Commit graph

415 commits

Author SHA1 Message Date
Darrick J. Wong
3c5aaaced9 xfs: refactor all the EFI/EFD log item sizeof logic
Refactor all the open-coded sizeof logic for EFI/EFD log item and log
format structures into common helper functions whose names reflect the
struct names.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-10-31 08:58:20 -07:00
Darrick J. Wong
03a7485cd7 xfs: fix memcpy fortify errors in EFI log format copying
Starting in 6.1, CONFIG_FORTIFY_SOURCE checks the length parameter of
memcpy.  Since we're already fixing problems with BUI item copying, we
should fix it everything else.

An extra difficulty here is that the ef[id]_extents arrays are declared
as single-element arrays.  This is not the convention for flex arrays in
the modern kernel, and it causes all manner of problems with static
checking tools, since they often cannot tell the difference between a
single element array and a flex array.

So for starters, change those array[1] declarations to array[]
declarations to signal that they are proper flex arrays and adjust all
the "size-1" expressions to fit the new declaration style.

Next, refactor the xfs_efi_copy_format function to handle the copying of
the head and the flex array members separately.  While we're at it, fix
a minor validation deficiency in the recovery function.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-10-31 08:58:20 -07:00
Lukas Czerner
cbfecb927f fs: record I_DIRTY_TIME even if inode already has I_DIRTY_INODE
Currently the I_DIRTY_TIME will never get set if the inode already has
I_DIRTY_INODE with assumption that it supersedes I_DIRTY_TIME.  That's
true, however ext4 will only update the on-disk inode in
->dirty_inode(), not on actual writeback. As a result if the inode
already has I_DIRTY_INODE state by the time we get to
__mark_inode_dirty() only with I_DIRTY_TIME, the time was already filled
into on-disk inode and will not get updated until the next I_DIRTY_INODE
update, which might never come if we crash or get a power failure.

The problem can be reproduced on ext4 by running xfstest generic/622
with -o iversion mount option.

Fix it by allowing I_DIRTY_TIME to be set even if the inode already has
I_DIRTY_INODE. Also make sure that the case is properly handled in
writeback_single_inode() as well. Additionally changes in
xfs_fs_dirty_inode() was made to accommodate for I_DIRTY_TIME in flag.

Thanks Jan Kara for suggestions on how to make this work properly.

Cc: Dave Chinner <david@fromorbit.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: stable@kernel.org
Signed-off-by: Lukas Czerner <lczerner@redhat.com>
Suggested-by: Jan Kara <jack@suse.cz>
Reviewed-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20220825100657.44217-1-lczerner@redhat.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2022-09-29 23:02:00 -04:00
Linus Torvalds
6614a3c316 - The usual batches of cleanups from Baoquan He, Muchun Song, Miaohe
Lin, Yang Shi, Anshuman Khandual and Mike Rapoport
 
 - Some kmemleak fixes from Patrick Wang and Waiman Long
 
 - DAMON updates from SeongJae Park
 
 - memcg debug/visibility work from Roman Gushchin
 
 - vmalloc speedup from Uladzislau Rezki
 
 - more folio conversion work from Matthew Wilcox
 
 - enhancements for coherent device memory mapping from Alex Sierra
 
 - addition of shared pages tracking and CoW support for fsdax, from
   Shiyang Ruan
 
 - hugetlb optimizations from Mike Kravetz
 
 - Mel Gorman has contributed some pagealloc changes to improve latency
   and realtime behaviour.
 
 - mprotect soft-dirty checking has been improved by Peter Xu
 
 - Many other singleton patches all over the place
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCYuravgAKCRDdBJ7gKXxA
 jpqSAQDrXSdII+ht9kSHlaCVYjqRFQz/rRvURQrWQV74f6aeiAD+NHHeDPwZn11/
 SPktqEUrF1pxnGQxqLh1kUFUhsVZQgE=
 =w/UH
 -----END PGP SIGNATURE-----

Merge tag 'mm-stable-2022-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

Pull MM updates from Andrew Morton:
 "Most of the MM queue. A few things are still pending.

  Liam's maple tree rework didn't make it. This has resulted in a few
  other minor patch series being held over for next time.

  Multi-gen LRU still isn't merged as we were waiting for mapletree to
  stabilize. The current plan is to merge MGLRU into -mm soon and to
  later reintroduce mapletree, with a view to hopefully getting both
  into 6.1-rc1.

  Summary:

   - The usual batches of cleanups from Baoquan He, Muchun Song, Miaohe
     Lin, Yang Shi, Anshuman Khandual and Mike Rapoport

   - Some kmemleak fixes from Patrick Wang and Waiman Long

   - DAMON updates from SeongJae Park

   - memcg debug/visibility work from Roman Gushchin

   - vmalloc speedup from Uladzislau Rezki

   - more folio conversion work from Matthew Wilcox

   - enhancements for coherent device memory mapping from Alex Sierra

   - addition of shared pages tracking and CoW support for fsdax, from
     Shiyang Ruan

   - hugetlb optimizations from Mike Kravetz

   - Mel Gorman has contributed some pagealloc changes to improve
     latency and realtime behaviour.

   - mprotect soft-dirty checking has been improved by Peter Xu

   - Many other singleton patches all over the place"

 [ XFS merge from hell as per Darrick Wong in

   https://lore.kernel.org/all/YshKnxb4VwXycPO8@magnolia/ ]

* tag 'mm-stable-2022-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (282 commits)
  tools/testing/selftests/vm/hmm-tests.c: fix build
  mm: Kconfig: fix typo
  mm: memory-failure: convert to pr_fmt()
  mm: use is_zone_movable_page() helper
  hugetlbfs: fix inaccurate comment in hugetlbfs_statfs()
  hugetlbfs: cleanup some comments in inode.c
  hugetlbfs: remove unneeded header file
  hugetlbfs: remove unneeded hugetlbfs_ops forward declaration
  hugetlbfs: use helper macro SZ_1{K,M}
  mm: cleanup is_highmem()
  mm/hmm: add a test for cross device private faults
  selftests: add soft-dirty into run_vmtests.sh
  selftests: soft-dirty: add test for mprotect
  mm/mprotect: fix soft-dirty check in can_change_pte_writable()
  mm: memcontrol: fix potential oom_lock recursion deadlock
  mm/gup.c: fix formatting in check_and_migrate_movable_page()
  xfs: fail dax mount if reflink is enabled on a partition
  mm/memcontrol.c: remove the redundant updating of stats_flush_threshold
  userfaultfd: don't fail on unrecognized features
  hugetlb_cgroup: fix wrong hugetlb cgroup numa stat
  ...
2022-08-05 16:32:45 -07:00
Shiyang Ruan
35fcd75af3 xfs: fail dax mount if reflink is enabled on a partition
Failure notification is not supported on partitions.  So, when we mount a
reflink enabled xfs on a partition with dax option, let it fail with
-EINVAL code.

Link: https://lkml.kernel.org/r/20220609143435.393724-1-ruansy.fnst@fujitsu.com
Signed-off-by: Shiyang Ruan <ruansy.fnst@fujitsu.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Cc: Dave Chinner <david@fromorbit.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-29 18:07:17 -07:00
Dave Chinner
231f91ab50 xfs: xfs_buf cache destroy isn't RCU safe
Darrick and Sachin Sant reported that xfs/435 and xfs/436 would
report an non-empty xfs_buf slab on module remove. This isn't easily
to reproduce, but is clearly a side effect of converting the buffer
caceh to RUC freeing and lockless lookups. Sachin bisected and
Darrick hit it when testing the patchset directly.

Turns out that the xfs_buf slab is not destroyed when all the other
XFS slab caches are destroyed. Instead, it's got it's own little
wrapper function that gets called separately, and so it doesn't have
an rcu_barrier() call in it that is needed to drain all the rcu
callbacks before the slab is destroyed.

Fix it by removing the xfs_buf_init/terminate wrappers that just
allocate and destroy the xfs_buf slab, and move them to the same
place that all the other slab caches are set up and destroyed.

Reported-and-tested-by: Sachin Sant <sachinp@linux.ibm.com>
Fixes: 298f342245 ("xfs: lockless buffer lookup")
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2022-07-20 16:40:39 -07:00
Darrick J. Wong
4613b17cc4 xfs: introduce in-memory inode unlink log items
To facilitate future improvements in inode logging and improving
 inode cluster buffer locking order consistency, we need a new
 mechanism for defering inode cluster buffer modifications during
 unlinked list modifications.
 
 The unlinked inode list buffer locking is complex. The unlinked
 list is unordered - we add to the tail, remove from where-ever the
 inode is in the list. Hence we might need to lock two inode buffers
 here (previous inode in list and the one being removed). While we
 can order the locking of these buffers correctly within the confines
 of the unlinked list, there may be other inodes that need buffer
 locking in the same transaction. e.g. O_TMPFILE being linked into a
 directory also modifies the directory inode.
 
 Hence we need a mechanism for defering unlinked inode list updates
 until a point where we know that all modifications have been made
 and all that remains is to lock and modify the cluster buffers.
 
 We can do this by first observing that we serialise unlinked list
 modifications by holding the AGI buffer lock. IOWs, the AGI is going
 to be locked until the transaction commits any time we modify the
 unlinked list. Hence it doesn't matter when in the unlink
 transactions that we actually load, lock and modify the inode
 cluster buffer.
 
