In a previous change, commit 12870f1c9b,
I accidentally moved the roundup of inode->i_size to outside of the
critical section delimited by the inode mutex, which is not atomic and
not correct since the size can be changed by other task before we acquire
the mutex. Therefore fix it.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
Pull btrfs fixes from Chris Mason.
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: limit the path size in send to PATH_MAX
Btrfs: correctly set profile flags on seqlock retry
Btrfs: use correct key when repeating search for extent item
Btrfs: fix inode caching vs tree log
Btrfs: fix possible memory leaks in open_ctree()
Btrfs: avoid triggering bug_on() when we fail to start inode caching task
Btrfs: move btrfs_{set,clear}_and_info() to ctree.h
btrfs: replace error code from btrfs_drop_extents
btrfs: Change the hole range to a more accurate value.
btrfs: fix use-after-free in mount_subvol()
There's a case which clone does not handle and used to BUG_ON instead,
(testcase xfstests/btrfs/035), now returns EINVAL. This error code is
confusing to the ioctl caller, as it normally signifies errorneous
arguments.
Change it to ENOPNOTSUPP which allows a fall back to copy instead of
clone. This does not affect the common reflink operation.
Signed-off-by: David Sterba <dsterba@suse.cz>
Signed-off-by: Chris Mason <clm@fb.com>
Commit 3ac0d7b96a fixed the btrfs expanding
write problem but the hole punched is sometimes too large for some
iovec, which has unmapped data ranges.
This patch will change to hole range to a more accurate value using the
counts checked by the write check routines.
Reported-by: Al Viro <viro@ZenIV.linux.org.uk>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Pull vfs updates from Al Viro:
"The first vfs pile, with deep apologies for being very late in this
window.
Assorted cleanups and fixes, plus a large preparatory part of iov_iter
work. There's a lot more of that, but it'll probably go into the next
merge window - it *does* shape up nicely, removes a lot of
boilerplate, gets rid of locking inconsistencie between aio_write and
splice_write and I hope to get Kent's direct-io rewrite merged into
the same queue, but some of the stuff after this point is having
(mostly trivial) conflicts with the things already merged into
mainline and with some I want more testing.
This one passes LTP and xfstests without regressions, in addition to
usual beating. BTW, readahead02 in ltp syscalls testsuite has started
giving failures since "mm/readahead.c: fix readahead failure for
memoryless NUMA nodes and limit readahead pages" - might be a false
positive, might be a real regression..."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (63 commits)
missing bits of "splice: fix racy pipe->buffers uses"
cifs: fix the race in cifs_writev()
ceph_sync_{,direct_}write: fix an oops on ceph_osdc_new_request() failure
kill generic_file_buffered_write()
ocfs2_file_aio_write(): switch to generic_perform_write()
ceph_aio_write(): switch to generic_perform_write()
xfs_file_buffered_aio_write(): switch to generic_perform_write()
export generic_perform_write(), start getting rid of generic_file_buffer_write()
generic_file_direct_write(): get rid of ppos argument
btrfs_file_aio_write(): get rid of ppos
kill the 5th argument of generic_file_buffered_write()
kill the 4th argument of __generic_file_aio_write()
lustre: don't open-code kernel_recvmsg()
ocfs2: don't open-code kernel_recvmsg()
drbd: don't open-code kernel_recvmsg()
constify blk_rq_map_user_iov() and friends
lustre: switch to kernel_sendmsg()
ocfs2: don't open-code kernel_sendmsg()
take iov_iter stuff to mm/iov_iter.c
process_vm_access: tidy up a bit
...
Pull second set of btrfs updates from Chris Mason:
"The most important changes here are from Josef, fixing a btrfs
regression in 3.14 that can cause corruptions in the extent allocation
tree when snapshots are in use.
