After dropping mmu_lock in the TDP MMU, restart the iterator during
tdp_iter_next() and do not advance the iterator. Advancing the iterator
results in skipping the top-level SPTE and all its children, which is
fatal if any of the skipped SPTEs were not visited before yielding.
When zapping all SPTEs, i.e. when min_level == root_level, restarting the
iter and then invoking tdp_iter_next() is always fatal if the current gfn
has as a valid SPTE, as advancing the iterator results in try_step_side()
skipping the current gfn, which wasn't visited before yielding.
Sprinkle WARNs on iter->yielded being true in various helpers that are
often used in conjunction with yielding, and tag the helper with
__must_check to reduce the probabily of improper usage.
Failing to zap a top-level SPTE manifests in one of two ways. If a valid
SPTE is skipped by both kvm_tdp_mmu_zap_all() and kvm_tdp_mmu_put_root(),
the shadow page will be leaked and KVM will WARN accordingly.
WARNING: CPU: 1 PID: 3509 at arch/x86/kvm/mmu/tdp_mmu.c:46 [kvm]
RIP: 0010:kvm_mmu_uninit_tdp_mmu+0x3e/0x50 [kvm]
Call Trace:
<TASK>
kvm_arch_destroy_vm+0x130/0x1b0 [kvm]
kvm_destroy_vm+0x162/0x2a0 [kvm]
kvm_vcpu_release+0x34/0x60 [kvm]
__fput+0x82/0x240
task_work_run+0x5c/0x90
do_exit+0x364/0xa10
? futex_unqueue+0x38/0x60
do_group_exit+0x33/0xa0
get_signal+0x155/0x850
arch_do_signal_or_restart+0xed/0x750
exit_to_user_mode_prepare+0xc5/0x120
syscall_exit_to_user_mode+0x1d/0x40
do_syscall_64+0x48/0xc0
entry_SYSCALL_64_after_hwframe+0x44/0xae
If kvm_tdp_mmu_zap_all() skips a gfn/SPTE but that SPTE is then zapped by
kvm_tdp_mmu_put_root(), KVM triggers a use-after-free in the form of
marking a struct page as dirty/accessed after it has been put back on the
free list. This directly triggers a WARN due to encountering a page with
page_count() == 0, but it can also lead to data corruption and additional
errors in the kernel.
WARNING: CPU: 7 PID: 1995658 at arch/x86/kvm/../../../virt/kvm/kvm_main.c:171
RIP: 0010:kvm_is_zone_device_pfn.part.0+0x9e/0xd0 [kvm]
Call Trace:
<TASK>
kvm_set_pfn_dirty+0x120/0x1d0 [kvm]
__handle_changed_spte+0x92e/0xca0 [kvm]
__handle_changed_spte+0x63c/0xca0 [kvm]
__handle_changed_spte+0x63c/0xca0 [kvm]
__handle_changed_spte+0x63c/0xca0 [kvm]
zap_gfn_range+0x549/0x620 [kvm]
kvm_tdp_mmu_put_root+0x1b6/0x270 [kvm]
mmu_free_root_page+0x219/0x2c0 [kvm]
kvm_mmu_free_roots+0x1b4/0x4e0 [kvm]
kvm_mmu_unload+0x1c/0xa0 [kvm]
kvm_arch_destroy_vm+0x1f2/0x5c0 [kvm]
kvm_put_kvm+0x3b1/0x8b0 [kvm]
kvm_vcpu_release+0x4e/0x70 [kvm]
__fput+0x1f7/0x8c0
task_work_run+0xf8/0x1a0
do_exit+0x97b/0x2230
do_group_exit+0xda/0x2a0
get_signal+0x3be/0x1e50
arch_do_signal_or_restart+0x244/0x17f0
exit_to_user_mode_prepare+0xcb/0x120
syscall_exit_to_user_mode+0x1d/0x40
do_syscall_64+0x4d/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
Note, the underlying bug existed even before commit 1af4a96025 ("KVM:
x86/mmu: Yield in TDU MMU iter even if no SPTES changed") moved calls to
tdp_mmu_iter_cond_resched() to the beginning of loops, as KVM could still
incorrectly advance past a top-level entry when yielding on a lower-level
entry. But with respect to leaking shadow pages, the bug was introduced
by yielding before processing the current gfn.
Alternatively, tdp_mmu_iter_cond_resched() could simply fall through, or
callers could jump to their "retry" label. The downside of that approach
is that tdp_mmu_iter_cond_resched() _must_ be called before anything else
in the loop, and there's no easy way to enfornce that requirement.