 We add an in-memory unlinked inode log item to defer the inode
 cluster buffer update to transaction commit time where it can be
 ordered with all the other inode cluster operations that need to be
 done. Essentially all we need to do is record the inodes that need
 to have their unlinked list pointer updated in a new log item that
 we attached to the transaction.
 
 This log item exists purely for the purpose of delaying the update
 of the unlinked list pointer until the inode cluster buffer can be
 locked in the correct order around the other inode cluster buffers.
 It plays no part in the actual commit, and there's no change to
 anything that is written to the log. i.e. the inode cluster buffers
 still have to be fully logged here (not just ordered) as log
 recovery depedends on this to replay mods to the unlinked inode
 list.
 
 Hence if we add a "precommit" hook into xfs_trans_commit()
 to run a "precommit" operation on these iunlink log items, we can
 delay the locking, modification and logging of the inode cluster
 buffer until after all other modifications have been made. The
 precommit hook reuires us to sort the items that are going to be run
 so that we can lock precommit items in the correct order as we
 perform the modifications they describe.
 
 To make this unlinked inode list processing simpler and easier to
 implement as a log item, we need to change the way we track the
 unlinked list in memory. Starting from the observation that an inode
 on the unlinked list is pinned in memory by the VFS, we can use the
 xfs_inode itself to track the unlinked list. To do this efficiently,
 we want the unlinked list to be a double linked list. The problem
 here is that we need a list per AGI unlinked list, and there are 64
 of these per AGI. The approach taken in this patchset is to shadow
 the AGI unlinked list heads in the perag, and link inodes by agino,
 hence requiring only 8 extra bytes per inode to track this state.
 
 We can then use the agino pointers for lockless inode cache lookups
 to retreive the inode. The aginos in the inode are modified only
 under the AGI lock, just like the cluster buffer pointers, so we
 don't need any extra locking here.  The i_next_unlinked field tracks
 the on-disk value of the unlinked list, and the i_prev_unlinked is a
 purely in-memory pointer that enables us to efficiently remove
 inodes from the middle of the list.
 
 This results in moving a lot of the unlink modification work into
 the precommit operations on the unlink log item. Tracking all the
 unlinked inodes in the inodes themselves also gets rid of the
 unlinked list reference hash table that is used to track this back
 pointer relationship. This greatly simplifies the the unlinked list
 modification code, and removes memory allocations in this hot path
 to track back pointers. This, overall, slightly reduces the CPU
 overhead of the unlink path.
 
 The result of this log item means that we move all the actual
 manipulation of objects to be logged out of the iunlink path and
 into the iunlink item. This allows for future optimisation of this
 mechanism without needing changes to high level unlink path, as
 well as making the unlink lock ordering predictable and synchronised
 with other operations that may require inode cluster locking.
 
 Signed-off-by: Dave Chinner <dchinner@redhat.com>
 -----BEGIN PGP SIGNATURE-----
 
 iQJIBAABCgAyFiEEmJOoJ8GffZYWSjj/regpR/R1+h0FAmLPvZAUHGRhdmlkQGZy
 b21vcmJpdC5jb20ACgkQregpR/R1+h2CDBAAj9QH4/XIe8JIx/mKgAGzcNNwQxu8
 geBqb5S2ri0oB22pRXKc/3zArw/8zPwcgZF83ChkFrQ6tLn4JGkEEuvIKr3b8k50
 2AEghYf8dqCaXRpkdvIGjJtdK54MFZIHv9TYRwHVzBp3WLtrz7uHmKeRf2qeSBMI
 DLurzVIbcocMptvHxrZZCpf1ajuVdovXtuw8ExiORZZKLOeF+3xBGztenkfh2BTO
 8Kh8qJVSNN41XQ8h87PWyQtmah6JouqURXXGERJcgLbr80pTSw2EBihJvmXUmn8y
 qnoT27TCPAMOEDTWe+SHzLOVRLvhN+at/lFWbvas6PwOvDGAwQQtZkv/QyLTSgqD
 6Zg9xJeeSgHhHP2kCeLlKmvW1dRptcUzhCWOrQ9Ry+WZnKK5ZenevkaAXAva6ucS
 NXwIU1DnWfJ51SHIYQiQIci2g+vF+pnJRQq1DtYUuwtBSWfsmw1uquNZodgbA9Ue
 k6hfk4qVua63k+vXsd5gVdCHT+Liw+1ldTInl2GNhT/riNzewO0HY3zmc1aZQyMM
 mymHXKVcQJbLpJvwqB5SXq8a37fbpoQDYlycptSF/YxxBhiCKKWuc6q7Tl6Y9VSS
 qpSHvh+MkJcP8PYtPjNUcJ9yeXhYJgkv1KK47zkIKzOD9a+zh4SIrfiBUflZbpQq
 M9ubXGHVmFqS4Nk=
 =59M0
 -----END PGP SIGNATURE-----

Merge tag 'xfs-iunlink-item-5.20' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs into xfs-5.20-mergeB

xfs: introduce in-memory inode unlink log items

To facilitate future improvements in inode logging and improving
inode cluster buffer locking order consistency, we need a new
mechanism for defering inode cluster buffer modifications during
unlinked list modifications.

The unlinked inode list buffer locking is complex. The unlinked
list is unordered - we add to the tail, remove from where-ever the
inode is in the list. Hence we might need to lock two inode buffers
here (previous inode in list and the one being removed). While we
can order the locking of these buffers correctly within the confines
of the unlinked list, there may be other inodes that need buffer
locking in the same transaction. e.g. O_TMPFILE being linked into a
directory also modifies the directory inode.

Hence we need a mechanism for defering unlinked inode list updates
until a point where we know that all modifications have been made
and all that remains is to lock and modify the cluster buffers.

We can do this by first observing that we serialise unlinked list
modifications by holding the AGI buffer lock. IOWs, the AGI is going
to be locked until the transaction commits any time we modify the
unlinked list. Hence it doesn't matter when in the unlink
transactions that we actually load, lock and modify the inode
cluster buffer.

We add an in-memory unlinked inode log item to defer the inode
cluster buffer update to transaction commit time where it can be
ordered with all the other inode cluster operations that need to be
done. Essentially all we need to do is record the inodes that need
to have their unlinked list pointer updated in a new log item that
we attached to the transaction.

This log item exists purely for the purpose of delaying the update
of the unlinked list pointer until the inode cluster buffer can be
locked in the correct order around the other inode cluster buffers.
It plays no part in the actual commit, and there's no change to
anything that is written to the log. i.e. the inode cluster buffers
still have to be fully logged here (not just ordered) as log
recovery depedends on this to replay mods to the unlinked inode
list.

Hence if we add a "precommit" hook into xfs_trans_commit()
to run a "precommit" operation on these iunlink log items, we can
delay the locking, modification and logging of the inode cluster
buffer until after all other modifications have been made. The
precommit hook reuires us to sort the items that are going to be run
so that we can lock precommit items in the correct order as we
perform the modifications they describe.

To make this unlinked inode list processing simpler and easier to
implement as a log item, we need to change the way we track the
unlinked list in memory. Starting from the observation that an inode
on the unlinked list is pinned in memory by the VFS, we can use the
xfs_inode itself to track the unlinked list. To do this efficiently,
we want the unlinked list to be a double linked list. The problem
here is that we need a list per AGI unlinked list, and there are 64
of these per AGI. The approach taken in this patchset is to shadow
the AGI unlinked list heads in the perag, and link inodes by agino,
hence requiring only 8 extra bytes per inode to track this state.

We can then use the agino pointers for lockless inode cache lookups
to retreive the inode. The aginos in the inode are modified only
under the AGI lock, just like the cluster buffer pointers, so we
don't need any extra locking here.  The i_next_unlinked field tracks
the on-disk value of the unlinked list, and the i_prev_unlinked is a
purely in-memory pointer that enables us to efficiently remove
inodes from the middle of the list.

This results in moving a lot of the unlink modification work into
the precommit operations on the unlink log item. Tracking all the
unlinked inodes in the inodes themselves also gets rid of the
unlinked list reference hash table that is used to track this back
pointer relationship. This greatly simplifies the the unlinked list
modification code, and removes memory allocations in this hot path
to track back pointers. This, overall, slightly reduces the CPU
overhead of the unlink path.

The result of this log item means that we move all the actual
manipulation of objects to be logged out of the iunlink path and
into the iunlink item. This allows for future optimisation of this
mechanism without needing changes to high level unlink path, as
well as making the unlink lock ordering predictable and synchronised
with other operations that may require inode cluster locking.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>

* tag 'xfs-iunlink-item-5.20' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs:
  xfs: add in-memory iunlink log item
  xfs: add log item precommit operation
  xfs: combine iunlink inode update functions
  xfs: clean up xfs_iunlink_update_inode()
  xfs: double link the unlinked inode list
  xfs: introduce xfs_iunlink_lookup
  xfs: refactor xlog_recover_process_iunlinks()
  xfs: track the iunlink list pointer in the xfs_inode
  xfs: factor the xfs_iunlink functions
  xfs: flush inode gc workqueue before clearing agi bucket
2022-07-14 09:21:42 -07:00
Dave Chinner
784eb7d8dd xfs: add in-memory iunlink log item
Now that we have a clean operation to update the di_next_unlinked
field of inode cluster buffers, we can easily defer this operation
to transaction commit time so we can order the inode cluster buffer
locking consistently.

To do this, we introduce a new in-memory log item to track the
unlinked list item modification that we are going to make. This
follows the same observations as the in-memory double linked list
used to track unlinked inodes in that the inodes on the list are
pinned in memory and cannot go away, and hence we can simply
reference them for the duration of the transaction without needing
to take active references or pin them or look them up.