Josef also fixed some deadlocks in send/recv and other assorted races
when balance is running"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (23 commits)
Btrfs: fix compile warnings on on avr32 platform
btrfs: allow mounting btrfs subvolumes with different ro/rw options
btrfs: export global block reserve size as space_info
btrfs: fix crash in remount(thread_pool=) case
Btrfs: abort the transaction when we don't find our extent ref
Btrfs: fix EINVAL checks in btrfs_clone
Btrfs: fix unlock in __start_delalloc_inodes()
Btrfs: scrub raid56 stripes in the right way
Btrfs: don't compress for a small write
Btrfs: more efficient io tree navigation on wait_extent_bit
Btrfs: send, build path string only once in send_hole
btrfs: filter invalid arg for btrfs resize
Btrfs: send, fix data corruption due to incorrect hole detection
Btrfs: kmalloc() doesn't return an ERR_PTR
Btrfs: fix snapshot vs nocow writting
btrfs: Change the expanding write sequence to fix snapshot related bug.
btrfs: make device scan less noisy
btrfs: fix lockdep warning with reclaim lock inversion
Btrfs: hold the commit_root_sem when getting the commit root during send
Btrfs: remove transaction from send
...
filemap_map_pages() is generic implementation of ->map_pages() for
filesystems who uses page cache.
It should be safe to use filemap_map_pages() for ->map_pages() if
filesystem use filemap_fault() for ->fault().
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Ning Qu <quning@gmail.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When testing fsstress with snapshot making background, some snapshot
following problem.
Snapshot 270:
inode 323: size 0
Snapshot 271:
inode 323: size 349145
|-------Hole---|---------Empty gap-------|-------Hole-----|
0 122880 172032 349145
Snapshot 272:
inode 323: size 349145
|-------Hole---|------------Data---------|-------Hole-----|
0 122880 172032 349145
The fsstress operation on inode 323 is the following:
write: offset 126832 len 43124
truncate: size 349145
Since the write with offset is consist of 2 operations:
1. punch hole
2. write data
Hole punching is faster than data write, so hole punching in write
and truncate is done first and then buffered write, so the snapshot 271 got
empty gap, which will not pass btrfsck.
To fix the bug, this patch will change the write sequence which will
first punch a hole covering the write end if a hole is needed.
Reported-by: Gui Hecheng <guihc.fnst@cn.fujitsu.com>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Pull btrfs changes from Chris Mason:
"This is a pretty long stream of bug fixes and performance fixes.
Qu Wenruo has replaced the btrfs async threads with regular kernel
workqueues. We'll keep an eye out for performance differences, but
it's nice to be using more generic code for this.
We still have some corruption fixes and other patches coming in for
the merge window, but this batch is tested and ready to go"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (108 commits)
Btrfs: fix a crash of clone with inline extents's split
btrfs: fix uninit variable warning
Btrfs: take into account total references when doing backref lookup
Btrfs: part 2, fix incremental send's decision to delay a dir move/rename
Btrfs: fix incremental send's decision to delay a dir move/rename
Btrfs: remove unnecessary inode generation lookup in send
Btrfs: fix race when updating existing ref head
btrfs: Add trace for btrfs_workqueue alloc/destroy
Btrfs: less fs tree lock contention when using autodefrag
Btrfs: return EPERM when deleting a default subvolume
Btrfs: add missing kfree in btrfs_destroy_workqueue
Btrfs: cache extent states in defrag code path
Btrfs: fix deadlock with nested trans handles
Btrfs: fix possible empty list access when flushing the delalloc inodes
Btrfs: split the global ordered extents mutex
Btrfs: don't flush all delalloc inodes when we doesn't get s_umount lock
Btrfs: reclaim delalloc metadata more aggressively
Btrfs: remove unnecessary lock in may_commit_transaction()
Btrfs: remove the unnecessary flush when preparing the pages
Btrfs: just do dirty page flush for the inode with compression before direct IO
...
We know that "ret > 0" is true here. These tests were left over from
commit 02afc27fae ('direct-io: Handle O_(D)SYNC AIO') and aren't
needed any more.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
xfstests's btrfs/035 triggers a BUG_ON, which we use to detect the split
of inline extents in __btrfs_drop_extents().
