytenr/disk_num_bytes/offset).

There is a special case for offset/orig_start/start cross check, we only
do such sanity check for compressed extent, as only compressed
read/encoded write really utilize orig_start.
This can be proved by the cleanup patch of orig_start.

The checks happens at the following times:

- add_extent_mapping()
  This is for newly added extent map

- replace_extent_mapping()
  This is for btrfs_drop_extent_map_range() and split_extent_map()

- try_merge_map()

For a lot of call sites we have to properly populate all the members to
pass the sanity check, meanwhile the following code needs extra
modification:

- setup_file_extents() from inode-tests
  The file extents layout of setup_file_extents() is already too invalid
  that tree-checker would reject most of them in real world.

  However there is just a special unaligned regular extent which has
  mismatched disk_num_bytes (4096) and ram_bytes (4096 - 1).
  So instead of dropping the whole test case, here we just unify
  disk_num_bytes and ram_bytes to 4096 - 1.

- test_case_7() from extent-map-tests
  An extent is inserted with 16K length, but on-disk extent size is
  only 4K.
  This means it must be a compressed extent, so set the compressed flag
  for it.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11 15:33:20 +02:00
Qu Wenruo
3d2ac99224 btrfs: introduce new members for extent_map
Introduce two new members for extent_map:

- disk_bytenr
- offset

Both are matching the members with the same name inside
btrfs_file_extent_items.

For now this patch only touches those members when:

- Reading btrfs_file_extent_items from disk
- Inserting new holes
- Merging two extent maps
  With the new disk_bytenr and disk_num_bytes, doing merging would be a
  little more complex, as we have 3 different cases:

  * Both extent maps are referring to the same data extents
    |<----- data extent A ----->|
       |<- em 1 ->|<- em 2 ->|

  * Both extent maps are referring to different data extents
    |<-- data extent A -->|<-- data extent B -->|
               |<- em 1 ->|<- em 2 ->|

  * One of the extent maps is referring to a merged and larger data
    extent that covers both extent maps

    This is not really valid case other than some selftests.
    So this test case would be removed.

  A new helper merge_ondisk_extents() is introduced to handle the above
  valid cases.

To properly assign values for those new members, a new btrfs_file_extent
parameter is introduced to all the involved call sites.

- For NOCOW writes the btrfs_file_extent would be exposed from
  can_nocow_file_extent().

- For other writes, the members can be easily calculated
  As most of them have 0 offset and utilizing the whole on-disk data
  extent.
  The exception is encoded write, but thankfully that interface provided
  offset directly and all other needed info.

For now, both the old members (block_start/block_len/orig_start) are
co-existing with the new members (disk_bytenr/offset), meanwhile all the
critical code is still using the old members only.

The cleanup will happen later after all the old and new members are
properly validated.

There would be some re-ordering for the assignment of the extent_map
members, now we follow the new ordering:

- start and len
  Or file_pos and num_bytes for other structures.

- disk_bytenr and disk_num_bytes
- offset and ram_bytes
- compression

So expect some seemingly unrelated line movement.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11 15:33:20 +02:00
Qu Wenruo
e8fe524da0 btrfs: rename extent_map::orig_block_len to disk_num_bytes
This would make it very obvious that the member just matches
btrfs_file_extent_item::disk_num_bytes.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11 15:33:20 +02:00
Filipe Manana
4e660ca3a9 btrfs: use a regular rb_root instead of cached rb_root for extent_map_tree
We are currently using a cached rb_root (struct rb_root_cached) for the
rb root of struct extent_map_tree. This doesn't offer much of an advantage
here because:

1) It's only advantage over the regular rb_root is that it caches a
   pointer to the left most node (first node), so a call to
   rb_first_cached() doesn't have to chase pointers until it reaches
   the left most node;

2) We only have two scenarios that access left most node with
   rb_first_cached():

      When dropping all extent maps from an inode, during inode eviction;

      When iterating over extent maps during the extent map shrinker;

3) In both cases we keep removing extent maps, which causes deletion of
   the left most node so rb_erase_cached() has to call rb_next() to find
   out what's the next left most node and assign it to
   struct rb_root_cached::rb_leftmost;

4) We can do that ourselves in those two uses cases and stop using a
   rb_root_cached rb tree and use instead a regular rb_root rb tree.

   This reduces the size of struct extent_map_tree by 8 bytes and, since
   this structure is embedded in struct btrfs_inode, it also reduces the
   size of that structure by 8 bytes.