This allows us to pass the xfs_inode to the transaction commit code
along with the modification to be made, and then order the logged
modifications via the ->iop_sort and ->iop_precommit operations
for the new log item type. As this is an in-memory log item, it
doesn't have formatting, CIL or AIL operational hooks - it exists
purely to run the inode unlink modifications and is then removed
from the transaction item list and freed once the precommit
operation has run.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2022-07-14 11:47:42 +10:00
Dave Chinner
af1c2146a5 xfs: introduce per-cpu CIL tracking structure
The CIL push lock is highly contended on larger machines, becoming a
hard bottleneck that about 700,000 transaction commits/s on >16p
machines. To address this, start moving the CIL tracking
infrastructure to utilise per-CPU structures.

We need to track the space used, the amount of log reservation space
reserved to write the CIL, the log items in the CIL and the busy
extents that need to be completed by the CIL commit.  This requires
a couple of per-cpu counters, an unordered per-cpu list and a
globally ordered per-cpu list.

Create a per-cpu structure to hold these and all the management
interfaces needed, as well as the hooks to handle hotplug CPUs.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-07-02 02:13:52 +10:00
Dave Chinner
5e672cd69f xfs: introduce xfs_inodegc_push()
The current blocking mechanism for pushing the inodegc queue out to
disk can result in systems becoming unusable when there is a long
running inodegc operation. This is because the statfs()
implementation currently issues a blocking flush of the inodegc
queue and a significant number of common system utilities will call
statfs() to discover something about the underlying filesystem.

This can result in userspace operations getting stuck on inodegc
progress, and when trying to remove a heavily reflinked file on slow
storage with a full journal, this can result in delays measuring in
hours.

Avoid this problem by adding "push" function that expedites the
flushing of the inodegc queue, but doesn't wait for it to complete.

Convert xfs_fs_statfs() and xfs_qm_scall_getquota() to use this
mechanism so they don't block but still ensure that queued
operations are expedited.

Fixes: ab23a77687 ("xfs: per-cpu deferred inode inactivation queues")
Reported-by: Chris Dunlop <chris@onthe.net.au>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
[djwong: fix _getquota_next to use _inodegc_push too]
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-06-23 13:34:38 -07:00
Dave Chinner
7cf2b0f961 xfs: bound maximum wait time for inodegc work
Currently inodegc work can sit queued on the per-cpu queue until
the workqueue is either flushed of the queue reaches a depth that
triggers work queuing (and later throttling). This means that we
could queue work that waits for a long time for some other event to
trigger flushing.

Hence instead of just queueing work at a specific depth, use a
delayed work that queues the work at a bound time. We can still
schedule the work immediately at a given depth, but we no long need
to worry about leaving a number of items on the list that won't get
processed until external events prevail.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-06-23 13:34:38 -07:00
Linus Torvalds
0e5ab8dd87 xfs: Changes for 5.19-rc1 [2nd set]
This update includes:
 - fix refcount leak in xfs_ifree()
 - fix xfs_buf_cancel structure leaks in log recovery
 - fix dquot leak after failed quota check
 - fix a couple of problematic ASSERTS
 - fix small aim7 perf regression in from new btree sibling
   validation
 - clean up log incompat feature marking for new logged attribute
   feature
 - disallow logged attributes on legacy V4 filesystem formats.
 - fix da state leak when freeing attr intents
 - improve validation of the attr log items in recovery
 - use slab caches for commonly used attr structures
 - fix leaks of attr name/value buffer and reduce copying overhead
   during intent logging
 - remove some dead debug code from log recovery
 -----BEGIN PGP SIGNATURE-----
 
 iQJIBAABCgAyFiEEmJOoJ8GffZYWSjj/regpR/R1+h0FAmKX4ZUUHGRhdmlkQGZy
 b21vcmJpdC5jb20ACgkQregpR/R1+h06gQ//X9786aR6rfeMprvrWLqY0Ui6mGz4
 qI7s1BhsEyh6VMMzjVa0AzjX7R565ISTr4SdxLNewdPPAvro+avd2K4t+FdfFTG0
 9cA4kgC5MoURljHZmflYB8EKGsLXQ2fuzDmih6Ozu4pmKhKc5QU3XpsLn2HzLded
 KrNc08GX2JKvBxjdImk0pTxUq2xZ5CPWvpjdrfxnN2bNPHdJJtqBh/lhX1r73bqA
 Tz0RLwUqbL7fUZfIeslDlu2rU/MlZDXhT7C81y6tnyg7ObNN35NXuZX/UfQKFIWR
 pXUiPZTurso9Z7g7leEJ2Uco7Aeivs36mqes60Mv4YvN5ilv/Ja07kFZlfdaYkhJ
 YYSeIod1QLH3aOJOImPjYpOFOjyHrXmdG5KS5iLqADokywCPfgDMxCVWKeKxtLCC
 /1jBEQnKDWdZtAHup+vQ4PC1YP0rsLhXfNQNjYau8pwhEaN8nl2MOWMmQOLMyoES
 VAsBV9zrCa60sPT5IdYgnkRG3C+QV7nwLoLluguS+XvWtBgB0zxqjSZG5jFYYgCr
 v8VfW5esnvs+hF8YD3RmWpKxnoTuCXaftbc7ZdxneKZJyDPzWqr81zySCeBVCbt/
 wWrkl5E3Mdhq+LHDcbnrRZ63W377aRiNAh5D+aIeJUm0HZoEP+VLqBRVnWOuv/LC
 AfIuZcQi24PIZPw=
 =OLD4
 -----END PGP SIGNATURE-----

Merge tag 'xfs-5.19-for-linus-2' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux

Pull more xfs updates from Dave Chinner:
 "This update is largely bug fixes and cleanups for all the code merged
  in the first pull request. The majority of them are to the new logged
  attribute code, but there are also a couple of fixes for other log
  recovery and memory leaks that have recently been found.

  Summary:

   - fix refcount leak in xfs_ifree()

   - fix xfs_buf_cancel structure leaks in log recovery

   - fix dquot leak after failed quota check

   - fix a couple of problematic ASSERTS

   - fix small aim7 perf regression in from new btree sibling validation

   - clean up log incompat feature marking for new logged attribute
     feature

   - disallow logged attributes on legacy V4 filesystem formats.

   - fix da state leak when freeing attr intents

   - improve validation of the attr log items in recovery

   - use slab caches for commonly used attr structures

   - fix leaks of attr name/value buffer and reduce copying overhead
     during intent logging

   - remove some dead debug code from log recovery"

* tag 'xfs-5.19-for-linus-2' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: (33 commits)
  xfs: fix xfs_ifree() error handling to not leak perag ref
  xfs: move xfs_attr_use_log_assist usage out of libxfs
  xfs: move xfs_attr_use_log_assist out of xfs_log.c
  xfs: warn about LARP once per mount
  xfs: implement per-mount warnings for scrub and shrink usage
  xfs: don't log every time we clear the log incompat flags
  xfs: convert buf_cancel_table allocation to kmalloc_array
  xfs: don't leak xfs_buf_cancel structures when recovery fails
  xfs: refactor buffer cancellation table allocation
  xfs: don't leak btree cursor when insrec fails after a split
  xfs: purge dquots after inode walk fails during quotacheck
  xfs: assert in xfs_btree_del_cursor should take into account error
  xfs: don't assert fail on perag references on teardown
  xfs: avoid unnecessary runtime sibling pointer endian conversions
  xfs: share xattr name and value buffers when logging xattr updates
  xfs: do not use logged xattr updates on V4 filesystems
  xfs: Remove duplicate include
  xfs: reduce IOCB_NOWAIT judgment for retry exclusive unaligned DIO
  xfs: Remove dead code
  xfs: fix typo in comment
  ...
2022-06-01 17:23:53 -07:00
Darrick J. Wong
d9c61ccb3b xfs: move xfs_attr_use_log_assist out of xfs_log.c
The LARP patchset added an awkward coupling point between libxfs and
what would be libxlog, if the XFS log were actually its own library.
Move the code that enables logged xattr updates out of "lib"xlog and into
xfs_xattr.c so that it no longer has to know about xlog_* functions.