For inline extents, we cannot duplicate another EXTENT_DATA item, because
it breaks the rule of inline extents, that is, 'start offset' needs to be 0.
We have set limitations for the source inode's compressed inline extents,
because it needs to decompress and recompress. Now the destination inode's
inline extents also need similar limitations.
With this, xfstests btrfs/035 doesn't run into panic.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
If the snapshot creation happened after the nocow write but before the dirty
data flush, we would fail to flush the dirty data because of no space.
So we must keep track of when those nocow write operations start and when they
end, if there are nocow writers, the snapshot creators must wait. In order
to implement this function, I introduce btrfs_{start, end}_nocow_write(),
which is similar to mnt_{want,drop}_write().
These two functions are only used for nocow file write operations.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
We can not release the reserved metadata space for the first write if we
find the write position is pre-allocated. Because the kernel might write
the data on the disk before we do the second write but after the can-nocow
check, if we release the space for the first write, we might fail to update
the metadata because of no space.
Fix this problem by end nocow write if there is dirty data in the range whose
space is pre-allocated.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
The write range may not be sector-aligned, for example:
|--------|--------| <- write range, sector-unaligned, size: 2blocks
|--------|--------|--------| <- correct lock range, size: 3blocks
But according to the old code, we used the size of write range to calculate
the lock range directly, not considered the offset, we would get a wrong lock
range:
|--------|--------| <- write range, sector-unaligned, size: 2blocks
|--------|--------| <- wrong lock range, size: 2blocks
And besides that, the old code also had the same problem when calculating
the real write size. Correct them.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
While droping extent map structures from the extent cache that cover our
target range, we would remove each extent map structure from the red black
tree and then add either 1 or 2 new extent map structures if the former
extent map covered sections outside our target range.
This change simply attempts to replace the existing extent map structure
with a new one that covers the subsection we're not interested in, instead
of doing a red black remove operation followed by an insertion operation.
The number of elements in an inode's extent map tree can get very high for large
files under random writes. For example, while running the following test:
sysbench --test=fileio --file-num=1 --file-total-size=10G \
--file-test-mode=rndrw --num-threads=32 --file-block-size=32768 \
--max-requests=500000 --file-rw-ratio=2 [prepare|run]
I captured the following histogram capturing the number of extent_map items
in the red black tree while that test was running:
Count: 122462
Range: 1.000 - 172231.000; Mean: 96415.831; Median: 101855.000; Stddev: 49700.981
Percentiles: 90th: 160120.000; 95th: 166335.000; 99th: 171070.000
1.000 - 5.231: 452 |
5.231 - 187.392: 87 |
187.392 - 585.911: 206 |
585.911 - 1827.438: 623 |
1827.438 - 5695.245: 1962 #
5695.245 - 17744.861: 6204 ####
17744.861 - 55283.764: 21115 ############
55283.764 - 172231.000: 91813 #####################################################
Benchmark:
sysbench --test=fileio --file-num=1 --file-total-size=10G --file-test-mode=rndwr \
--num-threads=64 --file-block-size=32768 --max-requests=0 --max-time=60 \
--file-io-mode=sync --file-fsync-freq=0 [prepare|run]
Before this change: 122.1Mb/sec
After this change: 125.07Mb/sec
(averages of 5 test runs)
Test machine: quad core intel i5-3570K, 32Gb of ram, SSD
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
If we punch beyond the size of an inode, we'll correctly remove any prealloc extents,
but we'll also insert file extent items representing holes (disk bytenr == 0) that start
with a key offset that lies beyond the inode's size and are not contiguous with the last
file extent item.