   So on a 64 bits platform the size of btrfs_inode is reduced from 1032
   bytes down to 1024 bytes.

   This means we will be able to have 4 inodes per 4K page instead of 3.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11 15:33:18 +02:00
Filipe Manana
7f5830bc96 btrfs: rename rb_root member of extent_map_tree from map to root
Currently we name the rb_root member of struct extent_map_tree as 'map',
which is odd and confusing. Since it's a root node, rename it to 'root'.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11 15:33:17 +02:00
Filipe Manana
0d89a15e1a btrfs: add tracepoints for extent map shrinker events
Add some tracepoints for the extent map shrinker to help debug and analyse
main events. These have proved useful during development of the shrinker.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-07 21:31:07 +02:00
Filipe Manana
956a17d9d0 btrfs: add a shrinker for extent maps
Extent maps are used either to represent existing file extent items, or to
represent new extents that are going to be written and the respective file
extent items are created when the ordered extent completes.

We currently don't have any limit for how many extent maps we can have,
neither per inode nor globally. Most of the time this not too noticeable
because extent maps are removed in the following situations:

1) When evicting an inode;

2) When releasing folios (pages) through the btrfs_release_folio() address
   space operation callback.

   However we won't release extent maps in the folio range if the folio is
   either dirty or under writeback or if the inode's i_size is less than
   or equals to 16M (see try_release_extent_mapping(). This 16M i_size
   constraint was added back in 2008 with commit 70dec8079d ("Btrfs:
   extent_io and extent_state optimizations"), but there's no explanation
   about why we have it or why the 16M value.

This means that for buffered IO we can reach an OOM situation due to too
many extent maps if either of the following happens:

1) There's a set of tasks constantly doing IO on many files with a size
   not larger than 16M, specially if they keep the files open for very
   long periods, therefore preventing inode eviction.

   This requires a really high number of such files, and having many non
   mergeable extent maps (due to random 4K writes for example) and a
   machine with very little memory;

2) There's a set tasks constantly doing random write IO (therefore
   creating many non mergeable extent maps) on files and keeping them
   open for long periods of time, so inode eviction doesn't happen and
   there's always a lot of dirty pages or pages under writeback,
   preventing btrfs_release_folio() from releasing the respective extent
   maps.

This second case was actually reported in the thread pointed by the Link
tag below, and it requires a very large file under heavy IO and a machine
with very little amount of RAM, which is probably hard to happen in
practice in a real world use case.

However when using direct IO this is not so hard to happen, because the
page cache is not used, and therefore btrfs_release_folio() is never
called. Which means extent maps are dropped only when evicting the inode,
and that means that if we have tasks that keep a file descriptor open and
keep doing IO on a very large file (or files), we can exhaust memory due
to an unbounded amount of extent maps. This is especially easy to happen
if we have a huge file with millions of small extents and their extent
maps are not mergeable (non contiguous offsets and disk locations).
This was reported in that thread with the following fio test:

   $ cat test.sh
   #!/bin/bash

   DEV=/dev/sdj
   MNT=/mnt/sdj
   MOUNT_OPTIONS="-o ssd"
   MKFS_OPTIONS=""

   cat <<EOF > /tmp/fio-job.ini
   [global]
   name=fio-rand-write
   filename=$MNT/fio-rand-write
   rw=randwrite
   bs=4K
   direct=1
   numjobs=16
   fallocate=none
   time_based
   runtime=90000

   [file1]
   size=300G
   ioengine=libaio
   iodepth=16

   EOF

   umount $MNT &> /dev/null
   mkfs.btrfs -f $MKFS_OPTIONS $DEV
   mount $MOUNT_OPTIONS $DEV $MNT

   fio /tmp/fio-job.ini
   umount $MNT

Monitoring the btrfs_extent_map slab while running the test with:

   $ watch -d -n 1 'cat /sys/kernel/slab/btrfs_extent_map/objects \
                        /sys/kernel/slab/btrfs_extent_map/total_objects'

Shows the number of active and total extent maps skyrocketing to tens of
millions, and on systems with a short amount of memory it's easy and quick
to get into an OOM situation, as reported in that thread.

So to avoid this issue add a shrinker that will remove extents maps, as
long as they are not pinned, and takes proper care with any concurrent
fsync to avoid missing extents (setting the full sync flag while in the
middle of a fast fsync). This shrinker is triggered through the callbacks
nr_cached_objects and free_cached_objects of struct super_operations.