While we're at it, give xfs_xattr.c its own header file.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-27 10:33:29 +10:00
Linus Torvalds
babf0bb978 xfs: Changes for 5.19-rc1
This update includes:
 - support for printk message indexing.
 - large extent counts to provide support for up to 2^47 data extents and 2^32
   attribute extents, allowing us to scale beyond 4 billion data extents
   to billions of xattrs per inode.
 - conversion of various flags fields to be consistently declared as
   unsigned bit fields.
 - improvements to realtime extent accounting and converts them to per-cpu
   counters to match all the other block and inode accounting.
 - reworks core log formatting code to reduce iterations, have a shorter, cleaner
   fast path and generally be easier to understand and maintain.
 - improvements to rmap btree searches that reduce overhead by up
   to 30% resulting in xfs_scrub runtime reductions of 15%.
 - improvements to reflink that remove the size limitations in remapping operations
   and greatly reduce the size of transaction reservations.
 - reworks the minimum log size calculations to allow us to change transaction
   reservations without changing the minimum supported log size.
 - removal of quota warning support as it has never been used on Linux.
 - intent whiteouts to allow us to cancel intents that are completed entirely
   in memory rather than having use CPU and disk bandwidth formatting and writing
   them into the journal when it is not necessary. This makes rmap, reflink and
   extent freeing slightly more efficient, but provides massive improvements
   for....
 - Logged Attribute Replay feature support. This is a fundamental change to the
   way we modify attributes, laying the foundation for future integration of
   attribute modifications as part of other atomic transactional operations the
   filesystem performs.
 - Lots of cleanups and fixes for the logged attribute replay functionality.
 -----BEGIN PGP SIGNATURE-----
 
 iQJIBAABCgAyFiEEmJOoJ8GffZYWSjj/regpR/R1+h0FAmKO2lIUHGRhdmlkQGZy
 b21vcmJpdC5jb20ACgkQregpR/R1+h0cYRAAutdpA5BZzfgpqnRbmjkOzCmhp6xj
 mSB6A8iBvlhtfY8p0IFFSbTT6jnf+EWfnsjy/jopojhhz5vCqYKfhGM6P9KBHxfz
 amxfmWZd3XWcnc8Ay9hcjLIa7QLQr8PXh3zJhjiYm8PvsrtNzsiEKrh6lxG6pe0w
 vQiq062ColCdN5DcuFVtfScsynCrzZCbUWFGm3y27NF00JpLdm8aBO57/ZaSFVdA
 UKKsogoPUNkRIbmf81IjTWTx2f0syNQyjrK+CX0sxGb6nzcoU/dT8qQ5t/U5gPTc
 cGpHE6vyBLdNA6BlnrFBoVAQ/M8n+ixnYy7XytZuTL5Izo80N+Vo+U5d1nLvC+fn
 ZLKAxbtpudqjy2O393Nv0cqEkT/xPUy2x3IvNL1rKXlQmNWt+KFGuiNrE+y2W4WT
 1bfbnmUJi0Knde4MD43iImwwaocXXdtVkED9f68aknZLCihqGEoi1EmU1Sr4+Wbj
 D8lXZe4BZfGVCHoA2sDtgJsATAG5rdBu/Y6lJcEfUSblvwF2Ufh0r9ehieDrnGmq
 asCTuXmIX/AzUQDa7JjgAzo2sgdhI+nOIPWJeKDVHRdpFjq+7xV573Iqa77Brik9
 DNxAMATh5bZc+9paDib8Za55yE7NJO1cM/UJkwwqn3rvbV5hYki0XZvlKZQsJGig
 ur5otF9Sdz+AcmE=
 =yUEM
 -----END PGP SIGNATURE-----

Merge tag 'xfs-5.19-for-linus' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux

Pull xfs updates from Dave Chinner:
 "This is a big update with lots of new code. The summary below them
  all, so I'll just touch on teh higlights. The two main new features
  are Large Extent Counts and Logged Attribute Replay - these are two
  new foundational features that we are building more complex future
  features on top of.

  For upcoming functionality, we need to be able to store hundreds of
  millions of xattrs per inode. The Large Extent Count feature removes
  the limits that prevent this scale of xattr storage, and while we were
  modifying the on disk extent count format we also increased the number
  of data extents we support per inode from 2^32 to 2^47.

  We also need to be able to modify xattrs as part of larger atomic
  transactions rather than as standalone transactions. The Logged
  Attribute Replay feature introduces the infrastructure that allows us
  to use intents to record the attribute modifications in the journal
  before we start them, hence allowing other atomic transactions to log
  attribute modification intents and then defer the actual modification
  to later. If we then crash, log recovery then guarantees that the
  attribute is replayed in the context of the atomic transaction that
  logged the intent.

  A significant chunk of the commits in this merge are for the base
  attribute replay functionality along with fixes, improvements and
  cleanups related to this new functioanlity. Allison deserves a big
  round of thanks for her ongoing work to get this functionality into
  XFS.

  There are also many other smaller changes and improvements, so overall
  this is one of the bigger XFS merge requests in some time.

  I will be following up next week with another smaller pull request -
  we already have another round of fixes and improvements to the logged
  attribute replay functionality just about ready to go. They'll soak
  and test over the next week, and I'll send a pull request for them
  near the end of the merge window.

  Summary:

   - support for printk message indexing.

   - large extent counts to provide support for up to 2^47 data extents
     and 2^32 attribute extents, allowing us to scale beyond 4 billion
     data extents to billions of xattrs per inode.

   - conversion of various flags fields to be consistently declared as
     unsigned bit fields.

   - improvements to realtime extent accounting and converts them to
     per-cpu counters to match all the other block and inode accounting.

   - reworks core log formatting code to reduce iterations, have a
     shorter, cleaner fast path and generally be easier to understand
     and maintain.

   - improvements to rmap btree searches that reduce overhead by up to
     30% resulting in xfs_scrub runtime reductions of 15%.

   - improvements to reflink that remove the size limitations in
     remapping operations and greatly reduce the size of transaction
     reservations.

   - reworks the minimum log size calculations to allow us to change
     transaction reservations without changing the minimum supported log
     size.

   - removal of quota warning support as it has never been used on
     Linux.

   - intent whiteouts to allow us to cancel intents that are completed
     entirely in memory rather than having use CPU and disk bandwidth
     formatting and writing them into the journal when it is not
     necessary. This makes rmap, reflink and extent freeing slightly
     more efficient, but provides massive improvements for....

   - Logged Attribute Replay feature support. This is a fundamental
     change to the way we modify attributes, laying the foundation for
     future integration of attribute modifications as part of other
     atomic transactional operations the filesystem performs.

   - Lots of cleanups and fixes for the logged attribute replay
     functionality"

* tag 'xfs-5.19-for-linus' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: (124 commits)
  xfs: can't use kmem_zalloc() for attribute buffers
  xfs: detect empty attr leaf blocks in xfs_attr3_leaf_verify
  xfs: ATTR_REPLACE algorithm with LARP enabled needs rework
  xfs: use XFS_DA_OP flags in deferred attr ops
  xfs: remove xfs_attri_remove_iter
  xfs: switch attr remove to xfs_attri_set_iter
  xfs: introduce attr remove initial states into xfs_attr_set_iter
  xfs: xfs_attr_set_iter() does not need to return EAGAIN
  xfs: clean up final attr removal in xfs_attr_set_iter
  xfs: remote xattr removal in xfs_attr_set_iter() is conditional
  xfs: XFS_DAS_LEAF_REPLACE state only needed if !LARP
  xfs: split remote attr setting out from replace path
  xfs: consolidate leaf/node states in xfs_attr_set_iter
  xfs: kill XFS_DAC_LEAF_ADDNAME_INIT
  xfs: separate out initial attr_set states
  xfs: don't set quota warning values
  xfs: remove warning counters from struct xfs_dquot_res
  xfs: remove quota warning limit from struct xfs_quota_limits
  xfs: rework deferred attribute operation setup
  xfs: make xattri_leaf_bp more useful
  ...
2022-05-25 19:34:40 -07:00
Darrick J. Wong
4136e38af7 xfs: put attr[id] log item cache init with the others
Initialize and destroy the xattr log item caches in the same places that
we do all the other log item caches.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-05-22 15:59:48 +10:00
Dave Chinner
a44a027a8b Merge tag 'large-extent-counters-v9' of https://github.com/chandanr/linux into xfs-5.19-for-next
xfs: Large extent counters

The commit xfs: fix inode fork extent count overflow
(3f8a4f1d87) mentions that 10 billion
data fork extents should be possible to create. However the
corresponding on-disk field has a signed 32-bit type. Hence this
patchset extends the per-inode data fork extent counter to 64 bits
(out of which 48 bits are used to store the extent count).

Also, XFS has an attribute fork extent counter which is 16 bits
wide. A workload that,
1. Creates 1 million 255-byte sized xattrs,
2. Deletes 50% of these xattrs in an alternating manner,
3. Tries to insert 400,000 new 255-byte sized xattrs
   causes the xattr extent counter to overflow.

Dave tells me that there are instances where a single file has more
than 100 million hardlinks. With parent pointers being stored in
xattrs, we will overflow the signed 16-bits wide attribute extent
counter when large number of hardlinks are created. Hence this
patchset extends the on-disk field to 32-bits.

The following changes are made to accomplish this,
1. A 64-bit inode field is carved out of existing di_pad and
   di_flushiter fields to hold the 64-bit data fork extent counter.
2. The existing 32-bit inode data fork extent counter will be used to
   hold the attribute fork extent counter.
3. A new incompat superblock flag to prevent older kernels from mounting
   the filesystem.

Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-04-21 16:46:17 +10:00
Christoph Hellwig
70200574cc block: remove QUEUE_FLAG_DISCARD
Just use a non-zero max_discard_sectors as an indicator for discard
support, similar to what is done for write zeroes.

The only places where needs special attention is the RAID5 driver,
which must clear discard support for security reasons by default,
even if the default stacking rules would allow for it.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com>
Acked-by: Christoph Böhmwalder <christoph.boehmwalder@linbit.com> [drbd]
Acked-by: Jan Höppner <hoeppner@linux.ibm.com> [s390]
Acked-by: Coly Li <colyli@suse.de> [bcache]
Acked-by: David Sterba <dsterba@suse.com> [btrfs]
Reviewed-by: Chaitanya Kulkarni <kch@nvidia.com>
Link: https://lore.kernel.org/r/20220415045258.199825-25-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2022-04-17 19:49:59 -06:00
Chandan Babu R
973ac0eb3a xfs: Add XFS_SB_FEAT_INCOMPAT_NREXT64 to the list of supported flags
This commit enables XFS module to work with fs instances having 64-bit
per-inode extent counters by adding XFS_SB_FEAT_INCOMPAT_NREXT64 flag to the
list of supported incompat feature flags.

Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
2022-04-13 07:02:45 +00:00
Darrick J. Wong
2229276c52 xfs: use a separate frextents counter for rt extent reservations
As mentioned in the previous commit, the kernel misuses sb_frextents in
the incore mount to reflect both incore reservations made by running
transactions as well as the actual count of free rt extents on disk.
This results in the superblock being written to the log with an
underestimate of the number of rt extents that are marked free in the
rtbitmap.

Teaching XFS to recompute frextents after log recovery avoids
operational problems in the current mount, but it doesn't solve the
problem of us writing undercounted frextents which are then recovered by
an older kernel that doesn't have that fix.

Create an incore percpu counter to mirror the ondisk frextents.  This
new counter will track transaction reservations and the only time we
will touch the incore super counter (i.e the one that gets logged) is
when those transactions commit updates to the rt bitmap.  This is in
contrast to the lazysbcount counters (e.g. fdblocks), where we know that
log recovery will always fix any incorrect counter that we log.
As a bonus, we only take m_sb_lock at transaction commit time.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-04-12 06:49:42 +10:00
Darrick J. Wong
85bcfa26f9 xfs: don't report reserved bnobt space as available
On a modern filesystem, we don't allow userspace to allocate blocks for
data storage from the per-AG space reservations, the user-controlled
reservation pool that prevents ENOSPC in the middle of internal
operations, or the internal per-AG set-aside that prevents unwanted
filesystem shutdowns due to ENOSPC during a bmap btree split.

Since we now consider freespace btree blocks as unavailable for
allocation for data storage, we shouldn't report those blocks via statfs
either.  This makes the numbers that we return via the statfs f_bavail
and f_bfree fields a more conservative estimate of actual free space.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-03-28 08:39:10 -07:00
Linus Torvalds
3bd9dd8138 Bug fixes for 5.17-rc4:
- Only call sync_filesystem when we're remounting the filesystem
    readonly readonly, and actually check its return value.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEUzaAxoMeQq6m2jMV+H93GTRKtOsFAmIEnhUACgkQ+H93GTRK
 tOsn7g//e3R/lqpkx6jJtg6SqiC1KiI9euwD0wBdIvrCWSJZ6IdjOSvfRRG13vN0
 S1spU0joiLLlVhzLIQdysgZkRub57P0mRmq3zVpHYxMOWKBvPH1OmZtdu83HOiAv
 /zjy3tNFc/1ZaqHudAZv3+4780qMZtQTmL7DbgLnvFspCBf4PdBlT0d7Wbf982w8
 dMWF7Pla8DhLVFbMsGdyXlnGROz+pw3jofVwY9P6f+PaY37mo+lZu65GrTlNecnc
 QfTyX45VAWFO/XZtXm7pXCr8211eK2SnrOFZXZH9u3qxSD5vo1NWf9KPKVkYxc8/
 7icz+Yp5t61HQg3o0z7cNAQZp7CQl0BWz6gp2YXMWHS3ZJMnd6H4zTDBdV2MSA5/
 alT4kcwncRVcmHtFET7JAsnQkWNeREBqhqCRoAf8hW8uxpjkXw6sPop7+hbZtoJw
 VAp1TxbEMbPGTZb76Kw4nZt1eZ3SyJOl6ByzsJMxekEFiMYVh4yxO+a3Q6KNOkMM
 O62JpzdE1EeFgV7qmoZ8QzCZuD7z7KC99iv5QtyacFITCqv5y0h/RLGCsOwJ0EMc
 fJGKN7uQOZrBIJYInx53S7fCYGGMm0+HUUXMUatBe4RK3dADyqapLzQb0tCGamAf
 NQra6NotwfNq8SN+Sn17PJ1KifSRKfw6l7Q+6pt9LA2eVbr2jV4=
 =6ODm
 -----END PGP SIGNATURE-----

Merge tag 'xfs-5.17-fixes-2' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux

Pull xfs fixes from Darrick Wong:
 "Nothing exciting, just more fixes for not returning sync_filesystem
  error values (and eliding it when it's not necessary).

  Summary:

   - Only call sync_filesystem when we're remounting the filesystem
     readonly readonly, and actually check its return value"

* tag 'xfs-5.17-fixes-2' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux:
  xfs: only bother with sync_filesystem during readonly remount
2022-02-26 09:53:19 -08:00
Darrick J. Wong
b97cca3ba9 xfs: only bother with sync_filesystem during readonly remount
In commit 02b9984d64, we pushed a sync_filesystem() call from the VFS
into xfs_fs_remount.  The only time that we ever need to push dirty file
data or metadata to disk for a remount is if we're remounting the
filesystem read only, so this really could be moved to xfs_remount_ro.

Once we've moved the call site, actually check the return value from
sync_filesystem.

Fixes: 02b9984d64 ("fs: push sync_filesystem() down to the file system's remount_fs()")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-02-09 21:07:24 -08:00
Darrick J. Wong
2d86293c70 xfs: return errors in xfs_fs_sync_fs
Now that the VFS will do something with the return values from
->sync_fs, make ours pass on error codes.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: Christian Brauner <brauner@kernel.org>
2022-01-30 08:59:47 -08:00
Linus Torvalds
3acbdbf42e dax + libnvdimm for v5.17
- Simplify the dax_operations API
   - Eliminate bdev_dax_pgoff() in favor of the filesystem maintaining
     and applying a partition offset to all its DAX iomap operations.
   - Remove wrappers and device-mapper stacked callbacks for
     ->copy_from_iter() and ->copy_to_iter() in favor of moving
     block_device relative offset responsibility to the
     dax_direct_access() caller.
   - Remove the need for an @bdev in filesystem-DAX infrastructure
   - Remove unused uio helpers copy_from_iter_flushcache() and
     copy_mc_to_iter() as only the non-check_copy_size() versions are
     used for DAX.
 - Prepare XFS for the pending (next merge window) DAX+reflink support
 - Remove deprecated DEV_DAX_PMEM_COMPAT support
 - Cleanup a straggling misuse of the GUID api
 
 Tags offered after the branch was cut:
 Reviewed-by: Mike Snitzer <snitzer@redhat.com>
 Link: https://lore.kernel.org/r/Ydb/3P+8nvjCjYfO@redhat.com
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQSbo+XnGs+rwLz9XGXfioYZHlFsZwUCYd3dTAAKCRDfioYZHlFs
 Z//UAP9zetoTE+O7zJG7CXja4jSopSadbdbh6QKSXaqfKBPvQQD+N4US3wA2bGv8
 f/qCY62j2Hj3hUTGHs9RvTyw3JsSYAA=
 =QvDs
 -----END PGP SIGNATURE-----

Merge tag 'libnvdimm-for-5.17' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm

Pull dax and libnvdimm updates from Dan Williams:
 "The bulk of this is a rework of the dax_operations API after
  discovering the obstacles it posed to the work-in-progress DAX+reflink
  support for XFS and other copy-on-write filesystem mechanics.

  Primarily the need to plumb a block_device through the API to handle
  partition offsets was a sticking point and Christoph untangled that
  dependency in addition to other cleanups to make landing the
  DAX+reflink support easier.

  The DAX_PMEM_COMPAT option has been around for 4 years and not only
  are distributions shipping userspace that understand the current
  configuration API, but some are not even bothering to turn this option
  on anymore, so it seems a good time to remove it per the deprecation
  schedule. Recall that this was added after the device-dax subsystem
  moved from /sys/class/dax to /sys/bus/dax for its sysfs organization.
  All recent functionality depends on /sys/bus/dax.

  Some other miscellaneous cleanups and reflink prep patches are
  included as well.

  Summary:

   - Simplify the dax_operations API:

      - Eliminate bdev_dax_pgoff() in favor of the filesystem
        maintaining and applying a partition offset to all its DAX iomap
        operations.

      - Remove wrappers and device-mapper stacked callbacks for
        ->copy_from_iter() and ->copy_to_iter() in favor of moving
        block_device relative offset responsibility to the
        dax_direct_access() caller.

      - Remove the need for an @bdev in filesystem-DAX infrastructure

      - Remove unused uio helpers copy_from_iter_flushcache() and
        copy_mc_to_iter() as only the non-check_copy_size() versions are
        used for DAX.