Example:
$XFS_IO_PROG -f -c "truncate 118811" $SCRATCH_MNT/foo
$XFS_IO_PROG -c "fpunch 582007 864596" $SCRATCH_MNT/foo
$XFS_IO_PROG -c "pwrite -S 0x0d -b 39987 92267 39987" $SCRATCH_MNT/foo
btrfs-debug-tree output:
item 4 key (257 INODE_ITEM 0) itemoff 15885 itemsize 160
inode generation 6 transid 6 size 132254 block group 0 mode 100600 links 1
item 5 key (257 INODE_REF 256) itemoff 15872 itemsize 13
inode ref index 2 namelen 3 name: foo
item 6 key (257 EXTENT_DATA 0) itemoff 15819 itemsize 53
extent data disk byte 0 nr 0 gen 6
extent data offset 0 nr 90112 ram 122880
extent compression 0
item 7 key (257 EXTENT_DATA 90112) itemoff 15766 itemsize 53
extent data disk byte 12845056 nr 4096 gen 6
extent data offset 0 nr 45056 ram 45056
extent compression 2
item 8 key (257 EXTENT_DATA 585728) itemoff 15713 itemsize 53
extent data disk byte 0 nr 0 gen 6
extent data offset 0 nr 860160 ram 860160
extent compression 0
The last extent item, which represents a hole, is useless as it lies beyond the inode's
size.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
It is possible that many tasks sync the log tree at the same time, but
only one task can do the sync work, the others will wait for it. But those
wait tasks didn't get the result of the log sync, and returned 0 when they
ended the wait. It caused those tasks skipped the error handle, and the
serious problem was they told the users the file sync succeeded but in
fact they failed.
This patch fixes this problem by introducing a log context structure,
we insert it into the a global list. When the sync fails, we will set
the error number of every log context in the list, then the waiting tasks
get the error number of the log context and handle the error if need.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
This is an extension to my previous commit titled:
"Btrfs: faster file extent item replace operations"
(hash 1acae57b16)
Instead of inserting the new file extent item if we deleted existing
file extent items covering our target file range, also allow to insert
the new file extent item if we didn't find any existing items to delete
and replace_extent != 0, since in this case our caller would do another
tree search to insert the new file extent item anyway, therefore just
combine the two tree searches into a single one, saving cpu time, reducing
lock contention and reducing btree node/leaf COW operations.
This covers the case where applications keep doing tail append writes to
files, which for example is the case of Apache CouchDB (its database and
view index files are always open with O_APPEND).
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
If we truncate an uncompressed inline item, ram_bytes isn't updated to reflect
the new size. The fixe uses the size directly from the item header when
reading uncompressed inlines, and also fixes truncate to update the
size as it goes.
Reported-by: Jens Axboe <axboe@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
CC: stable@vger.kernel.org
When we ran the 274th case of xfstests with nodatacow mount option,
We met the following warning message:
WARNING: CPU: 1 PID: 14185 at fs/btrfs/extent-tree.c:3734 btrfs_free_reserved_data_space+0xa6/0xd0
It is caused by the race between the write back and nocow buffered
write:
Task1 Task2
__btrfs_buffered_write()
skip data reservation
reserve the metadata space
copy the data
dirty the pages
unlock the pages
write back the pages
release the data space
becasue there is no
noreserve flag
set the noreserve flag
This patch fixes this problem by unlocking the pages after
the noreserve flag is set.
Reported-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Looking into some performance related issues with large amounts of metadata
revealed that we can have some pretty huge swings in fsync() performance. If we
have a lot of delayed refs backed up (as you will tend to do with lots of
metadata) fsync() will wander off and try to run some of those delayed refs
which can result in reading from disk and such. Since the actual act of fsync()
doesn't create any delayed refs there is no need to make it throttle on delayed
ref stuff, that will be handled by other people. With this patch we get much
smoother fsync performance with large amounts of metadata. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
When writing to a file we drop existing file extent items that cover the
write range and then add a new file extent item that represents that write
range.
Before this change we were doing a tree lookup to remove the file extent
items, and then after we did another tree lookup to insert the new file
extent item.
Most of the time all the file extent items we need to drop are located
within a single leaf - this is the leaf where our new file extent item ends
up at. Therefore, in this common case just combine these 2 operations into
a single one.