The shrinker will iterate over all roots and over all inodes of each
root, and keeps track of the last scanned root and inode, so that the
next time it runs, it starts from that root and from the next inode.
This is similar to what xfs does for its inode reclaim (implements those
callbacks, and cycles through inodes by starting from where it ended
last time).

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-07 21:31:06 +02:00
Filipe Manana
f1d97e7691 btrfs: add a global per cpu counter to track number of used extent maps
Add a per cpu counter that tracks the total number of extent maps that are
in extent trees of inodes that belong to fs trees. This is going to be
used in an upcoming change that adds a shrinker for extent maps. Only
extent maps for fs trees are considered, because for special trees such as
the data relocation tree we don't want to evict their extent maps which
are critical for the relocation to work, and since those are limited, it's
not a concern to have them in memory during the relocation of a block
group. Another case are extent maps for free space cache inodes, which
must always remain in memory, but those are limited (there's only one per
free space cache inode, which means one per block group).

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-07 21:31:06 +02:00
Filipe Manana
5fa8a6baff btrfs: pass the extent map tree's inode to try_merge_map()
Extent maps are always associated to an inode's extent map tree, so
there's no need to pass the extent map tree explicitly to try_merge_map().

In order to facilitate an upcoming change that adds a shrinker for extent
maps, change try_merge_map() to receive the inode instead of its extent
map tree.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-07 21:31:06 +02:00
Filipe Manana
e778724a5e btrfs: pass the extent map tree's inode to setup_extent_mapping()
Extent maps are always associated to an inode's extent map tree, so
there's no need to pass the extent map tree explicitly to
setup_extent_mapping().

In order to facilitate an upcoming change that adds a shrinker for extent
maps, change setup_extent_mapping() to receive the inode instead of its
extent map tree.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-07 21:31:06 +02:00
Filipe Manana
6a3a9113ae btrfs: pass the extent map tree's inode to replace_extent_mapping()
Extent maps are always associated to an inode's extent map tree, so
there's no need to pass the extent map tree explicitly to
replace_extent_mapping().

In order to facilitate an upcoming change that adds a shrinker for extent
maps, change replace_extent_mapping() to receive the inode instead of its
extent map tree.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-07 21:31:06 +02:00
Filipe Manana
c2fbd812d7 btrfs: pass the extent map tree's inode to remove_extent_mapping()
Extent maps are always associated to an inode's extent map tree, so
there's no need to pass the extent map tree explicitly to
remove_extent_mapping().

In order to facilitate an upcoming change that adds a shrinker for extent
maps, change remove_extent_mapping() to receive the inode instead of its
extent map tree.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-07 21:31:06 +02:00
Filipe Manana
002f3a2ce8 btrfs: pass the extent map tree's inode to clear_em_logging()
Extent maps are always associated to an inode's extent map tree, so
there's no need to pass the extent map tree explicitly to
clear_em_logging().

In order to facilitate an upcoming change that adds a shrinker for extent
maps, change clear_em_logging() to receive the inode instead of its extent
map tree.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-07 21:31:06 +02:00
Filipe Manana
6c566def95 btrfs: pass the extent map tree's inode to add_extent_mapping()
Extent maps are always added to an inode's extent map tree, so there's no
need to pass the extent map tree explicitly to add_extent_mapping().

In order to facilitate an upcoming change that adds a shrinker for extent
maps, change add_extent_mapping() to receive the inode instead of its
extent map tree.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-07 21:31:06 +02:00
Filipe Manana
ed48adf83e btrfs: simplify add_extent_mapping() by removing pointless label
The add_extent_mapping() function is short and trivial, there's no need to
have a label for a quick exit in case of an error, even because there's no
error handling needed, we just need to return the error. So remove that
label and return directly.

Also while at it remove the redundant initialization of 'ret', as that may
help avoid some warnings with clang tools such as the one reported/fixed
by commit 966de47ff0 ("btrfs: remove redundant initialization of
variables in log_new_ancestors").

Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-07 21:31:04 +02:00
Filipe Manana
0a308f8095 btrfs: pass an inode to btrfs_add_extent_mapping()
Instead of passing fs_info and extent map tree arguments to
btrfs_add_extent_mapping(), we can pass an inode instead, as extent maps
are always inserted in the extent map tree of an inode, and the fs_info
can be extracted from the inode (inode->root->fs_info). The only exception
is in the self tests where we allocate an extent map tree and then use it
to insert/update/remove extent maps. However the tests can be changed to
use a test inode and then use the inode's extent map tree.

