Commit graph

543 commits

Author SHA1 Message Date
Yonghong Song
0d4fad3e57 bpf: Add bpf_skc_to_udp6_sock() helper
The helper is used in tracing programs to cast a socket
pointer to a udp6_sock pointer.
The return value could be NULL if the casting is illegal.

Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Cc: Eric Dumazet <edumazet@google.com>
Link: https://lore.kernel.org/bpf/20200623230815.3988481-1-yhs@fb.com
2020-06-24 18:37:59 -07:00
Yonghong Song
478cfbdf5f bpf: Add bpf_skc_to_{tcp, tcp_timewait, tcp_request}_sock() helpers
Three more helpers are added to cast a sock_common pointer to
an tcp_sock, tcp_timewait_sock or a tcp_request_sock for
tracing programs.

Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20200623230811.3988277-1-yhs@fb.com
2020-06-24 18:37:59 -07:00
Yonghong Song
af7ec13833 bpf: Add bpf_skc_to_tcp6_sock() helper
The helper is used in tracing programs to cast a socket
pointer to a tcp6_sock pointer.
The return value could be NULL if the casting is illegal.

A new helper return type RET_PTR_TO_BTF_ID_OR_NULL is added
so the verifier is able to deduce proper return types for the helper.

Different from the previous BTF_ID based helpers,
the bpf_skc_to_tcp6_sock() argument can be several possible
btf_ids. More specifically, all possible socket data structures
with sock_common appearing in the first in the memory layout.
This patch only added socket types related to tcp and udp.

All possible argument btf_id and return value btf_id
for helper bpf_skc_to_tcp6_sock() are pre-calculcated and
cached. In the future, it is even possible to precompute
these btf_id's at kernel build time.

Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20200623230809.3988195-1-yhs@fb.com
2020-06-24 18:37:59 -07:00
Andrey Ignatov
41c48f3a98 bpf: Support access to bpf map fields
There are multiple use-cases when it's convenient to have access to bpf
map fields, both `struct bpf_map` and map type specific struct-s such as
`struct bpf_array`, `struct bpf_htab`, etc.

For example while working with sock arrays it can be necessary to
calculate the key based on map->max_entries (some_hash % max_entries).
Currently this is solved by communicating max_entries via "out-of-band"
channel, e.g. via additional map with known key to get info about target
map. That works, but is not very convenient and error-prone while
working with many maps.

In other cases necessary data is dynamic (i.e. unknown at loading time)
and it's impossible to get it at all. For example while working with a
hash table it can be convenient to know how much capacity is already
used (bpf_htab.count.counter for BPF_F_NO_PREALLOC case).

At the same time kernel knows this info and can provide it to bpf
program.

Fill this gap by adding support to access bpf map fields from bpf
program for both `struct bpf_map` and map type specific fields.

Support is implemented via btf_struct_access() so that a user can define
their own `struct bpf_map` or map type specific struct in their program
with only necessary fields and preserve_access_index attribute, cast a
map to this struct and use a field.

For example:

	struct bpf_map {
		__u32 max_entries;
	} __attribute__((preserve_access_index));

	struct bpf_array {
		struct bpf_map map;
		__u32 elem_size;
	} __attribute__((preserve_access_index));

	struct {
		__uint(type, BPF_MAP_TYPE_ARRAY);
		__uint(max_entries, 4);
		__type(key, __u32);
		__type(value, __u32);
	} m_array SEC(".maps");

	SEC("cgroup_skb/egress")
	int cg_skb(void *ctx)
	{
		struct bpf_array *array = (struct bpf_array *)&m_array;
		struct bpf_map *map = (struct bpf_map *)&m_array;

		/* .. use map->max_entries or array->map.max_entries .. */
	}

Similarly to other btf_struct_access() use-cases (e.g. struct tcp_sock
in net/ipv4/bpf_tcp_ca.c) the patch allows access to any fields of
corresponding struct. Only reading from map fields is supported.

For btf_struct_access() to work there should be a way to know btf id of
a struct that corresponds to a map type. To get btf id there should be a
way to get a stringified name of map-specific struct, such as
"bpf_array", "bpf_htab", etc for a map type. Two new fields are added to
`struct bpf_map_ops` to handle it:
* .map_btf_name keeps a btf name of a struct returned by map_alloc();
* .map_btf_id is used to cache btf id of that struct.

To make btf ids calculation cheaper they're calculated once while
preparing btf_vmlinux and cached same way as it's done for btf_id field
of `struct bpf_func_proto`

While calculating btf ids, struct names are NOT checked for collision.
Collisions will be checked as a part of the work to prepare btf ids used
in verifier in compile time that should land soon. The only known
collision for `struct bpf_htab` (kernel/bpf/hashtab.c vs
net/core/sock_map.c) was fixed earlier.

Both new fields .map_btf_name and .map_btf_id must be set for a map type
for the feature to work. If neither is set for a map type, verifier will
return ENOTSUPP on a try to access map_ptr of corresponding type. If
just one of them set, it's verifier misconfiguration.

Only `struct bpf_array` for BPF_MAP_TYPE_ARRAY and `struct bpf_htab` for
BPF_MAP_TYPE_HASH are supported by this patch. Other map types will be
supported separately.

The feature is available only for CONFIG_DEBUG_INFO_BTF=y and gated by
perfmon_capable() so that unpriv programs won't have access to bpf map
fields.

Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/6479686a0cd1e9067993df57b4c3eef0e276fec9.1592600985.git.rdna@fb.com
2020-06-22 22:22:58 +02:00
Jiri Olsa
958a3f2d2a bpf: Use tracing helpers for lsm programs
Currenty lsm uses bpf_tracing_func_proto helpers which do
not include stack trace or perf event output. It's useful
to have those for bpftrace lsm support [1].

Using tracing_prog_func_proto helpers for lsm programs.

[1] https://github.com/iovisor/bpftrace/pull/1347

Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Cc: KP Singh <kpsingh@google.com>
Link: https://lore.kernel.org/bpf/20200531154255.896551-1-jolsa@kernel.org
2020-06-01 15:08:04 -07:00
David Ahern
fbee97feed bpf: Add support to attach bpf program to a devmap entry
Add BPF_XDP_DEVMAP attach type for use with programs associated with a
DEVMAP entry.

Allow DEVMAPs to associate a program with a device entry by adding
a bpf_prog.fd to 'struct bpf_devmap_val'. Values read show the program
id, so the fd and id are a union. bpf programs can get access to the
struct via vmlinux.h.

The program associated with the fd must have type XDP with expected
attach type BPF_XDP_DEVMAP. When a program is associated with a device
index, the program is run on an XDP_REDIRECT and before the buffer is
added to the per-cpu queue. At this point rxq data is still valid; the
next patch adds tx device information allowing the prorgam to see both
ingress and egress device indices.

XDP generic is skb based and XDP programs do not work with skb's. Block
the use case by walking maps used by a program that is to be attached
via xdpgeneric and fail if any of them are DEVMAP / DEVMAP_HASH with

Block attach of BPF_XDP_DEVMAP programs to devices.

Signed-off-by: David Ahern <dsahern@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20200529220716.75383-3-dsahern@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2020-06-01 14:48:32 -07:00
Andrii Nakryiko
457f44363a bpf: Implement BPF ring buffer and verifier support for it
This commit adds a new MPSC ring buffer implementation into BPF ecosystem,
which allows multiple CPUs to submit data to a single shared ring buffer. On
the consumption side, only single consumer is assumed.

Motivation
----------
There are two distinctive motivators for this work, which are not satisfied by
existing perf buffer, which prompted creation of a new ring buffer
implementation.
  - more efficient memory utilization by sharing ring buffer across CPUs;
  - preserving ordering of events that happen sequentially in time, even
  across multiple CPUs (e.g., fork/exec/exit events for a task).

These two problems are independent, but perf buffer fails to satisfy both.
Both are a result of a choice to have per-CPU perf ring buffer.  Both can be
also solved by having an MPSC implementation of ring buffer. The ordering
problem could technically be solved for perf buffer with some in-kernel
counting, but given the first one requires an MPSC buffer, the same solution
would solve the second problem automatically.

Semantics and APIs
------------------
Single ring buffer is presented to BPF programs as an instance of BPF map of
type BPF_MAP_TYPE_RINGBUF. Two other alternatives considered, but ultimately
rejected.

One way would be to, similar to BPF_MAP_TYPE_PERF_EVENT_ARRAY, make
BPF_MAP_TYPE_RINGBUF could represent an array of ring buffers, but not enforce
"same CPU only" rule. This would be more familiar interface compatible with
existing perf buffer use in BPF, but would fail if application needed more
advanced logic to lookup ring buffer by arbitrary key. HASH_OF_MAPS addresses
this with current approach. Additionally, given the performance of BPF
ringbuf, many use cases would just opt into a simple single ring buffer shared
among all CPUs, for which current approach would be an overkill.

Another approach could introduce a new concept, alongside BPF map, to
represent generic "container" object, which doesn't necessarily have key/value
interface with lookup/update/delete operations. This approach would add a lot
of extra infrastructure that has to be built for observability and verifier
support. It would also add another concept that BPF developers would have to
familiarize themselves with, new syntax in libbpf, etc. But then would really
provide no additional benefits over the approach of using a map.
BPF_MAP_TYPE_RINGBUF doesn't support lookup/update/delete operations, but so
doesn't few other map types (e.g., queue and stack; array doesn't support
delete, etc).

The approach chosen has an advantage of re-using existing BPF map
infrastructure (introspection APIs in kernel, libbpf support, etc), being
familiar concept (no need to teach users a new type of object in BPF program),
and utilizing existing tooling (bpftool). For common scenario of using
a single ring buffer for all CPUs, it's as simple and straightforward, as
would be with a dedicated "container" object. On the other hand, by being
a map, it can be combined with ARRAY_OF_MAPS and HASH_OF_MAPS map-in-maps to
implement a wide variety of topologies, from one ring buffer for each CPU
(e.g., as a replacement for perf buffer use cases), to a complicated
application hashing/sharding of ring buffers (e.g., having a small pool of
ring buffers with hashed task's tgid being a look up key to preserve order,
but reduce contention).

Key and value sizes are enforced to be zero. max_entries is used to specify
the size of ring buffer and has to be a power of 2 value.

There are a bunch of similarities between perf buffer
(BPF_MAP_TYPE_PERF_EVENT_ARRAY) and new BPF ring buffer semantics:
  - variable-length records;
  - if there is no more space left in ring buffer, reservation fails, no
    blocking;
  - memory-mappable data area for user-space applications for ease of
    consumption and high performance;
  - epoll notifications for new incoming data;
  - but still the ability to do busy polling for new data to achieve the
    lowest latency, if necessary.

BPF ringbuf provides two sets of APIs to BPF programs:
  - bpf_ringbuf_output() allows to *copy* data from one place to a ring
    buffer, similarly to bpf_perf_event_output();
  - bpf_ringbuf_reserve()/bpf_ringbuf_commit()/bpf_ringbuf_discard() APIs
    split the whole process into two steps. First, a fixed amount of space is
    reserved. If successful, a pointer to a data inside ring buffer data area
    is returned, which BPF programs can use similarly to a data inside
    array/hash maps. Once ready, this piece of memory is either committed or
    discarded. Discard is similar to commit, but makes consumer ignore the
    record.

bpf_ringbuf_output() has disadvantage of incurring extra memory copy, because
record has to be prepared in some other place first. But it allows to submit
records of the length that's not known to verifier beforehand. It also closely
matches bpf_perf_event_output(), so will simplify migration significantly.

bpf_ringbuf_reserve() avoids the extra copy of memory by providing a memory
pointer directly to ring buffer memory. In a lot of cases records are larger
than BPF stack space allows, so many programs have use extra per-CPU array as
a temporary heap for preparing sample. bpf_ringbuf_reserve() avoid this needs
completely. But in exchange, it only allows a known constant size of memory to
be reserved, such that verifier can verify that BPF program can't access
memory outside its reserved record space. bpf_ringbuf_output(), while slightly
slower due to extra memory copy, covers some use cases that are not suitable
for bpf_ringbuf_reserve().

The difference between commit and discard is very small. Discard just marks
a record as discarded, and such records are supposed to be ignored by consumer
code. Discard is useful for some advanced use-cases, such as ensuring
all-or-nothing multi-record submission, or emulating temporary malloc()/free()
within single BPF program invocation.

Each reserved record is tracked by verifier through existing
reference-tracking logic, similar to socket ref-tracking. It is thus
impossible to reserve a record, but forget to submit (or discard) it.

bpf_ringbuf_query() helper allows to query various properties of ring buffer.
Currently 4 are supported:
  - BPF_RB_AVAIL_DATA returns amount of unconsumed data in ring buffer;
  - BPF_RB_RING_SIZE returns the size of ring buffer;
  - BPF_RB_CONS_POS/BPF_RB_PROD_POS returns current logical possition of
    consumer/producer, respectively.
Returned values are momentarily snapshots of ring buffer state and could be
off by the time helper returns, so this should be used only for
debugging/reporting reasons or for implementing various heuristics, that take
into account highly-changeable nature of some of those characteristics.

One such heuristic might involve more fine-grained control over poll/epoll
notifications about new data availability in ring buffer. Together with
BPF_RB_NO_WAKEUP/BPF_RB_FORCE_WAKEUP flags for output/commit/discard helpers,
it allows BPF program a high degree of control and, e.g., more efficient
batched notifications. Default self-balancing strategy, though, should be
adequate for most applications and will work reliable and efficiently already.

Design and implementation
-------------------------
This reserve/commit schema allows a natural way for multiple producers, either
on different CPUs or even on the same CPU/in the same BPF program, to reserve
independent records and work with them without blocking other producers. This
means that if BPF program was interruped by another BPF program sharing the
same ring buffer, they will both get a record reserved (provided there is
enough space left) and can work with it and submit it independently. This
applies to NMI context as well, except that due to using a spinlock during
reservation, in NMI context, bpf_ringbuf_reserve() might fail to get a lock,
in which case reservation will fail even if ring buffer is not full.

The ring buffer itself internally is implemented as a power-of-2 sized
circular buffer, with two logical and ever-increasing counters (which might
wrap around on 32-bit architectures, that's not a problem):
  - consumer counter shows up to which logical position consumer consumed the
    data;
  - producer counter denotes amount of data reserved by all producers.

Each time a record is reserved, producer that "owns" the record will
successfully advance producer counter. At that point, data is still not yet
ready to be consumed, though. Each record has 8 byte header, which contains
the length of reserved record, as well as two extra bits: busy bit to denote
that record is still being worked on, and discard bit, which might be set at
commit time if record is discarded. In the latter case, consumer is supposed
to skip the record and move on to the next one. Record header also encodes
record's relative offset from the beginning of ring buffer data area (in
pages). This allows bpf_ringbuf_commit()/bpf_ringbuf_discard() to accept only
the pointer to the record itself, without requiring also the pointer to ring
buffer itself. Ring buffer memory location will be restored from record
metadata header. This significantly simplifies verifier, as well as improving
API usability.

Producer counter increments are serialized under spinlock, so there is
a strict ordering between reservations. Commits, on the other hand, are
completely lockless and independent. All records become available to consumer
in the order of reservations, but only after all previous records where
already committed. It is thus possible for slow producers to temporarily hold
off submitted records, that were reserved later.

Reservation/commit/consumer protocol is verified by litmus tests in
Documentation/litmus-test/bpf-rb.

One interesting implementation bit, that significantly simplifies (and thus
speeds up as well) implementation of both producers and consumers is how data
area is mapped twice contiguously back-to-back in the virtual memory. This
allows to not take any special measures for samples that have to wrap around
at the end of the circular buffer data area, because the next page after the
last data page would be first data page again, and thus the sample will still
appear completely contiguous in virtual memory. See comment and a simple ASCII
diagram showing this visually in bpf_ringbuf_area_alloc().

Another feature that distinguishes BPF ringbuf from perf ring buffer is
a self-pacing notifications of new data being availability.
bpf_ringbuf_commit() implementation will send a notification of new record
being available after commit only if consumer has already caught up right up
to the record being committed. If not, consumer still has to catch up and thus
will see new data anyways without needing an extra poll notification.
Benchmarks (see tools/testing/selftests/bpf/benchs/bench_ringbuf.c) show that
this allows to achieve a very high throughput without having to resort to
tricks like "notify only every Nth sample", which are necessary with perf
buffer. For extreme cases, when BPF program wants more manual control of
notifications, commit/discard/output helpers accept BPF_RB_NO_WAKEUP and
BPF_RB_FORCE_WAKEUP flags, which give full control over notifications of data
availability, but require extra caution and diligence in using this API.

Comparison to alternatives
--------------------------
Before considering implementing BPF ring buffer from scratch existing
alternatives in kernel were evaluated, but didn't seem to meet the needs. They
largely fell into few categores:
  - per-CPU buffers (perf, ftrace, etc), which don't satisfy two motivations
    outlined above (ordering and memory consumption);
  - linked list-based implementations; while some were multi-producer designs,
    consuming these from user-space would be very complicated and most
    probably not performant; memory-mapping contiguous piece of memory is
    simpler and more performant for user-space consumers;
  - io_uring is SPSC, but also requires fixed-sized elements. Naively turning
    SPSC queue into MPSC w/ lock would have subpar performance compared to
    locked reserve + lockless commit, as with BPF ring buffer. Fixed sized
    elements would be too limiting for BPF programs, given existing BPF
    programs heavily rely on variable-sized perf buffer already;
  - specialized implementations (like a new printk ring buffer, [0]) with lots
    of printk-specific limitations and implications, that didn't seem to fit
    well for intended use with BPF programs.

  [0] https://lwn.net/Articles/779550/

Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200529075424.3139988-2-andriin@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2020-06-01 14:38:22 -07:00
Alexei Starovoitov
2c78ee898d bpf: Implement CAP_BPF
Implement permissions as stated in uapi/linux/capability.h
In order to do that the verifier allow_ptr_leaks flag is split
into four flags and they are set as:
  env->allow_ptr_leaks = bpf_allow_ptr_leaks();
  env->bypass_spec_v1 = bpf_bypass_spec_v1();
  env->bypass_spec_v4 = bpf_bypass_spec_v4();
  env->bpf_capable = bpf_capable();

The first three currently equivalent to perfmon_capable(), since leaking kernel
pointers and reading kernel memory via side channel attacks is roughly
equivalent to reading kernel memory with cap_perfmon.

'bpf_capable' enables bounded loops, precision tracking, bpf to bpf calls and
other verifier features. 'allow_ptr_leaks' enable ptr leaks, ptr conversions,
subtraction of pointers. 'bypass_spec_v1' disables speculative analysis in the
verifier, run time mitigations in bpf array, and enables indirect variable
access in bpf programs. 'bypass_spec_v4' disables emission of sanitation code
by the verifier.

That means that the networking BPF program loaded with CAP_BPF + CAP_NET_ADMIN
will have speculative checks done by the verifier and other spectre mitigation
applied. Such networking BPF program will not be able to leak kernel pointers
and will not be able to access arbitrary kernel memory.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200513230355.7858-3-alexei.starovoitov@gmail.com
2020-05-15 17:29:41 +02:00
Yonghong Song
3c32cc1bce bpf: Enable bpf_iter targets registering ctx argument types
Commit b121b341e5 ("bpf: Add PTR_TO_BTF_ID_OR_NULL
support") adds a field btf_id_or_null_non0_off to
bpf_prog->aux structure to indicate that the
first ctx argument is PTR_TO_BTF_ID reg_type and
all others are PTR_TO_BTF_ID_OR_NULL.
This approach does not really scale if we have
other different reg types in the future, e.g.,
a pointer to a buffer.

This patch enables bpf_iter targets registering ctx argument
reg types which may be different from the default one.
For example, for pointers to structures, the default reg_type
is PTR_TO_BTF_ID for tracing program. The target can register
a particular pointer type as PTR_TO_BTF_ID_OR_NULL which can
be used by the verifier to enforce accesses.

Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200513180221.2949882-1-yhs@fb.com
2020-05-13 12:30:50 -07:00
Yonghong Song
ab2ee4fcb9 bpf: Change func bpf_iter_unreg_target() signature
Change func bpf_iter_unreg_target() parameter from target
name to target reg_info, similar to bpf_iter_reg_target().

Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200513180220.2949737-1-yhs@fb.com
2020-05-13 12:30:50 -07:00
Yonghong Song
15172a46fa bpf: net: Refactor bpf_iter target registration
Currently bpf_iter_reg_target takes parameters from target
and allocates memory to save them. This is really not
necessary, esp. in the future we may grow information
passed from targets to bpf_iter manager.

The patch refactors the code so target reg_info
becomes static and bpf_iter manager can just take
a reference to it.

Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200513180219.2949605-1-yhs@fb.com
2020-05-13 12:30:50 -07:00
Yonghong Song
21aef70ead bpf: Change btf_iter func proto prefix to "bpf_iter_"
This is to be consistent with tracing and lsm programs
which have prefix "bpf_trace_" and "bpf_lsm_" respectively.

Suggested-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200513180216.2949387-1-yhs@fb.com
2020-05-13 12:30:49 -07:00
Yonghong Song
b121b341e5 bpf: Add PTR_TO_BTF_ID_OR_NULL support
Add bpf_reg_type PTR_TO_BTF_ID_OR_NULL support.
For tracing/iter program, the bpf program context
definition, e.g., for previous bpf_map target, looks like
  struct bpf_iter__bpf_map {
    struct bpf_iter_meta *meta;
    struct bpf_map *map;
  };

The kernel guarantees that meta is not NULL, but
map pointer maybe NULL. The NULL map indicates that all
objects have been traversed, so bpf program can take
proper action, e.g., do final aggregation and/or send
final report to user space.

Add btf_id_or_null_non0_off to prog->aux structure, to
indicate that if the context access offset is not 0,
set to PTR_TO_BTF_ID_OR_NULL instead of PTR_TO_BTF_ID.
This bit is set for tracing/iter program.

Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200509175912.2476576-1-yhs@fb.com
2020-05-09 17:05:26 -07:00
Yonghong Song
6086d29def bpf: Add bpf_map iterator
Implement seq_file operations to traverse all bpf_maps.

Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200509175909.2476096-1-yhs@fb.com
2020-05-09 17:05:26 -07:00
Yonghong Song
e5158d987b bpf: Implement common macros/helpers for target iterators
Macro DEFINE_BPF_ITER_FUNC is implemented so target
can define an init function to capture the BTF type
which represents the target.

The bpf_iter_meta is a structure holding meta data, common
to all targets in the bpf program.

Additional marker functions are called before or after
bpf_seq_read() show()/next()/stop() callback functions
to help calculate precise seq_num and whether call bpf_prog
inside stop().

Two functions, bpf_iter_get_info() and bpf_iter_run_prog(),
are implemented so target can get needed information from
bpf_iter infrastructure and can run the program.

Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200509175907.2475956-1-yhs@fb.com
2020-05-09 17:05:26 -07:00
Yonghong Song
367ec3e483 bpf: Create file bpf iterator
To produce a file bpf iterator, the fd must be
corresponding to a link_fd assocciated with a
trace/iter program. When the pinned file is
opened, a seq_file will be generated.

Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200509175906.2475893-1-yhs@fb.com
2020-05-09 17:05:26 -07:00
Yonghong Song
ac51d99bf8 bpf: Create anonymous bpf iterator
A new bpf command BPF_ITER_CREATE is added.

The anonymous bpf iterator is seq_file based.
The seq_file private data are referenced by targets.
The bpf_iter infrastructure allocated additional space
at seq_file->private before the space used by targets
to store some meta data, e.g.,
  prog:       prog to run
  session_id: an unique id for each opened seq_file
  seq_num:    how many times bpf programs are queried in this session
  done_stop:  an internal state to decide whether bpf program
              should be called in seq_ops->stop() or not

The seq_num will start from 0 for valid objects.
The bpf program may see the same seq_num more than once if
 - seq_file buffer overflow happens and the same object
   is retried by bpf_seq_read(), or
 - the bpf program explicitly requests a retry of the
   same object

Since module is not supported for bpf_iter, all target
registeration happens at __init time, so there is no
need to change bpf_iter_unreg_target() as it is used
mostly in error path of the init function at which time
no bpf iterators have been created yet.

Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200509175905.2475770-1-yhs@fb.com
2020-05-09 17:05:26 -07:00
Yonghong Song
de4e05cac4 bpf: Support bpf tracing/iter programs for BPF_LINK_CREATE
Given a bpf program, the step to create an anonymous bpf iterator is:
  - create a bpf_iter_link, which combines bpf program and the target.
    In the future, there could be more information recorded in the link.
    A link_fd will be returned to the user space.
  - create an anonymous bpf iterator with the given link_fd.

The bpf_iter_link can be pinned to bpffs mount file system to
create a file based bpf iterator as well.

The benefit to use of bpf_iter_link:
  - using bpf link simplifies design and implementation as bpf link
    is used for other tracing bpf programs.
  - for file based bpf iterator, bpf_iter_link provides a standard
    way to replace underlying bpf programs.
  - for both anonymous and free based iterators, bpf link query
    capability can be leveraged.

The patch added support of tracing/iter programs for BPF_LINK_CREATE.
A new link type BPF_LINK_TYPE_ITER is added to facilitate link
querying. Currently, only prog_id is needed, so there is no
additional in-kernel show_fdinfo() and fill_link_info() hook
is needed for BPF_LINK_TYPE_ITER link.

Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200509175901.2475084-1-yhs@fb.com
2020-05-09 17:05:26 -07:00
Yonghong Song
15d83c4d7c bpf: Allow loading of a bpf_iter program
A bpf_iter program is a tracing program with attach type
BPF_TRACE_ITER. The load attribute
  attach_btf_id
is used by the verifier against a particular kernel function,
which represents a target, e.g., __bpf_iter__bpf_map
for target bpf_map which is implemented later.

The program return value must be 0 or 1 for now.
  0 : successful, except potential seq_file buffer overflow
      which is handled by seq_file reader.
  1 : request to restart the same object

In the future, other return values may be used for filtering or
teminating the iterator.

Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200509175900.2474947-1-yhs@fb.com
2020-05-09 17:05:26 -07:00
Yonghong Song
ae24345da5 bpf: Implement an interface to register bpf_iter targets
The target can call bpf_iter_reg_target() to register itself.
The needed information:
  target:           target name
  seq_ops:          the seq_file operations for the target
  init_seq_private  target callback to initialize seq_priv during file open
  fini_seq_private  target callback to clean up seq_priv during file release
  seq_priv_size:    the private_data size needed by the seq_file
                    operations

The target name represents a target which provides a seq_ops
for iterating objects.

The target can provide two callback functions, init_seq_private
and fini_seq_private, called during file open/release time.
For example, /proc/net/{tcp6, ipv6_route, netlink, ...}, net
name space needs to be setup properly during file open and
released properly during file release.

Function bpf_iter_unreg_target() is also implemented to unregister
a particular target.

Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200509175859.2474669-1-yhs@fb.com
2020-05-09 17:05:25 -07:00
Song Liu
d46edd671a bpf: Sharing bpf runtime stats with BPF_ENABLE_STATS
Currently, sysctl kernel.bpf_stats_enabled controls BPF runtime stats.
Typical userspace tools use kernel.bpf_stats_enabled as follows:

  1. Enable kernel.bpf_stats_enabled;
  2. Check program run_time_ns;
  3. Sleep for the monitoring period;
  4. Check program run_time_ns again, calculate the difference;
  5. Disable kernel.bpf_stats_enabled.

The problem with this approach is that only one userspace tool can toggle
this sysctl. If multiple tools toggle the sysctl at the same time, the
measurement may be inaccurate.

To fix this problem while keep backward compatibility, introduce a new
bpf command BPF_ENABLE_STATS. On success, this command enables stats and
returns a valid fd. BPF_ENABLE_STATS takes argument "type". Currently,
only one type, BPF_STATS_RUN_TIME, is supported. We can extend the
command to support other types of stats in the future.

With BPF_ENABLE_STATS, user space tool would have the following flow:

  1. Get a fd with BPF_ENABLE_STATS, and make sure it is valid;
  2. Check program run_time_ns;
  3. Sleep for the monitoring period;
  4. Check program run_time_ns again, calculate the difference;
  5. Close the fd.

Signed-off-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200430071506.1408910-2-songliubraving@fb.com
2020-05-01 10:36:32 -07:00
Andrii Nakryiko
f2e10bff16 bpf: Add support for BPF_OBJ_GET_INFO_BY_FD for bpf_link
Add ability to fetch bpf_link details through BPF_OBJ_GET_INFO_BY_FD command.
Also enhance show_fdinfo to potentially include bpf_link type-specific
information (similarly to obj_info).

Also introduce enum bpf_link_type stored in bpf_link itself and expose it in
UAPI. bpf_link_tracing also now will store and return bpf_attach_type.

Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200429001614.1544-5-andriin@fb.com
2020-04-28 17:27:08 -07:00
Andrii Nakryiko
a3b80e1078 bpf: Allocate ID for bpf_link
Generate ID for each bpf_link using IDR, similarly to bpf_map and bpf_prog.
bpf_link creation, initialization, attachment, and exposing to user-space
through FD and ID is a complicated multi-step process, abstract it away
through bpf_link_primer and bpf_link_prime(), bpf_link_settle(), and
bpf_link_cleanup() internal API. They guarantee that until bpf_link is
properly attached, user-space won't be able to access partially-initialized
bpf_link either from FD or ID. All this allows to simplify bpf_link attachment
and error handling code.

Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200429001614.1544-3-andriin@fb.com
2020-04-28 17:27:08 -07:00
Andrii Nakryiko
f9d041271c bpf: Refactor bpf_link update handling
Make bpf_link update support more generic by making it into another
bpf_link_ops methods. This allows generic syscall handling code to be agnostic
to various conditionally compiled features (e.g., the case of
CONFIG_CGROUP_BPF). This also allows to keep link type-specific code to remain
static within respective code base. Refactor existing bpf_cgroup_link code and
take advantage of this.

Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200429001614.1544-2-andriin@fb.com
2020-04-28 17:27:07 -07:00
Maciej Żenczykowski
71d1921477 bpf: add bpf_ktime_get_boot_ns()
On a device like a cellphone which is constantly suspending
and resuming CLOCK_MONOTONIC is not particularly useful for
keeping track of or reacting to external network events.
Instead you want to use CLOCK_BOOTTIME.

Hence add bpf_ktime_get_boot_ns() as a mirror of bpf_ktime_get_ns()
based around CLOCK_BOOTTIME instead of CLOCK_MONOTONIC.

Signed-off-by: Maciej Żenczykowski <maze@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2020-04-26 09:43:05 -07:00
Stanislav Fomichev
6890896bd7 bpf: Fix missing bpf_base_func_proto in cgroup_base_func_proto for CGROUP_NET=n
linux-next build bot reported compile issue [1] with one of its
configs. It looks like when we have CONFIG_NET=n and
CONFIG_BPF{,_SYSCALL}=y, we are missing the bpf_base_func_proto
definition (from net/core/filter.c) in cgroup_base_func_proto.

I'm reshuffling the code a bit to make it work. The common helpers
are moved into kernel/bpf/helpers.c and the bpf_base_func_proto is
exported from there.
Also, bpf_get_raw_cpu_id goes into kernel/bpf/core.c akin to existing
bpf_user_rnd_u32.

[1] https://lore.kernel.org/linux-next/CAKH8qBsBvKHswiX1nx40LgO+BGeTmb1NX8tiTttt_0uu6T3dCA@mail.gmail.com/T/#mff8b0c083314c68c2e2ef0211cb11bc20dc13c72

Fixes: 0456ea170c ("bpf: Enable more helpers for BPF_PROG_TYPE_CGROUP_{DEVICE,SYSCTL,SOCKOPT}")
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Cc: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200424235941.58382-1-sdf@google.com
2020-04-26 08:53:13 -07:00
Stanislav Fomichev
0456ea170c bpf: Enable more helpers for BPF_PROG_TYPE_CGROUP_{DEVICE,SYSCTL,SOCKOPT}
Currently the following prog types don't fall back to bpf_base_func_proto()
(instead they have cgroup_base_func_proto which has a limited set of
helpers from bpf_base_func_proto):
* BPF_PROG_TYPE_CGROUP_DEVICE
* BPF_PROG_TYPE_CGROUP_SYSCTL
* BPF_PROG_TYPE_CGROUP_SOCKOPT

I don't see any specific reason why we shouldn't use bpf_base_func_proto(),
every other type of program (except bpf-lirc and, understandably, tracing)
use it, so let's fall back to bpf_base_func_proto for those prog types
as well.

This basically boils down to adding access to the following helpers:
* BPF_FUNC_get_prandom_u32
* BPF_FUNC_get_smp_processor_id
* BPF_FUNC_get_numa_node_id
* BPF_FUNC_tail_call
* BPF_FUNC_ktime_get_ns
* BPF_FUNC_spin_lock (CAP_SYS_ADMIN)
* BPF_FUNC_spin_unlock (CAP_SYS_ADMIN)
* BPF_FUNC_jiffies64 (CAP_SYS_ADMIN)

I've also added bpf_perf_event_output() because it's really handy for
logging and debugging.

Signed-off-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200420174610.77494-1-sdf@google.com
2020-04-26 08:40:01 -07:00
David S. Miller
ed52f2c608 Merge git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-30 19:52:37 -07:00
Andrii Nakryiko
af6eea5743 bpf: Implement bpf_link-based cgroup BPF program attachment
Implement new sub-command to attach cgroup BPF programs and return FD-based
bpf_link back on success. bpf_link, once attached to cgroup, cannot be
replaced, except by owner having its FD. Cgroup bpf_link supports only
BPF_F_ALLOW_MULTI semantics. Both link-based and prog-based BPF_F_ALLOW_MULTI
attachments can be freely intermixed.

To prevent bpf_cgroup_link from keeping cgroup alive past the point when no
BPF program can be executed, implement auto-detachment of link. When
cgroup_bpf_release() is called, all attached bpf_links are forced to release
cgroup refcounts, but they leave bpf_link otherwise active and allocated, as
well as still owning underlying bpf_prog. This is because user-space might
still have FDs open and active, so bpf_link as a user-referenced object can't
be freed yet. Once last active FD is closed, bpf_link will be freed and
underlying bpf_prog refcount will be dropped. But cgroup refcount won't be
touched, because cgroup is released already.

The inherent race between bpf_cgroup_link release (from closing last FD) and
cgroup_bpf_release() is resolved by both operations taking cgroup_mutex. So
the only additional check required is when bpf_cgroup_link attempts to detach
itself from cgroup. At that time we need to check whether there is still
cgroup associated with that link. And if not, exit with success, because
bpf_cgroup_link was already successfully detached.

Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Roman Gushchin <guro@fb.com>
Link: https://lore.kernel.org/bpf/20200330030001.2312810-2-andriin@fb.com
2020-03-30 17:35:59 -07:00
David S. Miller
f0b5989745 Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
Minor comment conflict in mac80211.

Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-29 21:25:29 -07:00
KP Singh
fc611f47f2 bpf: Introduce BPF_PROG_TYPE_LSM
Introduce types and configs for bpf programs that can be attached to
LSM hooks. The programs can be enabled by the config option
CONFIG_BPF_LSM.

Signed-off-by: KP Singh <kpsingh@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Brendan Jackman <jackmanb@google.com>
Reviewed-by: Florent Revest <revest@google.com>
Reviewed-by: Thomas Garnier <thgarnie@google.com>
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: James Morris <jamorris@linux.microsoft.com>
Link: https://lore.kernel.org/bpf/20200329004356.27286-2-kpsingh@chromium.org
2020-03-30 01:34:00 +02:00
Daniel Borkmann
0f09abd105 bpf: Enable bpf cgroup hooks to retrieve cgroup v2 and ancestor id
Enable the bpf_get_current_cgroup_id() helper for connect(), sendmsg(),
recvmsg() and bind-related hooks in order to retrieve the cgroup v2
context which can then be used as part of the key for BPF map lookups,
for example. Given these hooks operate in process context 'current' is
always valid and pointing to the app that is performing mentioned
syscalls if it's subject to a v2 cgroup. Also with same motivation of
commit 7723628101 ("bpf: Introduce bpf_skb_ancestor_cgroup_id helper")
enable retrieval of ancestor from current so the cgroup id can be used
for policy lookups which can then forbid connect() / bind(), for example.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/d2a7ef42530ad299e3cbb245e6c12374b72145ef.1585323121.git.daniel@iogearbox.net
2020-03-27 19:40:39 -07:00
Daniel Borkmann
f318903c0b bpf: Add netns cookie and enable it for bpf cgroup hooks
In Cilium we're mainly using BPF cgroup hooks today in order to implement
kube-proxy free Kubernetes service translation for ClusterIP, NodePort (*),
ExternalIP, and LoadBalancer as well as HostPort mapping [0] for all traffic
between Cilium managed nodes. While this works in its current shape and avoids
packet-level NAT for inter Cilium managed node traffic, there is one major
limitation we're facing today, that is, lack of netns awareness.

In Kubernetes, the concept of Pods (which hold one or multiple containers)
has been built around network namespaces, so while we can use the global scope
of attaching to root BPF cgroup hooks also to our advantage (e.g. for exposing
NodePort ports on loopback addresses), we also have the need to differentiate
between initial network namespaces and non-initial one. For example, ExternalIP
services mandate that non-local service IPs are not to be translated from the
host (initial) network namespace as one example. Right now, we have an ugly
work-around in place where non-local service IPs for ExternalIP services are
not xlated from connect() and friends BPF hooks but instead via less efficient
packet-level NAT on the veth tc ingress hook for Pod traffic.

On top of determining whether we're in initial or non-initial network namespace
we also have a need for a socket-cookie like mechanism for network namespaces
scope. Socket cookies have the nice property that they can be combined as part
of the key structure e.g. for BPF LRU maps without having to worry that the
cookie could be recycled. We are planning to use this for our sessionAffinity
implementation for services. Therefore, add a new bpf_get_netns_cookie() helper
which would resolve both use cases at once: bpf_get_netns_cookie(NULL) would
provide the cookie for the initial network namespace while passing the context
instead of NULL would provide the cookie from the application's network namespace.
We're using a hole, so no size increase; the assignment happens only once.
Therefore this allows for a comparison on initial namespace as well as regular
cookie usage as we have today with socket cookies. We could later on enable
this helper for other program types as well as we would see need.

  (*) Both externalTrafficPolicy={Local|Cluster} types
  [0] https://github.com/cilium/cilium/blob/master/bpf/bpf_sock.c

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/c47d2346982693a9cf9da0e12690453aded4c788.1585323121.git.daniel@iogearbox.net
2020-03-27 19:40:38 -07:00
Martin KaFai Lau
8e7ae2518f bpf: Sanitize the bpf_struct_ops tcp-cc name
The bpf_struct_ops tcp-cc name should be sanitized in order to
avoid problematic chars (e.g. whitespaces).

This patch reuses the bpf_obj_name_cpy() for accepting the same set
of characters in order to keep a consistent bpf programming experience.
A "size" param is added.  Also, the strlen is returned on success so
that the caller (like the bpf_tcp_ca here) can error out on empty name.
The existing callers of the bpf_obj_name_cpy() only need to change the
testing statement to "if (err < 0)".  For all these existing callers,
the err will be overwritten later, so no extra change is needed
for the new strlen return value.

v3:
  - reverse xmas tree style
v2:
  - Save the orig_src to avoid "end - size" (Andrii)

Fixes: 0baf26b0fc ("bpf: tcp: Support tcp_congestion_ops in bpf")
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20200314010209.1131542-1-kafai@fb.com
2020-03-17 20:40:19 +01:00
Jiri Olsa
7ac88eba18 bpf: Remove bpf_image tree
Now that we have all the objects (bpf_prog, bpf_trampoline,
bpf_dispatcher) linked in bpf_tree, there's no need to have
separate bpf_image tree for images.

Reverting the bpf_image tree together with struct bpf_image,
because it's no longer needed.

Also removing bpf_image_alloc function and adding the original
bpf_jit_alloc_exec_page interface instead.

The kernel_text_address function can now rely only on is_bpf_text_address,
because it checks the bpf_tree that contains all the objects.

Keeping bpf_image_ksym_add and bpf_image_ksym_del because they are
useful wrappers with perf's ksymbol interface calls.

Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200312195610.346362-13-jolsa@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2020-03-13 12:49:52 -07:00
Jiri Olsa
517b75e44c bpf: Add dispatchers to kallsyms
Adding dispatchers to kallsyms. It's displayed as
  bpf_dispatcher_<NAME>

where NAME is the name of dispatcher.

Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200312195610.346362-12-jolsa@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2020-03-13 12:49:52 -07:00
Jiri Olsa
a108f7dcfa bpf: Add trampolines to kallsyms
Adding trampolines to kallsyms. It's displayed as
  bpf_trampoline_<ID> [bpf]

where ID is the BTF id of the trampoline function.

Adding bpf_image_ksym_add/del functions that setup
the start/end values and call KSYMBOL perf events
handlers.

Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200312195610.346362-11-jolsa@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2020-03-13 12:49:52 -07:00
Jiri Olsa
dba122fb5e bpf: Add bpf_ksym_add/del functions
Separating /proc/kallsyms add/del code and adding bpf_ksym_add/del
functions for that.

Moving bpf_prog_ksym_node_add/del functions to __bpf_ksym_add/del
and changing their argument to 'struct bpf_ksym' object. This way
we can call them for other bpf objects types like trampoline and
dispatcher.

Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200312195610.346362-10-jolsa@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2020-03-13 12:49:52 -07:00
Jiri Olsa
cbd76f8d5a bpf: Add prog flag to struct bpf_ksym object
Adding 'prog' bool flag to 'struct bpf_ksym' to mark that
this object belongs to bpf_prog object.

This change allows having bpf_prog objects together with
other types (trampolines and dispatchers) in the single
bpf_tree. It's used when searching for bpf_prog exception
tables by the bpf_prog_ksym_find function, where we need
to get the bpf_prog pointer.

>From now we can safely add bpf_ksym support for trampoline
or dispatcher objects, because we can differentiate them
from bpf_prog objects.

Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200312195610.346362-9-jolsa@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2020-03-13 12:49:52 -07:00
Jiri Olsa
ca4424c920 bpf: Move ksym_tnode to bpf_ksym
Moving ksym_tnode list node to 'struct bpf_ksym' object,
so the symbol itself can be chained and used in other
objects like bpf_trampoline and bpf_dispatcher.

We need bpf_ksym object to be linked both in bpf_kallsyms
via lnode for /proc/kallsyms and in bpf_tree via tnode for
bpf address lookup functions like __bpf_address_lookup or
bpf_prog_kallsyms_find.

Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200312195610.346362-7-jolsa@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2020-03-13 12:49:51 -07:00
Jiri Olsa
ecb60d1c67 bpf: Move lnode list node to struct bpf_ksym
Adding lnode list node to 'struct bpf_ksym' object,
so the struct bpf_ksym itself can be chained and used
in other objects like bpf_trampoline and bpf_dispatcher.

Changing iterator to bpf_ksym in bpf_get_kallsym function.

The ksym->start is holding the prog->bpf_func value,
so it's ok to use it as value in bpf_get_kallsym.

Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20200312195610.346362-6-jolsa@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2020-03-13 12:49:51 -07:00
Jiri Olsa
bfea9a8574 bpf: Add name to struct bpf_ksym
Adding name to 'struct bpf_ksym' object to carry the name
of the symbol for bpf_prog, bpf_trampoline, bpf_dispatcher
objects.

The current benefit is that name is now generated only when
the symbol is added to the list, so we don't need to generate
it every time it's accessed.

The future benefit is that we will have all the bpf objects
symbols represented by struct bpf_ksym.

Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20200312195610.346362-5-jolsa@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2020-03-13 12:49:51 -07:00
Jiri Olsa
535911c80a bpf: Add struct bpf_ksym
Adding 'struct bpf_ksym' object that will carry the
kallsym information for bpf symbol. Adding the start
and end address to begin with. It will be used by
bpf_prog, bpf_trampoline, bpf_dispatcher objects.

The symbol_start/symbol_end values were originally used
to sort bpf_prog objects. For the address displayed in
/proc/kallsyms we are using prog->bpf_func value.

I'm using the bpf_func value for program symbol start
instead of the symbol_start, because it makes no difference
for sorting bpf_prog objects and we can use it directly as
an address to display it in /proc/kallsyms.

Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20200312195610.346362-4-jolsa@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2020-03-13 12:49:51 -07:00
Björn Töpel
6a64037d4b bpf: Add bpf_trampoline_ name prefix for DECLARE_BPF_DISPATCHER
Adding bpf_trampoline_ name prefix for DECLARE_BPF_DISPATCHER,
so all the dispatchers have the common name prefix.

And also a small '_' cleanup for bpf_dispatcher_nopfunc function
name.

Signed-off-by: Björn Töpel <bjorn.topel@intel.com>
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20200312195610.346362-3-jolsa@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2020-03-13 12:49:51 -07:00
Andrii Nakryiko
9886866836 bpf: Abstract away entire bpf_link clean up procedure
Instead of requiring users to do three steps for cleaning up bpf_link, its
anon_inode file, and unused fd, abstract that away into bpf_link_cleanup()
helper. bpf_link_defunct() is removed, as it shouldn't be needed as an
individual operation anymore.

v1->v2:
- keep bpf_link_cleanup() static for now (Daniel).

Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20200313002128.2028680-1-andriin@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2020-03-13 12:49:51 -07:00
Carlos Neira
b4490c5c4e bpf: Added new helper bpf_get_ns_current_pid_tgid
New bpf helper bpf_get_ns_current_pid_tgid,
This helper will return pid and tgid from current task
which namespace matches dev_t and inode number provided,
this will allows us to instrument a process inside a container.

Signed-off-by: Carlos Neira <cneirabustos@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200304204157.58695-3-cneirabustos@gmail.com
2020-03-12 17:33:11 -07:00
Andrii Nakryiko
babf316409 bpf: Add bpf_link_new_file that doesn't install FD
Add bpf_link_new_file() API for cases when we need to ensure anon_inode is
successfully created before we proceed with expensive BPF program attachment
procedure, which will require equally (if not more so) expensive and
potentially failing compensation detachment procedure just because anon_inode
creation failed. This API allows to simplify code by ensuring first that
anon_inode is created and after BPF program is attached proceed with
fd_install() that can't fail.

After anon_inode file is created, link can't be just kfree()'d anymore,
because its destruction will be performed by deferred file_operations->release
call. For this, bpf_link API required specifying two separate operations:
release() and dealloc(), former performing detachment only, while the latter
frees memory used by bpf_link itself. dealloc() needs to be specified, because
struct bpf_link is frequently embedded into link type-specific container
struct (e.g., struct bpf_raw_tp_link), so bpf_link itself doesn't know how to
properly free the memory. In case when anon_inode file was successfully
created, but subsequent BPF attachment failed, bpf_link needs to be marked as
"defunct", so that file's release() callback will perform only memory
deallocation, but no detachment.

Convert raw tracepoint and tracing attachment to new API and eliminate
detachment from error handling path.

Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20200309231051.1270337-1-andriin@fb.com
2020-03-11 14:02:48 +01:00
Lorenz Bauer
f747632b60 bpf: sockmap: Move generic sockmap hooks from BPF TCP
The init, close and unhash handlers from TCP sockmap are generic,
and can be reused by UDP sockmap. Move the helpers into the sockmap code
base and expose them. This requires tcp_bpf_get_proto and tcp_bpf_clone to
be conditional on BPF_STREAM_PARSER.

The moved functions are unmodified, except that sk_psock_unlink is
renamed to sock_map_unlink to better match its behaviour.

Signed-off-by: Lorenz Bauer <lmb@cloudflare.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Jakub Sitnicki <jakub@cloudflare.com>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20200309111243.6982-6-lmb@cloudflare.com
2020-03-09 22:34:58 +01:00
KP Singh
da00d2f117 bpf: Add test ops for BPF_PROG_TYPE_TRACING
The current fexit and fentry tests rely on a different program to
exercise the functions they attach to. Instead of doing this, implement
the test operations for tracing which will also be used for
BPF_MODIFY_RETURN in a subsequent patch.

Also, clean up the fexit test to use the generated skeleton.

Signed-off-by: KP Singh <kpsingh@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200304191853.1529-7-kpsingh@chromium.org
2020-03-04 13:41:06 -08:00
KP Singh
ae24082331 bpf: Introduce BPF_MODIFY_RETURN
When multiple programs are attached, each program receives the return
value from the previous program on the stack and the last program
provides the return value to the attached function.

The fmod_ret bpf programs are run after the fentry programs and before
the fexit programs. The original function is only called if all the
fmod_ret programs return 0 to avoid any unintended side-effects. The
success value, i.e. 0 is not currently configurable but can be made so
where user-space can specify it at load time.

For example:

int func_to_be_attached(int a, int b)
{  <--- do_fentry

do_fmod_ret:
   <update ret by calling fmod_ret>
   if (ret != 0)
        goto do_fexit;

original_function:

    <side_effects_happen_here>

}  <--- do_fexit

The fmod_ret program attached to this function can be defined as:

SEC("fmod_ret/func_to_be_attached")
int BPF_PROG(func_name, int a, int b, int ret)
{
        // This will skip the original function logic.
        return 1;
}

The first fmod_ret program is passed 0 in its return argument.

Signed-off-by: KP Singh <kpsingh@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200304191853.1529-4-kpsingh@chromium.org
2020-03-04 13:41:05 -08:00
KP Singh
88fd9e5352 bpf: Refactor trampoline update code
As we need to introduce a third type of attachment for trampolines, the
flattened signature of arch_prepare_bpf_trampoline gets even more
complicated.

Refactor the prog and count argument to arch_prepare_bpf_trampoline to
use bpf_tramp_progs to simplify the addition and accounting for new
attachment types.

Signed-off-by: KP Singh <kpsingh@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200304191853.1529-2-kpsingh@chromium.org
2020-03-04 13:41:05 -08:00
Andrii Nakryiko
70ed506c3b bpf: Introduce pinnable bpf_link abstraction
Introduce bpf_link abstraction, representing an attachment of BPF program to
a BPF hook point (e.g., tracepoint, perf event, etc). bpf_link encapsulates
ownership of attached BPF program, reference counting of a link itself, when
reference from multiple anonymous inodes, as well as ensures that release
callback will be called from a process context, so that users can safely take
mutex locks and sleep.

Additionally, with a new abstraction it's now possible to generalize pinning
of a link object in BPF FS, allowing to explicitly prevent BPF program
detachment on process exit by pinning it in a BPF FS and let it open from
independent other process to keep working with it.

Convert two existing bpf_link-like objects (raw tracepoint and tracing BPF
program attachments) into utilizing bpf_link framework, making them pinnable
in BPF FS. More FD-based bpf_links will be added in follow up patches.

Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200303043159.323675-2-andriin@fb.com
2020-03-02 22:06:27 -08:00
Martin KaFai Lau
1ed4d92458 bpf: INET_DIAG support in bpf_sk_storage
This patch adds INET_DIAG support to bpf_sk_storage.

1. Although this series adds bpf_sk_storage diag capability to inet sk,
   bpf_sk_storage is in general applicable to all fullsock.  Hence, the
   bpf_sk_storage logic will operate on SK_DIAG_* nlattr.  The caller
   will pass in its specific nesting nlattr (e.g. INET_DIAG_*) as
   the argument.

2. The request will be like:
	INET_DIAG_REQ_SK_BPF_STORAGES (nla_nest) (defined in latter patch)
		SK_DIAG_BPF_STORAGE_REQ_MAP_FD (nla_put_u32)
		SK_DIAG_BPF_STORAGE_REQ_MAP_FD (nla_put_u32)
		......

   Considering there could have multiple bpf_sk_storages in a sk,
   instead of reusing INET_DIAG_INFO ("ss -i"),  the user can select
   some specific bpf_sk_storage to dump by specifying an array of
   SK_DIAG_BPF_STORAGE_REQ_MAP_FD.

   If no SK_DIAG_BPF_STORAGE_REQ_MAP_FD is specified (i.e. an empty
   INET_DIAG_REQ_SK_BPF_STORAGES), it will dump all bpf_sk_storages
   of a sk.

3. The reply will be like:
	INET_DIAG_BPF_SK_STORAGES (nla_nest) (defined in latter patch)
		SK_DIAG_BPF_STORAGE (nla_nest)
			SK_DIAG_BPF_STORAGE_MAP_ID (nla_put_u32)
			SK_DIAG_BPF_STORAGE_MAP_VALUE (nla_reserve_64bit)
		SK_DIAG_BPF_STORAGE (nla_nest)
			SK_DIAG_BPF_STORAGE_MAP_ID (nla_put_u32)
			SK_DIAG_BPF_STORAGE_MAP_VALUE (nla_reserve_64bit)
		......

4. Unlike other INET_DIAG info of a sk which is pretty static, the size
   required to dump the bpf_sk_storage(s) of a sk is dynamic as the
   system adding more bpf_sk_storage_map.  It is hard to set a static
   min_dump_alloc size.

   Hence, this series learns it at the runtime and adjust the
   cb->min_dump_alloc as it iterates all sk(s) of a system.  The
   "unsigned int *res_diag_size" in bpf_sk_storage_diag_put()
   is for this purpose.

   The next patch will update the cb->min_dump_alloc as it
   iterates the sk(s).

Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20200225230421.1975729-1-kafai@fb.com
2020-02-27 18:50:19 -08:00
Gustavo A. R. Silva
d7f10df862 bpf: Replace zero-length array with flexible-array member
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:

struct foo {
        int stuff;
        struct boo array[];
};

By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.

Also, notice that, dynamic memory allocations won't be affected by
this change:

"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]

This issue was found with the help of Coccinelle.

[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")

Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20200227001744.GA3317@embeddedor
2020-02-28 01:21:02 +01:00
Thomas Gleixner
c518cfa0c5 bpf: Provide recursion prevention helpers
The places which need to prevent the execution of trace type BPF programs
to prevent deadlocks on the hash bucket lock do this open coded.

Provide two inline functions, bpf_disable/enable_instrumentation() to
replace these open coded protection constructs.

Use migrate_disable/enable() instead of preempt_disable/enable() right away
so this works on RT enabled kernels. On a !RT kernel migrate_disable /
enable() are mapped to preempt_disable/enable().

These helpers use this_cpu_inc/dec() instead of __this_cpu_inc/dec() on an
RT enabled kernel because migrate disabled regions are preemptible and
preemption might hit in the middle of a RMW operation which can lead to
inconsistent state.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200224145644.103910133@linutronix.de
2020-02-24 16:20:09 -08:00
David Miller
2a916f2f54 bpf: Use migrate_disable/enable in array macros and cgroup/lirc code.
Replace the preemption disable/enable with migrate_disable/enable() to
reflect the actual requirement and to allow PREEMPT_RT to substitute it
with an actual migration disable mechanism which does not disable
preemption.

Including the code paths that go via __bpf_prog_run_save_cb().

Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200224145643.998293311@linutronix.de
2020-02-24 16:20:09 -08:00
Martin KaFai Lau
d3e42bb0a3 bpf: Reuse log from btf_prase_vmlinux() in btf_struct_ops_init()
Instead of using a locally defined "struct bpf_verifier_log log = {}",
btf_struct_ops_init() should reuse the "log" from its calling
function "btf_parse_vmlinux()".  It should also resolve the
frame-size too large compiler warning in some ARCH.

Fixes: 27ae7997a6 ("bpf: Introduce BPF_PROG_TYPE_STRUCT_OPS")
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200127175145.1154438-1-kafai@fb.com
2020-01-29 16:40:54 +01:00
Jiri Olsa
e9b4e606c2 bpf: Allow to resolve bpf trampoline and dispatcher in unwind
When unwinding the stack we need to identify each address
to successfully continue. Adding latch tree to keep trampolines
for quick lookup during the unwind.

The patch uses first 48 bytes for latch tree node, leaving 4048
bytes from the rest of the page for trampoline or dispatcher
generated code.

It's still enough not to affect trampoline and dispatcher progs
maximum counts.

Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200123161508.915203-3-jolsa@kernel.org
2020-01-25 07:12:40 -08:00
Martin KaFai Lau
5576b991e9 bpf: Add BPF_FUNC_jiffies64
This patch adds a helper to read the 64bit jiffies.  It will be used
in a later patch to implement the bpf_cubic.c.

The helper is inlined for jit_requested and 64 BITS_PER_LONG
as the map_gen_lookup().  Other cases could be considered together
with map_gen_lookup() if needed.

Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200122233646.903260-1-kafai@fb.com
2020-01-22 16:30:10 -08:00
Alexei Starovoitov
be8704ff07 bpf: Introduce dynamic program extensions
Introduce dynamic program extensions. The users can load additional BPF
functions and replace global functions in previously loaded BPF programs while
these programs are executing.

Global functions are verified individually by the verifier based on their types only.
Hence the global function in the new program which types match older function can
safely replace that corresponding function.

This new function/program is called 'an extension' of old program. At load time
the verifier uses (attach_prog_fd, attach_btf_id) pair to identify the function
to be replaced. The BPF program type is derived from the target program into
extension program. Technically bpf_verifier_ops is copied from target program.
The BPF_PROG_TYPE_EXT program type is a placeholder. It has empty verifier_ops.
The extension program can call the same bpf helper functions as target program.
Single BPF_PROG_TYPE_EXT type is used to extend XDP, SKB and all other program
types. The verifier allows only one level of replacement. Meaning that the
extension program cannot recursively extend an extension. That also means that
the maximum stack size is increasing from 512 to 1024 bytes and maximum
function nesting level from 8 to 16. The programs don't always consume that
much. The stack usage is determined by the number of on-stack variables used by
the program. The verifier could have enforced 512 limit for combined original
plus extension program, but it makes for difficult user experience. The main
use case for extensions is to provide generic mechanism to plug external
programs into policy program or function call chaining.

BPF trampoline is used to track both fentry/fexit and program extensions
because both are using the same nop slot at the beginning of every BPF
function. Attaching fentry/fexit to a function that was replaced is not
allowed. The opposite is true as well. Replacing a function that currently
being analyzed with fentry/fexit is not allowed. The executable page allocated
by BPF trampoline is not used by program extensions. This inefficiency will be
optimized in future patches.

Function by function verification of global function supports scalars and
pointer to context only. Hence program extensions are supported for such class
of global functions only. In the future the verifier will be extended with
support to pointers to structures, arrays with sizes, etc.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20200121005348.2769920-2-ast@kernel.org
2020-01-22 23:04:52 +01:00
Toke Høiland-Jørgensen
1d233886dd xdp: Use bulking for non-map XDP_REDIRECT and consolidate code paths
Since the bulk queue used by XDP_REDIRECT now lives in struct net_device,
we can re-use the bulking for the non-map version of the bpf_redirect()
helper. This is a simple matter of having xdp_do_redirect_slow() queue the
frame on the bulk queue instead of sending it out with __bpf_tx_xdp().

Unfortunately we can't make the bpf_redirect() helper return an error if
the ifindex doesn't exit (as bpf_redirect_map() does), because we don't
have a reference to the network namespace of the ingress device at the time
the helper is called. So we have to leave it as-is and keep the device
lookup in xdp_do_redirect_slow().

Since this leaves less reason to have the non-map redirect code in a
separate function, so we get rid of the xdp_do_redirect_slow() function
entirely. This does lose us the tracepoint disambiguation, but fortunately
the xdp_redirect and xdp_redirect_map tracepoints use the same tracepoint
entry structures. This means both can contain a map index, so we can just
amend the tracepoint definitions so we always emit the xdp_redirect(_err)
tracepoints, but with the map ID only populated if a map is present. This
means we retire the xdp_redirect_map(_err) tracepoints entirely, but keep
the definitions around in case someone is still listening for them.

With this change, the performance of the xdp_redirect sample program goes
from 5Mpps to 8.4Mpps (a 68% increase).