By avoiding the second btree navigation for insertion of the new file extent
item, we reduce btree node/leaf lock acquisitions/releases, btree block/leaf
COW operations, CPU time on btree node/leaf key binary searches, etc.
Besides for file writes, this is an operation that happens for file fsync's
as well. However log btrees are much less likely to big as big as regular
fs btrees, therefore the impact of this change is smaller.
The following benchmark was performed against an SSD drive and a
HDD drive, both for random and sequential writes:
sysbench --test=fileio --file-num=4096 --file-total-size=8G \
--file-test-mode=[rndwr|seqwr] --num-threads=512 \
--file-block-size=8192 \ --max-requests=1000000 \
--file-fsync-freq=0 --file-io-mode=sync [prepare|run]
All results below are averages of 10 runs of the respective test.
** SSD sequential writes
Before this change: 225.88 Mb/sec
After this change: 277.26 Mb/sec
** SSD random writes
Before this change: 49.91 Mb/sec
After this change: 56.39 Mb/sec
** HDD sequential writes
Before this change: 68.53 Mb/sec
After this change: 69.87 Mb/sec
** HDD random writes
Before this change: 13.04 Mb/sec
After this change: 14.39 Mb/sec
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
fs/btrfs/file.c: In function ‘prepare_pages.isra.18’:
fs/btrfs/file.c:1265:6: warning: ‘err’ may be used uninitialized in this function [-Wuninitialized]
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
If the ordered extent's last byte was 1 less than our region's
start byte, we would unnecessarily wait for the completion of
that ordered extent, because it doesn't intersect our target
range.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
When we ran sysbench on the fs with compression, the following WARN_ONs were
triggered:
fs/btrfs/inode.c:7829 WARN_ON(BTRFS_I(inode)->outstanding_extents);
fs/btrfs/inode.c:7830 WARN_ON(BTRFS_I(inode)->reserved_extents);
fs/btrfs/inode.c:7832 WARN_ON(BTRFS_I(inode)->csum_bytes);
Steps to reproduce:
# mkfs.btrfs -f <dev>
# mount -o compress <dev> <mnt>
# cd <mnt>
# sysbench --test=fileio --num-threads=8 --file-total-size=8G \
> --file-block-size=32K --file-io-mode=rndwr --file-fsync-freq=0 \
> --file-fsync-end=no --max-requests=300000 --file-extra-flags=direct \
> --file-test-mode=sync prepare
# cd -
# umount <mnt>
# mount -o compress <dev> <mnt>
# cd <mnt>
# sysbench --test=fileio --num-threads=8 --file-total-size=8G \
> --file-block-size=32K --file-io-mode=rndwr --file-fsync-freq=0 \
> --file-fsync-end=no --max-requests=300000 --file-extra-flags=direct \
> --file-test-mode=sync run
# cd -
# umount <mnt>
The reason of this problem is:
Task0 Task1
btrfs_direct_IO
unlock(&inode->i_mutex)
lock(&inode->i_mutex)
reserve_space()
prepare_pages()
lock_extent()
clear_extent()
unlock_extent()
lock_extent()
test_extent(uptodate)
return false
copy_data()
set_delalloc_extent()
extent need compress
go back to buffered write
clear_extent(DELALLOC | DIRTY)
unlock_extent()
Task 0 and 1 wrote the same place, and task0 cleared the delalloc flag which
was set by task1, it made the dirty pages in that extents couldn't be flushed
into the disk, so the reserved space for that extent was not released at
the end.
This patch fixes the above bug by unlocking the extent after the delalloc.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
- the caller has gotten the inode object, needn't pass the file object.
And if so, we needn't define a inode pointer variant.
- the position should be aligned by the page size not sector size, so
we also needn't pass the root object into prepare_pages().