So change btrfs_add_extent_mapping() to have an inode as an argument
instead of a fs_info and an extent map tree. This reduces the number of
parameters and will also be needed for an upcoming change.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-07 21:31:03 +02:00
Filipe Manana
2e438442ba btrfs: remove not needed mod_start and mod_len from struct extent_map
The mod_start and mod_len fields of struct extent_map were introduced by
commit 4e2f84e63d ("Btrfs: improve fsync by filtering extents that we
want") in order to avoid too low performance when fsyncing a file that
keeps getting extent maps merge, because it resulted in each fsync logging
again csum ranges that were already merged before.

We don't need this anymore as extent maps in the list of modified extents
are never merged with other extent maps and once we log an extent map we
remove it from the list of modified extent maps, so it's never logged
twice.

So remove the mod_start and mod_len fields from struct extent_map and use
instead the start and len fields when logging checksums in the fast fsync
path. This also makes EXTENT_FLAG_FILLING unused so remove it as well.

Running the reproducer from the commit mentioned before, with a larger
number of extents and against a null block device, so that IO is fast
and we can better see any impact from searching checksums items and
logging them, gave the following results from dd:

Before this change:

   409600000 bytes (410 MB, 391 MiB) copied, 22.948 s, 17.8 MB/s

After this change:

   409600000 bytes (410 MB, 391 MiB) copied, 22.9997 s, 17.8 MB/s

So no changes in throughput.
The test was done in a release kernel (non-debug, Debian's default kernel
config) and its steps are the following:

   $ mkfs.btrfs -f /dev/nullb0
   $ mount /dev/sdb /mnt
   $ dd if=/dev/zero of=/mnt/foobar bs=4k count=100000 oflag=sync
   $ umount /mnt

This also reduces the size of struct extent_map from 128 bytes down to 112
bytes, so now we can have 36 extents maps per 4K page instead of 32.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-07 21:31:02 +02:00
Qu Wenruo
fe1c6c7acc btrfs: fix wrong block_start calculation for btrfs_drop_extent_map_range()
[BUG]
During my extent_map cleanup/refactor, with extra sanity checks,
extent-map-tests::test_case_7() would not pass the checks.

The problem is, after btrfs_drop_extent_map_range(), the resulted
extent_map has a @block_start way too large.
Meanwhile my btrfs_file_extent_item based members are returning a
correct @disk_bytenr/@offset combination.

The extent map layout looks like this:

     0        16K    32K       48K
     | PINNED |      | Regular |

The regular em at [32K, 48K) also has 32K @block_start.

Then drop range [0, 36K), which should shrink the regular one to be
[36K, 48K).
However the @block_start is incorrect, we expect 32K + 4K, but got 52K.

[CAUSE]
Inside btrfs_drop_extent_map_range() function, if we hit an extent_map
that covers the target range but is still beyond it, we need to split
that extent map into half:

	|<-- drop range -->|
		 |<----- existing extent_map --->|

And if the extent map is not compressed, we need to forward
extent_map::block_start by the difference between the end of drop range
and the extent map start.

However in that particular case, the difference is calculated using
(start + len - em->start).

The problem is @start can be modified if the drop range covers any
pinned extent.

This leads to wrong calculation, and would be caught by my later
extent_map sanity checks, which checks the em::block_start against
btrfs_file_extent_item::disk_bytenr + btrfs_file_extent_item::offset.

This is a regression caused by commit c962098ca4 ("btrfs: fix
incorrect splitting in btrfs_drop_extent_map_range"), which removed the
@len update for pinned extents.

[FIX]
Fix it by avoiding using @start completely, and use @end - em->start
instead, which @end is exclusive bytenr number.

And update the test case to verify the @block_start to prevent such
problem from happening.

Thankfully this is not going to lead to any data corruption, as IO path
does not utilize btrfs_drop_extent_map_range() with @skip_pinned set.

So this fix is only here for the sake of consistency/correctness.