   - Prepare XFS for the pending (next merge window) DAX+reflink support

   - Remove deprecated DEV_DAX_PMEM_COMPAT support

   - Cleanup a straggling misuse of the GUID api"

* tag 'libnvdimm-for-5.17' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: (38 commits)
  iomap: Fix error handling in iomap_zero_iter()
  ACPI: NFIT: Import GUID before use
  dax: remove the copy_from_iter and copy_to_iter methods
  dax: remove the DAXDEV_F_SYNC flag
  dax: simplify dax_synchronous and set_dax_synchronous
  uio: remove copy_from_iter_flushcache() and copy_mc_to_iter()
  iomap: turn the byte variable in iomap_zero_iter into a ssize_t
  memremap: remove support for external pgmap refcounts
  fsdax: don't require CONFIG_BLOCK
  iomap: build the block based code conditionally
  dax: fix up some of the block device related ifdefs
  fsdax: shift partition offset handling into the file systems
  dax: return the partition offset from fs_dax_get_by_bdev
  iomap: add a IOMAP_DAX flag
  xfs: pass the mapping flags to xfs_bmbt_to_iomap
  xfs: use xfs_direct_write_iomap_ops for DAX zeroing
  xfs: move dax device handling into xfs_{alloc,free}_buftarg
  ext4: cleanup the dax handling in ext4_fill_super
  ext2: cleanup the dax handling in ext2_fill_super
  fsdax: decouple zeroing from the iomap buffered I/O code
  ...
2022-01-12 15:46:11 -08:00
Darrick J. Wong
7993f1a431 xfs: only run COW extent recovery when there are no live extents
As part of multiple customer escalations due to file data corruption
after copy on write operations, I wrote some fstests that use fsstress
to hammer on COW to shake things loose.  Regrettably, I caught some
filesystem shutdowns due to incorrect rmap operations with the following
loop:

mount <filesystem>				# (0)
fsstress <run only readonly ops> &		# (1)
while true; do
	fsstress <run all ops>
	mount -o remount,ro			# (2)
	fsstress <run only readonly ops>
	mount -o remount,rw			# (3)
done

When (2) happens, notice that (1) is still running.  xfs_remount_ro will
call xfs_blockgc_stop to walk the inode cache to free all the COW
extents, but the blockgc mechanism races with (1)'s reader threads to
take IOLOCKs and loses, which means that it doesn't clean them all out.
Call such a file (A).

When (3) happens, xfs_remount_rw calls xfs_reflink_recover_cow, which
walks the ondisk refcount btree and frees any COW extent that it finds.
This function does not check the inode cache, which means that incore
COW forks of inode (A) is now inconsistent with the ondisk metadata.  If
one of those former COW extents are allocated and mapped into another
file (B) and someone triggers a COW to the stale reservation in (A), A's
dirty data will be written into (B) and once that's done, those blocks
will be transferred to (A)'s data fork without bumping the refcount.

The results are catastrophic -- file (B) and the refcount btree are now
corrupt.  In the first patch, we fixed the race condition in (2) so that
(A) will always flush the COW fork.  In this second patch, we move the
_recover_cow call to the initial mount call in (0) for safety.

As mentioned previously, xfs_reflink_recover_cow walks the refcount
btree looking for COW staging extents, and frees them.  This was
intended to be run at mount time (when we know there are no live inodes)
to clean up any leftover staging events that may have been left behind
during an unclean shutdown.  As a time "optimization" for readonly
mounts, we deferred this to the ro->rw transition, not realizing that
any failure to clean all COW forks during a rw->ro transition would
result in catastrophic corruption.

Therefore, remove this optimization and only run the recovery routine
when we're guaranteed not to have any COW staging extents anywhere,
which means we always run this at mount time.  While we're at it, move
the callsite to xfs_log_mount_finish because any refcount btree
expansion (however unlikely given that we're removing records from the
right side of the index) must be fed by a per-AG reservation, which
doesn't exist in its current location.

Fixes: 174edb0e46 ("xfs: store in-progress CoW allocations in the refcount btree")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2021-12-21 09:49:41 -08:00
Darrick J. Wong
089558bc7b xfs: remove all COW fork extents when remounting readonly
As part of multiple customer escalations due to file data corruption
after copy on write operations, I wrote some fstests that use fsstress
to hammer on COW to shake things loose.  Regrettably, I caught some
filesystem shutdowns due to incorrect rmap operations with the following
loop:

mount <filesystem>				# (0)
fsstress <run only readonly ops> &		# (1)
while true; do
	fsstress <run all ops>
	mount -o remount,ro			# (2)
	fsstress <run only readonly ops>
	mount -o remount,rw			# (3)
done

When (2) happens, notice that (1) is still running.  xfs_remount_ro will
call xfs_blockgc_stop to walk the inode cache to free all the COW
extents, but the blockgc mechanism races with (1)'s reader threads to
take IOLOCKs and loses, which means that it doesn't clean them all out.
Call such a file (A).

When (3) happens, xfs_remount_rw calls xfs_reflink_recover_cow, which
walks the ondisk refcount btree and frees any COW extent that it finds.
This function does not check the inode cache, which means that incore
COW forks of inode (A) is now inconsistent with the ondisk metadata.  If
one of those former COW extents are allocated and mapped into another
file (B) and someone triggers a COW to the stale reservation in (A), A's
dirty data will be written into (B) and once that's done, those blocks
will be transferred to (A)'s data fork without bumping the refcount.

The results are catastrophic -- file (B) and the refcount btree are now
corrupt.  Solve this race by forcing the xfs_blockgc_free_space to run
synchronously, which causes xfs_icwalk to return to inodes that were
skipped because the blockgc code couldn't take the IOLOCK.  This is safe
to do here because the VFS has already prohibited new writer threads.

Fixes: 10ddf64e42 ("xfs: remove leftover CoW reservations when remounting ro")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
2021-12-07 10:17:29 -08:00
Christoph Hellwig
5b5abbefec xfs: move dax device handling into xfs_{alloc,free}_buftarg
Hide the DAX device lookup from the xfs_super.c code.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Link: https://lore.kernel.org/r/20211129102203.2243509-22-hch@lst.de
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2021-12-04 08:58:53 -08:00
Christoph Hellwig
7b0800d00d dax: remove dax_capable
Just open code the block size and dax_dev == NULL checks in the callers.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Mike Snitzer <snitzer@redhat.com>
Reviewed-by: Gao Xiang <hsiangkao@linux.alibaba.com> [erofs]
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Link: https://lore.kernel.org/r/20211129102203.2243509-9-hch@lst.de
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2021-12-04 08:58:51 -08:00
Christoph Hellwig
679a99495b xfs: factor out a xfs_setup_dax_always helper
Factor out another DAX setup helper to simplify future changes.  Also
move the experimental warning after the checks to not clutter the log
too much if the setup failed.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Link: https://lore.kernel.org/r/20211129102203.2243509-8-hch@lst.de
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2021-12-04 08:58:51 -08:00
Wan Jiabing
0b9007ec7b xfs: Remove duplicated include in xfs_super
Fix following checkincludes.pl warning:
./fs/xfs/xfs_super.c: xfs_btree.h is included more than once.

The include is in line 15. Remove the duplicated here.

Signed-off-by: Wan Jiabing <wanjiabing@vivo.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-10-30 09:28:49 -07:00
Darrick J. Wong
c201d9ca53 xfs: rename xfs_bmap_add_free to xfs_free_extent_later
xfs_bmap_add_free isn't a block mapping function; it schedules deferred
freeing operations for a later point in a compound transaction chain.
While it's primarily used by bunmapi, its use has expanded beyond that.
Move it to xfs_alloc.c and rename the function since it's now general
freeing functionality.  Bring the slab cache bits in line with the
way we handle the other intent items.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
2021-10-22 16:04:36 -07:00
Darrick J. Wong
f3c799c22c xfs: create slab caches for frequently-used deferred items
Create slab caches for the high-level structures that coordinate
deferred intent items, since they're used fairly heavily.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
2021-10-22 16:04:36 -07:00
Darrick J. Wong
182696fb02 xfs: rename _zone variables to _cache
Now that we've gotten rid of the kmem_zone_t typedef, rename the
variables to _cache since that's what they are.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
2021-10-22 16:04:20 -07:00
Darrick J. Wong
9fa47bdcd3 xfs: use separate btree cursor cache for each btree type
Now that we have the infrastructure to track the max possible height of
each btree type, we can create a separate slab cache for cursors of each
type of btree.  For smaller indices like the free space btrees, this
means that we can pack more cursors into a slab page, improving slab
utilization.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2021-10-19 11:45:16 -07:00
Darrick J. Wong
c940a0c54a xfs: dynamically allocate cursors based on maxlevels
To support future btree code, we need to be able to size btree cursors
dynamically for very large btrees.  Switch the maxlevels computation to
use the precomputed values in the superblock, and create cursors that
can handle a certain height.  For now, we retain the btree cursor cache
that can handle up to 9-level btrees, though a subsequent patch
introduces separate caches for each btree type, where each cache's
objects will be exactly tall enough to handle the specific btree type.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2021-10-19 11:45:15 -07:00
Darrick J. Wong
6ca444cfd6 xfs: prepare xfs_btree_cur for dynamic cursor heights
Split out the btree level information into a separate struct and put it
at the end of the cursor structure as a VLA.  Files with huge data forks
(and in the future, the realtime rmap btree) will require the ability to
support many more levels than a per-AG btree cursor, which means that
we're going to create per-btree type cursor caches to conserve memory
for the more common case.

Note that a subsequent patch actually introduces dynamic cursor heights.
This one merely rearranges the structure to prepare for that.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
2021-10-19 11:45:14 -07:00
Linus Torvalds
2e5fd489a4 libnvdimm for v5.15
- Fix a race condition in the teardown path of raw mode pmem namespaces.
 
 - Cleanup the code that filesystems use to detect filesystem-dax
   capabilities of their underlying block device.
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQSbo+XnGs+rwLz9XGXfioYZHlFsZwUCYTlBMgAKCRDfioYZHlFs
 ZwQLAQCPhwpuOP+Byn7NksotnfmyLNyniK0mX7Me7PoLiyq0oAEAmqBwlr9YP7E3
 NPzWiBzqPCvDIv1YG4C3Vam7ue1osgM=
 =33O+
 -----END PGP SIGNATURE-----

Merge tag 'libnvdimm-for-5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm

Pull libnvdimm updates from Dan Williams:

 - Fix a race condition in the teardown path of raw mode pmem
   namespaces.