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
Btrfs has always had these filler extent data items for holes in inodes. This
has made somethings very easy, like logging hole punches and sending hole
punches. However for large holey files these extent data items are pure
overhead. So add an incompatible feature to no longer add hole extents to
reduce the amount of metadata used by these sort of files. This has a few
changes for logging and send obviously since they will need to detect holes and
log/send the holes if there are any. I've tested this thoroughly with xfstests
and it doesn't cause any issues with and without the incompat format set.
Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <clm@fb.com>
Fix spacing issues detected via checkpatch.pl in accordance with the
kernel style guidelines.
Signed-off-by: Dulshani Gunawardhana <dulshani.gunawardhana89@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
I noticed that if the free space cache has an error writing out it's data it
won't actually error out, it will just carry on. This is because it doesn't
check the return value of btrfs_wait_ordered_range, which didn't actually return
anything. So fix this in order to keep us from making free space cache look
valid when it really isnt. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
fs/btrfs/compat.h only contained trivial macro wrappers of drop_nlink()
and inc_nlink(). This doesn't belong in mainline.
Signed-off-by: Zach Brown <zab@redhat.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Whoever wrote this was braindead. Also it doesn't work right if you have
VACANCY's since we assumed you would only have that at the end of the file,
which won't be the case in the near future. I tested this with generic/285 and
generic/286 as well as the btrfs tests that use fssum since it uses
seek_hole/seek_data to verify things are ok. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Pull btrfs fixes from Chris Mason:
"These are mostly bug fixes and a two small performance fixes. The
most important of the bunch are Josef's fix for a snapshotting
regression and Mark's update to fix compile problems on arm"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (25 commits)
Btrfs: create the uuid tree on remount rw
btrfs: change extent-same to copy entire argument struct
Btrfs: dir_inode_operations should use btrfs_update_time also
btrfs: Add btrfs: prefix to kernel log output
btrfs: refuse to remount read-write after abort
Btrfs: btrfs_ioctl_default_subvol: Revert back to toplevel subvolume when arg is 0
Btrfs: don't leak transaction in btrfs_sync_file()
Btrfs: add the missing mutex unlock in write_all_supers()
Btrfs: iput inode on allocation failure
Btrfs: remove space_info->reservation_progress
Btrfs: kill delay_iput arg to the wait_ordered functions
Btrfs: fix worst case calculator for space usage
Revert "Btrfs: rework the overcommit logic to be based on the total size"
Btrfs: improve replacing nocow extents
Btrfs: drop dir i_size when adding new names on replay
Btrfs: replay dir_index items before other items
Btrfs: check roots last log commit when checking if an inode has been logged
Btrfs: actually log directory we are fsync()'ing
Btrfs: actually limit the size of delalloc range
Btrfs: allocate the free space by the existed max extent size when ENOSPC
...
In btrfs_sync_file(), if the call to btrfs_log_dentry_safe() returns
a negative error (for e.g. -ENOMEM via btrfs_log_inode()), we would
return without ending/freeing the transaction.
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Pull btrfs updates from Chris Mason:
"This is against 3.11-rc7, but was pulled and tested against your tree
as of yesterday. We do have two small incrementals queued up, but I
wanted to get this bunch out the door before I hop on an airplane.
This is a fairly large batch of fixes, performance improvements, and
cleanups from the usual Btrfs suspects.
We've included Stefan Behren's work to index subvolume UUIDs, which is
targeted at speeding up send/receive with many subvolumes or snapshots
in place. It closes a long standing performance issue that was built
in to the disk format.