Since the flush functions are no longer map-specific, rename the flush()
functions to drop _map from their names. One of the renamed functions is
the xdp_do_flush_map() callback used in all the xdp-enabled drivers. To
keep from having to update all drivers, use a #define to keep the old name
working, and only update the virtual drivers in this patch.

Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/157918768505.1458396.17518057312953572912.stgit@toke.dk
2020-01-16 20:03:34 -08:00
Yonghong Song
057996380a bpf: Add batch ops to all htab bpf map
htab can't use generic batch support due some problematic behaviours
inherent to the data structre, i.e. while iterating the bpf map  a
concurrent program might delete the next entry that batch was about to
use, in that case there's no easy solution to retrieve the next entry,
the issue has been discussed multiple times (see [1] and [2]).

The only way hmap can be traversed without the problem previously
exposed is by making sure that the map is traversing entire buckets.
This commit implements those strict requirements for hmap, the
implementation follows the same interaction that generic support with
some exceptions:

 - If keys/values buffer are not big enough to traverse a bucket,
   ENOSPC will be returned.
 - out_batch contains the value of the next bucket in the iteration, not
   the next key, but this is transparent for the user since the user
   should never use out_batch for other than bpf batch syscalls.

This commits implements BPF_MAP_LOOKUP_BATCH and adds support for new
command BPF_MAP_LOOKUP_AND_DELETE_BATCH. Note that for update/delete
batch ops it is possible to use the generic implementations.

[1] https://lore.kernel.org/bpf/20190724165803.87470-1-brianvv@google.com/
[2] https://lore.kernel.org/bpf/20190906225434.3635421-1-yhs@fb.com/

Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Brian Vazquez <brianvv@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200115184308.162644-6-brianvv@google.com
2020-01-15 14:00:35 -08:00
Brian Vazquez
aa2e93b8e5 bpf: Add generic support for update and delete batch ops
This commit adds generic support for update and delete batch ops that
can be used for almost all the bpf maps. These commands share the same
UAPI attr that lookup and lookup_and_delete batch ops use and the
syscall commands are:

  BPF_MAP_UPDATE_BATCH
  BPF_MAP_DELETE_BATCH

The main difference between update/delete and lookup batch ops is that
for update/delete keys/values must be specified for userspace and
because of that, neither in_batch nor out_batch are used.

Suggested-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Brian Vazquez <brianvv@google.com>
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200115184308.162644-4-brianvv@google.com
2020-01-15 14:00:35 -08:00
Brian Vazquez
cb4d03ab49 bpf: Add generic support for lookup batch op
This commit introduces generic support for the bpf_map_lookup_batch.
This implementation can be used by almost all the bpf maps since its core
implementation is relying on the existing map_get_next_key and
map_lookup_elem. The bpf syscall subcommand introduced is:

  BPF_MAP_LOOKUP_BATCH

The UAPI attribute is:

  struct { /* struct used by BPF_MAP_*_BATCH commands */
         __aligned_u64   in_batch;       /* start batch,
                                          * NULL to start from beginning
                                          */
         __aligned_u64   out_batch;      /* output: next start batch */
         __aligned_u64   keys;
         __aligned_u64   values;
         __u32           count;          /* input/output:
                                          * input: # of key/value
                                          * elements
                                          * output: # of filled elements
                                          */
         __u32           map_fd;
         __u64           elem_flags;
         __u64           flags;
  } batch;

in_batch/out_batch are opaque values use to communicate between
user/kernel space, in_batch/out_batch must be of key_size length.

To start iterating from the beginning in_batch must be null,
count is the # of key/value elements to retrieve. Note that the 'keys'
buffer must be a buffer of key_size * count size and the 'values' buffer
must be value_size * count, where value_size must be aligned to 8 bytes
by userspace if it's dealing with percpu maps. 'count' will contain the
number of keys/values successfully retrieved. Note that 'count' is an
input/output variable and it can contain a lower value after a call.

If there's no more entries to retrieve, ENOENT will be returned. If error
is ENOENT, count might be > 0 in case it copied some values but there were
no more entries to retrieve.

Note that if the return code is an error and not -EFAULT,
count indicates the number of elements successfully processed.

Suggested-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Brian Vazquez <brianvv@google.com>
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200115184308.162644-3-brianvv@google.com
2020-01-15 14:00:35 -08:00
Alexei Starovoitov
51c39bb1d5 bpf: Introduce function-by-function verification
New llvm and old llvm with libbpf help produce BTF that distinguish global and
static functions. Unlike arguments of static function the arguments of global
functions cannot be removed or optimized away by llvm. The compiler has to use
exactly the arguments specified in a function prototype. The argument type
information allows the verifier validate each global function independently.
For now only supported argument types are pointer to context and scalars. In
the future pointers to structures, sizes, pointer to packet data can be
supported as well. Consider the following example:

static int f1(int ...)
{
  ...
}

int f3(int b);

int f2(int a)
{
  f1(a) + f3(a);
}

int f3(int b)
{
  ...
}

int main(...)
{
  f1(...) + f2(...) + f3(...);
}

The verifier will start its safety checks from the first global function f2().
It will recursively descend into f1() because it's static. Then it will check
that arguments match for the f3() invocation inside f2(). It will not descend
into f3(). It will finish f2() that has to be successfully verified for all
possible values of 'a'. Then it will proceed with f3(). That function also has
to be safe for all possible values of 'b'. Then it will start subprog 0 (which
is main() function). It will recursively descend into f1() and will skip full
check of f2() and f3(), since they are global. The order of processing global
functions doesn't affect safety, since all global functions must be proven safe
based on their arguments only.

Such function by function verification can drastically improve speed of the
verification and reduce complexity.

Note that the stack limit of 512 still applies to the call chain regardless whether
functions were static or global. The nested level of 8 also still applies. The
same recursion prevention checks are in place as well.

The type information and static/global kind is preserved after the verification
hence in the above example global function f2() and f3() can be replaced later
by equivalent functions with the same types that are loaded and verified later
without affecting safety of this main() program. Such replacement (re-linking)
of global functions is a subject of future patches.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20200110064124.1760511-3-ast@kernel.org
2020-01-10 17:20:07 +01:00
Martin KaFai Lau
85d33df357 bpf: Introduce BPF_MAP_TYPE_STRUCT_OPS
The patch introduces BPF_MAP_TYPE_STRUCT_OPS.  The map value
is a kernel struct with its func ptr implemented in bpf prog.
This new map is the interface to register/unregister/introspect
a bpf implemented kernel struct.

The kernel struct is actually embedded inside another new struct
(or called the "value" struct in the code).  For example,
"struct tcp_congestion_ops" is embbeded in:
struct bpf_struct_ops_tcp_congestion_ops {
	refcount_t refcnt;
	enum bpf_struct_ops_state state;
	struct tcp_congestion_ops data;  /* <-- kernel subsystem struct here */
}
The map value is "struct bpf_struct_ops_tcp_congestion_ops".
The "bpftool map dump" will then be able to show the
state ("inuse"/"tobefree") and the number of subsystem's refcnt (e.g.
number of tcp_sock in the tcp_congestion_ops case).  This "value" struct
is created automatically by a macro.  Having a separate "value" struct
will also make extending "struct bpf_struct_ops_XYZ" easier (e.g. adding
"void (*init)(void)" to "struct bpf_struct_ops_XYZ" to do some
initialization works before registering the struct_ops to the kernel
subsystem).  The libbpf will take care of finding and populating the
"struct bpf_struct_ops_XYZ" from "struct XYZ".

Register a struct_ops to a kernel subsystem:
1. Load all needed BPF_PROG_TYPE_STRUCT_OPS prog(s)
2. Create a BPF_MAP_TYPE_STRUCT_OPS with attr->btf_vmlinux_value_type_id
   set to the btf id "struct bpf_struct_ops_tcp_congestion_ops" of the
   running kernel.
   Instead of reusing the attr->btf_value_type_id,
   btf_vmlinux_value_type_id s added such that attr->btf_fd can still be
   used as the "user" btf which could store other useful sysadmin/debug
   info that may be introduced in the furture,
   e.g. creation-date/compiler-details/map-creator...etc.
3. Create a "struct bpf_struct_ops_tcp_congestion_ops" object as described
   in the running kernel btf.  Populate the value of this object.
   The function ptr should be populated with the prog fds.
4. Call BPF_MAP_UPDATE with the object created in (3) as
   the map value.  The key is always "0".

During BPF_MAP_UPDATE, the code that saves the kernel-func-ptr's
args as an array of u64 is generated.  BPF_MAP_UPDATE also allows
the specific struct_ops to do some final checks in "st_ops->init_member()"
(e.g. ensure all mandatory func ptrs are implemented).
If everything looks good, it will register this kernel struct
to the kernel subsystem.  The map will not allow further update
from this point.

Unregister a struct_ops from the kernel subsystem:
BPF_MAP_DELETE with key "0".

Introspect a struct_ops:
BPF_MAP_LOOKUP_ELEM with key "0".  The map value returned will
have the prog _id_ populated as the func ptr.

The map value state (enum bpf_struct_ops_state) will transit from:
INIT (map created) =>
INUSE (map updated, i.e. reg) =>
TOBEFREE (map value deleted, i.e. unreg)

The kernel subsystem needs to call bpf_struct_ops_get() and
bpf_struct_ops_put() to manage the "refcnt" in the
"struct bpf_struct_ops_XYZ".  This patch uses a separate refcnt
for the purose of tracking the subsystem usage.  Another approach
is to reuse the map->refcnt and then "show" (i.e. during map_lookup)
the subsystem's usage by doing map->refcnt - map->usercnt to filter out
the map-fd/pinned-map usage.  However, that will also tie down the
future semantics of map->refcnt and map->usercnt.

The very first subsystem's refcnt (during reg()) holds one
count to map->refcnt.  When the very last subsystem's refcnt
is gone, it will also release the map->refcnt.  All bpf_prog will be
freed when the map->refcnt reaches 0 (i.e. during map_free()).

Here is how the bpftool map command will look like:
[root@arch-fb-vm1 bpf]# bpftool map show
6: struct_ops  name dctcp  flags 0x0
	key 4B  value 256B  max_entries 1  memlock 4096B
	btf_id 6
[root@arch-fb-vm1 bpf]# bpftool map dump id 6
[{
        "value": {
            "refcnt": {
                "refs": {
                    "counter": 1
                }
            },
            "state": 1,
            "data": {
                "list": {
                    "next": 0,
                    "prev": 0
                },
                "key": 0,
                "flags": 2,
                "init": 24,
                "release": 0,
                "ssthresh": 25,
                "cong_avoid": 30,
                "set_state": 27,
                "cwnd_event": 28,
                "in_ack_event": 26,
                "undo_cwnd": 29,
                "pkts_acked": 0,
                "min_tso_segs": 0,
                "sndbuf_expand": 0,
                "cong_control": 0,
                "get_info": 0,
                "name": [98,112,102,95,100,99,116,99,112,0,0,0,0,0,0,0
                ],
                "owner": 0
            }
        }
    }
]

Misc Notes:
* bpf_struct_ops_map_sys_lookup_elem() is added for syscall lookup.
  It does an inplace update on "*value" instead returning a pointer
  to syscall.c.  Otherwise, it needs a separate copy of "zero" value
  for the BPF_STRUCT_OPS_STATE_INIT to avoid races.

* The bpf_struct_ops_map_delete_elem() is also called without
  preempt_disable() from map_delete_elem().  It is because
  the "->unreg()" may requires sleepable context, e.g.
  the "tcp_unregister_congestion_control()".

* "const" is added to some of the existing "struct btf_func_model *"
  function arg to avoid a compiler warning caused by this patch.

Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200109003505.3855919-1-kafai@fb.com
2020-01-09 08:46:18 -08:00
Martin KaFai Lau
27ae7997a6 bpf: Introduce BPF_PROG_TYPE_STRUCT_OPS
This patch allows the kernel's struct ops (i.e. func ptr) to be
implemented in BPF.  The first use case in this series is the
"struct tcp_congestion_ops" which will be introduced in a
latter patch.

This patch introduces a new prog type BPF_PROG_TYPE_STRUCT_OPS.
The BPF_PROG_TYPE_STRUCT_OPS prog is verified against a particular
func ptr of a kernel struct.  The attr->attach_btf_id is the btf id
of a kernel struct.  The attr->expected_attach_type is the member
"index" of that kernel struct.  The first member of a struct starts
with member index 0.  That will avoid ambiguity when a kernel struct
has multiple func ptrs with the same func signature.

For example, a BPF_PROG_TYPE_STRUCT_OPS prog is written
to implement the "init" func ptr of the "struct tcp_congestion_ops".
The attr->attach_btf_id is the btf id of the "struct tcp_congestion_ops"
of the _running_ kernel.  The attr->expected_attach_type is 3.

The ctx of BPF_PROG_TYPE_STRUCT_OPS is an array of u64 args saved
by arch_prepare_bpf_trampoline that will be done in the next
patch when introducing BPF_MAP_TYPE_STRUCT_OPS.

"struct bpf_struct_ops" is introduced as a common interface for the kernel
struct that supports BPF_PROG_TYPE_STRUCT_OPS prog.  The supporting kernel
struct will need to implement an instance of the "struct bpf_struct_ops".

The supporting kernel struct also needs to implement a bpf_verifier_ops.
During BPF_PROG_LOAD, bpf_struct_ops_find() will find the right
bpf_verifier_ops by searching the attr->attach_btf_id.

A new "btf_struct_access" is also added to the bpf_verifier_ops such
that the supporting kernel struct can optionally provide its own specific
check on accessing the func arg (e.g. provide limited write access).

After btf_vmlinux is parsed, the new bpf_struct_ops_init() is called
to initialize some values (e.g. the btf id of the supporting kernel
struct) and it can only be done once the btf_vmlinux is available.

The R0 checks at BPF_EXIT is excluded for the BPF_PROG_TYPE_STRUCT_OPS prog
if the return type of the prog->aux->attach_func_proto is "void".

Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20200109003503.3855825-1-kafai@fb.com
2020-01-09 08:46:18 -08:00
David S. Miller
2bbc078f81 Merge git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
Daniel Borkmann says:

====================
pull-request: bpf-next 2019-12-27

The following pull-request contains BPF updates for your *net-next* tree.

We've added 127 non-merge commits during the last 17 day(s) which contain
a total of 110 files changed, 6901 insertions(+), 2721 deletions(-).

There are three merge conflicts. Conflicts and resolution looks as follows:

1) Merge conflict in net/bpf/test_run.c:

There was a tree-wide cleanup c593642c8b ("treewide: Use sizeof_field() macro")
which gets in the way with b590cb5f80 ("bpf: Switch to offsetofend in
BPF_PROG_TEST_RUN"):

  <<<<<<< HEAD
          if (!range_is_zero(__skb, offsetof(struct __sk_buff, priority) +
                             sizeof_field(struct __sk_buff, priority),
  =======
          if (!range_is_zero(__skb, offsetofend(struct __sk_buff, priority),
  >>>>>>> 7c8dce4b16

There are a few occasions that look similar to this. Always take the chunk with
offsetofend(). Note that there is one where the fields differ in here:

  <<<<<<< HEAD
          if (!range_is_zero(__skb, offsetof(struct __sk_buff, tstamp) +
                             sizeof_field(struct __sk_buff, tstamp),
  =======
          if (!range_is_zero(__skb, offsetofend(struct __sk_buff, gso_segs),
  >>>>>>> 7c8dce4b16

Just take the one with offsetofend() /and/ gso_segs. Latter is correct due to
850a88cc40 ("bpf: Expose __sk_buff wire_len/gso_segs to BPF_PROG_TEST_RUN").

2) Merge conflict in arch/riscv/net/bpf_jit_comp.c:

(I'm keeping Bjorn in Cc here for a double-check in case I got it wrong.)

  <<<<<<< HEAD
          if (is_13b_check(off, insn))
                  return -1;
          emit(rv_blt(tcc, RV_REG_ZERO, off >> 1), ctx);
  =======
          emit_branch(BPF_JSLT, RV_REG_T1, RV_REG_ZERO, off, ctx);
  >>>>>>> 7c8dce4b16

Result should look like:

          emit_branch(BPF_JSLT, tcc, RV_REG_ZERO, off, ctx);

3) Merge conflict in arch/riscv/include/asm/pgtable.h:

  <<<<<<< HEAD
  =======
  #define VMALLOC_SIZE     (KERN_VIRT_SIZE >> 1)
  #define VMALLOC_END      (PAGE_OFFSET - 1)
  #define VMALLOC_START    (PAGE_OFFSET - VMALLOC_SIZE)

  #define BPF_JIT_REGION_SIZE     (SZ_128M)
  #define BPF_JIT_REGION_START    (PAGE_OFFSET - BPF_JIT_REGION_SIZE)
  #define BPF_JIT_REGION_END      (VMALLOC_END)

  /*
   * Roughly size the vmemmap space to be large enough to fit enough
   * struct pages to map half the virtual address space. Then
   * position vmemmap directly below the VMALLOC region.
   */
  #define VMEMMAP_SHIFT \
          (CONFIG_VA_BITS - PAGE_SHIFT - 1 + STRUCT_PAGE_MAX_SHIFT)
  #define VMEMMAP_SIZE    BIT(VMEMMAP_SHIFT)
  #define VMEMMAP_END     (VMALLOC_START - 1)
  #define VMEMMAP_START   (VMALLOC_START - VMEMMAP_SIZE)

  #define vmemmap         ((struct page *)VMEMMAP_START)

  >>>>>>> 7c8dce4b16

Only take the BPF_* defines from there and move them higher up in the
same file. Remove the rest from the chunk. The VMALLOC_* etc defines
got moved via 01f52e16b8 ("riscv: define vmemmap before pfn_to_page
calls"). Result:

  [...]
  #define __S101  PAGE_READ_EXEC
  #define __S110  PAGE_SHARED_EXEC
  #define __S111  PAGE_SHARED_EXEC

  #define VMALLOC_SIZE     (KERN_VIRT_SIZE >> 1)
  #define VMALLOC_END      (PAGE_OFFSET - 1)
  #define VMALLOC_START    (PAGE_OFFSET - VMALLOC_SIZE)

  #define BPF_JIT_REGION_SIZE     (SZ_128M)
  #define BPF_JIT_REGION_START    (PAGE_OFFSET - BPF_JIT_REGION_SIZE)
  #define BPF_JIT_REGION_END      (VMALLOC_END)

  /*
   * Roughly size the vmemmap space to be large enough to fit enough
   * struct pages to map half the virtual address space. Then
   * position vmemmap directly below the VMALLOC region.
   */
  #define VMEMMAP_SHIFT \
          (CONFIG_VA_BITS - PAGE_SHIFT - 1 + STRUCT_PAGE_MAX_SHIFT)
  #define VMEMMAP_SIZE    BIT(VMEMMAP_SHIFT)
  #define VMEMMAP_END     (VMALLOC_START - 1)
  #define VMEMMAP_START   (VMALLOC_START - VMEMMAP_SIZE)

  [...]

Let me know if there are any other issues.

Anyway, the main changes are:

1) Extend bpftool to produce a struct (aka "skeleton") tailored and specific
   to a provided BPF object file. This provides an alternative, simplified API
   compared to standard libbpf interaction. Also, add libbpf extern variable
   resolution for .kconfig section to import Kconfig data, from Andrii Nakryiko.

2) Add BPF dispatcher for XDP which is a mechanism to avoid indirect calls by
   generating a branch funnel as discussed back in bpfconf'19 at LSF/MM. Also,
   add various BPF riscv JIT improvements, from Björn Töpel.

3) Extend bpftool to allow matching BPF programs and maps by name,
   from Paul Chaignon.

4) Support for replacing cgroup BPF programs attached with BPF_F_ALLOW_MULTI
   flag for allowing updates without service interruption, from Andrey Ignatov.

5) Cleanup and simplification of ring access functions for AF_XDP with a
   bonus of 0-5% performance improvement, from Magnus Karlsson.

6) Enable BPF JITs for x86-64 and arm64 by default. Also, final version of
   audit support for BPF, from Daniel Borkmann and latter with Jiri Olsa.

7) Move and extend test_select_reuseport into BPF program tests under
   BPF selftests, from Jakub Sitnicki.

8) Various BPF sample improvements for xdpsock for customizing parameters
   to set up and benchmark AF_XDP, from Jay Jayatheerthan.

9) Improve libbpf to provide a ulimit hint on permission denied errors.
   Also change XDP sample programs to attach in driver mode by default,
   from Toke Høiland-Jørgensen.

10) Extend BPF test infrastructure to allow changing skb mark from tc BPF
    programs, from Nikita V. Shirokov.

11) Optimize prologue code sequence in BPF arm32 JIT, from Russell King.

12) Fix xdp_redirect_cpu BPF sample to manually attach to tracepoints after
    libbpf conversion, from Jesper Dangaard Brouer.

13) Minor misc improvements from various others.
====================

Signed-off-by: David S. Miller <davem@davemloft.net>
2019-12-27 14:20:10 -08:00
Björn Töpel
cdfafe98ca xdp: Make cpumap flush_list common for all map instances
The cpumap flush list is used to track entries that need to flushed
from via the xdp_do_flush_map() function. This list used to be
per-map, but there is really no reason for that. Instead make the
flush list global for all devmaps, which simplifies __cpu_map_flush()
and cpu_map_alloc().

Signed-off-by: Björn Töpel <bjorn.topel@intel.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20191219061006.21980-7-bjorn.topel@gmail.com
2019-12-19 21:09:43 -08:00
Björn Töpel
96360004b8 xdp: Make devmap flush_list common for all map instances
The devmap flush list is used to track entries that need to flushed
from via the xdp_do_flush_map() function. This list used to be
per-map, but there is really no reason for that. Instead make the
flush list global for all devmaps, which simplifies __dev_map_flush()
and dev_map_init_map().

Signed-off-by: Björn Töpel <bjorn.topel@intel.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20191219061006.21980-6-bjorn.topel@gmail.com
2019-12-19 21:09:43 -08:00
Daniel Borkmann
a2ea07465c bpf: Fix missing prog untrack in release_maps
Commit da765a2f59 ("bpf: Add poke dependency tracking for prog array
maps") wrongly assumed that in case of prog load errors, we're cleaning
up all program tracking via bpf_free_used_maps().

However, it can happen that we're still at the point where we didn't copy
map pointers into the prog's aux section such that env->prog->aux->used_maps
is still zero, running into a UAF. In such case, the verifier has similar
release_maps() helper that drops references to used maps from its env.

Consolidate the release code into __bpf_free_used_maps() and call it from
all sides to fix it.

Fixes: da765a2f59 ("bpf: Add poke dependency tracking for prog array maps")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/1c2909484ca524ae9f55109b06f22b6213e76376.1576514756.git.daniel@iogearbox.net
2019-12-16 10:59:29 -08:00
Björn Töpel
116eb788f5 bpf, x86: Align dispatcher branch targets to 16B
>From Intel 64 and IA-32 Architectures Optimization Reference Manual,
3.4.1.4 Code Alignment, Assembly/Compiler Coding Rule 11: All branch
targets should be 16-byte aligned.

This commits aligns branch targets according to the Intel manual.

The nops used to align branch targets make the dispatcher larger, and
therefore the number of supported dispatch points/programs are
descreased from 64 to 48.

Signed-off-by: Björn Töpel <bjorn.topel@intel.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20191213175112.30208-7-bjorn.topel@gmail.com
2019-12-13 13:09:32 -08:00
Björn Töpel
7e6897f959 bpf, xdp: Start using the BPF dispatcher for XDP
This commit adds a BPF dispatcher for XDP. The dispatcher is updated
from the XDP control-path, dev_xdp_install(), and used when an XDP
program is run via bpf_prog_run_xdp().

Signed-off-by: Björn Töpel <bjorn.topel@intel.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20191213175112.30208-4-bjorn.topel@gmail.com
2019-12-13 13:09:32 -08:00
Björn Töpel
75ccbef636 bpf: Introduce BPF dispatcher
The BPF dispatcher is a multi-way branch code generator, mainly
targeted for XDP programs. When an XDP program is executed via the
bpf_prog_run_xdp(), it is invoked via an indirect call. The indirect
call has a substantial performance impact, when retpolines are
enabled. The dispatcher transform indirect calls to direct calls, and
therefore avoids the retpoline. The dispatcher is generated using the
BPF JIT, and relies on text poking provided by bpf_arch_text_poke().

The dispatcher hijacks a trampoline function it via the __fentry__ nop
of the trampoline. One dispatcher instance currently supports up to 64
dispatch points. A user creates a dispatcher with its corresponding
trampoline with the DEFINE_BPF_DISPATCHER macro.

Signed-off-by: Björn Töpel <bjorn.topel@intel.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20191213175112.30208-3-bjorn.topel@gmail.com
2019-12-13 13:09:32 -08:00
Björn Töpel
98e8627efc bpf: Move trampoline JIT image allocation to a function
Refactor the image allocation in the BPF trampoline code into a
separate function, so it can be shared with the BPF dispatcher in
upcoming commits.

Signed-off-by: Björn Töpel <bjorn.topel@intel.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20191213175112.30208-2-bjorn.topel@gmail.com
2019-12-13 13:09:32 -08:00
Alexei Starovoitov
b91e014f07 bpf: Make BPF trampoline use register_ftrace_direct() API
Make BPF trampoline attach its generated assembly code to kernel functions via
register_ftrace_direct() API. It helps ftrace-based tracers co-exist with BPF
trampoline on the same kernel function. It also switches attaching logic from
arch specific text_poke to generic ftrace that is available on many
architectures. text_poke is still necessary for bpf-to-bpf attach and for
bpf_tail_call optimization.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20191209000114.1876138-3-ast@kernel.org
2019-12-11 15:18:08 -08:00
Daniel Borkmann
b553a6ec57 bpf: Simplify __bpf_arch_text_poke poke type handling
Given that we have BPF_MOD_NOP_TO_{CALL,JUMP}, BPF_MOD_{CALL,JUMP}_TO_NOP
and BPF_MOD_{CALL,JUMP}_TO_{CALL,JUMP} poke types and that we also pass in
old_addr as well as new_addr, it's a bit redundant and unnecessarily
complicates __bpf_arch_text_poke() itself since we can derive the same from
the *_addr that were passed in. Hence simplify and use BPF_MOD_{CALL,JUMP}
as types which also allows to clean up call-sites.

In addition to that, __bpf_arch_text_poke() currently verifies that text
matches expected old_insn before we invoke text_poke_bp(). Also add a check
on new_insn and skip rewrite if it already matches. Reason why this is rather
useful is that it avoids making any special casing in prog_array_map_poke_run()
when old and new prog were NULL and has the benefit that also for this case
we perform a check on text whether it really matches our expectations.

Suggested-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/fcb00a2b0b288d6c73de4ef58116a821c8fe8f2f.1574555798.git.daniel@iogearbox.net
2019-11-24 17:12:11 -08:00
Daniel Borkmann
da765a2f59 bpf: Add poke dependency tracking for prog array maps
This work adds program tracking to prog array maps. This is needed such
that upon prog array updates/deletions we can fix up all programs which
make use of this tail call map. We add ops->map_poke_{un,}track()
helpers to maps to maintain the list of programs and ops->map_poke_run()
for triggering the actual update.

bpf_array_aux is extended to contain the list head and poke_mutex in
order to serialize program patching during updates/deletions.
bpf_free_used_maps() will untrack the program shortly before dropping
the reference to the map. For clearing out the prog array once all urefs
are dropped we need to use schedule_work() to have a sleepable context.

The prog_array_map_poke_run() is triggered during updates/deletions and
walks the maintained prog list. It checks in their poke_tabs whether the
map and key is matching and runs the actual bpf_arch_text_poke() for
patching in the nop or new jmp location. Depending on the type of update,
we use one of BPF_MOD_{NOP_TO_JUMP,JUMP_TO_NOP,JUMP_TO_JUMP}.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/1fb364bb3c565b3e415d5ea348f036ff379e779d.1574452833.git.daniel@iogearbox.net
2019-11-24 17:04:11 -08:00
Daniel Borkmann
a66886fe6c bpf: Add initial poke descriptor table for jit images
Add initial poke table data structures and management to the BPF
prog that can later be used by JITs. Also add an instance of poke
specific data for tail call maps; plan for later work is to extend
this also for BPF static keys.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/1db285ec2ea4207ee0455b3f8e191a4fc58b9ade.1574452833.git.daniel@iogearbox.net
2019-11-24 17:04:11 -08:00
Daniel Borkmann
2beee5f574 bpf: Move owner type, jited info into array auxiliary data
We're going to extend this with further information which is only
relevant for prog array at this point. Given this info is not used
in critical path, move it into its own structure such that the main
array map structure can be kept on diet.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/b9ddccdb0f6f7026489ee955f16c96381e1e7238.1574452833.git.daniel@iogearbox.net
2019-11-24 17:04:11 -08:00
Daniel Borkmann
6332be04c0 bpf: Move bpf_free_used_maps into sleepable section
We later on are going to need a sleepable context as opposed to plain
RCU callback in order to untrack programs we need to poke at runtime
and tracking as well as image update is performed under mutex.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/09823b1d5262876e9b83a8e75df04cf0467357a4.1574452833.git.daniel@iogearbox.net
2019-11-24 17:03:44 -08:00
Daniel Borkmann
4b3da77b72 bpf, x86: Generalize and extend bpf_arch_text_poke for direct jumps
Add BPF_MOD_{NOP_TO_JUMP,JUMP_TO_JUMP,JUMP_TO_NOP} patching for x86
JIT in order to be able to patch direct jumps or nop them out. We need
this facility in order to patch tail call jumps and in later work also
BPF static keys.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/aa4784196a8e5e985af4b30a4fe5336bce6e9643.1574452833.git.daniel@iogearbox.net
2019-11-24 16:58:47 -08:00
Daniel Borkmann
196e8ca748 bpf: Switch bpf_map_{area_alloc,area_mmapable_alloc}() to u64 size
Given we recently extended the original bpf_map_area_alloc() helper in
commit fc9702273e ("bpf: Add mmap() support for BPF_MAP_TYPE_ARRAY"),
we need to apply the same logic as in ff1c08e1f7 ("bpf: Change size
to u64 for bpf_map_{area_alloc, charge_init}()"). To avoid conflicts,
extend it for bpf-next.

Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-11-20 23:18:58 +01:00
Andrii Nakryiko
fc9702273e bpf: Add mmap() support for BPF_MAP_TYPE_ARRAY
Add ability to memory-map contents of BPF array map. This is extremely useful
for working with BPF global data from userspace programs. It allows to avoid
typical bpf_map_{lookup,update}_elem operations, improving both performance
and usability.

There had to be special considerations for map freezing, to avoid having
writable memory view into a frozen map. To solve this issue, map freezing and
mmap-ing is happening under mutex now:
  - if map is already frozen, no writable mapping is allowed;
  - if map has writable memory mappings active (accounted in map->writecnt),
    map freezing will keep failing with -EBUSY;
  - once number of writable memory mappings drops to zero, map freezing can be
    performed again.

Only non-per-CPU plain arrays are supported right now. Maps with spinlocks
can't be memory mapped either.

For BPF_F_MMAPABLE array, memory allocation has to be done through vmalloc()
to be mmap()'able. We also need to make sure that array data memory is
page-sized and page-aligned, so we over-allocate memory in such a way that
struct bpf_array is at the end of a single page of memory with array->value
being aligned with the start of the second page. On deallocation we need to
accomodate this memory arrangement to free vmalloc()'ed memory correctly.

One important consideration regarding how memory-mapping subsystem functions.
Memory-mapping subsystem provides few optional callbacks, among them open()
and close().  close() is called for each memory region that is unmapped, so
that users can decrease their reference counters and free up resources, if
necessary. open() is *almost* symmetrical: it's called for each memory region
that is being mapped, **except** the very first one. So bpf_map_mmap does
initial refcnt bump, while open() will do any extra ones after that. Thus
number of close() calls is equal to number of open() calls plus one more.

Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <songliubraving@fb.com>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Link: https://lore.kernel.org/bpf/20191117172806.2195367-4-andriin@fb.com
2019-11-18 11:41:59 +01:00
Andrii Nakryiko
85192dbf4d bpf: Convert bpf_prog refcnt to atomic64_t
Similarly to bpf_map's refcnt/usercnt, convert bpf_prog's refcnt to atomic64
and remove artificial 32k limit. This allows to make bpf_prog's refcounting
non-failing, simplifying logic of users of bpf_prog_add/bpf_prog_inc.

Validated compilation by running allyesconfig kernel build.

Suggested-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20191117172806.2195367-3-andriin@fb.com
2019-11-18 11:41:59 +01:00
Andrii Nakryiko
1e0bd5a091 bpf: Switch bpf_map ref counter to atomic64_t so bpf_map_inc() never fails
92117d8443 ("bpf: fix refcnt overflow") turned refcounting of bpf_map into
potentially failing operation, when refcount reaches BPF_MAX_REFCNT limit
(32k). Due to using 32-bit counter, it's possible in practice to overflow
refcounter and make it wrap around to 0, causing erroneous map free, while
there are still references to it, causing use-after-free problems.

But having a failing refcounting operations are problematic in some cases. One
example is mmap() interface. After establishing initial memory-mapping, user
is allowed to arbitrarily map/remap/unmap parts of mapped memory, arbitrarily
splitting it into multiple non-contiguous regions. All this happening without
any control from the users of mmap subsystem. Rather mmap subsystem sends
notifications to original creator of memory mapping through open/close
callbacks, which are optionally specified during initial memory mapping
creation. These callbacks are used to maintain accurate refcount for bpf_map
(see next patch in this series). The problem is that open() callback is not
supposed to fail, because memory-mapped resource is set up and properly
referenced. This is posing a problem for using memory-mapping with BPF maps.

One solution to this is to maintain separate refcount for just memory-mappings
and do single bpf_map_inc/bpf_map_put when it goes from/to zero, respectively.
There are similar use cases in current work on tcp-bpf, necessitating extra
counter as well. This seems like a rather unfortunate and ugly solution that
doesn't scale well to various new use cases.

Another approach to solve this is to use non-failing refcount_t type, which
uses 32-bit counter internally, but, once reaching overflow state at UINT_MAX,
stays there. This utlimately causes memory leak, but prevents use after free.

But given refcounting is not the most performance-critical operation with BPF
maps (it's not used from running BPF program code), we can also just switch to
64-bit counter that can't overflow in practice, potentially disadvantaging
32-bit platforms a tiny bit. This simplifies semantics and allows above
described scenarios to not worry about failing refcount increment operation.

In terms of struct bpf_map size, we are still good and use the same amount of
space:

BEFORE (3 cache lines, 8 bytes of padding at the end):
struct bpf_map {
	const struct bpf_map_ops  * ops __attribute__((__aligned__(64))); /*     0     8 */
	struct bpf_map *           inner_map_meta;       /*     8     8 */
	void *                     security;             /*    16     8 */
	enum bpf_map_type  map_type;                     /*    24     4 */
	u32                        key_size;             /*    28     4 */
	u32                        value_size;           /*    32     4 */
	u32                        max_entries;          /*    36     4 */
	u32                        map_flags;            /*    40     4 */
	int                        spin_lock_off;        /*    44     4 */
	u32                        id;                   /*    48     4 */
	int                        numa_node;            /*    52     4 */
	u32                        btf_key_type_id;      /*    56     4 */
	u32                        btf_value_type_id;    /*    60     4 */
	/* --- cacheline 1 boundary (64 bytes) --- */
	struct btf *               btf;                  /*    64     8 */
	struct bpf_map_memory memory;                    /*    72    16 */
	bool                       unpriv_array;         /*    88     1 */
	bool                       frozen;               /*    89     1 */

	/* XXX 38 bytes hole, try to pack */

	/* --- cacheline 2 boundary (128 bytes) --- */
	atomic_t                   refcnt __attribute__((__aligned__(64))); /*   128     4 */
	atomic_t                   usercnt;              /*   132     4 */
	struct work_struct work;                         /*   136    32 */
	char                       name[16];             /*   168    16 */

	/* size: 192, cachelines: 3, members: 21 */
	/* sum members: 146, holes: 1, sum holes: 38 */
	/* padding: 8 */
	/* forced alignments: 2, forced holes: 1, sum forced holes: 38 */
} __attribute__((__aligned__(64)));

AFTER (same 3 cache lines, no extra padding now):
struct bpf_map {
	const struct bpf_map_ops  * ops __attribute__((__aligned__(64))); /*     0     8 */
	struct bpf_map *           inner_map_meta;       /*     8     8 */
	void *                     security;             /*    16     8 */
	enum bpf_map_type  map_type;                     /*    24     4 */
	u32                        key_size;             /*    28     4 */
	u32                        value_size;           /*    32     4 */
	u32                        max_entries;          /*    36     4 */
	u32                        map_flags;            /*    40     4 */
	int                        spin_lock_off;        /*    44     4 */
	u32                        id;                   /*    48     4 */
	int                        numa_node;            /*    52     4 */
	u32                        btf_key_type_id;      /*    56     4 */
	u32                        btf_value_type_id;    /*    60     4 */
	/* --- cacheline 1 boundary (64 bytes) --- */
	struct btf *               btf;                  /*    64     8 */
	struct bpf_map_memory memory;                    /*    72    16 */
	bool                       unpriv_array;         /*    88     1 */
	bool                       frozen;               /*    89     1 */

	/* XXX 38 bytes hole, try to pack */

	/* --- cacheline 2 boundary (128 bytes) --- */
	atomic64_t                 refcnt __attribute__((__aligned__(64))); /*   128     8 */
	atomic64_t                 usercnt;              /*   136     8 */
	struct work_struct work;                         /*   144    32 */
	char                       name[16];             /*   176    16 */

	/* size: 192, cachelines: 3, members: 21 */
	/* sum members: 154, holes: 1, sum holes: 38 */
	/* forced alignments: 2, forced holes: 1, sum forced holes: 38 */
} __attribute__((__aligned__(64)));

This patch, while modifying all users of bpf_map_inc, also cleans up its
interface to match bpf_map_put with separate operations for bpf_map_inc and
bpf_map_inc_with_uref (to match bpf_map_put and bpf_map_put_with_uref,
respectively). Also, given there are no users of bpf_map_inc_not_zero
specifying uref=true, remove uref flag and default to uref=false internally.

Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20191117172806.2195367-2-andriin@fb.com
2019-11-18 11:41:59 +01:00
Alexei Starovoitov
5b92a28aae bpf: Support attaching tracing BPF program to other BPF programs
Allow FENTRY/FEXIT BPF programs to attach to other BPF programs of any type
including their subprograms. This feature allows snooping on input and output
packets in XDP, TC programs including their return values. In order to do that
the verifier needs to track types not only of vmlinux, but types of other BPF
programs as well. The verifier also needs to translate uapi/linux/bpf.h types
used by networking programs into kernel internal BTF types used by FENTRY/FEXIT
BPF programs. In some cases LLVM optimizations can remove arguments from BPF
subprograms without adjusting BTF info that LLVM backend knows. When BTF info
disagrees with actual types that the verifiers sees the BPF trampoline has to
fallback to conservative and treat all arguments as u64. The FENTRY/FEXIT
program can still attach to such subprograms, but it won't be able to recognize
pointer types like 'struct sk_buff *' and it won't be able to pass them to
bpf_skb_output() for dumping packets to user space. The FENTRY/FEXIT program
would need to use bpf_probe_read_kernel() instead.

The BPF_PROG_LOAD command is extended with attach_prog_fd field. When it's set
to zero the attach_btf_id is one vmlinux BTF type ids. When attach_prog_fd
points to previously loaded BPF program the attach_btf_id is BTF type id of
main function or one of its subprograms.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20191114185720.1641606-18-ast@kernel.org
2019-11-15 23:45:24 +01:00
Alexei Starovoitov
8c1b6e69dc bpf: Compare BTF types of functions arguments with actual types
Make the verifier check that BTF types of function arguments match actual types
passed into top-level BPF program and into BPF-to-BPF calls. If types match
such BPF programs and sub-programs will have full support of BPF trampoline. If
types mismatch the trampoline has to be conservative. It has to save/restore
five program arguments and assume 64-bit scalars.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <songliubraving@fb.com>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20191114185720.1641606-17-ast@kernel.org
2019-11-15 23:45:02 +01:00
Alexei Starovoitov
91cc1a9974 bpf: Annotate context types
Annotate BPF program context types with program-side type and kernel-side type.
This type information is used by the verifier. btf_get_prog_ctx_type() is
used in the later patches to verify that BTF type of ctx in BPF program matches to
kernel expected ctx type. For example, the XDP program type is:
BPF_PROG_TYPE(BPF_PROG_TYPE_XDP, xdp, struct xdp_md, struct xdp_buff)
That means that XDP program should be written as:
int xdp_prog(struct xdp_md *ctx) { ... }

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20191114185720.1641606-16-ast@kernel.org
2019-11-15 23:44:48 +01:00
Alexei Starovoitov
9cc31b3a09 bpf: Fix race in btf_resolve_helper_id()
btf_resolve_helper_id() caching logic is a bit racy, since under root the
verifier can verify several programs in parallel. Fix it with READ/WRITE_ONCE.
Fix the type as well, since error is also recorded.

Fixes: a7658e1a41 ("bpf: Check types of arguments passed into helpers")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <songliubraving@fb.com>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20191114185720.1641606-15-ast@kernel.org
2019-11-15 23:44:20 +01:00
Alexei Starovoitov
fec56f5890 bpf: Introduce BPF trampoline
Introduce BPF trampoline concept to allow kernel code to call into BPF programs
with practically zero overhead.  The trampoline generation logic is
architecture dependent.  It's converting native calling convention into BPF
calling convention.  BPF ISA is 64-bit (even on 32-bit architectures). The
registers R1 to R5 are used to pass arguments into BPF functions. The main BPF
program accepts only single argument "ctx" in R1. Whereas CPU native calling
convention is different. x86-64 is passing first 6 arguments in registers
and the rest on the stack. x86-32 is passing first 3 arguments in registers.
sparc64 is passing first 6 in registers. And so on.

The trampolines between BPF and kernel already exist.  BPF_CALL_x macros in
include/linux/filter.h statically compile trampolines from BPF into kernel
helpers. They convert up to five u64 arguments into kernel C pointers and
integers. On 64-bit architectures this BPF_to_kernel trampolines are nops. On
32-bit architecture they're meaningful.

The opposite job kernel_to_BPF trampolines is done by CAST_TO_U64 macros and
__bpf_trace_##call() shim functions in include/trace/bpf_probe.h. They convert
kernel function arguments into array of u64s that BPF program consumes via
R1=ctx pointer.

This patch set is doing the same job as __bpf_trace_##call() static
trampolines, but dynamically for any kernel function. There are ~22k global
kernel functions that are attachable via nop at function entry. The function
arguments and types are described in BTF.  The job of btf_distill_func_proto()
function is to extract useful information from BTF into "function model" that
architecture dependent trampoline generators will use to generate assembly code
to cast kernel function arguments into array of u64s.  For example the kernel
function eth_type_trans has two pointers. They will be casted to u64 and stored
into stack of generated trampoline. The pointer to that stack space will be
passed into BPF program in R1. On x86-64 such generated trampoline will consume
16 bytes of stack and two stores of %rdi and %rsi into stack. The verifier will
make sure that only two u64 are accessed read-only by BPF program. The verifier
will also recognize the precise type of the pointers being accessed and will
not allow typecasting of the pointer to a different type within BPF program.

The tracing use case in the datacenter demonstrated that certain key kernel
functions have (like tcp_retransmit_skb) have 2 or more kprobes that are always
active.  Other functions have both kprobe and kretprobe.  So it is essential to
keep both kernel code and BPF programs executing at maximum speed. Hence
generated BPF trampoline is re-generated every time new program is attached or
detached to maintain maximum performance.

To avoid the high cost of retpoline the attached BPF programs are called
directly. __bpf_prog_enter/exit() are used to support per-program execution
stats.  In the future this logic will be optimized further by adding support
for bpf_stats_enabled_key inside generated assembly code. Introduction of
preemptible and sleepable BPF programs will completely remove the need to call
to __bpf_prog_enter/exit().

Detach of a BPF program from the trampoline should not fail. To avoid memory
allocation in detach path the half of the page is used as a reserve and flipped
after each attach/detach. 2k bytes is enough to call 40+ BPF programs directly
which is enough for BPF tracing use cases. This limit can be increased in the
future.

BPF_TRACE_FENTRY programs have access to raw kernel function arguments while
BPF_TRACE_FEXIT programs have access to kernel return value as well. Often
kprobe BPF program remembers function arguments in a map while kretprobe
fetches arguments from a map and analyzes them together with return value.
BPF_TRACE_FEXIT accelerates this typical use case.

Recursion prevention for kprobe BPF programs is done via per-cpu
bpf_prog_active counter. In practice that turned out to be a mistake. It
caused programs to randomly skip execution. The tracing tools missed results
they were looking for. Hence BPF trampoline doesn't provide builtin recursion
prevention. It's a job of BPF program itself and will be addressed in the
follow up patches.

BPF trampoline is intended to be used beyond tracing and fentry/fexit use cases
in the future. For example to remove retpoline cost from XDP programs.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20191114185720.1641606-5-ast@kernel.org
2019-11-15 23:41:51 +01:00
Alexei Starovoitov
5964b2000f bpf: Add bpf_arch_text_poke() helper
Add bpf_arch_text_poke() helper that is used by BPF trampoline logic to patch
nops/calls in kernel text into calls into BPF trampoline and to patch
calls/nops inside BPF programs too.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <songliubraving@fb.com>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Link: https://lore.kernel.org/bpf/20191114185720.1641606-4-ast@kernel.org
2019-11-15 23:41:28 +01:00
Björn Töpel
d817991cc7 xsk: Restructure/inline XSKMAP lookup/redirect/flush
In this commit the XSKMAP entry lookup function used by the XDP
redirect code is moved from the xskmap.c file to the xdp_sock.h
header, so the lookup can be inlined from, e.g., the
bpf_xdp_redirect_map() function.

Further the __xsk_map_redirect() and __xsk_map_flush() is moved to the
xsk.c, which lets the compiler inline the xsk_rcv() and xsk_flush()
functions.

Finally, all the XDP socket functions were moved from linux/bpf.h to
net/xdp_sock.h, where most of the XDP sockets functions are anyway.

This yields a ~2% performance boost for the xdpsock "rx_drop"
scenario.

Signed-off-by: Björn Töpel <bjorn.topel@intel.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20191101110346.15004-4-bjorn.topel@gmail.com
2019-11-02 00:38:49 +01:00
Alexei Starovoitov
f1b9509c2f bpf: Replace prog_raw_tp+btf_id with prog_tracing
The bpf program type raw_tp together with 'expected_attach_type'
was the most appropriate api to indicate BTF-enabled raw_tp programs.
But during development it became apparent that 'expected_attach_type'
cannot be used and new 'attach_btf_id' field had to be introduced.
Which means that the information is duplicated in two fields where
one of them is ignored.
Clean it up by introducing new program type where both
'expected_attach_type' and 'attach_btf_id' fields have
specific meaning.
In the future 'expected_attach_type' will be extended
with other attach points that have similar semantics to raw_tp.
This patch is replacing BTF-enabled BPF_PROG_TYPE_RAW_TRACEPOINT with
prog_type = BPF_RPOG_TYPE_TRACING
expected_attach_type = BPF_TRACE_RAW_TP
attach_btf_id = btf_id of raw tracepoint inside the kernel
Future patches will add
expected_attach_type = BPF_TRACE_FENTRY or BPF_TRACE_FEXIT
where programs have the same input context and the same helpers,
but different attach points.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20191030223212.953010-2-ast@kernel.org
2019-10-31 15:16:59 +01:00
Martin KaFai Lau
3820729160 bpf: Prepare btf_ctx_access for non raw_tp use case
This patch makes a few changes to btf_ctx_access() to prepare
it for non raw_tp use case where the attach_btf_id is not
necessary a BTF_KIND_TYPEDEF.

It moves the "btf_trace_" prefix check and typedef-follow logic to a new
function "check_attach_btf_id()" which is called only once during
bpf_check().  btf_ctx_access() only operates on a BTF_KIND_FUNC_PROTO
type now. That should also be more efficient since it is done only
one instead of every-time check_ctx_access() is called.

"check_attach_btf_id()" needs to find the func_proto type from
the attach_btf_id.  It needs to store the result into the
newly added prog->aux->attach_func_proto.  func_proto
btf type has no name, so a proper name should be stored into
"attach_func_name" also.

v2:
- Move the "btf_trace_" check to an earlier verifier phase (Alexei)

Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20191025001811.1718491-1-kafai@fb.com
2019-10-24 18:41:08 -07:00
Alexei Starovoitov
a7658e1a41 bpf: Check types of arguments passed into helpers
Introduce new helper that reuses existing skb perf_event output
implementation, but can be called from raw_tracepoint programs
that receive 'struct sk_buff *' as tracepoint argument or
can walk other kernel data structures to skb pointer.

In order to do that teach verifier to resolve true C types
of bpf helpers into in-kernel BTF ids.
The type of kernel pointer passed by raw tracepoint into bpf
program will be tracked by the verifier all the way until
it's passed into helper function.
For example:
kfree_skb() kernel function calls trace_kfree_skb(skb, loc);
bpf programs receives that skb pointer and may eventually
pass it into bpf_skb_output() bpf helper which in-kernel is
implemented via bpf_skb_event_output() kernel function.
Its first argument in the kernel is 'struct sk_buff *'.
The verifier makes sure that types match all the way.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20191016032505.2089704-11-ast@kernel.org
2019-10-17 16:44:36 +02:00
Alexei Starovoitov
3dec541b2e bpf: Add support for BTF pointers to x86 JIT
Pointer to BTF object is a pointer to kernel object or NULL.
Such pointers can only be used by BPF_LDX instructions.
The verifier changed their opcode from LDX|MEM|size
to LDX|PROBE_MEM|size to make JITing easier.
The number of entries in extable is the number of BPF_LDX insns
that access kernel memory via "pointer to BTF type".
Only these load instructions can fault.
Since x86 extable is relative it has to be allocated in the same
memory region as JITed code.
Allocate it prior to last pass of JITing and let the last pass populate it.
Pointer to extable in bpf_prog_aux is necessary to make page fault
handling fast.
Page fault handling is done in two steps:
1. bpf_prog_kallsyms_find() finds BPF program that page faulted.
   It's done by walking rb tree.
2. then extable for given bpf program is binary searched.
This process is similar to how page faulting is done for kernel modules.
The exception handler skips over faulting x86 instruction and
initializes destination register with zero. This mimics exact
behavior of bpf_probe_read (when probe_kernel_read faults dest is zeroed).

JITs for other architectures can add support in similar way.
Until then they will reject unknown opcode and fallback to interpreter.

Since extable should be aligned and placed near JITed code
make bpf_jit_binary_alloc() return 4 byte aligned image offset,
so that extable aligning formula in bpf_int_jit_compile() doesn't need
to rely on internal implementation of bpf_jit_binary_alloc().
On x86 gcc defaults to 16-byte alignment for regular kernel functions
due to better performance. JITed code may be aligned to 16 in the future,
but it will use 4 in the meantime.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20191016032505.2089704-10-ast@kernel.org
2019-10-17 16:44:36 +02:00
Alexei Starovoitov
9e15db6613 bpf: Implement accurate raw_tp context access via BTF
libbpf analyzes bpf C program, searches in-kernel BTF for given type name
and stores it into expected_attach_type.
The kernel verifier expects this btf_id to point to something like:
typedef void (*btf_trace_kfree_skb)(void *, struct sk_buff *skb, void *loc);
which represents signature of raw_tracepoint "kfree_skb".

Then btf_ctx_access() matches ctx+0 access in bpf program with 'skb'
and 'ctx+8' access with 'loc' arguments of "kfree_skb" tracepoint.
In first case it passes btf_id of 'struct sk_buff *' back to the verifier core
and 'void *' in second case.

Then the verifier tracks PTR_TO_BTF_ID as any other pointer type.
Like PTR_TO_SOCKET points to 'struct bpf_sock',
PTR_TO_TCP_SOCK points to 'struct bpf_tcp_sock', and so on.
PTR_TO_BTF_ID points to in-kernel structs.
If 1234 is btf_id of 'struct sk_buff' in vmlinux's BTF
then PTR_TO_BTF_ID#1234 points to one of in kernel skbs.

When PTR_TO_BTF_ID#1234 is dereferenced (like r2 = *(u64 *)r1 + 32)
the btf_struct_access() checks which field of 'struct sk_buff' is
at offset 32. Checks that size of access matches type definition
of the field and continues to track the dereferenced type.
If that field was a pointer to 'struct net_device' the r2's type
will be PTR_TO_BTF_ID#456. Where 456 is btf_id of 'struct net_device'
in vmlinux's BTF.

Such verifier analysis prevents "cheating" in BPF C program.
The program cannot cast arbitrary pointer to 'struct sk_buff *'
and access it. C compiler would allow type cast, of course,
but the verifier will notice type mismatch based on BPF assembly
and in-kernel BTF.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20191016032505.2089704-7-ast@kernel.org
2019-10-17 16:44:35 +02:00
Alexei Starovoitov
ccfe29eb29 bpf: Add attach_btf_id attribute to program load
Add attach_btf_id attribute to prog_load command.
It's similar to existing expected_attach_type attribute which is
used in several cgroup based program types.
Unfortunately expected_attach_type is ignored for
tracing programs and cannot be reused for new purpose.
Hence introduce attach_btf_id to verify bpf programs against
given in-kernel BTF type id at load time.
It is strictly checked to be valid for raw_tp programs only.
In a later patches it will become:
btf_id == 0 semantics of existing raw_tp progs.
btd_id > 0 raw_tp with BTF and additional type safety.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20191016032505.2089704-5-ast@kernel.org
2019-10-17 16:44:35 +02:00
Eric Dumazet
84a081f60d bpf: Align struct bpf_prog_stats
Do not risk spanning these small structures on two cache lines.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20191011181140.2898-1-edumazet@google.com
2019-10-11 22:25:09 +02:00
Quentin Monnet
1b9ed84ecf bpf: add new BPF_BTF_GET_NEXT_ID syscall command
Add a new command for the bpf() system call: BPF_BTF_GET_NEXT_ID is used
to cycle through all BTF objects loaded on the system.

The motivation is to be able to inspect (list) all BTF objects presents
on the system.

Signed-off-by: Quentin Monnet <quentin.monnet@netronome.com>
Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-08-20 09:51:06 -07:00
Stanislav Fomichev
b0e4701ce1 bpf: export bpf_map_inc_not_zero
Rename existing bpf_map_inc_not_zero to __bpf_map_inc_not_zero to
indicate that it's caller's responsibility to do proper locking.
Create and export bpf_map_inc_not_zero wrapper that properly
locks map_idr_lock. Will be used in the next commit to
hold a map while cloning a socket.

Cc: Martin KaFai Lau <kafai@fb.com>
Cc: Yonghong Song <yhs@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-08-17 23:18:54 +02:00
Toke Høiland-Jørgensen
6f9d451ab1 xdp: Add devmap_hash map type for looking up devices by hashed index
A common pattern when using xdp_redirect_map() is to create a device map
where the lookup key is simply ifindex. Because device maps are arrays,
this leaves holes in the map, and the map has to be sized to fit the
largest ifindex, regardless of how many devices actually are actually
needed in the map.

This patch adds a second type of device map where the key is looked up
using a hashmap, instead of being used as an array index. This allows maps
to be densely packed, so they can be smaller.

Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-07-29 13:50:48 -07:00
Toke Høiland-Jørgensen
6dbff13ca8 include/bpf.h: Remove map_insert_ctx() stubs
When we changed the device and CPU maps to use linked lists instead of
bitmaps, we also removed the need for the map_insert_ctx() helpers to keep
track of the bitmaps inside each map. However, it seems I forgot to remove
the function definitions stubs, so remove those here.

Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-07-29 13:50:48 -07:00
Stanislav Fomichev
0d01da6afc bpf: implement getsockopt and setsockopt hooks
Implement new BPF_PROG_TYPE_CGROUP_SOCKOPT program type and
BPF_CGROUP_{G,S}ETSOCKOPT cgroup hooks.

BPF_CGROUP_SETSOCKOPT can modify user setsockopt arguments before
passing them down to the kernel or bypass kernel completely.
BPF_CGROUP_GETSOCKOPT can can inspect/modify getsockopt arguments that
kernel returns.
Both hooks reuse existing PTR_TO_PACKET{,_END} infrastructure.

The buffer memory is pre-allocated (because I don't think there is
a precedent for working with __user memory from bpf). This might be
slow to do for each {s,g}etsockopt call, that's why I've added
__cgroup_bpf_prog_array_is_empty that exits early if there is nothing
attached to a cgroup. Note, however, that there is a race between
__cgroup_bpf_prog_array_is_empty and BPF_PROG_RUN_ARRAY where cgroup
program layout might have changed; this should not be a problem
because in general there is a race between multiple calls to
{s,g}etsocktop and user adding/removing bpf progs from a cgroup.

The return code of the BPF program is handled as follows:
* 0: EPERM
* 1: success, continue with next BPF program in the cgroup chain

v9:
* allow overwriting setsockopt arguments (Alexei Starovoitov):
  * use set_fs (same as kernel_setsockopt)
  * buffer is always kzalloc'd (no small on-stack buffer)

v8:
* use s32 for optlen (Andrii Nakryiko)

v7:
* return only 0 or 1 (Alexei Starovoitov)
* always run all progs (Alexei Starovoitov)
* use optval=0 as kernel bypass in setsockopt (Alexei Starovoitov)
  (decided to use optval=-1 instead, optval=0 might be a valid input)
* call getsockopt hook after kernel handlers (Alexei Starovoitov)

v6:
* rework cgroup chaining; stop as soon as bpf program returns
  0 or 2; see patch with the documentation for the details
* drop Andrii's and Martin's Acked-by (not sure they are comfortable
  with the new state of things)

v5:
* skip copy_to_user() and put_user() when ret == 0 (Martin Lau)

v4:
* don't export bpf_sk_fullsock helper (Martin Lau)
* size != sizeof(__u64) for uapi pointers (Martin Lau)
* offsetof instead of bpf_ctx_range when checking ctx access (Martin Lau)

v3:
* typos in BPF_PROG_CGROUP_SOCKOPT_RUN_ARRAY comments (Andrii Nakryiko)
* reverse christmas tree in BPF_PROG_CGROUP_SOCKOPT_RUN_ARRAY (Andrii
  Nakryiko)
* use __bpf_md_ptr instead of __u32 for optval{,_end} (Martin Lau)
* use BPF_FIELD_SIZEOF() for consistency (Martin Lau)
* new CG_SOCKOPT_ACCESS macro to wrap repeated parts

v2:
* moved bpf_sockopt_kern fields around to remove a hole (Martin Lau)
* aligned bpf_sockopt_kern->buf to 8 bytes (Martin Lau)
* bpf_prog_array_is_empty instead of bpf_prog_array_length (Martin Lau)
* added [0,2] return code check to verifier (Martin Lau)
* dropped unused buf[64] from the stack (Martin Lau)
* use PTR_TO_SOCKET for bpf_sockopt->sk (Martin Lau)
* dropped bpf_target_off from ctx rewrites (Martin Lau)
* use return code for kernel bypass (Martin Lau & Andrii Nakryiko)

Cc: Andrii Nakryiko <andriin@fb.com>
Cc: Martin Lau <kafai@fb.com>
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-06-27 15:25:16 -07:00
David S. Miller
dca73a65a6 Merge git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
Alexei Starovoitov says:

====================
pull-request: bpf-next 2019-06-19

The following pull-request contains BPF updates for your *net-next* tree.

The main changes are:

1) new SO_REUSEPORT_DETACH_BPF setsocktopt, from Martin.

2) BTF based map definition, from Andrii.

3) support bpf_map_lookup_elem for xskmap, from Jonathan.