 - Cleanup the code that filesystems use to detect filesystem-dax
   capabilities of their underlying block device.

* tag 'libnvdimm-for-5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm:
  dax: remove bdev_dax_supported
  xfs: factor out a xfs_buftarg_is_dax helper
  dax: stub out dax_supported for !CONFIG_FS_DAX
  dax: remove __generic_fsdax_supported
  dax: move the dax_read_lock() locking into dax_supported
  dax: mark dax_get_by_host static
  dm: use fs_dax_get_by_bdev instead of dax_get_by_host
  dax: stop using bdevname
  fsdax: improve the FS_DAX Kconfig description and help text
  libnvdimm/pmem: Fix crash triggered when I/O in-flight during unbind
2021-09-09 11:39:57 -07:00
Linus Torvalds
90c90cda05 New code for 5.15:
- Fix a potential log livelock on busy filesystems when there's so much
    work going on that we can't finish a quotaoff before filling up the log
    by removing the ability to disable quota accounting.
  - Introduce the ability to use per-CPU data structures in XFS so that
    we can do a better job of maintaining CPU locality for certain
    operations.
  - Defer inode inactivation work to per-CPU lists, which will help us
    batch that processing.  Deletions of large sparse files will *appear*
    to run faster, but all that means is that we've moved the work to the
    backend.
  - Drop the EXPERIMENTAL warnings from the y2038+ support and the inode
    btree counters, since it's been nearly a year and no complaints have
    come in.
  - Remove more of our bespoke kmem* variants in favor of using the
    standard Linux calls.
  - Prepare for the addition of log incompat features in upcoming cycles
    by actually adding code to support this.
  - Small cleanups of the xattr code in preparation for landing support
    for full logging of extended attribute updates in a future cycle.
  - Replace the various log shutdown state and flag code all over xfs
    with a single atomic bit flag.
  - Fix a serious log recovery bug where log item replay can be skipped
    based on the start lsn of a transaction even though the transaction
    commit lsn is the key data point for that by enforcing start lsns to
    appear in the log in the same order as commit lsns.
  - Enable pipelining in the code that pushes log items to disk.
  - Drop ->writepage.
  - Fix some bugs in GETFSMAP where the last fsmap record reported for a
    device could extend beyond the end of the device, and a separate bug
    where query keys for one device could be applied to another.
  - Don't let GETFSMAP query functions edit their input parameters.
  - Small cleanups to the scrub code's handling of perag structures.
  - Small cleanups to the incore inode tree walk code.
  - Constify btree function parameters that aren't changed, so that there
    will never again be confusion about range query functions changing
    their input parameters.
  - Standardize the format and names of tracepoint data attributes.
  - Clean up all the mount state and feature flags to use wrapped bitset
    functions instead of inconsistently open-coded flag checks.
  - Fix some confusion between xfs_buf hash table key variable vs. block
    number.
  - Fix a mis-interaction with iomap where we reported shared delalloc
    cow fork extents to iomap, which would cause the iomap unshare
    operation to return IO errors unnecessarily.
  - Fix DONTCACHE behavior.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEUzaAxoMeQq6m2jMV+H93GTRKtOsFAmEnwqcACgkQ+H93GTRK
 tOtpZg/9G1RD9oDbVhKJy67bxkeLPX990dUtQFhcVjL3AMMyCJez2PBTqkQY3tL9
 WDQveIF0UL5TjP5QUO2/6fncIXBmf5yXtinkfeQwkvkStb/yxs10zlpn2ZDEvJ7H
 EUWwkV3cBY6Q+ftJIfXJmNW6eCcaxYs6KFiBwodbcoBxy2dIx6KFBQuqwtxOA97s
 ZYfv1mPGOIg6AVJN9oxFWtF36qM8loFDNQeZj1ATfCsP25VNHbQf7YOFnJEnwLOB
 rzz2zKQ3lP0hWavA6M2lX+IGymDphngx7qe4lZYcjAsh2BzL0IZf0QmFrXGQKuY/
 kD0dWeStM8OHQbqCdkYx4XxcjucvJ7qmIYCtrWdpFqrrrQHygaJW6nI8LgsNTdvb
 OPXpPPz58jdGY3ATaRYX/IFmpJExj655ZHUfpkeVGacBTa5KCVDykYKv1eYOfNsk
 Aj+bZ4g++bx3dlGFHGsPScRn+hwg5h/+UyQJpAYupuaUsq3rpBhH/bhAJNyPUsYu
 ej8LIeAWB3EPLozT4ewop8G0WWDBOe0MlYeO5gQho2AfFZzFInf15cSR62KZqx+v
 XTZgITnnp0ND4wzgqAhgdU4USS9z5MtHGvhSkuYejg85R/bKirrwRu2P0n681sHv
 UioiIVbXGWSAJqDQicfSjncafS3POIAUmMt4tgmDI33/3mTKwZQ=
 =HPJr
 -----END PGP SIGNATURE-----

Merge tag 'xfs-5.15-merge-6' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux

Pull xfs updates from Darrick Wong:
 "There's a lot in this cycle.

  Starting with bug fixes: To avoid livelocks between the logging code
  and the quota code, we've disabled the ability of quotaoff to turn off
  quota accounting. (Admins can still disable quota enforcement, but
  truly turning off accounting requires a remount.) We've tried to do
  this in a careful enough way that there shouldn't be any user visible
  effects aside from quotaoff no longer randomly hanging the system.

  We've also fixed some bugs in runtime log behavior that could trip up
  log recovery if (otherwise unrelated) transactions manage to start and
  commit concurrently; some bugs in the GETFSMAP ioctl where we would
  incorrectly restrict the range of records output if the two xfs
  devices are of different sizes; a bug that resulted in fallocate
  funshare failing unnecessarily; and broken behavior in the xfs inode
  cache when DONTCACHE is in play.

  As for new features: we now batch inode inactivations in percpu
  background threads, which sharply decreases frontend thread wait time
  when performing file deletions and should improve overall directory
  tree deletion times. This eliminates both the problem where closing an
  unlinked file (especially on a frozen fs) can stall for a long time,
  and should also ease complaints about direct reclaim bogging down on
  unlinked file cleanup.

  Starting with this release, we've enabled pipelining of the XFS log.
  On workloads with high rates of metadata updates to different shards
  of the filesystem, multiple threads can be used to format committed
  log updates into log checkpoints.

  Lastly, with this release, two new features have graduated to
  supported status: inode btree counters (for faster mounts), and
  support for dates beyond Y2038. Expect these to be enabled by default
  in a future release of xfsprogs.

  Summary:

   - Fix a potential log livelock on busy filesystems when there's so
     much work going on that we can't finish a quotaoff before filling
     up the log by removing the ability to disable quota accounting.

   - Introduce the ability to use per-CPU data structures in XFS so that
     we can do a better job of maintaining CPU locality for certain
     operations.

   - Defer inode inactivation work to per-CPU lists, which will help us
     batch that processing. Deletions of large sparse files will
     *appear* to run faster, but all that means is that we've moved the
     work to the backend.

   - Drop the EXPERIMENTAL warnings from the y2038+ support and the
     inode btree counters, since it's been nearly a year and no
     complaints have come in.

   - Remove more of our bespoke kmem* variants in favor of using the
     standard Linux calls.

   - Prepare for the addition of log incompat features in upcoming
     cycles by actually adding code to support this.

   - Small cleanups of the xattr code in preparation for landing support
     for full logging of extended attribute updates in a future cycle.

   - Replace the various log shutdown state and flag code all over xfs
     with a single atomic bit flag.

   - Fix a serious log recovery bug where log item replay can be skipped
     based on the start lsn of a transaction even though the transaction
     commit lsn is the key data point for that by enforcing start lsns
     to appear in the log in the same order as commit lsns.

   - Enable pipelining in the code that pushes log items to disk.

   - Drop ->writepage.

   - Fix some bugs in GETFSMAP where the last fsmap record reported for
     a device could extend beyond the end of the device, and a separate
     bug where query keys for one device could be applied to another.

   - Don't let GETFSMAP query functions edit their input parameters.

   - Small cleanups to the scrub code's handling of perag structures.

   - Small cleanups to the incore inode tree walk code.

   - Constify btree function parameters that aren't changed, so that
     there will never again be confusion about range query functions
     changing their input parameters.

   - Standardize the format and names of tracepoint data attributes.

   - Clean up all the mount state and feature flags to use wrapped
     bitset functions instead of inconsistently open-coded flag checks.

   - Fix some confusion between xfs_buf hash table key variable vs.
     block number.

   - Fix a mis-interaction with iomap where we reported shared delalloc
     cow fork extents to iomap, which would cause the iomap unshare
     operation to return IO errors unnecessarily.