Mark Fasheh's offline dedup work is also here. In this case offline
means the FS is mounted and active, but the dedup work is not done
inline during file IO. This is a building block where utilities are
able to ask the FS to dedup a series of extents. The kernel takes
care of verifying the data involved really is the same. Today this
involves reading both extents, but we'll continue to evolve the
patches"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (118 commits)
Btrfs: optimize key searches in btrfs_search_slot
Btrfs: don't use an async starter for most of our workers
Btrfs: only update disk_i_size as we remove extents
Btrfs: fix deadlock in uuid scan kthread
Btrfs: stop refusing the relocation of chunk 0
Btrfs: fix memory leak of uuid_root in free_fs_info
btrfs: reuse kbasename helper
btrfs: return btrfs error code for dev excl ops err
Btrfs: allow partial ordered extent completion
Btrfs: convert all bug_ons in free-space-cache.c
Btrfs: add support for asserts
Btrfs: adjust the fs_devices->missing count on unmount
Btrf: cleanup: don't check for root_refs == 0 twice
Btrfs: fix for patch "cleanup: don't check the same thing twice"
Btrfs: get rid of one BUG() in write_all_supers()
Btrfs: allocate prelim_ref with a slab allocater
Btrfs: pass gfp_t to __add_prelim_ref() to avoid always using GFP_ATOMIC
Btrfs: fix race conditions in BTRFS_IOC_FS_INFO ioctl
Btrfs: fix race between removing a dev and writing sbs
Btrfs: remove ourselves from the cluster list under lock
...
Call generic_write_sync() from the deferred I/O completion handler if
O_DSYNC is set for a write request. Also make sure various callers
don't call generic_write_sync if the direct I/O code returns
-EIOCBQUEUED.
Based on an earlier patch from Jan Kara <jack@suse.cz> with updates from
Jeff Moyer <jmoyer@redhat.com> and Darrick J. Wong <darrick.wong@oracle.com>.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
btrfs_read_fs_root_no_name() already checks if btrfs_root_refs()
is zero and returns ENOENT in this case. There is no need to do
it again in three more places.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
I noticed while looking at a deadlock that we are always starting a transaction
in cow_file_range(). This isn't really needed since we only need a transaction
if we are doing an inline extent, or if the allocator needs to allocate a chunk.
So push down all the transaction start stuff to be closer to where we actually
need a transaction in all of these cases. This will hopefully reduce our write
latency when we are committing often. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
We can end up with inodes on the auto defrag list that exist on roots that are
going to be deleted. This is extra work we don't need to do, so just bail if
our root has 0 root refs. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
I noticed while running multi-threaded fsync tests that sometimes fsck would
complain about an improper gap. This happens because we fail to add a hole
extent to the file, which was happening when we'd split a hole EM because
btrfs_drop_extent_cache was just discarding the whole em instead of splitting
it. So this patch fixes this by allowing us to split a hole em properly, which
means that added holes actually get logged properly and we no longer see this
fsck error. Thankfully we're tolerant of these sort of problems so a user would
not see any adverse effects of this bug, other than fsck complaining. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Pull btrfs update from Chris Mason:
"These are the usual mixture of bugs, cleanups and performance fixes.
Miao has some really nice tuning of our crc code as well as our
transaction commits.
Josef is peeling off more and more problems related to early enospc,
and has a number of important bug fixes in here too"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (81 commits)
Btrfs: wait ordered range before doing direct io
Btrfs: only do the tree_mod_log_free_eb if this is our last ref
Btrfs: hold the tree mod lock in __tree_mod_log_rewind
Btrfs: make backref walking code handle skinny metadata
Btrfs: fix crash regarding to ulist_add_merge
Btrfs: fix several potential problems in copy_nocow_pages_for_inode
Btrfs: cleanup the code of copy_nocow_pages_for_inode()
Btrfs: fix oops when recovering the file data by scrub function
Btrfs: make the chunk allocator completely tree lockless
Btrfs: cleanup orphaned root orphan item
Btrfs: fix wrong mirror number tuning
Btrfs: cleanup redundant code in btrfs_submit_direct()
Btrfs: remove btrfs_sector_sum structure
Btrfs: check if we can nocow if we don't have data space
Btrfs: stop using try_to_writeback_inodes_sb_nr to flush delalloc
Btrfs: use a percpu to keep track of possibly pinned bytes
Btrfs: check for actual acls rather than just xattrs when caching no acl
Btrfs: move btrfs_truncate_page to btrfs_cont_expand instead of btrfs_truncate
Btrfs: optimize reada_for_balance
Btrfs: optimize read_block_for_search
...