4) bounded loops and scalar precision logic in the verifier, from Alexei.
====================

Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-20 00:06:27 -04:00
David S. Miller
13091aa305 Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
Honestly all the conflicts were simple overlapping changes,
nothing really interesting to report.

Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-17 20:20:36 -07:00
Eric Dumazet
a8e11e5c56 sysctl: define proc_do_static_key()
Convert proc_dointvec_minmax_bpf_stats() into a more generic
helper, since we are going to use jump labels more often.

Note that sysctl_bpf_stats_enabled is removed, since
it is no longer needed/used.

Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-14 20:18:27 -07:00
YueHaibing
7f94208c8f bpf: Fix build error without CONFIG_INET
If CONFIG_INET is not set, building fails:

kernel/bpf/verifier.o: In function `check_mem_access':
verifier.c: undefined reference to `bpf_xdp_sock_is_valid_access'
kernel/bpf/verifier.o: In function `convert_ctx_accesses':
verifier.c: undefined reference to `bpf_xdp_sock_convert_ctx_access'

Reported-by: Hulk Robot <hulkci@huawei.com>
Fixes: fada7fdc83 ("bpf: Allow bpf_map_lookup_elem() on an xskmap")
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Acked-by: Jonathan Lemon <jonathan.lemon@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-06-15 01:22:00 +02:00
Jonathan Lemon
fada7fdc83 bpf: Allow bpf_map_lookup_elem() on an xskmap
Currently, the AF_XDP code uses a separate map in order to
determine if an xsk is bound to a queue.  Instead of doing this,
have bpf_map_lookup_elem() return a xdp_sock.

Rearrange some xdp_sock members to eliminate structure holes.

Remove selftest - will be added back in later patch.

Signed-off-by: Jonathan Lemon <jonathan.lemon@gmail.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-06-10 23:31:26 -07:00
David S. Miller
a6cdeeb16b Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
Some ISDN files that got removed in net-next had some changes
done in mainline, take the removals.

Signed-off-by: David S. Miller <davem@davemloft.net>
2019-06-07 11:00:14 -07:00
Roman Gushchin
c85d69135a bpf: move memory size checks to bpf_map_charge_init()
Most bpf map types doing similar checks and bytes to pages
conversion during memory allocation and charging.

Let's unify these checks by moving them into bpf_map_charge_init().

Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-05-31 16:52:56 -07:00
Roman Gushchin
b936ca643a bpf: rework memlock-based memory accounting for maps
In order to unify the existing memlock charging code with the
memcg-based memory accounting, which will be added later, let's
rework the current scheme.

Currently the following design is used:
  1) .alloc() callback optionally checks if the allocation will likely
     succeed using bpf_map_precharge_memlock()
  2) .alloc() performs actual allocations
  3) .alloc() callback calculates map cost and sets map.memory.pages
  4) map_create() calls bpf_map_init_memlock() which sets map.memory.user
     and performs actual charging; in case of failure the map is
     destroyed
  <map is in use>
  1) bpf_map_free_deferred() calls bpf_map_release_memlock(), which
     performs uncharge and releases the user
  2) .map_free() callback releases the memory

The scheme can be simplified and made more robust:
  1) .alloc() calculates map cost and calls bpf_map_charge_init()
  2) bpf_map_charge_init() sets map.memory.user and performs actual
    charge
  3) .alloc() performs actual allocations
  <map is in use>
  1) .map_free() callback releases the memory
  2) bpf_map_charge_finish() performs uncharge and releases the user

The new scheme also allows to reuse bpf_map_charge_init()/finish()
functions for memcg-based accounting. Because charges are performed
before actual allocations and uncharges after freeing the memory,
no bogus memory pressure can be created.

In cases when the map structure is not available (e.g. it's not
created yet, or is already destroyed), on-stack bpf_map_memory
structure is used. The charge can be transferred with the
bpf_map_charge_move() function.

Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-05-31 16:52:56 -07:00
Roman Gushchin
3539b96e04 bpf: group memory related fields in struct bpf_map_memory
Group "user" and "pages" fields of bpf_map into the bpf_map_memory
structure. Later it can be extended with "memcg" and other related
information.

The main reason for a such change (beside cosmetics) is to pass
bpf_map_memory structure to charging functions before the actual
allocation of bpf_map.

Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-05-31 16:52:56 -07:00
brakmo
1f52f6c0b0 bpf: Create BPF_PROG_CGROUP_INET_EGRESS_RUN_ARRAY
Create new macro BPF_PROG_CGROUP_INET_EGRESS_RUN_ARRAY() to be used by
__cgroup_bpf_run_filter_skb for EGRESS BPF progs so BPF programs can
request cwr for TCP packets.

Current cgroup skb programs can only return 0 or 1 (0 to drop the
packet. This macro changes the behavior so the low order bit
indicates whether the packet should be dropped (0) or not (1)
and the next bit is used for congestion notification (cn).

Hence, new allowed return values of CGROUP EGRESS BPF programs are:
  0: drop packet
  1: keep packet
  2: drop packet and call cwr
  3: keep packet and call cwr

This macro then converts it to one of NET_XMIT values or -EPERM
that has the effect of dropping the packet with no cn.
  0: NET_XMIT_SUCCESS  skb should be transmitted (no cn)
  1: NET_XMIT_DROP     skb should be dropped and cwr called
  2: NET_XMIT_CN       skb should be transmitted and cwr called
  3: -EPERM            skb should be dropped (no cn)

Note that when more than one BPF program is called, the packet is
dropped if at least one of programs requests it be dropped, and
there is cn if at least one program returns cn.

Signed-off-by: Lawrence Brakmo <brakmo@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-05-31 16:41:29 -07:00
Thomas Gleixner
25763b3c86 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 206
Based on 1 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms of version 2 of the gnu general public license as
  published by the free software foundation

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-only

has been chosen to replace the boilerplate/reference in 107 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Richard Fontana <rfontana@redhat.com>
Reviewed-by: Steve Winslow <swinslow@gmail.com>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190528171438.615055994@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-30 11:29:53 -07:00
Stanislav Fomichev
54e9c9d4b5 bpf: remove __rcu annotations from bpf_prog_array
Drop __rcu annotations and rcu read sections from bpf_prog_array
helper functions. They are not needed since all existing callers
call those helpers from the rcu update side while holding a mutex.
This guarantees that use-after-free could not happen.

In the next patches I'll fix the callers with missing
rcu_dereference_protected to make sparse/lockdep happy, the proper
way to use these helpers is:

	struct bpf_prog_array __rcu *progs = ...;
	struct bpf_prog_array *p;

	mutex_lock(&mtx);
	p = rcu_dereference_protected(progs, lockdep_is_held(&mtx));
	bpf_prog_array_length(p);
	bpf_prog_array_copy_to_user(p, ...);
	bpf_prog_array_delete_safe(p, ...);
	bpf_prog_array_copy_info(p, ...);
	bpf_prog_array_copy(p, ...);
	bpf_prog_array_free(p);
	mutex_unlock(&mtx);

No functional changes! rcu_dereference_protected with lockdep_is_held
should catch any cases where we update prog array without a mutex
(I've looked at existing call sites and I think we hold a mutex
everywhere).

Motivation is to fix sparse warnings:
kernel/bpf/core.c:1803:9: warning: incorrect type in argument 1 (different address spaces)
kernel/bpf/core.c:1803:9:    expected struct callback_head *head
kernel/bpf/core.c:1803:9:    got struct callback_head [noderef] <asn:4> *
kernel/bpf/core.c:1877:44: warning: incorrect type in initializer (different address spaces)
kernel/bpf/core.c:1877:44:    expected struct bpf_prog_array_item *item
kernel/bpf/core.c:1877:44:    got struct bpf_prog_array_item [noderef] <asn:4> *
kernel/bpf/core.c:1901:26: warning: incorrect type in assignment (different address spaces)
kernel/bpf/core.c:1901:26:    expected struct bpf_prog_array_item *existing
kernel/bpf/core.c:1901:26:    got struct bpf_prog_array_item [noderef] <asn:4> *
kernel/bpf/core.c:1935:26: warning: incorrect type in assignment (different address spaces)
kernel/bpf/core.c:1935:26:    expected struct bpf_prog_array_item *[assigned] existing
kernel/bpf/core.c:1935:26:    got struct bpf_prog_array_item [noderef] <asn:4> *

v2:
* remove comment about potential race; that can't happen
  because all callers are in rcu-update section

Cc: Roman Gushchin <guro@fb.com>
Acked-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-05-29 15:17:35 +02:00
Jiong Wang
a4b1d3c1dd bpf: verifier: insert zero extension according to analysis result
After previous patches, verifier will mark a insn if it really needs zero
extension on dst_reg.

It is then for back-ends to decide how to use such information to eliminate
unnecessary zero extension code-gen during JIT compilation.

One approach is verifier insert explicit zero extension for those insns
that need zero extension in a generic way, JIT back-ends then do not
generate zero extension for sub-register write at default.

However, only those back-ends which do not have hardware zero extension
want this optimization. Back-ends like x86_64 and AArch64 have hardware
zero extension support that the insertion should be disabled.

This patch introduces new target hook "bpf_jit_needs_zext" which returns
false at default, meaning verifier zero extension insertion is disabled at
default. A back-end could override this hook to return true if it doesn't
have hardware support and want verifier insert zero extension explicitly.

Offload targets do not use this native target hook, instead, they could
get the optimization results using bpf_prog_offload_ops.finalize.

NOTE: arches could have diversified features, it is possible for one arch
to have hardware zero extension support for some sub-register write insns
but not for all. For example, PowerPC, SPARC have zero extended loads, but
not for alu32. So when verifier zero extension insertion enabled, these JIT
back-ends need to peephole insns to remove those zero extension inserted
for insn that actually has hardware zero extension support. The peephole
could be as simple as looking the next insn, if it is a special zero
extension insn then it is safe to eliminate it if the current insn has
hardware zero extension support.

Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-05-24 18:58:37 -07:00
Daniel Borkmann
c6110222c6 bpf: add map_lookup_elem_sys_only for lookups from syscall side
Add a callback map_lookup_elem_sys_only() that map implementations
could use over map_lookup_elem() from system call side in case the
map implementation needs to handle the latter differently than from
the BPF data path. If map_lookup_elem_sys_only() is set, this will
be preferred pick for map lookups out of user space. This hook is
used in a follow-up fix for LRU map, but once development window
opens, we can convert other map types from map_lookup_elem() (here,
the one called upon BPF_MAP_LOOKUP_ELEM cmd is meant) over to use
the callback to simplify and clean up the latter.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-05-14 10:47:29 -07:00
David S. Miller
ff24e4980a Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
Three trivial overlapping conflicts.

Signed-off-by: David S. Miller <davem@davemloft.net>
2019-05-02 22:14:21 -04:00
Martin KaFai Lau
6ac99e8f23 bpf: Introduce bpf sk local storage
After allowing a bpf prog to
- directly read the skb->sk ptr
- get the fullsock bpf_sock by "bpf_sk_fullsock()"
- get the bpf_tcp_sock by "bpf_tcp_sock()"
- get the listener sock by "bpf_get_listener_sock()"
- avoid duplicating the fields of "(bpf_)sock" and "(bpf_)tcp_sock"
  into different bpf running context.

this patch is another effort to make bpf's network programming
more intuitive to do (together with memory and performance benefit).

When bpf prog needs to store data for a sk, the current practice is to
define a map with the usual 4-tuples (src/dst ip/port) as the key.
If multiple bpf progs require to store different sk data, multiple maps
have to be defined.  Hence, wasting memory to store the duplicated
keys (i.e. 4 tuples here) in each of the bpf map.
[ The smallest key could be the sk pointer itself which requires
  some enhancement in the verifier and it is a separate topic. ]

Also, the bpf prog needs to clean up the elem when sk is freed.
Otherwise, the bpf map will become full and un-usable quickly.
The sk-free tracking currently could be done during sk state
transition (e.g. BPF_SOCK_OPS_STATE_CB).

The size of the map needs to be predefined which then usually ended-up
with an over-provisioned map in production.  Even the map was re-sizable,
while the sk naturally come and go away already, this potential re-size
operation is arguably redundant if the data can be directly connected
to the sk itself instead of proxy-ing through a bpf map.

This patch introduces sk->sk_bpf_storage to provide local storage space
at sk for bpf prog to use.  The space will be allocated when the first bpf
prog has created data for this particular sk.

The design optimizes the bpf prog's lookup (and then optionally followed by
an inline update).  bpf_spin_lock should be used if the inline update needs
to be protected.

BPF_MAP_TYPE_SK_STORAGE:
-----------------------
To define a bpf "sk-local-storage", a BPF_MAP_TYPE_SK_STORAGE map (new in
this patch) needs to be created.  Multiple BPF_MAP_TYPE_SK_STORAGE maps can
be created to fit different bpf progs' needs.  The map enforces
BTF to allow printing the sk-local-storage during a system-wise
sk dump (e.g. "ss -ta") in the future.

The purpose of a BPF_MAP_TYPE_SK_STORAGE map is not for lookup/update/delete
a "sk-local-storage" data from a particular sk.
Think of the map as a meta-data (or "type") of a "sk-local-storage".  This
particular "type" of "sk-local-storage" data can then be stored in any sk.

The main purposes of this map are mostly:
1. Define the size of a "sk-local-storage" type.
2. Provide a similar syscall userspace API as the map (e.g. lookup/update,
   map-id, map-btf...etc.)
3. Keep track of all sk's storages of this "type" and clean them up
   when the map is freed.

sk->sk_bpf_storage:
------------------
The main lookup/update/delete is done on sk->sk_bpf_storage (which
is a "struct bpf_sk_storage").  When doing a lookup,
the "map" pointer is now used as the "key" to search on the
sk_storage->list.  The "map" pointer is actually serving
as the "type" of the "sk-local-storage" that is being
requested.

To allow very fast lookup, it should be as fast as looking up an
array at a stable-offset.  At the same time, it is not ideal to
set a hard limit on the number of sk-local-storage "type" that the
system can have.  Hence, this patch takes a cache approach.
The last search result from sk_storage->list is cached in
sk_storage->cache[] which is a stable sized array.  Each
"sk-local-storage" type has a stable offset to the cache[] array.
In the future, a map's flag could be introduced to do cache
opt-out/enforcement if it became necessary.

The cache size is 16 (i.e. 16 types of "sk-local-storage").
Programs can share map.  On the program side, having a few bpf_progs
running in the networking hotpath is already a lot.  The bpf_prog
should have already consolidated the existing sock-key-ed map usage
to minimize the map lookup penalty.  16 has enough runway to grow.

All sk-local-storage data will be removed from sk->sk_bpf_storage
during sk destruction.

bpf_sk_storage_get() and bpf_sk_storage_delete():
------------------------------------------------
Instead of using bpf_map_(lookup|update|delete)_elem(),
the bpf prog needs to use the new helper bpf_sk_storage_get() and
bpf_sk_storage_delete().  The verifier can then enforce the
ARG_PTR_TO_SOCKET argument.  The bpf_sk_storage_get() also allows to
"create" new elem if one does not exist in the sk.  It is done by
the new BPF_SK_STORAGE_GET_F_CREATE flag.  An optional value can also be
provided as the initial value during BPF_SK_STORAGE_GET_F_CREATE.
The BPF_MAP_TYPE_SK_STORAGE also supports bpf_spin_lock.  Together,
it has eliminated the potential use cases for an equivalent
bpf_map_update_elem() API (for bpf_prog) in this patch.

Misc notes:
----------
1. map_get_next_key is not supported.  From the userspace syscall
   perspective,  the map has the socket fd as the key while the map
   can be shared by pinned-file or map-id.

   Since btf is enforced, the existing "ss" could be enhanced to pretty
   print the local-storage.

   Supporting a kernel defined btf with 4 tuples as the return key could
   be explored later also.

2. The sk->sk_lock cannot be acquired.  Atomic operations is used instead.
   e.g. cmpxchg is done on the sk->sk_bpf_storage ptr.
   Please refer to the source code comments for the details in
   synchronization cases and considerations.

3. The mem is charged to the sk->sk_omem_alloc as the sk filter does.

Benchmark:
---------
Here is the benchmark data collected by turning on
the "kernel.bpf_stats_enabled" sysctl.
Two bpf progs are tested:

One bpf prog with the usual bpf hashmap (max_entries = 8192) with the
sk ptr as the key. (verifier is modified to support sk ptr as the key
That should have shortened the key lookup time.)

Another bpf prog is with the new BPF_MAP_TYPE_SK_STORAGE.

Both are storing a "u32 cnt", do a lookup on "egress_skb/cgroup" for
each egress skb and then bump the cnt.  netperf is used to drive
data with 4096 connected UDP sockets.

BPF_MAP_TYPE_HASH with a modifier verifier (152ns per bpf run)
27: cgroup_skb  name egress_sk_map  tag 74f56e832918070b run_time_ns 58280107540 run_cnt 381347633
    loaded_at 2019-04-15T13:46:39-0700  uid 0
    xlated 344B  jited 258B  memlock 4096B  map_ids 16
    btf_id 5

BPF_MAP_TYPE_SK_STORAGE in this patch (66ns per bpf run)
30: cgroup_skb  name egress_sk_stora  tag d4aa70984cc7bbf6 run_time_ns 25617093319 run_cnt 390989739
    loaded_at 2019-04-15T13:47:54-0700  uid 0
    xlated 168B  jited 156B  memlock 4096B  map_ids 17
    btf_id 6

Here is a high-level picture on how are the objects organized:

       sk
    ┌──────┐
    │      │
    │      │
    │      │
    │*sk_bpf_storage─────▶ bpf_sk_storage
    └──────┘                 ┌───────┐
                 ┌───────────┤ list  │
                 │           │       │
                 │           │       │
                 │           │       │
                 │           └───────┘
                 │
                 │     elem
                 │  ┌────────┐
                 ├─▶│ snode  │
                 │  ├────────┤
                 │  │  data  │          bpf_map
                 │  ├────────┤        ┌─────────┐
                 │  │map_node│◀─┬─────┤  list   │
                 │  └────────┘  │     │         │
                 │              │     │         │
                 │     elem     │     │         │
                 │  ┌────────┐  │     └─────────┘
                 └─▶│ snode  │  │
                    ├────────┤  │
   bpf_map          │  data  │  │
 ┌─────────┐        ├────────┤  │
 │  list   ├───────▶│map_node│  │
 │         │        └────────┘  │
 │         │                    │
 │         │           elem     │
 └─────────┘        ┌────────┐  │
                 ┌─▶│ snode  │  │
                 │  ├────────┤  │
                 │  │  data  │  │
                 │  ├────────┤  │
                 │  │map_node│◀─┘
                 │  └────────┘
                 │
                 │
                 │          ┌───────┐
     sk          └──────────│ list  │
  ┌──────┐                  │       │
  │      │                  │       │
  │      │                  │       │
  │      │                  └───────┘
  │*sk_bpf_storage───────▶bpf_sk_storage
  └──────┘

Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-04-27 09:07:04 -07:00
Matt Mullins
9df1c28bb7 bpf: add writable context for raw tracepoints
This is an opt-in interface that allows a tracepoint to provide a safe
buffer that can be written from a BPF_PROG_TYPE_RAW_TRACEPOINT program.
The size of the buffer must be a compile-time constant, and is checked
before allowing a BPF program to attach to a tracepoint that uses this
feature.

The pointer to this buffer will be the first argument of tracepoints
that opt in; the pointer is valid and can be bpf_probe_read() by both
BPF_PROG_TYPE_RAW_TRACEPOINT and BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE
programs that attach to such a tracepoint, but the buffer to which it
points may only be written by the latter.

Signed-off-by: Matt Mullins <mmullins@fb.com>
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-04-26 19:04:19 -07:00
Peter Zijlstra
0edd6b64d1 bpf: Fix preempt_enable_no_resched() abuse
Unless the very next line is schedule(), or implies it, one must not use
preempt_enable_no_resched(). It can cause a preemption to go missing and
thereby cause arbitrary delays, breaking the PREEMPT=y invariant.

Cc: Roman Gushchin <guro@fb.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-04-25 17:20:06 -07:00
Andrey Ignatov
d7a4cb9b67 bpf: Introduce bpf_strtol and bpf_strtoul helpers
Add bpf_strtol and bpf_strtoul to convert a string to long and unsigned
long correspondingly. It's similar to user space strtol(3) and
strtoul(3) with a few changes to the API:

* instead of NUL-terminated C string the helpers expect buffer and
  buffer length;

* resulting long or unsigned long is returned in a separate
  result-argument;

* return value is used to indicate success or failure, on success number
  of consumed bytes is returned that can be used to identify position to
  read next if the buffer is expected to contain multiple integers;

* instead of *base* argument, *flags* is used that provides base in 5
  LSB, other bits are reserved for future use;

* number of supported bases is limited.

Documentation for the new helpers is provided in bpf.h UAPI.

The helpers are made available to BPF_PROG_TYPE_CGROUP_SYSCTL programs to
be able to convert string input to e.g. "ulongvec" output.

E.g. "net/ipv4/tcp_mem" consists of three ulong integers. They can be
parsed by calling to bpf_strtoul three times.

Implementation notes:

Implementation includes "../../lib/kstrtox.h" to reuse integer parsing
functions. It's done exactly same way as fs/proc/base.c already does.

Unfortunately existing kstrtoX function can't be used directly since
they fail if any invalid character is present right after integer in the
string. Existing simple_strtoX functions can't be used either since
they're obsolete and don't handle overflow properly.

Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-04-12 13:54:59 -07:00
Andrey Ignatov
57c3bb725a bpf: Introduce ARG_PTR_TO_{INT,LONG} arg types
Currently the way to pass result from BPF helper to BPF program is to
provide memory area defined by pointer and size: func(void *, size_t).

It works great for generic use-case, but for simple types, such as int,
it's overkill and consumes two arguments when it could use just one.

Introduce new argument types ARG_PTR_TO_INT and ARG_PTR_TO_LONG to be
able to pass result from helper to program via pointer to int and long
correspondingly: func(int *) or func(long *).

New argument types are similar to ARG_PTR_TO_MEM with the following
differences:
* they don't require corresponding ARG_CONST_SIZE argument, predefined
  access sizes are used instead (32bit for int, 64bit for long);
* it's possible to use more than one such an argument in a helper;
* provided pointers have to be aligned.

It's easy to introduce similar ARG_PTR_TO_CHAR and ARG_PTR_TO_SHORT
argument types. It's not done due to lack of use-case though.

Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-04-12 13:54:59 -07:00
Stanislav Fomichev
c695865c5c bpf: fix missing bpf_check_uarg_tail_zero in BPF_PROG_TEST_RUN
Commit b0b9395d86 ("bpf: support input __sk_buff context in
BPF_PROG_TEST_RUN") started using bpf_check_uarg_tail_zero in
BPF_PROG_TEST_RUN. However, bpf_check_uarg_tail_zero is not defined
for !CONFIG_BPF_SYSCALL:

net/bpf/test_run.c: In function ‘bpf_ctx_init’:
net/bpf/test_run.c:142:9: error: implicit declaration of function ‘bpf_check_uarg_tail_zero’ [-Werror=implicit-function-declaration]
   err = bpf_check_uarg_tail_zero(data_in, max_size, size);
         ^~~~~~~~~~~~~~~~~~~~~~~~

Let's not build net/bpf/test_run.c when CONFIG_BPF_SYSCALL is not set.

Reported-by: kbuild test robot <lkp@intel.com>
Fixes: b0b9395d86 ("bpf: support input __sk_buff context in BPF_PROG_TEST_RUN")
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-04-11 21:50:20 +02:00
Daniel Borkmann
87df15de44 bpf: add syscall side map freeze support
This patch adds a new BPF_MAP_FREEZE command which allows to
"freeze" the map globally as read-only / immutable from syscall
side.

Map permission handling has been refactored into map_get_sys_perms()
and drops FMODE_CAN_WRITE in case of locked map. Main use case is
to allow for setting up .rodata sections from the BPF ELF which
are loaded into the kernel, meaning BPF loader first allocates
map, sets up map value by copying .rodata section into it and once
complete, it calls BPF_MAP_FREEZE on the map fd to prevent further
modifications.

Right now BPF_MAP_FREEZE only takes map fd as argument while remaining
bpf_attr members are required to be zero. I didn't add write-only
locking here as counterpart since I don't have a concrete use-case
for it on my side, and I think it makes probably more sense to wait
once there is actually one. In that case bpf_attr can be extended
as usual with a flag field and/or others where flag 0 means that
we lock the map read-only hence this doesn't prevent to add further
extensions to BPF_MAP_FREEZE upon need.

A map creation flag like BPF_F_WRONCE was not considered for couple
of reasons: i) in case of a generic implementation, a map can consist
of more than just one element, thus there could be multiple map
updates needed to set the map into a state where it can then be
made immutable, ii) WRONCE indicates exact one-time write before
it is then set immutable. A generic implementation would set a bit
atomically on map update entry (if unset), indicating that every
subsequent update from then onwards will need to bail out there.
However, map updates can fail, so upon failure that flag would need
to be unset again and the update attempt would need to be repeated
for it to be eventually made immutable. While this can be made
race-free, this approach feels less clean and in combination with
reason i), it's not generic enough. A dedicated BPF_MAP_FREEZE
command directly sets the flag and caller has the guarantee that
map is immutable from syscall side upon successful return for any
future syscall invocations that would alter the map state, which
is also more intuitive from an API point of view. A command name
such as BPF_MAP_LOCK has been avoided as it's too close with BPF
map spin locks (which already has BPF_F_LOCK flag). BPF_MAP_FREEZE
is so far only enabled for privileged users.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-04-09 17:05:46 -07:00
Daniel Borkmann
591fe9888d bpf: add program side {rd, wr}only support for maps
This work adds two new map creation flags BPF_F_RDONLY_PROG
and BPF_F_WRONLY_PROG in order to allow for read-only or
write-only BPF maps from a BPF program side.

Today we have BPF_F_RDONLY and BPF_F_WRONLY, but this only
applies to system call side, meaning the BPF program has full
read/write access to the map as usual while bpf(2) calls with
map fd can either only read or write into the map depending
on the flags. BPF_F_RDONLY_PROG and BPF_F_WRONLY_PROG allows
for the exact opposite such that verifier is going to reject
program loads if write into a read-only map or a read into a
write-only map is detected. For read-only map case also some
helpers are forbidden for programs that would alter the map
state such as map deletion, update, etc. As opposed to the two
BPF_F_RDONLY / BPF_F_WRONLY flags, BPF_F_RDONLY_PROG as well
as BPF_F_WRONLY_PROG really do correspond to the map lifetime.

We've enabled this generic map extension to various non-special
maps holding normal user data: array, hash, lru, lpm, local
storage, queue and stack. Further generic map types could be
followed up in future depending on use-case. Main use case
here is to forbid writes into .rodata map values from verifier
side.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-04-09 17:05:46 -07:00
Daniel Borkmann
d8eca5bbb2 bpf: implement lookup-free direct value access for maps
This generic extension to BPF maps allows for directly loading
an address residing inside a BPF map value as a single BPF
ldimm64 instruction!

The idea is similar to what BPF_PSEUDO_MAP_FD does today, which
is a special src_reg flag for ldimm64 instruction that indicates
that inside the first part of the double insns's imm field is a
file descriptor which the verifier then replaces as a full 64bit
address of the map into both imm parts. For the newly added
BPF_PSEUDO_MAP_VALUE src_reg flag, the idea is the following:
the first part of the double insns's imm field is again a file
descriptor corresponding to the map, and the second part of the
imm field is an offset into the value. The verifier will then
replace both imm parts with an address that points into the BPF
map value at the given value offset for maps that support this
operation. Currently supported is array map with single entry.
It is possible to support more than just single map element by
reusing both 16bit off fields of the insns as a map index, so
full array map lookup could be expressed that way. It hasn't
been implemented here due to lack of concrete use case, but
could easily be done so in future in a compatible way, since
both off fields right now have to be 0 and would correctly
denote a map index 0.

The BPF_PSEUDO_MAP_VALUE is a distinct flag as otherwise with
BPF_PSEUDO_MAP_FD we could not differ offset 0 between load of
map pointer versus load of map's value at offset 0, and changing
BPF_PSEUDO_MAP_FD's encoding into off by one to differ between
regular map pointer and map value pointer would add unnecessary
complexity and increases barrier for debugability thus less
suitable. Using the second part of the imm field as an offset
into the value does /not/ come with limitations since maximum
possible value size is in u32 universe anyway.

This optimization allows for efficiently retrieving an address
to a map value memory area without having to issue a helper call
which needs to prepare registers according to calling convention,
etc, without needing the extra NULL test, and without having to
add the offset in an additional instruction to the value base
pointer. The verifier then treats the destination register as
PTR_TO_MAP_VALUE with constant reg->off from the user passed
offset from the second imm field, and guarantees that this is
within bounds of the map value. Any subsequent operations are
normally treated as typical map value handling without anything
extra needed from verification side.