CC: stable@vger.kernel.org # 6.5+
Fixes: c962098ca4 ("btrfs: fix incorrect splitting in btrfs_drop_extent_map_range")
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-04-18 18:18:50 +02:00
Filipe Manana
2133460061 btrfs: use btrfs_warn() to log message at btrfs_add_extent_mapping()
At btrfs_add_extent_mapping(), if we failed to merge the extent map, which
is unexpected and theoretically should never happen, we use WARN_ONCE() to
log a message which is not great because we don't get information about
which filesystem it relates to in case we have multiple btrfs filesystems
mounted. So change this to use btrfs_warn() and surround the error check
with WARN_ON() so we always get a useful stack trace and the condition is
flagged as "unlikely" since it's not expected to ever happen.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-03-26 16:42:39 +01:00
Filipe Manana
379c872393 btrfs: fix message not properly printing interval when adding extent map
At btrfs_add_extent_mapping(), if we are unable to merge the existing
extent map, we print a warning message that suggests interval ranges in
the form "[X, Y)", where the first element is the inclusive start offset
of a range and the second element is the exclusive end offset. However
we end up printing the length of the ranges instead of the exclusive end
offsets. So fix this by printing the range end offsets.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-03-26 16:42:39 +01:00
Filipe Manana
4dc1d69c2b btrfs: fix warning messages not printing interval at unpin_extent_range()
At unpin_extent_range() we print warning messages that are supposed to
print an interval in the form "[X, Y)", with the first element being an
inclusive start offset and the second element being the exclusive end
offset of a range. However we end up printing the range's length instead
of the range's exclusive end offset, so fix that to avoid having confusing
and non-sense messages in case we hit one of these unexpected scenarios.

Fixes: 00deaf04df ("btrfs: log messages at unpin_extent_range() during unexpected cases")
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-03-26 16:42:38 +01:00
Filipe Manana
8a565ec04d btrfs: fix extent map leak in unexpected scenario at unpin_extent_cache()
At unpin_extent_cache() if we happen to find an extent map with an
unexpected start offset, we jump to the 'out' label and never release the
reference we added to the extent map through the call to
lookup_extent_mapping(), therefore resulting in a leak. So fix this by
moving the free_extent_map() under the 'out' label.

Fixes: c03c89f821 ("btrfs: handle errors returned from unpin_extent_cache()")
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-03-26 16:42:38 +01:00
Chengming Zhou
ef5a05c557 btrfs: remove SLAB_MEM_SPREAD flag use
The SLAB_MEM_SPREAD flag used to be implemented in SLAB, which was
removed as of v6.8-rc1, so it became a dead flag since the commit
16a1d96835 ("mm/slab: remove mm/slab.c and slab_def.h"). And the
series[1] went on to mark it obsolete to avoid confusion for users.
Here we can just remove all its users, which has no functional change.

[1] https://lore.kernel.org/all/20240223-slab-cleanup-flags-v2-1-02f1753e8303@suse.cz/

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-03-05 17:13:23 +01:00
David Sterba
c093bf3065 btrfs: handle invalid range and start in merge_extent_mapping()
Turn a BUG_ON to a properly handled error and update the error message
in the caller.  It is expected that @em_in and @start passed to
btrfs_add_extent_mapping() overlap. Besides tests, the only caller
btrfs_get_extent() makes sure this is true.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-03-04 16:24:47 +01:00
David Sterba
c03c89f821 btrfs: handle errors returned from unpin_extent_cache()
We've had numerous attempts to let function unpin_extent_cache() return
void as it only returns 0. There are still error cases to handle so do
that, in addition to the verbose messages. The only caller
btrfs_finish_one_ordered() will now abort the transaction, previously it
let it continue which could lead to further problems.

Signed-off-by: David Sterba <dsterba@suse.com>
2024-03-04 16:24:46 +01:00
David Sterba
2b712e3bb2 btrfs: remove unused included headers
With help of neovim, LSP and clangd we can identify header files that
are not actually needed to be included in the .c files. This is focused
only on removal (with minor fixups), further cleanups are possible but
will require doing the header files properly with forward declarations,
minimized includes and include-what-you-use care.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-03-04 16:24:46 +01:00
Filipe Manana
f86f7a75e2 btrfs: use the flags of an extent map to identify the compression type
Currently, in struct extent_map, we use an unsigned int (32 bits) to
identify the compression type of an extent and an unsigned long (64 bits
on a 64 bits platform, 32 bits otherwise) for flags. We are only using
6 different flags, so an unsigned long is excessive and we can use flags
to identify the compression type instead of using a dedicated 32 bits
field.

We can easily have tens or hundreds of thousands (or more) of extent maps
on busy and large filesystems, specially with compression enabled or many
or large files with tons of small extents. So it's convenient to have the
extent_map structure as small as possible in order to use less memory.