For those file systems(btrfs/ext4/ocfs2/tmpfs) that support
SEEK_DATA/SEEK_HOLE functions, we end up handling the similar
matter in lseek_execute() to update the current file offset
to the desired offset if it is valid, ceph also does the
simliar things at ceph_llseek().
To reduce the duplications, this patch make lseek_execute()
public accessible so that we can call it directly from the
underlying file systems.
Thanks Dave Chinner for this suggestion.
[AV: call it vfs_setpos(), don't bring the removed 'inode' argument back]
v2->v1:
- Add kernel-doc comments for lseek_execute()
- Call lseek_execute() in ceph->llseek()
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Chris Mason <chris.mason@fusionio.com>
Cc: Josef Bacik <jbacik@fusionio.com>
Cc: Ben Myers <bpm@sgi.com>
Cc: Ted Tso <tytso@mit.edu>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Sage Weil <sage@inktank.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
We always just try and reserve data space when we write, but if we are out of
space but have prealloc'ed extents we should still successfully write. This
patch will try and see if we can write to prealloc'ed space and if we can go
ahead and allow the write to continue. With this patch we now pass xfstests
generic/274. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
This has plagued us forever and I'm so over working around it. When we truncate
down to a non-page aligned offset we will call btrfs_truncate_page to zero out
the end of the page and write it back to disk, this will keep us from exposing
stale data if we truncate back up from that point. The problem with this is it
requires data space to do this, and people don't really expect to get ENOSPC
from truncate() for these sort of things. This also tends to bite the orphan
cleanup stuff too which keeps people from mounting. To get around this we can
just move this into btrfs_cont_expand() to make sure if we are truncating up
from a non-page size aligned i_size we will zero out the rest of this page so
that we don't expose stale data. This will give ENOSPC if you try to truncate()
up or if you try to write past the end of isize, which is much more reasonable.
This fixes xfstests generic/083 failing to mount because of the orphan cleanup
failing. Thanks,
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
btrfs_read_fs_root_no_name() already checks if btrfs_root_refs()
is zero and returns ENOENT in this case. There is no need to do
it again in six places.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Pull btrfs update from Chris Mason:
"These are mostly fixes. The biggest exceptions are Josef's skinny
extents and Jan Schmidt's code to rebuild our quota indexes if they
get out of sync (or you enable quotas on an existing filesystem).
The skinny extents are off by default because they are a new variation
on the extent allocation tree format. btrfstune -x enables them, and
the new format makes the extent allocation tree about 30% smaller.
I rebased this a few days ago to rework Dave Sterba's crc checks on
the super block, but almost all of these go back to rc6, since I
though 3.9 was due any minute.
The biggest missing fix is the tracepoint bug that was hit late in
3.9. I ran into problems with that in overnight testing and I'm still
tracking it down. I'll definitely have that fixed for rc2."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (101 commits)
Btrfs: allow superblock mismatch from older mkfs
btrfs: enhance superblock checks
btrfs: fix misleading variable name for flags
btrfs: use unsigned long type for extent state bits
Btrfs: improve the loop of scrub_stripe
btrfs: read entire device info under lock
btrfs: remove unused gfp mask parameter from release_extent_buffer callchain
btrfs: handle errors returned from get_tree_block_key
btrfs: make static code static & remove dead code
Btrfs: deal with errors in write_dev_supers
Btrfs: remove almost all of the BUG()'s from tree-log.c
Btrfs: deal with free space cache errors while replaying log
Btrfs: automatic rescan after "quota enable" command
Btrfs: rescan for qgroups
Btrfs: split btrfs_qgroup_account_ref into four functions
Btrfs: allocate new chunks if the space is not enough for global rsv
Btrfs: separate sequence numbers for delayed ref tracking and tree mod log
btrfs: move leak debug code to functions
Btrfs: return free space in cow error path
Btrfs: set UUID in root_item for created trees
...