The two map operations for direct value access have been added to
array map for now. In future other types could be supported as
well depending on the use case. The main use case for this commit
is to allow for BPF loader support for global variables that
reside in .data/.rodata/.bss sections such that we can directly
load the address of them with minimal additional infrastructure
required. Loader support has been added in subsequent commits for
libbpf library.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-04-09 17:05:46 -07:00
Alexei Starovoitov
c04c0d2b96 bpf: increase complexity limit and maximum program size
Large verifier speed improvements allow to increase
verifier complexity limit.
Now regardless of the program composition and its size it takes
little time for the verifier to hit insn_processed limit.
On typical x86 machine non-debug kernel processes 1M instructions
in 1/10 of a second.
(before these speed improvements specially crafted programs
could be hitting multi-second verification times)
Full kasan kernel with debug takes ~1 second for the same 1M insns.
Hence bump the BPF_COMPLEXITY_LIMIT_INSNS limit to 1M.
Also increase the number of instructions per program
from 4k to internal BPF_COMPLEXITY_LIMIT_INSNS limit.
4k limit was confusing to users, since small programs with hundreds
of insns could be hitting BPF_COMPLEXITY_LIMIT_INSNS limit.
Sometimes adding more insns and bpf_trace_printk debug statements
would make the verifier accept the program while removing
code would make the verifier reject it.
Some user space application started to add #define MAX_FOO to
their programs and do:
  MAX_FOO=100;
again:
  compile with MAX_FOO;
  try to load;
  if (fails_to_load) { reduce MAX_FOO; goto again; }
to be able to fit maximum amount of processing into single program.
Other users artificially split their single program into a set of programs
and use all 32 iterations of tail_calls to increase compute limits.
And the most advanced folks used unlimited tc-bpf filter list
to execute many bpf programs.
Essentially the users managed to workaround 4k insn limit.
This patch removes the limit for root programs from uapi.
BPF_COMPLEXITY_LIMIT_INSNS is the kernel internal limit
and success to load the program no longer depends on program size,
but on 'smartness' of the verifier only.
The verifier will continue to get smarter with every kernel release.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-04-04 01:27:38 +02:00
Lorenz Bauer
85a51f8c28 bpf: allow helpers to return PTR_TO_SOCK_COMMON
It's currently not possible to access timewait or request sockets
from eBPF, since there is no way to return a PTR_TO_SOCK_COMMON
from a helper. Introduce RET_PTR_TO_SOCK_COMMON to enable this
behaviour.

Signed-off-by: Lorenz Bauer <lmb@cloudflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-03-21 18:59:10 -07:00
Martin KaFai Lau
1b98658968 bpf: Fix bpf_tcp_sock and bpf_sk_fullsock issue related to bpf_sk_release
Lorenz Bauer [thanks!] reported that a ptr returned by bpf_tcp_sock(sk)
can still be accessed after bpf_sk_release(sk).
Both bpf_tcp_sock() and bpf_sk_fullsock() have the same issue.
This patch addresses them together.

A simple reproducer looks like this:

	sk = bpf_sk_lookup_tcp();
	/* if (!sk) ... */
	tp = bpf_tcp_sock(sk);
	/* if (!tp) ... */
	bpf_sk_release(sk);
	snd_cwnd = tp->snd_cwnd; /* oops! The verifier does not complain. */

The problem is the verifier did not scrub the register's states of
the tcp_sock ptr (tp) after bpf_sk_release(sk).

[ Note that when calling bpf_tcp_sock(sk), the sk is not always
  refcount-acquired. e.g. bpf_tcp_sock(skb->sk). The verifier works
  fine for this case. ]

Currently, the verifier does not track if a helper's return ptr (in REG_0)
is "carry"-ing one of its argument's refcount status. To carry this info,
the reg1->id needs to be stored in reg0.

One approach was tried, like "reg0->id = reg1->id", when calling
"bpf_tcp_sock()".  The main idea was to avoid adding another "ref_obj_id"
for the same reg.  However, overlapping the NULL marking and ref
tracking purpose in one "id" does not work well:

	ref_sk = bpf_sk_lookup_tcp();
	fullsock = bpf_sk_fullsock(ref_sk);
	tp = bpf_tcp_sock(ref_sk);
	if (!fullsock) {
	     bpf_sk_release(ref_sk);
	     return 0;
	}
	/* fullsock_reg->id is marked for NOT-NULL.
	 * Same for tp_reg->id because they have the same id.
	 */

	/* oops. verifier did not complain about the missing !tp check */
	snd_cwnd = tp->snd_cwnd;

Hence, a new "ref_obj_id" is needed in "struct bpf_reg_state".
With a new ref_obj_id, when bpf_sk_release(sk) is called, the verifier can
scrub all reg states which has a ref_obj_id match.  It is done with the
changes in release_reg_references() in this patch.

While fixing it, sk_to_full_sk() is removed from bpf_tcp_sock() and
bpf_sk_fullsock() to avoid these helpers from returning
another ptr. It will make bpf_sk_release(tp) possible:

	sk = bpf_sk_lookup_tcp();
	/* if (!sk) ... */
	tp = bpf_tcp_sock(sk);
	/* if (!tp) ... */
	bpf_sk_release(tp);

A separate helper "bpf_get_listener_sock()" will be added in a later
patch to do sk_to_full_sk().

Misc change notes:
- To allow bpf_sk_release(tp), the arg of bpf_sk_release() is changed
  from ARG_PTR_TO_SOCKET to ARG_PTR_TO_SOCK_COMMON.  ARG_PTR_TO_SOCKET
  is removed from bpf.h since no helper is using it.

- arg_type_is_refcounted() is renamed to arg_type_may_be_refcounted()
  because ARG_PTR_TO_SOCK_COMMON is the only one and skb->sk is not
  refcounted.  All bpf_sk_release(), bpf_sk_fullsock() and bpf_tcp_sock()
  take ARG_PTR_TO_SOCK_COMMON.

- check_refcount_ok() ensures is_acquire_function() cannot take
  arg_type_may_be_refcounted() as its argument.

- The check_func_arg() can only allow one refcount-ed arg.  It is
  guaranteed by check_refcount_ok() which ensures at most one arg can be
  refcounted.  Hence, it is a verifier internal error if >1 refcount arg
  found in check_func_arg().

- In release_reference(), release_reference_state() is called
  first to ensure a match on "reg->ref_obj_id" can be found before
  scrubbing the reg states with release_reg_references().

- reg_is_refcounted() is no longer needed.
  1. In mark_ptr_or_null_regs(), its usage is replaced by
     "ref_obj_id && ref_obj_id == id" because,
     when is_null == true, release_reference_state() should only be
     called on the ref_obj_id obtained by a acquire helper (i.e.
     is_acquire_function() == true).  Otherwise, the following
     would happen:

	sk = bpf_sk_lookup_tcp();
	/* if (!sk) { ... } */
	fullsock = bpf_sk_fullsock(sk);
	if (!fullsock) {
		/*
		 * release_reference_state(fullsock_reg->ref_obj_id)
		 * where fullsock_reg->ref_obj_id == sk_reg->ref_obj_id.
		 *
		 * Hence, the following bpf_sk_release(sk) will fail
		 * because the ref state has already been released in the
		 * earlier release_reference_state(fullsock_reg->ref_obj_id).
		 */
		bpf_sk_release(sk);
	}

  2. In release_reg_references(), the current reg_is_refcounted() call
     is unnecessary because the id check is enough.

- The type_is_refcounted() and type_is_refcounted_or_null()
  are no longer needed also because reg_is_refcounted() is removed.

Fixes: 655a51e536 ("bpf: Add struct bpf_tcp_sock and BPF_FUNC_tcp_sock")
Reported-by: Lorenz Bauer <lmb@cloudflare.com>
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-03-13 12:04:35 -07:00
Alexei Starovoitov
492ecee892 bpf: enable program stats
JITed BPF programs are indistinguishable from kernel functions, but unlike
kernel code BPF code can be changed often.
Typical approach of "perf record" + "perf report" profiling and tuning of
kernel code works just as well for BPF programs, but kernel code doesn't
need to be monitored whereas BPF programs do.
Users load and run large amount of BPF programs.
These BPF stats allow tools monitor the usage of BPF on the server.
The monitoring tools will turn sysctl kernel.bpf_stats_enabled
on and off for few seconds to sample average cost of the programs.
Aggregated data over hours and days will provide an insight into cost of BPF
and alarms can trigger in case given program suddenly gets more expensive.

The cost of two sched_clock() per program invocation adds ~20 nsec.
Fast BPF progs (like selftests/bpf/progs/test_pkt_access.c) will slow down
from ~10 nsec to ~30 nsec.
static_key minimizes the cost of the stats collection.
There is no measurable difference before/after this patch
with kernel.bpf_stats_enabled=0

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-02-27 17:22:50 +01:00
Jakub Kicinski
dd27c2e3d0 bpf: offload: add priv field for drivers
Currently bpf_offload_dev does not have any priv pointer, forcing
the drivers to work backwards from the netdev in program metadata.
This is not great given programs are conceptually associated with
the offload device, and it means one or two unnecessary deferences.
Add a priv pointer to bpf_offload_dev.

Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-02-12 17:07:09 +01:00
Martin KaFai Lau
655a51e536 bpf: Add struct bpf_tcp_sock and BPF_FUNC_tcp_sock
This patch adds a helper function BPF_FUNC_tcp_sock and it
is currently available for cg_skb and sched_(cls|act):

struct bpf_tcp_sock *bpf_tcp_sock(struct bpf_sock *sk);

int cg_skb_foo(struct __sk_buff *skb) {
	struct bpf_tcp_sock *tp;
	struct bpf_sock *sk;
	__u32 snd_cwnd;

	sk = skb->sk;
	if (!sk)
		return 1;

	tp = bpf_tcp_sock(sk);
	if (!tp)
		return 1;

	snd_cwnd = tp->snd_cwnd;
	/* ... */

	return 1;
}

A 'struct bpf_tcp_sock' is also added to the uapi bpf.h to provide
read-only access.  bpf_tcp_sock has all the existing tcp_sock's fields
that has already been exposed by the bpf_sock_ops.
i.e. no new tcp_sock's fields are exposed in bpf.h.

This helper returns a pointer to the tcp_sock.  If it is not a tcp_sock
or it cannot be traced back to a tcp_sock by sk_to_full_sk(), it
returns NULL.  Hence, the caller needs to check for NULL before
accessing it.

The current use case is to expose members from tcp_sock
to allow a cg_skb_bpf_prog to provide per cgroup traffic
policing/shaping.

Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-02-10 19:46:17 -08:00
Martin KaFai Lau
46f8bc9275 bpf: Add a bpf_sock pointer to __sk_buff and a bpf_sk_fullsock helper
In kernel, it is common to check "skb->sk && sk_fullsock(skb->sk)"
before accessing the fields in sock.  For example, in __netdev_pick_tx:

static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
			    struct net_device *sb_dev)
{
	/* ... */

	struct sock *sk = skb->sk;

		if (queue_index != new_index && sk &&
		    sk_fullsock(sk) &&
		    rcu_access_pointer(sk->sk_dst_cache))
			sk_tx_queue_set(sk, new_index);

	/* ... */

	return queue_index;
}

This patch adds a "struct bpf_sock *sk" pointer to the "struct __sk_buff"
where a few of the convert_ctx_access() in filter.c has already been
accessing the skb->sk sock_common's fields,
e.g. sock_ops_convert_ctx_access().

"__sk_buff->sk" is a PTR_TO_SOCK_COMMON_OR_NULL in the verifier.
Some of the fileds in "bpf_sock" will not be directly
accessible through the "__sk_buff->sk" pointer.  It is limited
by the new "bpf_sock_common_is_valid_access()".
e.g. The existing "type", "protocol", "mark" and "priority" in bpf_sock
     are not allowed.

The newly added "struct bpf_sock *bpf_sk_fullsock(struct bpf_sock *sk)"
can be used to get a sk with all accessible fields in "bpf_sock".
This helper is added to both cg_skb and sched_(cls|act).

int cg_skb_foo(struct __sk_buff *skb) {
	struct bpf_sock *sk;

	sk = skb->sk;
	if (!sk)
		return 1;

	sk = bpf_sk_fullsock(sk);
	if (!sk)
		return 1;

	if (sk->family != AF_INET6 || sk->protocol != IPPROTO_TCP)
		return 1;

	/* some_traffic_shaping(); */

	return 1;
}

(1) The sk is read only

(2) There is no new "struct bpf_sock_common" introduced.

(3) Future kernel sock's members could be added to bpf_sock only
    instead of repeatedly adding at multiple places like currently
    in bpf_sock_ops_md, bpf_sock_addr_md, sk_reuseport_md...etc.

(4) After "sk = skb->sk", the reg holding sk is in type
    PTR_TO_SOCK_COMMON_OR_NULL.

(5) After bpf_sk_fullsock(), the return type will be in type
    PTR_TO_SOCKET_OR_NULL which is the same as the return type of
    bpf_sk_lookup_xxx().

    However, bpf_sk_fullsock() does not take refcnt.  The
    acquire_reference_state() is only depending on the return type now.
    To avoid it, a new is_acquire_function() is checked before calling
    acquire_reference_state().

(6) The WARN_ON in "release_reference_state()" is no longer an
    internal verifier bug.

    When reg->id is not found in state->refs[], it means the
    bpf_prog does something wrong like
    "bpf_sk_release(bpf_sk_fullsock(skb->sk))" where reference has
    never been acquired by calling "bpf_sk_fullsock(skb->sk)".

    A -EINVAL and a verbose are done instead of WARN_ON.  A test is
    added to the test_verifier in a later patch.

    Since the WARN_ON in "release_reference_state()" is no longer
    needed, "__release_reference_state()" is folded into
    "release_reference_state()" also.

Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-02-10 19:46:17 -08:00
Alexei Starovoitov
96049f3afd bpf: introduce BPF_F_LOCK flag
Introduce BPF_F_LOCK flag for map_lookup and map_update syscall commands
and for map_update() helper function.
In all these cases take a lock of existing element (which was provided
in BTF description) before copying (in or out) the rest of map value.

Implementation details that are part of uapi:

Array:
The array map takes the element lock for lookup/update.

Hash:
hash map also takes the lock for lookup/update and tries to avoid the bucket lock.
If old element exists it takes the element lock and updates the element in place.
If element doesn't exist it allocates new one and inserts into hash table
while holding the bucket lock.
In rare case the hashmap has to take both the bucket lock and the element lock
to update old value in place.

Cgroup local storage:
It is similar to array. update in place and lookup are done with lock taken.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-02-01 20:55:39 +01:00
Alexei Starovoitov
d83525ca62 bpf: introduce bpf_spin_lock
Introduce 'struct bpf_spin_lock' and bpf_spin_lock/unlock() helpers to let
bpf program serialize access to other variables.

Example:
struct hash_elem {
    int cnt;
    struct bpf_spin_lock lock;
};
struct hash_elem * val = bpf_map_lookup_elem(&hash_map, &key);
if (val) {
    bpf_spin_lock(&val->lock);
    val->cnt++;
    bpf_spin_unlock(&val->lock);
}

Restrictions and safety checks:
- bpf_spin_lock is only allowed inside HASH and ARRAY maps.
- BTF description of the map is mandatory for safety analysis.
- bpf program can take one bpf_spin_lock at a time, since two or more can
  cause dead locks.
- only one 'struct bpf_spin_lock' is allowed per map element.
  It drastically simplifies implementation yet allows bpf program to use
  any number of bpf_spin_locks.
- when bpf_spin_lock is taken the calls (either bpf2bpf or helpers) are not allowed.
- bpf program must bpf_spin_unlock() before return.
- bpf program can access 'struct bpf_spin_lock' only via
  bpf_spin_lock()/bpf_spin_unlock() helpers.
- load/store into 'struct bpf_spin_lock lock;' field is not allowed.
- to use bpf_spin_lock() helper the BTF description of map value must be
  a struct and have 'struct bpf_spin_lock anyname;' field at the top level.
  Nested lock inside another struct is not allowed.
- syscall map_lookup doesn't copy bpf_spin_lock field to user space.
- syscall map_update and program map_update do not update bpf_spin_lock field.
- bpf_spin_lock cannot be on the stack or inside networking packet.
  bpf_spin_lock can only be inside HASH or ARRAY map value.
- bpf_spin_lock is available to root only and to all program types.
- bpf_spin_lock is not allowed in inner maps of map-in-map.
- ld_abs is not allowed inside spin_lock-ed region.
- tracing progs and socket filter progs cannot use bpf_spin_lock due to
  insufficient preemption checks

Implementation details:
- cgroup-bpf class of programs can nest with xdp/tc programs.
  Hence bpf_spin_lock is equivalent to spin_lock_irqsave.
  Other solutions to avoid nested bpf_spin_lock are possible.
  Like making sure that all networking progs run with softirq disabled.
  spin_lock_irqsave is the simplest and doesn't add overhead to the
  programs that don't use it.
- arch_spinlock_t is used when its implemented as queued_spin_lock
- archs can force their own arch_spinlock_t
- on architectures where queued_spin_lock is not available and
  sizeof(arch_spinlock_t) != sizeof(__u32) trivial lock is used.
- presence of bpf_spin_lock inside map value could have been indicated via
  extra flag during map_create, but specifying it via BTF is cleaner.
  It provides introspection for map key/value and reduces user mistakes.

Next steps:
- allow bpf_spin_lock in other map types (like cgroup local storage)
- introduce BPF_F_LOCK flag for bpf_map_update() syscall and helper
  to request kernel to grab bpf_spin_lock before rewriting the value.
  That will serialize access to map elements.

Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-02-01 20:55:38 +01:00
Stanislav Fomichev
b7a1848e83 bpf: add BPF_PROG_TEST_RUN support for flow dissector
The input is packet data, the output is struct bpf_flow_key. This should
make it easy to test flow dissector programs without elaborate
setup.

Signed-off-by: Stanislav Fomichev <sdf@google.com>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-01-29 01:08:29 +01:00
Jakub Kicinski
08ca90afba bpf: notify offload JITs about optimizations
Let offload JITs know when instructions are replaced and optimized
out, so they can update their state appropriately.  The optimizations
are best effort, if JIT returns an error from any callback verifier
will stop notifying it as state may now be out of sync, but the
verifier continues making progress.

Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-01-23 17:35:32 -08:00
Roman Gushchin
1b2b234b13 bpf: pass struct btf pointer to the map_check_btf() callback
If key_type or value_type are of non-trivial data types
(e.g. structure or typedef), it's not possible to check them without
the additional information, which can't be obtained without a pointer
to the btf structure.

So, let's pass btf pointer to the map_check_btf() callbacks.

Signed-off-by: Roman Gushchin <guro@fb.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-12-12 15:33:33 -08:00
Martin KaFai Lau
c454a46b5e bpf: Add bpf_line_info support
This patch adds bpf_line_info support.

It accepts an array of bpf_line_info objects during BPF_PROG_LOAD.
The "line_info", "line_info_cnt" and "line_info_rec_size" are added
to the "union bpf_attr".  The "line_info_rec_size" makes
bpf_line_info extensible in the future.

The new "check_btf_line()" ensures the userspace line_info is valid
for the kernel to use.

When the verifier is translating/patching the bpf_prog (through
"bpf_patch_insn_single()"), the line_infos' insn_off is also
adjusted by the newly added "bpf_adj_linfo()".

If the bpf_prog is jited, this patch also provides the jited addrs (in
aux->jited_linfo) for the corresponding line_info.insn_off.
"bpf_prog_fill_jited_linfo()" is added to fill the aux->jited_linfo.
It is currently called by the x86 jit.  Other jits can also use
"bpf_prog_fill_jited_linfo()" and it will be done in the followup patches.
In the future, if it deemed necessary, a particular jit could also provide
its own "bpf_prog_fill_jited_linfo()" implementation.

A few "*line_info*" fields are added to the bpf_prog_info such
that the user can get the xlated line_info back (i.e. the line_info
with its insn_off reflecting the translated prog).  The jited_line_info
is available if the prog is jited.  It is an array of __u64.
If the prog is not jited, jited_line_info_cnt is 0.

The verifier's verbose log with line_info will be done in
a follow up patch.

Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-12-09 13:54:38 -08:00
Yonghong Song
ba64e7d852 bpf: btf: support proper non-jit func info
Commit 838e96904f ("bpf: Introduce bpf_func_info")
added bpf func info support. The userspace is able
to get better ksym's for bpf programs with jit, and
is able to print out func prototypes.

For a program containing func-to-func calls, the existing
implementation returns user specified number of function
calls and BTF types if jit is enabled. If the jit is not
enabled, it only returns the type for the main function.

This is undesirable. Interpreter may still be used
and we should keep feature identical regardless of
whether jit is enabled or not.
This patch fixed this discrepancy.

Fixes: 838e96904f ("bpf: Introduce bpf_func_info")
Signed-off-by: Yonghong Song <yhs@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-11-26 17:57:10 -08:00
Yonghong Song
838e96904f bpf: Introduce bpf_func_info
This patch added interface to load a program with the following
additional information:
   . prog_btf_fd
   . func_info, func_info_rec_size and func_info_cnt
where func_info will provide function range and type_id
corresponding to each function.

The func_info_rec_size is introduced in the UAPI to specify
struct bpf_func_info size passed from user space. This
intends to make bpf_func_info structure growable in the future.
If the kernel gets a different bpf_func_info size from userspace,
it will try to handle user request with part of bpf_func_info
it can understand. In this patch, kernel can understand
  struct bpf_func_info {
       __u32   insn_offset;
       __u32   type_id;
  };
If user passed a bpf func_info record size of 16 bytes, the
kernel can still handle part of records with the above definition.

If verifier agrees with function range provided by the user,
the bpf_prog ksym for each function will use the func name
provided in the type_id, which is supposed to provide better
encoding as it is not limited by 16 bytes program name
limitation and this is better for bpf program which contains
multiple subprograms.

The bpf_prog_info interface is also extended to
return btf_id, func_info, func_info_rec_size and func_info_cnt
to userspace, so userspace can print out the function prototype
for each xlated function. The insn_offset in the returned
func_info corresponds to the insn offset for xlated functions.
With other jit related fields in bpf_prog_info, userspace can also
print out function prototypes for each jited function.

Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-11-20 10:54:39 -08:00
Quentin Monnet
16a8cb5cff bpf: do not pass netdev to translate() and prepare() offload callbacks
The kernel functions to prepare verifier and translate for offloaded
program retrieve "offload" from "prog", and "netdev" from "offload".
Then both "prog" and "netdev" are passed to the callbacks.

Simplify this by letting the drivers retrieve the net device themselves
from the offload object attached to prog - if they need it at all. There
is currently no need to pass the netdev as an argument to those
functions.

Signed-off-by: Quentin Monnet <quentin.monnet@netronome.com>
Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-11-10 15:39:54 -08:00
Quentin Monnet
a40a26322a bpf: pass prog instead of env to bpf_prog_offload_verifier_prep()
Function bpf_prog_offload_verifier_prep(), called from the kernel BPF
verifier to run a driver-specific callback for preparing for the
verification step for offloaded programs, takes a pointer to a struct
bpf_verifier_env object. However, no driver callback needs the whole
structure at this time: the two drivers supporting this, nfp and
netdevsim, only need a pointer to the struct bpf_prog instance held by
env.

Update the callback accordingly, on kernel side and in these two
drivers.

Signed-off-by: Quentin Monnet <quentin.monnet@netronome.com>
Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-11-10 15:39:54 -08:00
Quentin Monnet
eb9119471e bpf: pass destroy() as a callback and remove its ndo_bpf subcommand
As part of the transition from ndo_bpf() to callbacks attached to struct
bpf_offload_dev for some of the eBPF offload operations, move the
functions related to program destruction to the struct and remove the
subcommand that was used to call them through the NDO.

Remove function __bpf_offload_ndo(), which is no longer used.

Signed-off-by: Quentin Monnet <quentin.monnet@netronome.com>
Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-11-10 15:39:54 -08:00
Quentin Monnet
b07ade27e9 bpf: pass translate() as a callback and remove its ndo_bpf subcommand
As part of the transition from ndo_bpf() to callbacks attached to struct
bpf_offload_dev for some of the eBPF offload operations, move the
functions related to code translation to the struct and remove the
subcommand that was used to call them through the NDO.

Signed-off-by: Quentin Monnet <quentin.monnet@netronome.com>
Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-11-10 15:39:54 -08:00
Quentin Monnet
00db12c3d1 bpf: call verifier_prep from its callback in struct bpf_offload_dev
In a way similar to the change previously brought to the verify_insn
hook and to the finalize callback, switch to the newly added ops in
struct bpf_prog_offload for calling the functions used to prepare driver
verifiers.

Since the dev_ops pointer in struct bpf_prog_offload is no longer used
by any callback, we can now remove it from struct bpf_prog_offload.

Signed-off-by: Quentin Monnet <quentin.monnet@netronome.com>
Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-11-10 15:39:54 -08:00
Quentin Monnet
341b3e7b7b bpf: call verify_insn from its callback in struct bpf_offload_dev
We intend to remove the dev_ops in struct bpf_prog_offload, and to only
keep the ops in struct bpf_offload_dev instead, which is accessible from
more locations for passing function pointers.

But dev_ops is used for calling the verify_insn hook. Switch to the
newly added ops in struct bpf_prog_offload instead.

To avoid table lookups for each eBPF instruction to verify, we remember
the offdev attached to a netdev and modify bpf_offload_find_netdev() to
avoid performing more than once a lookup for a given offload object.

Signed-off-by: Quentin Monnet <quentin.monnet@netronome.com>
Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-11-10 15:39:53 -08:00
Quentin Monnet
1385d755cf bpf: pass a struct with offload callbacks to bpf_offload_dev_create()
For passing device functions for offloaded eBPF programs, there used to
be no place where to store the pointer without making the non-offloaded
programs pay a memory price.

As a consequence, three functions were called with ndo_bpf() through
specific commands. Now that we have struct bpf_offload_dev, and since
none of those operations rely on RTNL, we can turn these three commands
into hooks inside the struct bpf_prog_offload_ops, and pass them as part
of bpf_offload_dev_create().

This commit effectively passes a pointer to the struct to
bpf_offload_dev_create(). We temporarily have two struct
bpf_prog_offload_ops instances, one under offdev->ops and one under
offload->dev_ops. The next patches will make the transition towards the
former, so that offload->dev_ops can be removed, and callbacks relying
on ndo_bpf() added to offdev->ops as well.

While at it, rename "nfp_bpf_analyzer_ops" as "nfp_bpf_dev_ops" (and
similarly for netdevsim).

Suggested-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Quentin Monnet <quentin.monnet@netronome.com>
Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-11-10 15:39:53 -08:00
Jiong Wang
e647815a4d bpf: let verifier to calculate and record max_pkt_offset
In check_packet_access, update max_pkt_offset after the offset has passed
__check_packet_access.

It should be safe to use u32 for max_pkt_offset as explained in code
comment.

Also, when there is tail call, the max_pkt_offset of the called program is
unknown, so conservatively set max_pkt_offset to MAX_PACKET_OFF for such
case.

Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-11-09 09:16:31 +01:00
Mauricio Vasquez B
f1a2e44a3a bpf: add queue and stack maps
Queue/stack maps implement a FIFO/LIFO data storage for ebpf programs.
These maps support peek, pop and push operations that are exposed to eBPF
programs through the new bpf_map[peek/pop/push] helpers.  Those operations
are exposed to userspace applications through the already existing
syscalls in the following way:

BPF_MAP_LOOKUP_ELEM            -> peek
BPF_MAP_LOOKUP_AND_DELETE_ELEM -> pop
BPF_MAP_UPDATE_ELEM            -> push

Queue/stack maps are implemented using a buffer, tail and head indexes,
hence BPF_F_NO_PREALLOC is not supported.

As opposite to other maps, queue and stack do not use RCU for protecting
maps values, the bpf_map[peek/pop] have a ARG_PTR_TO_UNINIT_MAP_VALUE
argument that is a pointer to a memory zone where to save the value of a
map.  Basically the same as ARG_PTR_TO_UNINIT_MEM, but the size has not
be passed as an extra argument.

Our main motivation for implementing queue/stack maps was to keep track
of a pool of elements, like network ports in a SNAT, however we forsee
other use cases, like for exampling saving last N kernel events in a map
and then analysing from userspace.

Signed-off-by: Mauricio Vasquez B <mauricio.vasquez@polito.it>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-10-19 13:24:31 -07:00
Mauricio Vasquez B
2ea864c58f bpf/verifier: add ARG_PTR_TO_UNINIT_MAP_VALUE
ARG_PTR_TO_UNINIT_MAP_VALUE argument is a pointer to a memory zone
used to save the value of a map.  Basically the same as
ARG_PTR_TO_UNINIT_MEM, but the size has not be passed as an extra
argument.

This will be used in the following patch that implements some new
helpers that receive a pointer to be filled with a map value.

Signed-off-by: Mauricio Vasquez B <mauricio.vasquez@polito.it>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-10-19 13:24:31 -07:00
Daniel Borkmann
604326b41a bpf, sockmap: convert to generic sk_msg interface
Add a generic sk_msg layer, and convert current sockmap and later
kTLS over to make use of it. While sk_buff handles network packet
representation from netdevice up to socket, sk_msg handles data
representation from application to socket layer.

This means that sk_msg framework spans across ULP users in the
kernel, and enables features such as introspection or filtering
of data with the help of BPF programs that operate on this data
structure.

Latter becomes in particular useful for kTLS where data encryption
is deferred into the kernel, and as such enabling the kernel to
perform L7 introspection and policy based on BPF for TLS connections
where the record is being encrypted after BPF has run and came to
a verdict. In order to get there, first step is to transform open
coding of scatter-gather list handling into a common core framework
that subsystems can use.

The code itself has been split and refactored into three bigger
pieces: i) the generic sk_msg API which deals with managing the
scatter gather ring, providing helpers for walking and mangling,
transferring application data from user space into it, and preparing
it for BPF pre/post-processing, ii) the plain sock map itself
where sockets can be attached to or detached from; these bits
are independent of i) which can now be used also without sock
map, and iii) the integration with plain TCP as one protocol
to be used for processing L7 application data (later this could
e.g. also be extended to other protocols like UDP). The semantics
are the same with the old sock map code and therefore no change
of user facing behavior or APIs. While pursuing this work it
also helped finding a number of bugs in the old sockmap code
that we've fixed already in earlier commits. The test_sockmap
kselftest suite passes through fine as well.

Joint work with John.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-10-15 12:23:19 -07:00
Quentin Monnet
c941ce9c28 bpf: add verifier callback to get stack usage info for offloaded progs
In preparation for BPF-to-BPF calls in offloaded programs, add a new
function attribute to the struct bpf_prog_offload_ops so that drivers
supporting eBPF offload can hook at the end of program verification, and
potentially extract information collected by the verifier.

Implement a minimal callback (returning 0) in the drivers providing the
structs, namely netdevsim and nfp.

This will be useful in the nfp driver, in later commits, to extract the
number of subprograms as well as the stack depth for those subprograms.