So remove the compression type field from struct extent_map, use flags
to identify the compression type and shorten the flags field from an
unsigned long to a u32. This saves 8 bytes (on 64 bits platforms) and
reduces the size of the structure from 136 bytes down to 128 bytes, using
now only two cache lines, and increases the number of extent maps we can
have per 4K page from 30 to 32. By using a u32 for the flags instead of
an unsigned long, we no longer use test_bit(), set_bit() and clear_bit(),
but that level of atomicity is not needed as most flags are never cleared
once set (before adding an extent map to the tree), and the ones that can
be cleared or set after an extent map is added to the tree, are always
performed while holding the write lock on the extent map tree, while the
reader holds a lock on the tree or tests for a flag that never changes
once the extent map is in the tree (such as compression flags).

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-12-15 22:59:02 +01:00
Filipe Manana
27f0d9c98d btrfs: refactor mergable_maps() for more readability
At mergable_maps() instead of having a single if statement with many
ORed and ANDed conditions, refactor it with multiple if statements that
check a single condition and return immediately once a requirement fails.
This makes it easier to read.

Also change the return type from int to bool, make the arguments const
and rename the function from mergable_maps() to mergeable_maps().

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-12-15 22:59:02 +01:00
Filipe Manana
1a9fb16c60 btrfs: avoid useless rbtree iterations when attempting to merge extent map
When trying to merge an extent map that was just inserted or unpinned, we
will try to merge it with any adjacent extent map that is suitable.

However we will only check if our extent map is mergeable after searching
for the previous and next extent maps in the rbtree, meaning that we are
doing unnecessary calls to rb_prev() and rb_next() in case our extent map
is not mergeable (it's compressed, in the list of modifed extents, being
logged or pinned), wasting CPU time chasing rbtree pointers and pulling
in unnecessary cache lines.

So change the logic to check first if an extent map is mergeable before
searching for the next and previous extent maps in the rbtree.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-12-15 22:59:01 +01:00
Filipe Manana
00deaf04df btrfs: log messages at unpin_extent_range() during unexpected cases
At unpin_extent_range() we trigger a WARN_ON() when we don't find an
extent map or we find one with a start offset not matching the start
offset of the target range. This however isn't very useful for debugging
because:

1) We don't know which condition was triggered, as they are both in the
   same WARN_ON() call;

2) We don't know which inode was affected, from which root, for which
   range, what's the start offset of the extent map, and so on.

So trigger a separate warning for each case and log a message for each
case providing information about the inode, its root, the target range,
the generation and the start offset of the extent map we found.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-12-15 22:59:01 +01:00
Filipe Manana
d224d2ef95 btrfs: remove redundant value assignment at btrfs_add_extent_mapping()
At btrfs_add_extent_mapping(), in case add_extent_mapping() returned
-EEXIST, it's pointless to assign 0 to 'ret' since we will assign a value
to it shortly after, without 'ret' being used before that. So remove that
pointless assignment.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-12-15 22:59:01 +01:00
Filipe Manana
db9d94464a btrfs: unexport add_extent_mapping()
There's no need to export add_extent_mapping(), as it's only used inside
extent_map.c and in the self tests. For the tests we can use instead
btrfs_add_extent_mapping(), which will accomplish exactly the same as we
don't expect collisions in any of them. So unexport it and make the tests
use btrfs_add_extent_mapping() instead of add_extent_mapping().

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-12-15 22:59:01 +01:00
Filipe Manana
32d53f6f7b btrfs: assert extent map is not in a list when setting it up
When setting up a new extent map, at setup_extent_mapping(), we're doing
a list move operation to add the extent map the tree's list of modified
extents. This is confusing because at this point the extent map can not
be in any list, because it's a new extent map. So replace the list move
with a list add and add an assertion that checks that the extent map is
not currently in any list.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-12-15 22:59:01 +01:00
Filipe Manana
3c0e918b8f btrfs: remove no longer used EXTENT_MAP_DELALLOC block start value
After commit ac3c0d36a2 ("btrfs: make fiemap more efficient and accurate
reporting extent sharedness") we no longer need to create special extent
maps during fiemap that have a block start with the EXTENT_MAP_DELALLOC
value. So this block start value for extent maps is no longer used since
then, therefore remove it.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-12-15 20:27:03 +01:00
Filipe Manana
7dc66abb5a btrfs: use a dedicated data structure for chunk maps
Currently we abuse the extent_map structure for two purposes:

1) To actually represent extents for inodes;
2) To represent chunk mappings.