Ideally, KVM would handling the cond_resched() fully within the iterator
macro (the code is actually quite clean) and avoid this entire class of
bugs, but that is extremely difficult do while also supporting yielding
after tdp_mmu_set_spte_atomic() fails. Yielding after failing to set a
SPTE is very desirable as the "owner" of the REMOVED_SPTE isn't strictly
bounded, e.g. if it's zapping a high-level shadow page, the REMOVED_SPTE
may block operations on the SPTE for a significant amount of time.
Fixes: faaf05b00a ("kvm: x86/mmu: Support zapping SPTEs in the TDP MMU")
Fixes: 1af4a96025 ("KVM: x86/mmu: Yield in TDU MMU iter even if no SPTES changed")
Reported-by: Ignat Korchagin <ignat@cloudflare.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211214033528.123268-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Store the address space ID in the TDP iterator so that it can be
retrieved without having to bounce through the root shadow page. This
streamlines the code and fixes a Sparse warning about not properly using
rcu_dereference() when grabbing the ID from the root on the fly.
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210315233803.2706477-5-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In tdp_mmu_iter_cond_resched there is a call to tdp_iter_start which
causes the iterator to continue its walk over the paging structure from
the root. This is needed after a yield as paging structure could have
been freed in the interim.
The tdp_iter_start call is not very clear and something of a hack. It
requires exposing tdp_iter fields not used elsewhere in tdp_mmu.c and
the effect is not obvious from the function name. Factor a more aptly
named function out of tdp_iter_start and call it from
tdp_mmu_iter_cond_resched and tdp_iter_start.
No functional change intended.
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210315233803.2706477-4-bgardon@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In order to enable concurrent modifications to the paging structures in
the TDP MMU, threads must be able to safely remove pages of page table
memory while other threads are traversing the same memory. To ensure
threads do not access PT memory after it is freed, protect PT memory
with RCU.
Protecting concurrent accesses to page table memory from use-after-free
bugs could also have been acomplished using
walk_shadow_page_lockless_begin/end() and READING_SHADOW_PAGE_TABLES,
coupling with the barriers in a TLB flush. The use of RCU for this case
has several distinct advantages over that approach.
1. Disabling interrupts for long running operations is not desirable.
Future commits will allow operations besides page faults to operate
without the exclusive protection of the MMU lock and those operations
are too long to disable iterrupts for their duration.
2. The use of RCU here avoids long blocking / spinning operations in
perfromance critical paths. By freeing memory with an asynchronous
RCU API we avoid the longer wait times TLB flushes experience when
overlapping with a thread in walk_shadow_page_lockless_begin/end().
3. RCU provides a separation of concerns when removing memory from the
paging structure. Because the RCU callback to free memory can be
scheduled immediately after a TLB flush, there's no need for the
thread to manually free a queue of pages later, as commit_zap_pages
does.
Fixes: 95fb5b0258 ("kvm: x86/mmu: Support MMIO in the TDP MMU")
Reviewed-by: Peter Feiner <pfeiner@google.com>
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210202185734.1680553-18-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In some functions the TDP iter risks not making forward progress if two
threads livelock yielding to one another. This is possible if two threads
are trying to execute wrprot_gfn_range. Each could write protect an entry
and then yield. This would reset the tdp_iter's walk over the paging
structure and the loop would end up repeating the same entry over and
over, preventing either thread from making forward progress.
Fix this issue by only yielding if the loop has made forward progress
since the last yield.
Fixes: a6a0b05da9 ("kvm: x86/mmu: Support dirty logging for the TDP MMU")
Reviewed-by: Peter Feiner <pfeiner@google.com>
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210202185734.1680553-14-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The goal_gfn field in tdp_iter can be misleading as it implies that it
is the iterator's final goal. It is really a target for the lowest gfn
mapped by the leaf level SPTE the iterator will traverse towards. Change
the field's name to be more precise.
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210202185734.1680553-13-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add functions to zap SPTEs to the TDP MMU. These are needed to tear down
TDP MMU roots properly and implement other MMU functions which require
tearing down mappings. Future patches will add functions to populate the
page tables, but as for this patch there will not be any work for these
functions to do.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20201014182700.2888246-8-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The TDP iterator implements a pre-order traversal of a TDP paging
structure. This iterator will be used in future patches to create
an efficient implementation of the KVM MMU for the TDP case.
Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell
machine. This series introduced no new failures.
This series can be viewed in Gerrit at:
https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538
Signed-off-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>