   - Fix DONTCACHE behavior"

* tag 'xfs-5.15-merge-6' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: (103 commits)
  xfs: fix I_DONTCACHE
  xfs: only set IOMAP_F_SHARED when providing a srcmap to a write
  xfs: fix perag structure refcounting error when scrub fails
  xfs: rename buffer cache index variable b_bn
  xfs: convert bp->b_bn references to xfs_buf_daddr()
  xfs: introduce xfs_buf_daddr()
  xfs: kill xfs_sb_version_has_v3inode()
  xfs: introduce xfs_sb_is_v5 helper
  xfs: remove unused xfs_sb_version_has wrappers
  xfs: convert xfs_sb_version_has checks to use mount features
  xfs: convert scrub to use mount-based feature checks
  xfs: open code sb verifier feature checks
  xfs: convert xfs_fs_geometry to use mount feature checks
  xfs: replace XFS_FORCED_SHUTDOWN with xfs_is_shutdown
  xfs: convert remaining mount flags to state flags
  xfs: convert mount flags to features
  xfs: consolidate mount option features in m_features
  xfs: replace xfs_sb_version checks with feature flag checks
  xfs: reflect sb features in xfs_mount
  xfs: rework attr2 feature and mount options
  ...
2021-09-02 08:26:03 -07:00
Christoph Hellwig
bdd3c50d83 dax: remove bdev_dax_supported
All callers already have a dax_device obtained from fs_dax_get_by_bdev
at hand, so just pass that to dax_supported() insted of doing another
lookup.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Link: https://lore.kernel.org/r/20210826135510.6293-10-hch@lst.de
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2021-08-26 16:52:03 -07:00
Christoph Hellwig
a384f088e4 xfs: factor out a xfs_buftarg_is_dax helper
Refactor the DAX setup code in preparation of removing
bdev_dax_supported.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Link: https://lore.kernel.org/r/20210826135510.6293-9-hch@lst.de
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2021-08-26 16:52:03 -07:00
Dave Chinner
d6837c1aab xfs: introduce xfs_sb_is_v5 helper
Rather than open coding XFS_SB_VERSION_NUM(sbp) == XFS_SB_VERSION_5
checks everywhere, add a simple wrapper to encapsulate this and make
the code easier to read.

This allows us to remove the xfs_sb_version_has_v3inode() wrapper
which is only used in xfs_format.h now and is just a version number
check.

There are a couple of places where we should be checking the mount
feature bits rather than the superblock version (e.g. remount), so
those are converted to use xfs_has_crc(mp) instead.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-19 10:07:14 -07:00
Dave Chinner
ebd9027d08 xfs: convert xfs_sb_version_has checks to use mount features
This is a conversion of the remaining xfs_sb_version_has..(sbp)
checks to use xfs_has_..(mp) feature checks.

This was largely done with a vim replacement macro that did:

:0,$s/xfs_sb_version_has\(.*\)&\(.*\)->m_sb/xfs_has_\1\2/g<CR>

A couple of other variants were also used, and the rest touched up
by hand.

$ size -t fs/xfs/built-in.a
	   text    data     bss     dec     hex filename
before	1127533  311352     484 1439369  15f689 (TOTALS)
after	1125360  311352     484 1437196  15ee0c (TOTALS)

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-19 10:07:14 -07:00
Dave Chinner
75c8c50fa1 xfs: replace XFS_FORCED_SHUTDOWN with xfs_is_shutdown
Remove the shouty macro and instead use the inline function that
matches other state/feature check wrapper naming. This conversion
was done with sed.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-19 10:07:13 -07:00
Dave Chinner
2e973b2cd4 xfs: convert remaining mount flags to state flags
The remaining mount flags kept in m_flags are actually runtime state
flags. These change dynamically, so they really should be updated
atomically so we don't potentially lose an update due to racing
modifications.

Convert these remaining flags to be stored in m_opstate and use
atomic bitops to set and clear the flags. This also adds a couple of
simple wrappers for common state checks - read only and shutdown.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-19 10:07:13 -07:00
Dave Chinner
0560f31a09 xfs: convert mount flags to features
Replace m_flags feature checks with xfs_has_<feature>() calls and
rework the setup code to set flags in m_features.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-19 10:07:12 -07:00
Dave Chinner
38c26bfd90 xfs: replace xfs_sb_version checks with feature flag checks
Convert the xfs_sb_version_hasfoo() to checks against
mp->m_features. Checks of the superblock itself during disk
operations (e.g. in the read/write verifiers and the to/from disk
formatters) are not converted - they operate purely on the
superblock state. Everything else should use the mount features.

Large parts of this conversion were done with sed with commands like
this:

for f in `git grep -l xfs_sb_version_has fs/xfs/*.c`; do
	sed -i -e 's/xfs_sb_version_has\(.*\)(&\(.*\)->m_sb)/xfs_has_\1(\2)/' $f
done

With manual cleanups for things like "xfs_has_extflgbit" and other
little inconsistencies in naming.

The result is ia lot less typing to check features and an XFS binary
size reduced by a bit over 3kB:

$ size -t fs/xfs/built-in.a
	text	   data	    bss	    dec	    hex	filenam
before	1130866  311352     484 1442702  16038e (TOTALS)
after	1127727  311352     484 1439563  15f74b (TOTALS)

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-19 10:07:12 -07:00
Dave Chinner
e23b55d537 xfs: rework attr2 feature and mount options
The attr2 feature is somewhat unique in that it has both a superblock
feature bit to enable it and mount options to enable and disable it.

Back when it was first introduced in 2005, attr2 was disabled unless
either the attr2 superblock feature bit was set, or the attr2 mount
option was set. If the superblock feature bit was not set but the
mount option was set, then when the first attr2 format inode fork
was created, it would set the superblock feature bit. This is as it
should be - the superblock feature bit indicated the presence of the
attr2 on disk format.

The noattr2 mount option, however, did not affect the superblock
feature bit. If noattr2 was specified, the on-disk superblock
feature bit was ignored and the code always just created attr1
format inode forks.  If neither of the attr2 or noattr2 mounts
option were specified, then the behaviour was determined by the
superblock feature bit.

This was all pretty sane.

Fast foward 3 years, and we are dealing with fallout from the
botched sb_features2 addition and having to deal with feature
mismatches between the sb_features2 and sb_bad_features2 fields. The
attr2 feature bit was one of these flags. The reconciliation was
done well after mount option parsing and, unfortunately, the feature
reconciliation had a bug where it ignored the noattr2 mount option.

For reasons lost to the mists of time, it was decided that resolving
this issue in commit 7c12f29650 ("[XFS] Fix up noattr2 so that it
will properly update the versionnum and features2 fields.") required
noattr2 to clear the superblock attr2 feature bit.  This greatly
complicated the attr2 behaviour and broke rules about feature bits
needing to be set when those specific features are present in the
filesystem.

By complicated, I mean that it introduced problems due to feature
bit interactions with log recovery. All of the superblock feature
bit checks are done prior to log recovery, but if we crash after
removing a feature bit, then on the next mount we see the feature
bit in the unrecovered superblock, only to have it go away after the
log has been replayed.  This means our mount time feature processing
could be all wrong.

Hence you can mount with noattr2, crash shortly afterwards, and
mount again without attr2 or noattr2 and still have attr2 enabled
because the second mount sees attr2 still enabled in the superblock
before recovery runs and removes the feature bit. It's just a mess.

Further, this is all legacy code as the v5 format requires attr2 to
be enabled at all times and it cannot be disabled.  i.e. the noattr2
mount option returns an error when used on v5 format filesystems.

To straighten this all out, this patch reverts the attr2/noattr2
mount option behaviour back to the original behaviour. There is no
reason for disabling attr2 these days, so we will only do this when
the noattr2 mount option is set. This will not remove the superblock
feature bit. The superblock bit will provide the default behaviour
and only track whether attr2 is present on disk or not. The attr2
mount option will enable the creation of attr2 format inode forks,
and if the superblock feature bit is not set it will be added when
the first attr2 inode fork is created.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-19 10:07:11 -07:00
Dave Chinner
33c0dd7898 xfs: move the CIL workqueue to the CIL
We only use the CIL workqueue in the CIL, so it makes no sense to
hang it off the xfs_mount and have to walk multiple pointers back up
to the mount when we have the CIL structures right there.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-16 12:09:30 -07:00
Dave Chinner
39823d0fac xfs: CIL work is serialised, not pipelined
Because we use a single work structure attached to the CIL rather
than the CIL context, we can only queue a single work item at a
time. This results in the CIL being single threaded and limits
performance when it becomes CPU bound.

The design of the CIL is that it is pipelined and multiple commits
can be running concurrently, but the way the work is currently
implemented means that it is not pipelining as it was intended. The
critical work to switch the CIL context can take a few milliseconds
to run, but the rest of the CIL context flush can take hundreds of
milliseconds to complete. The context switching is the serialisation
point of the CIL, once the context has been switched the rest of the
context push can run asynchrnously with all other context pushes.

Hence we can move the work to the CIL context so that we can run
multiple CIL pushes at the same time and spread the majority of
the work out over multiple CPUs. We can keep the per-cpu CIL commit
state on the CIL rather than the context, because the context is
pinned to the CIL until the switch is done and we aggregate and
drain the per-cpu state held on the CIL during the context switch.

However, because we no longer serialise the CIL work, we can have
effectively unlimited CIL pushes in progress. We don't want to do
this - not only does it create contention on the iclogs and the
state machine locks, we can run the log right out of space with
outstanding pushes. Instead, limit the work concurrency to 4
concurrent works being processed at a time. This is enough
concurrency to remove the CIL from being a CPU bound bottleneck but
not enough to create new contention points or unbound concurrency
issues.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-16 12:09:30 -07:00
Dave Chinner
e1d06e5f66 xfs: convert log flags to an operational state field
log->l_flags doesn't actually contain "flags" as such, it contains
operational state information that can change at runtime. For the
shutdown state, this at least should be an atomic bit because
it is read without holding locks in many places and so using atomic
bitops for the state field modifications makes sense.

This allows us to use things like test_and_set_bit() on state
changes (e.g. setting XLOG_TAIL_WARN) to avoid races in setting the
state when we aren't holding locks.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-16 12:09:28 -07:00