This is odd and has several disadvantages:

1) To create a chunk map, we need to do two memory allocations: one for
   an extent_map structure and another one for a map_lookup structure, so
   more potential for an allocation failure and more complicated code to
   manage and link two structures;

2) For a chunk map we actually only use 3 fields (24 bytes) of the
   respective extent map structure: the 'start' field to have the logical
   start address of the chunk, the 'len' field to have the chunk's size,
   and the 'orig_block_len' field to contain the chunk's stripe size.

   Besides wasting a memory, it's also odd and not intuitive at all to
   have the stripe size in a field named 'orig_block_len'.

   We are also using 'block_len' of the extent_map structure to contain
   the chunk size, so we have 2 fields for the same value, 'len' and
   'block_len', which is pointless;

3) When an extent map is associated to a chunk mapping, we set the bit
   EXTENT_FLAG_FS_MAPPING on its flags and then make its member named
   'map_lookup' point to the associated map_lookup structure. This means
   that for an extent map associated to an inode extent, we are not using
   this 'map_lookup' pointer, so wasting 8 bytes (on a 64 bits platform);

4) Extent maps associated to a chunk mapping are never merged or split so
   it's pointless to use the existing extent map infrastructure.

So add a dedicated data structure named 'btrfs_chunk_map' to represent
chunk mappings, this is basically the existing map_lookup structure with
some extra fields:

1) 'start' to contain the chunk logical address;
2) 'chunk_len' to contain the chunk's length;
3) 'stripe_size' for the stripe size;
4) 'rb_node' for insertion into a rb tree;
5) 'refs' for reference counting.

This way we do a single memory allocation for chunk mappings and we don't
waste memory for them with unused/unnecessary fields from an extent_map.

We also save 8 bytes from the extent_map structure by removing the
'map_lookup' pointer, so the size of struct extent_map is reduced from
144 bytes down to 136 bytes, and we can now have 30 extents map per 4K
page instead of 28.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-12-15 20:27:02 +01:00
Filipe Manana
2ecec0d6a5 btrfs: unexport extent_map_block_end()
The helper extent_map_block_end() is currently not used anywhere outside
extent_map.c, so move into from extent_map.h into extent_map.c. While at
it, also make the extent map pointer argument as const.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-12-15 20:27:02 +01:00
Josef Bacik
c962098ca4 btrfs: fix incorrect splitting in btrfs_drop_extent_map_range
In production we were seeing a variety of WARN_ON()'s in the extent_map
code, specifically in btrfs_drop_extent_map_range() when we have to call
add_extent_mapping() for our second split.

Consider the following extent map layout

	PINNED
	[0 16K)  [32K, 48K)

and then we call btrfs_drop_extent_map_range for [0, 36K), with
skip_pinned == true.  The initial loop will have

	start = 0
	end = 36K
	len = 36K

we will find the [0, 16k) extent, but since we are pinned we will skip
it, which has this code

	start = em_end;
	if (end != (u64)-1)
		len = start + len - em_end;

em_end here is 16K, so now the values are

	start = 16K
	len = 16K + 36K - 16K = 36K

len should instead be 20K.  This is a problem when we find the next
extent at [32K, 48K), we need to split this extent to leave [36K, 48k),
however the code for the split looks like this

	split->start = start + len;
	split->len = em_end - (start + len);

In this case we have

	em_end = 48K
	split->start = 16K + 36K       // this should be 16K + 20K
	split->len = 48K - (16K + 36K) // this overflows as 16K + 36K is 52K

and now we have an invalid extent_map in the tree that potentially
overlaps other entries in the extent map.  Even in the non-overlapping
case we will have split->start set improperly, which will cause problems
with any block related calculations.

We don't actually need len in this loop, we can simply use end as our
end point, and only adjust start up when we find a pinned extent we need
to skip.

Adjust the logic to do this, which keeps us from inserting an invalid
extent map.

We only skip_pinned in the relocation case, so this is relatively rare,
except in the case where you are running relocation a lot, which can
happen with auto relocation on.

Fixes: 55ef689900 ("Btrfs: Fix btrfs_drop_extent_cache for skip pinned case")
CC: stable@vger.kernel.org # 4.14+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2023-08-18 14:38:10 +02:00