Signed-off-by: Quentin Monnet <quentin.monnet@netronome.com>
Reviewed-by: Jiong Wang <jiong.wang@netronome.com>
Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-10-08 10:24:12 +02:00
Joe Stringer
c64b798328 bpf: Add PTR_TO_SOCKET verifier type
Teach the verifier a little bit about a new type of pointer, a
PTR_TO_SOCKET. This pointer type is accessed from BPF through the
'struct bpf_sock' structure.

Signed-off-by: Joe Stringer <joe@wand.net.nz>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-10-03 02:53:47 +02:00
Roman Gushchin
b741f16303 bpf: introduce per-cpu cgroup local storage
This commit introduced per-cpu cgroup local storage.

Per-cpu cgroup local storage is very similar to simple cgroup storage
(let's call it shared), except all the data is per-cpu.

The main goal of per-cpu variant is to implement super fast
counters (e.g. packet counters), which don't require neither
lookups, neither atomic operations.

>From userspace's point of view, accessing a per-cpu cgroup storage
is similar to other per-cpu map types (e.g. per-cpu hashmaps and
arrays).

Writing to a per-cpu cgroup storage is not atomic, but is performed
by copying longs, so some minimal atomicity is here, exactly
as with other per-cpu maps.

Signed-off-by: Roman Gushchin <guro@fb.com>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-10-01 16:18:32 +02:00
Roman Gushchin
8bad74f984 bpf: extend cgroup bpf core to allow multiple cgroup storage types
In order to introduce per-cpu cgroup storage, let's generalize
bpf cgroup core to support multiple cgroup storage types.
Potentially, per-node cgroup storage can be added later.

This commit is mostly a formal change that replaces
cgroup_storage pointer with a array of cgroup_storage pointers.
It doesn't actually introduce a new storage type,
it will be done later.

Each bpf program is now able to have one cgroup storage of each type.

Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Song Liu <songliubraving@fb.com>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-10-01 16:18:32 +02:00
Petar Penkov
d58e468b11 flow_dissector: implements flow dissector BPF hook
Adds a hook for programs of type BPF_PROG_TYPE_FLOW_DISSECTOR and
attach type BPF_FLOW_DISSECTOR that is executed in the flow dissector
path. The BPF program is per-network namespace.

Signed-off-by: Petar Penkov <ppenkov@google.com>
Signed-off-by: Willem de Bruijn <willemb@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-09-14 12:04:33 -07:00
Daniel Borkmann
e8d2bec045 bpf: decouple btf from seq bpf fs dump and enable more maps
Commit a26ca7c982 ("bpf: btf: Add pretty print support to
the basic arraymap") and 699c86d6ec ("bpf: btf: add pretty
print for hash/lru_hash maps") enabled support for BTF and
dumping via BPF fs for array and hash/lru map. However, both
can be decoupled from each other such that regular BPF maps
can be supported for attaching BTF key/value information,
while not all maps necessarily need to dump via map_seq_show_elem()
callback.

The basic sanity check which is a prerequisite for all maps
is that key/value size has to match in any case, and some maps
can have extra checks via map_check_btf() callback, e.g.
probing certain types or indicating no support in general. With
that we can also enable retrieving BTF info for per-cpu map
types and lpm.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
2018-08-13 00:52:45 +02:00
Martin KaFai Lau
5dc4c4b7d4 bpf: Introduce BPF_MAP_TYPE_REUSEPORT_SOCKARRAY
This patch introduces a new map type BPF_MAP_TYPE_REUSEPORT_SOCKARRAY.

To unleash the full potential of a bpf prog, it is essential for the
userspace to be capable of directly setting up a bpf map which can then
be consumed by the bpf prog to make decision.  In this case, decide which
SO_REUSEPORT sk to serve the incoming request.

By adding BPF_MAP_TYPE_REUSEPORT_SOCKARRAY, the userspace has total control
and visibility on where a SO_REUSEPORT sk should be located in a bpf map.
The later patch will introduce BPF_PROG_TYPE_SK_REUSEPORT such that
the bpf prog can directly select a sk from the bpf map.  That will
raise the programmability of the bpf prog attached to a reuseport
group (a group of sk serving the same IP:PORT).

For example, in UDP, the bpf prog can peek into the payload (e.g.
through the "data" pointer introduced in the later patch) to learn
the application level's connection information and then decide which sk
to pick from a bpf map.  The userspace can tightly couple the sk's location
in a bpf map with the application logic in generating the UDP payload's
connection information.  This connection info contact/API stays within the
userspace.

Also, when used with map-in-map, the userspace can switch the
old-server-process's inner map to a new-server-process's inner map
in one call "bpf_map_update_elem(outer_map, &index, &new_reuseport_array)".
The bpf prog will then direct incoming requests to the new process instead
of the old process.  The old process can finish draining the pending
requests (e.g. by "accept()") before closing the old-fds.  [Note that
deleting a fd from a bpf map does not necessary mean the fd is closed]

During map_update_elem(),
Only SO_REUSEPORT sk (i.e. which has already been added
to a reuse->socks[]) can be used.  That means a SO_REUSEPORT sk that is
"bind()" for UDP or "bind()+listen()" for TCP.  These conditions are
ensured in "reuseport_array_update_check()".

A SO_REUSEPORT sk can only be added once to a map (i.e. the
same sk cannot be added twice even to the same map).  SO_REUSEPORT
already allows another sk to be created for the same IP:PORT.
There is no need to re-create a similar usage in the BPF side.

When a SO_REUSEPORT is deleted from the "reuse->socks[]" (e.g. "close()"),
it will notify the bpf map to remove it from the map also.  It is
done through "bpf_sk_reuseport_detach()" and it will only be called
if >=1 of the "reuse->sock[]" has ever been added to a bpf map.

The map_update()/map_delete() has to be in-sync with the
"reuse->socks[]".  Hence, the same "reuseport_lock" used
by "reuse->socks[]" has to be used here also. Care has
been taken to ensure the lock is only acquired when the
adding sk passes some strict tests. and
freeing the map does not require the reuseport_lock.

The reuseport_array will also support lookup from the syscall
side.  It will return a sock_gen_cookie().  The sock_gen_cookie()
is on-demand (i.e. a sk's cookie is not generated until the very
first map_lookup_elem()).

The lookup cookie is 64bits but it goes against the logical userspace
expectation on 32bits sizeof(fd) (and as other fd based bpf maps do also).
It may catch user in surprise if we enforce value_size=8 while
userspace still pass a 32bits fd during update.  Supporting different
value_size between lookup and update seems unintuitive also.

We also need to consider what if other existing fd based maps want
to return 64bits value from syscall's lookup in the future.
Hence, reuseport_array supports both value_size 4 and 8, and
assuming user will usually use value_size=4.  The syscall's lookup
will return ENOSPC on value_size=4.  It will will only
return 64bits value from sock_gen_cookie() when user consciously
choose value_size=8 (as a signal that lookup is desired) which then
requires a 64bits value in both lookup and update.

Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-08-11 01:58:46 +02:00
Roman Gushchin
cd33943176 bpf: introduce the bpf_get_local_storage() helper function
The bpf_get_local_storage() helper function is used
to get a pointer to the bpf local storage from a bpf program.

It takes a pointer to a storage map and flags as arguments.
Right now it accepts only cgroup storage maps, and flags
argument has to be 0. Further it can be extended to support
other types of local storage: e.g. thread local storage etc.

Signed-off-by: Roman Gushchin <guro@fb.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-08-03 00:47:32 +02:00
Roman Gushchin
3e6a4b3e02 bpf/verifier: introduce BPF_PTR_TO_MAP_VALUE
BPF_MAP_TYPE_CGROUP_STORAGE maps are special in a way
that the access from the bpf program side is lookup-free.
That means the result is guaranteed to be a valid
pointer to the cgroup storage; no NULL-check is required.

This patch introduces BPF_PTR_TO_MAP_VALUE return type,
which is required to cause the verifier accept programs,
which are not checking the map value pointer for being NULL.

Signed-off-by: Roman Gushchin <guro@fb.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-08-03 00:47:32 +02:00
Roman Gushchin
394e40a297 bpf: extend bpf_prog_array to store pointers to the cgroup storage
This patch converts bpf_prog_array from an array of prog pointers
to the array of struct bpf_prog_array_item elements.

This allows to save a cgroup storage pointer for each bpf program
efficiently attached to a cgroup.

Signed-off-by: Roman Gushchin <guro@fb.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-08-03 00:47:32 +02:00
Roman Gushchin
de9cbbaadb bpf: introduce cgroup storage maps
This commit introduces BPF_MAP_TYPE_CGROUP_STORAGE maps:
a special type of maps which are implementing the cgroup storage.

>From the userspace point of view it's almost a generic
hash map with the (cgroup inode id, attachment type) pair
used as a key.

The only difference is that some operations are restricted:
  1) a user can't create new entries,
  2) a user can't remove existing entries.

The lookup from userspace is o(log(n)).

Signed-off-by: Roman Gushchin <guro@fb.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-08-03 00:47:32 +02:00
Roman Gushchin
0a4c58f570 bpf: add ability to charge bpf maps memory dynamically
This commits extends existing bpf maps memory charging API
to support dynamic charging/uncharging.

This is required to account memory used by maps,
if all entries are created dynamically after
the map initialization.

Signed-off-by: Roman Gushchin <guro@fb.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-08-03 00:47:31 +02:00
Jakub Kicinski
fd4f227dea bpf: offload: allow program and map sharing per-ASIC
Allow programs and maps to be re-used across different netdevs,
as long as they belong to the same struct bpf_offload_dev.
Update the bpf_offload_prog_map_match() helper for the verifier
and export a new helper for the drivers to use when checking
programs at attachment time.

Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-07-18 15:10:34 +02:00
Jakub Kicinski
602144c224 bpf: offload: keep the offload state per-ASIC
Create a higher-level entity to represent a device/ASIC to allow
programs and maps to be shared between device ports.  The extra
work is required to make sure we don't destroy BPF objects as
soon as the netdev for which they were loaded gets destroyed,
as other ports may still be using them.  When netdev goes away
all of its BPF objects will be moved to other netdevs of the
device, and only destroyed when last netdev is unregistered.

Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-07-18 15:10:34 +02:00
Jakub Kicinski
9fd7c55591 bpf: offload: aggregate offloads per-device
Currently we have two lists of offloaded objects - programs and maps.
Netdevice unregister notifier scans those lists to orphan objects
associated with device being unregistered.  This puts unnecessary
(even if negligible) burden on all netdev unregister calls in BPF-
-enabled kernel.  The lists of objects may potentially get long
making the linear scan even more problematic.  There haven't been
complaints about this mechanisms so far, but it is suboptimal.

Instead of relying on notifiers, make the few BPF-capable drivers
register explicitly for BPF offloads.  The programs and maps will
now be collected per-device not on a global list, and only scanned
for removal when driver unregisters from BPF offloads.

Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-07-18 15:10:34 +02:00
Jakub Kicinski
09728266b6 bpf: offload: rename bpf_offload_dev_match() to bpf_offload_prog_map_match()
A set of new API functions exported for the drivers will soon use
'bpf_offload_dev_' as a prefix.  Rename the bpf_offload_dev_match()
which is internal to the core (used by the verifier) to avoid any
confusion.

Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-07-18 15:10:34 +02:00
Roman Gushchin
d29ab6e1fa bpf: bpf_prog_array_alloc() should return a generic non-rcu pointer
Currently the return type of the bpf_prog_array_alloc() is
struct bpf_prog_array __rcu *, which is not quite correct.
Obviously, the returned pointer is a generic pointer, which
is valid for an indefinite amount of time and it's not shared
with anyone else, so there is no sense in marking it as __rcu.

This change eliminate the following sparse warnings:
kernel/bpf/core.c:1544:31: warning: incorrect type in return expression (different address spaces)
kernel/bpf/core.c:1544:31:    expected struct bpf_prog_array [noderef] <asn:4>*
kernel/bpf/core.c:1544:31:    got void *
kernel/bpf/core.c:1548:17: warning: incorrect type in return expression (different address spaces)
kernel/bpf/core.c:1548:17:    expected struct bpf_prog_array [noderef] <asn:4>*
kernel/bpf/core.c:1548:17:    got struct bpf_prog_array *<noident>
kernel/bpf/core.c:1681:15: warning: incorrect type in assignment (different address spaces)
kernel/bpf/core.c:1681:15:    expected struct bpf_prog_array *array
kernel/bpf/core.c:1681:15:    got struct bpf_prog_array [noderef] <asn:4>*

Fixes: 324bda9e6c ("bpf: multi program support for cgroup+bpf")
Signed-off-by: Roman Gushchin <guro@fb.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-07-18 15:01:20 +02:00
Sean Young
fdb5c4531c bpf: fix attach type BPF_LIRC_MODE2 dependency wrt CONFIG_CGROUP_BPF
If the kernel is compiled with CONFIG_CGROUP_BPF not enabled, it is not
possible to attach, detach or query IR BPF programs to /dev/lircN devices,
making them impossible to use. For embedded devices, it should be possible
to use IR decoding without cgroups or CONFIG_CGROUP_BPF enabled.

This change requires some refactoring, since bpf_prog_{attach,detach,query}
functions are now always compiled, but their code paths for cgroups need
moving out. Rather than a #ifdef CONFIG_CGROUP_BPF in kernel/bpf/syscall.c,
moving them to kernel/bpf/cgroup.c and kernel/bpf/sockmap.c does not
require #ifdefs since that is already conditionally compiled.

Fixes: f4364dcfc8 ("media: rc: introduce BPF_PROG_LIRC_MODE2")
Signed-off-by: Sean Young <sean@mess.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-06-26 11:28:38 +02:00
Toshiaki Makita
6d5fc19579 xdp: Fix handling of devmap in generic XDP
Commit 67f29e07e1 ("bpf: devmap introduce dev_map_enqueue") changed
the return value type of __devmap_lookup_elem() from struct net_device *
to struct bpf_dtab_netdev * but forgot to modify generic XDP code
accordingly.

Thus generic XDP incorrectly used struct bpf_dtab_netdev where struct
net_device is expected, then skb->dev was set to invalid value.

v2:
- Fix compiler warning without CONFIG_BPF_SYSCALL.

Fixes: 67f29e07e1 ("bpf: devmap introduce dev_map_enqueue")
Signed-off-by: Toshiaki Makita <makita.toshiaki@lab.ntt.co.jp>
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-06-15 23:47:15 +02:00
Yonghong Song
bf6fa2c893 bpf: implement bpf_get_current_cgroup_id() helper
bpf has been used extensively for tracing. For example, bcc
contains an almost full set of bpf-based tools to trace kernel
and user functions/events. Most tracing tools are currently
either filtered based on pid or system-wide.

Containers have been used quite extensively in industry and
cgroup is often used together to provide resource isolation
and protection. Several processes may run inside the same
container. It is often desirable to get container-level tracing
results as well, e.g. syscall count, function count, I/O
activity, etc.

This patch implements a new helper, bpf_get_current_cgroup_id(),
which will return cgroup id based on the cgroup within which
the current task is running.

The later patch will provide an example to show that
userspace can get the same cgroup id so it could
configure a filter or policy in the bpf program based on
task cgroup id.

The helper is currently implemented for tracing. It can
be added to other program types as well when needed.

Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-06-03 18:22:41 -07:00
Jesper Dangaard Brouer
38edddb811 xdp: add tracepoint for devmap like cpumap have
Notice how this allow us get XDP statistic without affecting the XDP
performance, as tracepoint is no-longer activated on a per packet basis.

V5: Spotted by John Fastabend.
 Fix 'sent' also counted 'drops' in this patch, a later patch corrected
 this, but it was a mistake in this intermediate step.

Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-05-24 18:36:15 -07:00
Jesper Dangaard Brouer
67f29e07e1 bpf: devmap introduce dev_map_enqueue
Functionality is the same, but the ndo_xdp_xmit call is now
simply invoked from inside the devmap.c code.

V2: Fix compile issue reported by kbuild test robot <lkp@intel.com>

V5: Cleanups requested by Daniel
 - Newlines before func definition
 - Use BUILD_BUG_ON checks
 - Remove unnecessary use return value store in dev_map_enqueue

Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-05-24 18:36:14 -07:00
Martin KaFai Lau
9b2cf328b2 bpf: btf: Rename btf_key_id and btf_value_id in bpf_map_info
In "struct bpf_map_info", the name "btf_id", "btf_key_id" and "btf_value_id"
could cause confusion because the "id" of "btf_id" means the BPF obj id
given to the BTF object while
"btf_key_id" and "btf_value_id" means the BTF type id within
that BTF object.

To make it clear, btf_key_id and btf_value_id are
renamed to btf_key_type_id and btf_value_type_id.

Suggested-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-05-23 12:03:32 +02:00
Martin KaFai Lau
dcab51f19b bpf: Expose check_uarg_tail_zero()
This patch exposes check_uarg_tail_zero() which will
be reused by a later BTF patch.  Its name is changed to
bpf_check_uarg_tail_zero().

Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-05-23 12:03:31 +02:00
John Fastabend
8111038444 bpf: sockmap, add hash map support
Sockmap is currently backed by an array and enforces keys to be
four bytes. This works well for many use cases and was originally
modeled after devmap which also uses four bytes keys. However,
this has become limiting in larger use cases where a hash would
be more appropriate. For example users may want to use the 5-tuple
of the socket as the lookup key.

To support this add hash support.

Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-05-15 20:41:03 +02:00
Jakub Kicinski
0d83003256 bpf: xdp: allow offloads to store into rx_queue_index
It's fairly easy for offloaded XDP programs to select the RX queue
packets go to.  We need a way of expressing this in the software.
Allow write to the rx_queue_index field of struct xdp_md for
device-bound programs.

Skip convert_ctx_access callback entirely for offloads.

Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-05-09 18:04:36 +02:00
Jakub Kicinski
0cd3cbed3c bpf: offload: allow offloaded programs to use perf event arrays
BPF_MAP_TYPE_PERF_EVENT_ARRAY is special as far as offload goes.
The map only holds glue to perf ring, not actual data.  Allow
non-offloaded perf event arrays to be used in offloaded programs.
Offload driver can extract the events from HW and put them in
the map for user space to retrieve.

Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Reviewed-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-05-04 23:41:03 +02:00
Daniel Borkmann
e0cea7ce98 bpf: implement ld_abs/ld_ind in native bpf
The main part of this work is to finally allow removal of LD_ABS
and LD_IND from the BPF core by reimplementing them through native
eBPF instead. Both LD_ABS/LD_IND were carried over from cBPF and
keeping them around in native eBPF caused way more trouble than
actually worth it. To just list some of the security issues in
the past:

  * fdfaf64e75 ("x86: bpf_jit: support negative offsets")
  * 35607b02db ("sparc: bpf_jit: fix loads from negative offsets")
  * e0ee9c1215 ("x86: bpf_jit: fix two bugs in eBPF JIT compiler")
  * 07aee94394 ("bpf, sparc: fix usage of wrong reg for load_skb_regs after call")
  * 6d59b7dbf7 ("bpf, s390x: do not reload skb pointers in non-skb context")
  * 87338c8e2c ("bpf, ppc64: do not reload skb pointers in non-skb context")

For programs in native eBPF, LD_ABS/LD_IND are pretty much legacy
these days due to their limitations and more efficient/flexible
alternatives that have been developed over time such as direct
packet access. LD_ABS/LD_IND only cover 1/2/4 byte loads into a
register, the load happens in host endianness and its exception
handling can yield unexpected behavior. The latter is explained
in depth in f6b1b3bf0d ("bpf: fix subprog verifier bypass by
div/mod by 0 exception") with similar cases of exceptions we had.
In native eBPF more recent program types will disable LD_ABS/LD_IND
altogether through may_access_skb() in verifier, and given the
limitations in terms of exception handling, it's also disabled
in programs that use BPF to BPF calls.

In terms of cBPF, the LD_ABS/LD_IND is used in networking programs
to access packet data. It is not used in seccomp-BPF but programs
that use it for socket filtering or reuseport for demuxing with
cBPF. This is mostly relevant for applications that have not yet
migrated to native eBPF.

The main complexity and source of bugs in LD_ABS/LD_IND is coming
from their implementation in the various JITs. Most of them keep
the model around from cBPF times by implementing a fastpath written
in asm. They use typically two from the BPF program hidden CPU
registers for caching the skb's headlen (skb->len - skb->data_len)
and skb->data. Throughout the JIT phase this requires to keep track
whether LD_ABS/LD_IND are used and if so, the two registers need
to be recached each time a BPF helper would change the underlying
packet data in native eBPF case. At least in eBPF case, available
CPU registers are rare and the additional exit path out of the
asm written JIT helper makes it also inflexible since not all
parts of the JITer are in control from plain C. A LD_ABS/LD_IND
implementation in eBPF therefore allows to significantly reduce
the complexity in JITs with comparable performance results for
them, e.g.:

test_bpf             tcpdump port 22             tcpdump complex
x64      - before    15 21 10                    14 19  18
         - after      7 10 10                     7 10  15
arm64    - before    40 91 92                    40 91 151
         - after     51 64 73                    51 62 113

For cBPF we now track any usage of LD_ABS/LD_IND in bpf_convert_filter()
and cache the skb's headlen and data in the cBPF prologue. The
BPF_REG_TMP gets remapped from R8 to R2 since it's mainly just
used as a local temporary variable. This allows to shrink the
image on x86_64 also for seccomp programs slightly since mapping
to %rsi is not an ereg. In callee-saved R8 and R9 we now track
skb data and headlen, respectively. For normal prologue emission
in the JITs this does not add any extra instructions since R8, R9
are pushed to stack in any case from eBPF side. cBPF uses the
convert_bpf_ld_abs() emitter which probes the fast path inline
already and falls back to bpf_skb_load_helper_{8,16,32}() helper
relying on the cached skb data and headlen as well. R8 and R9
never need to be reloaded due to bpf_helper_changes_pkt_data()
since all skb access in cBPF is read-only. Then, for the case
of native eBPF, we use the bpf_gen_ld_abs() emitter, which calls
the bpf_skb_load_helper_{8,16,32}_no_cache() helper unconditionally,
does neither cache skb data and headlen nor has an inlined fast
path. The reason for the latter is that native eBPF does not have
any extra registers available anyway, but even if there were, it
avoids any reload of skb data and headlen in the first place.
Additionally, for the negative offsets, we provide an alternative
bpf_skb_load_bytes_relative() helper in eBPF which operates
similarly as bpf_skb_load_bytes() and allows for more flexibility.
Tested myself on x64, arm64, s390x, from Sandipan on ppc64.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-05-03 16:49:19 -07:00
Daniel Borkmann
93731ef086 bpf: migrate ebpf ld_abs/ld_ind tests to test_verifier
Remove all eBPF tests involving LD_ABS/LD_IND from test_bpf.ko. Reason
is that the eBPF tests from test_bpf module do not go via BPF verifier
and therefore any instruction rewrites from verifier cannot take place.

Therefore, move them into test_verifier which runs out of user space,
so that verfier can rewrite LD_ABS/LD_IND internally in upcoming patches.
It will have the same effect since runtime tests are also performed from
there. This also allows to finally unexport bpf_skb_vlan_{push,pop}_proto
and keep it internal to core kernel.

Additionally, also add further cBPF LD_ABS/LD_IND test coverage into
test_bpf.ko suite.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-05-03 16:49:19 -07:00
Björn Töpel
fbfc504a24 bpf: introduce new bpf AF_XDP map type BPF_MAP_TYPE_XSKMAP
The xskmap is yet another BPF map, very much inspired by
dev/cpu/sockmap, and is a holder of AF_XDP sockets. A user application
adds AF_XDP sockets into the map, and by using the bpf_redirect_map
helper, an XDP program can redirect XDP frames to an AF_XDP socket.

Note that a socket that is bound to certain ifindex/queue index will
*only* accept XDP frames from that netdev/queue index. If an XDP
program tries to redirect from a netdev/queue index other than what
the socket is bound to, the frame will not be received on the socket.

A socket can reside in multiple maps.

v3: Fixed race and simplified code.
v2: Removed one indirection in map lookup.

Signed-off-by: Björn Töpel <bjorn.topel@intel.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-05-03 15:55:24 -07:00
Yonghong Song
c195651e56 bpf: add bpf_get_stack helper
Currently, stackmap and bpf_get_stackid helper are provided
for bpf program to get the stack trace. This approach has
a limitation though. If two stack traces have the same hash,
only one will get stored in the stackmap table,
so some stack traces are missing from user perspective.

This patch implements a new helper, bpf_get_stack, will
send stack traces directly to bpf program. The bpf program
is able to see all stack traces, and then can do in-kernel
processing or send stack traces to user space through
shared map or bpf_perf_event_output.

Acked-by: Alexei Starovoitov <ast@fb.com>
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-04-29 08:45:53 -07:00
David S. Miller
a9537c937c Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
Merging net into net-next to help the bpf folks avoid
some really ugly merge conflicts.

Signed-off-by: David S. Miller <davem@davemloft.net>
2018-04-25 23:04:22 -04:00
David S. Miller
c749fa181b Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net 2018-04-24 23:59:11 -04:00
John Fastabend
ba6b8de423 bpf: sockmap, map_release does not hold refcnt for pinned maps
Relying on map_release hook to decrement the reference counts when a
map is removed only works if the map is not being pinned. In the
pinned case the ref is decremented immediately and the BPF programs
released. After this BPF programs may not be in-use which is not
what the user would expect.

This patch moves the release logic into bpf_map_put_uref() and brings
sockmap in-line with how a similar case is handled in prog array maps.

Fixes: 3d9e952697 ("bpf: sockmap, fix leaking maps with attached but not detached progs")
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-04-24 00:49:45 +02:00
Roman Gushchin
6899b32b5b bpf: disable and restore preemption in __BPF_PROG_RUN_ARRAY
Running bpf programs requires disabled preemption,
however at least some* of the BPF_PROG_RUN_ARRAY users
do not follow this rule.

To fix this bug, and also to make it not happen in the future,
let's add explicit preemption disabling/re-enabling
to the __BPF_PROG_RUN_ARRAY code.

* for example:
 [   17.624472] RIP: 0010:__cgroup_bpf_run_filter_sk+0x1c4/0x1d0
 ...
 [   17.640890]  inet6_create+0x3eb/0x520
 [   17.641405]  __sock_create+0x242/0x340
 [   17.641939]  __sys_socket+0x57/0xe0
 [   17.642370]  ? trace_hardirqs_off_thunk+0x1a/0x1c
 [   17.642944]  SyS_socket+0xa/0x10
 [   17.643357]  do_syscall_64+0x79/0x220
 [   17.643879]  entry_SYSCALL_64_after_hwframe+0x42/0xb7

Signed-off-by: Roman Gushchin <guro@fb.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-04-23 23:20:11 +02:00
Martin KaFai Lau
a26ca7c982 bpf: btf: Add pretty print support to the basic arraymap
This patch adds pretty print support to the basic arraymap.
Support for other bpf maps can be added later.

This patch adds new attrs to the BPF_MAP_CREATE command to allow
specifying the btf_fd, btf_key_id and btf_value_id.  The
BPF_MAP_CREATE can then associate the btf to the map if
the creating map supports BTF.

A BTF supported map needs to implement two new map ops,
map_seq_show_elem() and map_check_btf().  This patch has
implemented these new map ops for the basic arraymap.

It also adds file_operations, bpffs_map_fops, to the pinned
map such that the pinned map can be opened and read.
After that, the user has an intuitive way to do
"cat bpffs/pathto/a-pinned-map" instead of getting
an error.

bpffs_map_fops should not be extended further to support
other operations.  Other operations (e.g. write/key-lookup...)
should be realized by the userspace tools (e.g. bpftool) through
the BPF_OBJ_GET_INFO_BY_FD, map's lookup/update interface...etc.
Follow up patches will allow the userspace to obtain
the BTF from a map-fd.

Here is a sample output when reading a pinned arraymap
with the following map's value:

struct map_value {
	int count_a;
	int count_b;
};

cat /sys/fs/bpf/pinned_array_map:

0: {1,2}
1: {3,4}
2: {5,6}
...

Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Alexei Starovoitov <ast@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-04-19 21:46:25 +02:00
Yonghong Song
3a38bb98d9 bpf/tracing: fix a deadlock in perf_event_detach_bpf_prog
syzbot reported a possible deadlock in perf_event_detach_bpf_prog.
The error details:
  ======================================================
  WARNING: possible circular locking dependency detected
  4.16.0-rc7+ #3 Not tainted
  ------------------------------------------------------
  syz-executor7/24531 is trying to acquire lock:
   (bpf_event_mutex){+.+.}, at: [<000000008a849b07>] perf_event_detach_bpf_prog+0x92/0x3d0 kernel/trace/bpf_trace.c:854

  but task is already holding lock:
   (&mm->mmap_sem){++++}, at: [<0000000038768f87>] vm_mmap_pgoff+0x198/0x280 mm/util.c:353

  which lock already depends on the new lock.

  the existing dependency chain (in reverse order) is:

  -> #1 (&mm->mmap_sem){++++}:
       __might_fault+0x13a/0x1d0 mm/memory.c:4571
       _copy_to_user+0x2c/0xc0 lib/usercopy.c:25
       copy_to_user include/linux/uaccess.h:155 [inline]
       bpf_prog_array_copy_info+0xf2/0x1c0 kernel/bpf/core.c:1694
       perf_event_query_prog_array+0x1c7/0x2c0 kernel/trace/bpf_trace.c:891
       _perf_ioctl kernel/events/core.c:4750 [inline]
       perf_ioctl+0x3e1/0x1480 kernel/events/core.c:4770
       vfs_ioctl fs/ioctl.c:46 [inline]
       do_vfs_ioctl+0x1b1/0x1520 fs/ioctl.c:686
       SYSC_ioctl fs/ioctl.c:701 [inline]
       SyS_ioctl+0x8f/0xc0 fs/ioctl.c:692
       do_syscall_64+0x281/0x940 arch/x86/entry/common.c:287
       entry_SYSCALL_64_after_hwframe+0x42/0xb7

  -> #0 (bpf_event_mutex){+.+.}:
       lock_acquire+0x1d5/0x580 kernel/locking/lockdep.c:3920
       __mutex_lock_common kernel/locking/mutex.c:756 [inline]
       __mutex_lock+0x16f/0x1a80 kernel/locking/mutex.c:893
       mutex_lock_nested+0x16/0x20 kernel/locking/mutex.c:908
       perf_event_detach_bpf_prog+0x92/0x3d0 kernel/trace/bpf_trace.c:854
       perf_event_free_bpf_prog kernel/events/core.c:8147 [inline]
       _free_event+0xbdb/0x10f0 kernel/events/core.c:4116
       put_event+0x24/0x30 kernel/events/core.c:4204
       perf_mmap_close+0x60d/0x1010 kernel/events/core.c:5172
       remove_vma+0xb4/0x1b0 mm/mmap.c:172
       remove_vma_list mm/mmap.c:2490 [inline]
       do_munmap+0x82a/0xdf0 mm/mmap.c:2731
       mmap_region+0x59e/0x15a0 mm/mmap.c:1646
       do_mmap+0x6c0/0xe00 mm/mmap.c:1483
       do_mmap_pgoff include/linux/mm.h:2223 [inline]
       vm_mmap_pgoff+0x1de/0x280 mm/util.c:355
       SYSC_mmap_pgoff mm/mmap.c:1533 [inline]
       SyS_mmap_pgoff+0x462/0x5f0 mm/mmap.c:1491
       SYSC_mmap arch/x86/kernel/sys_x86_64.c:100 [inline]
       SyS_mmap+0x16/0x20 arch/x86/kernel/sys_x86_64.c:91
       do_syscall_64+0x281/0x940 arch/x86/entry/common.c:287
       entry_SYSCALL_64_after_hwframe+0x42/0xb7

  other info that might help us debug this:

   Possible unsafe locking scenario:

         CPU0                    CPU1
         ----                    ----
    lock(&mm->mmap_sem);
                                 lock(bpf_event_mutex);
                                 lock(&mm->mmap_sem);
    lock(bpf_event_mutex);

   *** DEADLOCK ***
  ======================================================

The bug is introduced by Commit f371b304f1 ("bpf/tracing: allow
user space to query prog array on the same tp") where copy_to_user,
which requires mm->mmap_sem, is called inside bpf_event_mutex lock.
At the same time, during perf_event file descriptor close,
mm->mmap_sem is held first and then subsequent
perf_event_detach_bpf_prog needs bpf_event_mutex lock.
Such a senario caused a deadlock.

As suggested by Daniel, moving copy_to_user out of the
bpf_event_mutex lock should fix the problem.

Fixes: f371b304f1 ("bpf/tracing: allow user space to query prog array on the same tp")
Reported-by: syzbot+dc5ca0e4c9bfafaf2bae@syzkaller.appspotmail.com
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-04-11 01:01:40 +02:00
Andrey Ignatov
5e43f899b0 bpf: Check attach type at prog load time
== The problem ==

There are use-cases when a program of some type can be attached to
multiple attach points and those attach points must have different
permissions to access context or to call helpers.

E.g. context structure may have fields for both IPv4 and IPv6 but it
doesn't make sense to read from / write to IPv6 field when attach point
is somewhere in IPv4 stack.

Same applies to BPF-helpers: it may make sense to call some helper from
some attach point, but not from other for same prog type.

== The solution ==

Introduce `expected_attach_type` field in in `struct bpf_attr` for
`BPF_PROG_LOAD` command. If scenario described in "The problem" section
is the case for some prog type, the field will be checked twice:

1) At load time prog type is checked to see if attach type for it must
   be known to validate program permissions correctly. Prog will be
   rejected with EINVAL if it's the case and `expected_attach_type` is
   not specified or has invalid value.

2) At attach time `attach_type` is compared with `expected_attach_type`,
   if prog type requires to have one, and, if they differ, attach will
   be rejected with EINVAL.

The `expected_attach_type` is now available as part of `struct bpf_prog`
in both `bpf_verifier_ops->is_valid_access()` and
`bpf_verifier_ops->get_func_proto()` () and can be used to check context
accesses and calls to helpers correspondingly.

Initially the idea was discussed by Alexei Starovoitov <ast@fb.com> and
Daniel Borkmann <daniel@iogearbox.net> here:
https://marc.info/?l=linux-netdev&m=152107378717201&w=2

Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-03-31 02:14:44 +02:00
John Fastabend
4f738adba3 bpf: create tcp_bpf_ulp allowing BPF to monitor socket TX/RX data
This implements a BPF ULP layer to allow policy enforcement and
monitoring at the socket layer. In order to support this a new
program type BPF_PROG_TYPE_SK_MSG is used to run the policy at
the sendmsg/sendpage hook. To attach the policy to sockets a
sockmap is used with a new program attach type BPF_SK_MSG_VERDICT.

Similar to previous sockmap usages when a sock is added to a
sockmap, via a map update, if the map contains a BPF_SK_MSG_VERDICT
program type attached then the BPF ULP layer is created on the
socket and the attached BPF_PROG_TYPE_SK_MSG program is run for
every msg in sendmsg case and page/offset in sendpage case.

BPF_PROG_TYPE_SK_MSG Semantics/API:

BPF_PROG_TYPE_SK_MSG supports only two return codes SK_PASS and
SK_DROP. Returning SK_DROP free's the copied data in the sendmsg
case and in the sendpage case leaves the data untouched. Both cases
return -EACESS to the user. Returning SK_PASS will allow the msg to
be sent.

In the sendmsg case data is copied into kernel space buffers before
running the BPF program. The kernel space buffers are stored in a
scatterlist object where each element is a kernel memory buffer.
Some effort is made to coalesce data from the sendmsg call here.
For example a sendmsg call with many one byte iov entries will
likely be pushed into a single entry. The BPF program is run with
data pointers (start/end) pointing to the first sg element.

In the sendpage case data is not copied. We opt not to copy the
data by default here, because the BPF infrastructure does not
know what bytes will be needed nor when they will be needed. So
copying all bytes may be wasteful. Because of this the initial
start/end data pointers are (0,0). Meaning no data can be read or
written. This avoids reading data that may be modified by the
user. A new helper is added later in this series if reading and
writing the data is needed. The helper call will do a copy by
default so that the page is exclusively owned by the BPF call.

The verdict from the BPF_PROG_TYPE_SK_MSG applies to the entire msg
in the sendmsg() case and the entire page/offset in the sendpage case.
This avoids ambiguity on how to handle mixed return codes in the
sendmsg case. Again a helper is added later in the series if
a verdict needs to apply to multiple system calls and/or only
a subpart of the currently being processed message.

The helper msg_redirect_map() can be used to select the socket to
send the data on. This is used similar to existing redirect use
cases. This allows policy to redirect msgs.

Pseudo code simple example:

The basic logic to attach a program to a socket is as follows,

  // load the programs
  bpf_prog_load(SOCKMAP_TCP_MSG_PROG, BPF_PROG_TYPE_SK_MSG,
		&obj, &msg_prog);

  // lookup the sockmap
  bpf_map_msg = bpf_object__find_map_by_name(obj, "my_sock_map");

  // get fd for sockmap
  map_fd_msg = bpf_map__fd(bpf_map_msg);

  // attach program to sockmap
  bpf_prog_attach(msg_prog, map_fd_msg, BPF_SK_MSG_VERDICT, 0);

Adding sockets to the map is done in the normal way,

  // Add a socket 'fd' to sockmap at location 'i'
  bpf_map_update_elem(map_fd_msg, &i, fd, BPF_ANY);

After the above any socket attached to "my_sock_map", in this case
'fd', will run the BPF msg verdict program (msg_prog) on every
sendmsg and sendpage system call.

For a complete example see BPF selftests or sockmap samples.

Implementation notes:

It seemed the simplest, to me at least, to use a refcnt to ensure
psock is not lost across the sendmsg copy into the sg, the bpf program
running on the data in sg_data, and the final pass to the TCP stack.
Some performance testing may show a better method to do this and avoid
the refcnt cost, but for now use the simpler method.

Another item that will come after basic support is in place is
supporting MSG_MORE flag. At the moment we call sendpages even if
the MSG_MORE flag is set. An enhancement would be to collect the
pages into a larger scatterlist and pass down the stack. Notice that
bpf_tcp_sendmsg() could support this with some additional state saved
across sendmsg calls. I built the code to support this without having
to do refactoring work. Other features TBD include ZEROCOPY and the
TCP_RECV_QUEUE/TCP_NO_QUEUE support. This will follow initial series
shortly.

Future work could improve size limits on the scatterlist rings used
here. Currently, we use MAX_SKB_FRAGS simply because this was being
used already in the TLS case. Future work could extend the kernel sk
APIs to tune this depending on workload. This is a trade-off
between memory usage and throughput performance.

Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: David S. Miller <davem@davemloft.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-03-19 21:14:38 +01:00
Jakub Kicinski
52775b33bb bpf: offload: report device information about offloaded maps
Tell user space about device on which the map was created.
Unfortunate reality of user ABI makes sharing this code
with program offload difficult but the information is the
same.

Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-01-18 22:54:25 +01:00
Jiong Wang
fcfb126def bpf: add new jited info fields in bpf_dev_offload and bpf_prog_info
For host JIT, there are "jited_len"/"bpf_func" fields in struct bpf_prog
used by all host JIT targets to get jited image and it's length. While for
offload, targets are likely to have different offload mechanisms that these
info are kept in device private data fields.

Therefore, BPF_OBJ_GET_INFO_BY_FD syscall needs an unified way to get JIT
length and contents info for offload targets.

One way is to introduce new callback to parse device private data then fill
those fields in bpf_prog_info. This might be a little heavy, the other way
is to add generic fields which will be initialized by all offload targets.

This patch follow the second approach to introduce two new fields in
struct bpf_dev_offload and teach bpf_prog_get_info_by_fd about them to fill
correct jited_prog_len and jited_prog_insns in bpf_prog_info.

Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-01-18 01:26:15 +01:00
Jakub Kicinski
a38845729e bpf: offload: add map offload infrastructure
BPF map offload follow similar path to program offload.  At creation
time users may specify ifindex of the device on which they want to
create the map.  Map will be validated by the kernel's
.map_alloc_check callback and device driver will be called for the
actual allocation.  Map will have an empty set of operations
associated with it (save for alloc and free callbacks).  The real
device callbacks are kept in map->offload->dev_ops because they
have slightly different signatures.  Map operations are called in
process context so the driver may communicate with HW freely,
msleep(), wait() etc.

Map alloc and free callbacks are muxed via existing .ndo_bpf, and
are always called with rtnl lock held.  Maps and programs are
guaranteed to be destroyed before .ndo_uninit (i.e. before
unregister_netdev() returns).  Map callbacks are invoked with
bpf_devs_lock *read* locked, drivers must take care of exclusive
locking if necessary.

All offload-specific branches are marked with unlikely() (through
bpf_map_is_dev_bound()), given that branch penalty will be
negligible compared to IO anyway, and we don't want to penalize
SW path unnecessarily.

Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-01-14 23:36:30 +01:00
Jakub Kicinski
0a9c1991f2 bpf: rename bpf_dev_offload -> bpf_prog_offload
With map offload coming, we need to call program offload structure
something less ambiguous.  Pure rename, no functional changes.

Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-01-14 23:36:29 +01:00
Jakub Kicinski
bd475643d7 bpf: add helper for copying attrs to struct bpf_map
All map types reimplement the field-by-field copy of union bpf_attr
members into struct bpf_map.  Add a helper to perform this operation.

Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-01-14 23:36:29 +01:00
Jakub Kicinski
1110f3a9bc bpf: add map_alloc_check callback
.map_alloc callbacks contain a number of checks validating user-
-provided map attributes against constraints of a particular map
type.  For offloaded maps we will need to check map attributes
without actually allocating any memory on the host.  Add a new
callback for validating attributes before any memory is allocated.
This callback can be selectively implemented by map types for
sharing code with offloads, or simply to separate the logical
steps of validation and allocation.

Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-01-14 23:36:29 +01:00
Masami Hiramatsu
540adea380 error-injection: Separate error-injection from kprobe
Since error-injection framework is not limited to be used
by kprobes, nor bpf. Other kernel subsystems can use it
freely for checking safeness of error-injection, e.g.
livepatch, ftrace etc.
So this separate error-injection framework from kprobes.

Some differences has been made:

- "kprobe" word is removed from any APIs/structures.
- BPF_ALLOW_ERROR_INJECTION() is renamed to
  ALLOW_ERROR_INJECTION() since it is not limited for BPF too.
- CONFIG_FUNCTION_ERROR_INJECTION is the config item of this
  feature. It is automatically enabled if the arch supports
  error injection feature for kprobe or ftrace etc.

Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-01-12 17:33:38 -08:00
David S. Miller
19d28fbd30 Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
BPF alignment tests got a conflict because the registers
are output as Rn_w instead of just Rn in net-next, and
in net a fixup for a testcase prohibits logical operations
on pointers before using them.

Also, we should attempt to patch BPF call args if JIT always on is
enabled.  Instead, if we fail to JIT the subprogs we should pass
an error back up and fail immediately.

Signed-off-by: David S. Miller <davem@davemloft.net>
2018-01-11 22:13:42 -05:00
David S. Miller
661e4e33a9 Merge git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf
Daniel Borkmann says:

====================
pull-request: bpf 2018-01-09

The following pull-request contains BPF updates for your *net* tree.

The main changes are:

1) Prevent out-of-bounds speculation in BPF maps by masking the
   index after bounds checks in order to fix spectre v1, and
   add an option BPF_JIT_ALWAYS_ON into Kconfig that allows for
   removing the BPF interpreter from the kernel in favor of
   JIT-only mode to make spectre v2 harder, from Alexei.

2) Remove false sharing of map refcount with max_entries which
   was used in spectre v1, from Daniel.

3) Add a missing NULL psock check in sockmap in order to fix
   a race, from John.

4) Fix test_align BPF selftest case since a recent change in
   verifier rejects the bit-wise arithmetic on pointers
   earlier but test_align update was missing, from Alexei.
====================

Signed-off-by: David S. Miller <davem@davemloft.net>
2018-01-10 11:17:21 -05:00
Daniel Borkmann
be95a845cc bpf: avoid false sharing of map refcount with max_entries
In addition to commit b2157399cc ("bpf: prevent out-of-bounds
speculation") also change the layout of struct bpf_map such that
false sharing of fast-path members like max_entries is avoided
when the maps reference counter is altered. Therefore enforce
them to be placed into separate cachelines.

pahole dump after change:

  struct bpf_map {
        const struct bpf_map_ops  * ops;                 /*     0     8 */
        struct bpf_map *           inner_map_meta;       /*     8     8 */
        void *                     security;             /*    16     8 */
        enum bpf_map_type          map_type;             /*    24     4 */
        u32                        key_size;             /*    28     4 */
        u32                        value_size;           /*    32     4 */
        u32                        max_entries;          /*    36     4 */
        u32                        map_flags;            /*    40     4 */
        u32                        pages;                /*    44     4 */
        u32                        id;                   /*    48     4 */
        int                        numa_node;            /*    52     4 */
        bool                       unpriv_array;         /*    56     1 */

        /* XXX 7 bytes hole, try to pack */

        /* --- cacheline 1 boundary (64 bytes) --- */
        struct user_struct *       user;                 /*    64     8 */
        atomic_t                   refcnt;               /*    72     4 */
        atomic_t                   usercnt;              /*    76     4 */
        struct work_struct         work;                 /*    80    32 */
        char                       name[16];             /*   112    16 */
        /* --- cacheline 2 boundary (128 bytes) --- */

        /* size: 128, cachelines: 2, members: 17 */
        /* sum members: 121, holes: 1, sum holes: 7 */
  };

Now all entries in the first cacheline are read only throughout
the life time of the map, set up once during map creation. Overall
struct size and number of cachelines doesn't change from the
reordering. struct bpf_map is usually first member and embedded
in map structs in specific map implementations, so also avoid those
members to sit at the end where it could potentially share the
cacheline with first map values e.g. in the array since remote
CPUs could trigger map updates just as well for those (easily
dirtying members like max_entries intentionally as well) while
having subsequent values in cache.

Quoting from Google's Project Zero blog [1]:

  Additionally, at least on the Intel machine on which this was
  tested, bouncing modified cache lines between cores is slow,
  apparently because the MESI protocol is used for cache coherence
  [8]. Changing the reference counter of an eBPF array on one
  physical CPU core causes the cache line containing the reference
  counter to be bounced over to that CPU core, making reads of the
  reference counter on all other CPU cores slow until the changed
  reference counter has been written back to memory. Because the
  length and the reference counter of an eBPF array are stored in
  the same cache line, this also means that changing the reference
  counter on one physical CPU core causes reads of the eBPF array's
  length to be slow on other physical CPU cores (intentional false
  sharing).

While this doesn't 'control' the out-of-bounds speculation through
masking the index as in commit b2157399cc, triggering a manipulation
of the map's reference counter is really trivial, so lets not allow
to easily affect max_entries from it.

Splitting to separate cachelines also generally makes sense from
a performance perspective anyway in that fast-path won't have a
cache miss if the map gets pinned, reused in other progs, etc out
of control path, thus also avoids unintentional false sharing.

  [1] https://googleprojectzero.blogspot.ch/2018/01/reading-privileged-memory-with-side.html

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-01-09 10:07:30 -08:00
David S. Miller
a0ce093180 Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net 2018-01-09 10:37:00 -05:00
Alexei Starovoitov
b2157399cc bpf: prevent out-of-bounds speculation
Under speculation, CPUs may mis-predict branches in bounds checks. Thus,
memory accesses under a bounds check may be speculated even if the
bounds check fails, providing a primitive for building a side channel.

To avoid leaking kernel data round up array-based maps and mask the index
after bounds check, so speculated load with out of bounds index will load
either valid value from the array or zero from the padded area.

Unconditionally mask index for all array types even when max_entries
are not rounded to power of 2 for root user.
When map is created by unpriv user generate a sequence of bpf insns
that includes AND operation to make sure that JITed code includes
the same 'index & index_mask' operation.

If prog_array map is created by unpriv user replace
  bpf_tail_call(ctx, map, index);
with
  if (index >= max_entries) {
    index &= map->index_mask;
    bpf_tail_call(ctx, map, index);
  }
(along with roundup to power 2) to prevent out-of-bounds speculation.
There is secondary redundant 'if (index >= max_entries)' in the interpreter
and in all JITs, but they can be optimized later if necessary.

Other array-like maps (cpumap, devmap, sockmap, perf_event_array, cgroup_array)
cannot be used by unpriv, so no changes there.

That fixes bpf side of "Variant 1: bounds check bypass (CVE-2017-5753)" on
all architectures with and without JIT.

v2->v3:
Daniel noticed that attack potentially can be crafted via syscall commands
without loading the program, so add masking to those paths as well.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-01-09 00:53:49 +01:00
Al Viro
040ee69226 fix "netfilter: xt_bpf: Fix XT_BPF_MODE_FD_PINNED mode of 'xt_bpf_info_v1'"
Descriptor table is a shared object; it's not a place where you can
stick temporary references to files, especially when we don't need
an opened file at all.

Cc: stable@vger.kernel.org # v4.14
Fixes: 98589a0998 ("netfilter: xt_bpf: Fix XT_BPF_MODE_FD_PINNED mode of 'xt_bpf_info_v1'")
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2018-01-05 11:43:39 -05:00
John Fastabend
5f103c5d4d bpf: only build sockmap with CONFIG_INET
The sockmap infrastructure is only aware of TCP sockets at the
moment. In the future we plan to add UDP. In both cases CONFIG_NET
should be built-in.

So lets only build sockmap if CONFIG_INET is enabled.

Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2018-01-04 19:01:14 +01:00
Jakub Kicinski
675fc275a3 bpf: offload: report device information for offloaded programs
Report to the user ifindex and namespace information of offloaded
programs.  If device has disappeared return -ENODEV.  Specify the
namespace using dev/inode combination.

CC: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2017-12-31 16:12:23 +01:00
Jakub Kicinski
ad8ad79f4f bpf: offload: free program id when device disappears
Bound programs are quite useless after their device disappears.
They are simply waiting for reference count to go to zero,
don't list them in BPF_PROG_GET_NEXT_ID by freeing their ID
early.

Note that orphaned offload programs will return -ENODEV on
BPF_OBJ_GET_INFO_BY_FD so user will never see ID 0.

Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2017-12-31 16:12:23 +01:00
Jakub Kicinski
cae1927c0b bpf: offload: allow netdev to disappear while verifier is running
To allow verifier instruction callbacks without any extra locking
NETDEV_UNREGISTER notification would wait on a waitqueue for verifier
to finish.  This design decision was made when rtnl lock was providing
all the locking.  Use the read/write lock instead and remove the
workqueue.

Verifier will now call into the offload code, so dev_ops are moved
to offload structure.  Since verifier calls are all under
bpf_prog_is_dev_bound() we no longer need static inline implementations
to please builds with CONFIG_NET=n.

Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2017-12-31 16:12:23 +01:00
Jakub Kicinski
9a18eedb14 bpf: offload: don't use prog->aux->offload as boolean
We currently use aux->offload to indicate that program is bound
to a specific device.  This forces us to keep the offload structure
around even after the device is gone.  Add a bool member to
struct bpf_prog_aux to indicate if offload was requested.

Suggested-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2017-12-31 16:12:22 +01:00
Alexei Starovoitov
1c2a088a66 bpf: x64: add JIT support for multi-function programs
Typical JIT does several passes over bpf instructions to
compute total size and relative offsets of jumps and calls.
With multitple bpf functions calling each other all relative calls
will have invalid offsets intially therefore we need to additional
last pass over the program to emit calls with correct offsets.
For example in case of three bpf functions:
main:
  call foo
  call bpf_map_lookup
  exit
foo:
  call bar
  exit
bar:
  exit

We will call bpf_int_jit_compile() indepedently for main(), foo() and bar()
x64 JIT typically does 4-5 passes to converge.
After these initial passes the image for these 3 functions
will be good except call targets, since start addresses of
foo() and bar() are unknown when we were JITing main()
(note that call bpf_map_lookup will be resolved properly
during initial passes).
Once start addresses of 3 functions are known we patch
call_insn->imm to point to right functions and call
bpf_int_jit_compile() again which needs only one pass.
Additional safety checks are done to make sure this
last pass doesn't produce image that is larger or smaller
than previous pass.

When constant blinding is on it's applied to all functions
at the first pass, since doing it once again at the last
pass can change size of the JITed code.

Tested on x64 and arm64 hw with JIT on/off, blinding on/off.
x64 jits bpf-to-bpf calls correctly while arm64 falls back to interpreter.
All other JITs that support normal BPF_CALL will behave the same way
since bpf-to-bpf call is equivalent to bpf-to-kernel call from
JITs point of view.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2017-12-17 20:34:36 +01:00
Alexei Starovoitov
1ea47e01ad bpf: add support for bpf_call to interpreter
though bpf_call is still the same call instruction and
calling convention 'bpf to bpf' and 'bpf to helper' is the same
the interpreter has to oparate on 'struct bpf_insn *'.
To distinguish these two cases add a kernel internal opcode and
mark call insns with it.
This opcode is seen by interpreter only. JITs will never see it.
Also add tiny bit of debug code to aid interpreter debugging.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2017-12-17 20:34:36 +01:00
Yonghong Song
f4e2298e63 bpf/tracing: fix kernel/events/core.c compilation error
Commit f371b304f1 ("bpf/tracing: allow user space to
query prog array on the same tp") introduced a perf
ioctl command to query prog array attached to the
same perf tracepoint. The commit introduced a
compilation error under certain config conditions, e.g.,
  (1). CONFIG_BPF_SYSCALL is not defined, or
  (2). CONFIG_TRACING is defined but neither CONFIG_UPROBE_EVENTS
       nor CONFIG_KPROBE_EVENTS is defined.

Error message:
  kernel/events/core.o: In function `perf_ioctl':
  core.c:(.text+0x98c4): undefined reference to `bpf_event_query_prog_array'

This patch fixed this error by guarding the real definition under
CONFIG_BPF_EVENTS and provided static inline dummy function
if CONFIG_BPF_EVENTS was not defined.
It renamed the function from bpf_event_query_prog_array to
perf_event_query_prog_array and moved the definition from linux/bpf.h
to linux/trace_events.h so the definition is in proximity to
other prog_array related functions.

Fixes: f371b304f1 ("bpf/tracing: allow user space to query prog array on the same tp")
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2017-12-13 22:44:10 +01:00
Josef Bacik
92ace9991d add infrastructure for tagging functions as error injectable
Using BPF we can override kprob'ed functions and return arbitrary
values.  Obviously this can be a bit unsafe, so make this feature opt-in
for functions.  Simply tag a function with KPROBE_ERROR_INJECT_SYMBOL in
order to give BPF access to that function for error injection purposes.

Signed-off-by: Josef Bacik <jbacik@fb.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2017-12-12 08:56:26 -08:00
Yonghong Song
f371b304f1 bpf/tracing: allow user space to query prog array on the same tp
Commit e87c6bc385 ("bpf: permit multiple bpf attachments
for a single perf event") added support to attach multiple
bpf programs to a single perf event.
Although this provides flexibility, users may want to know
what other bpf programs attached to the same tp interface.
Besides getting visibility for the underlying bpf system,
such information may also help consolidate multiple bpf programs,
understand potential performance issues due to a large array,
and debug (e.g., one bpf program which overwrites return code
may impact subsequent program results).

Commit 2541517c32 ("tracing, perf: Implement BPF programs
attached to kprobes") utilized the existing perf ioctl
interface and added the command PERF_EVENT_IOC_SET_BPF
to attach a bpf program to a tracepoint. This patch adds a new
ioctl command, given a perf event fd, to query the bpf program
array attached to the same perf tracepoint event.

The new uapi ioctl command:
  PERF_EVENT_IOC_QUERY_BPF

The new uapi/linux/perf_event.h structure:
  struct perf_event_query_bpf {
       __u32	ids_len;
       __u32	prog_cnt;
       __u32	ids[0];
  };

User space provides buffer "ids" for kernel to copy to.
When returning from the kernel, the number of available
programs in the array is set in "prog_cnt".

The usage:
  struct perf_event_query_bpf *query =
    malloc(sizeof(*query) + sizeof(u32) * ids_len);
  query.ids_len = ids_len;
  err = ioctl(pmu_efd, PERF_EVENT_IOC_QUERY_BPF, query);
  if (err == 0) {
    /* query.prog_cnt is the number of available progs,
     * number of progs in ids: (ids_len == 0) ? 0 : query.prog_cnt
     */
  } else if (errno == ENOSPC) {
    /* query.ids_len number of progs copied,
     * query.prog_cnt is the number of available progs
     */
  } else {
      /* other errors */
  }

Signed-off-by: Yonghong Song <yhs@fb.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2017-12-12 08:46:40 -08:00
Gianluca Borello
db1ac4964f bpf: introduce ARG_PTR_TO_MEM_OR_NULL
With the current ARG_PTR_TO_MEM/ARG_PTR_TO_UNINIT_MEM semantics, an helper
argument can be NULL when the next argument type is ARG_CONST_SIZE_OR_ZERO
and the verifier can prove the value of this next argument is 0. However,
most helpers are just interested in handling <!NULL, 0>, so forcing them to
deal with <NULL, 0> makes the implementation of those helpers more
complicated for no apparent benefits, requiring them to explicitly handle
those corner cases with checks that bpf programs could start relying upon,
preventing the possibility of removing them later.

Solve this by making ARG_PTR_TO_MEM/ARG_PTR_TO_UNINIT_MEM never accept NULL
even when ARG_CONST_SIZE_OR_ZERO is set, and introduce a new argument type
ARG_PTR_TO_MEM_OR_NULL to explicitly deal with the NULL case.

Currently, the only helper that needs this is bpf_csum_diff_proto(), so
change arg1 and arg3 to this new type as well.

Also add a new battery of tests that explicitly test the
!ARG_PTR_TO_MEM_OR_NULL combination: all the current ones testing the
various <NULL, 0> variations are focused on bpf_csum_diff, so cover also
other helpers.

Signed-off-by: Gianluca Borello <g.borello@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2017-11-22 21:40:54 +01:00
Jakub Kicinski
1ee640095f bpf: revert report offload info to user space
This reverts commit bd601b6ada ("bpf: report offload info to user
space").  The ifindex by itself is not sufficient, we should provide
information on which network namespace this ifindex belongs to.
After considering some options we concluded that it's best to just
remove this API for now, and rework it in -next.

Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2017-11-21 00:37:35 +01:00
Jakub Kicinski
479321e9c3 bpf: turn bpf_prog_get_type() into a wrapper
bpf_prog_get_type() is identical to bpf_prog_get_type_dev(),
with false passed as attach_drv.  Instead of keeping it as
an exported symbol turn it into static inline wrapper.

Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2017-11-21 00:37:35 +01:00
Jakub Kicinski
288b3de55a bpf: offload: move offload device validation out to the drivers
With TC shared block changes we can't depend on correct netdev
pointer being available in cls_bpf.  Move the device validation
to the driver.  Core will only make sure that offloaded programs
are always attached in the driver (or in HW by the driver).  We
trust that drivers which implement offload callbacks will perform
necessary checks.

Moving the checks to the driver is generally a useful thing,
in practice the check should be against a switchdev instance,
not a netdev, given that most ASICs will probably allow using
the same program on many ports.

Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Jiri Pirko <jiri@mellanox.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2017-11-21 00:37:35 +01:00
Jakub Kicinski
248f346ffe xdp: allow attaching programs loaded for specific device
Pass the netdev pointer to bpf_prog_get_type().  This way
BPF code can decide whether the device matches what the
code was loaded/translated for.

Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Simon Horman <simon.horman@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-11-05 22:26:19 +09:00
Jakub Kicinski
bd601b6ada bpf: report offload info to user space
Extend struct bpf_prog_info to contain information about program
being bound to a device.  Since the netdev may get destroyed while
program still exists we need a flag to indicate the program is
loaded for a device, even if the device is gone.

Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Simon Horman <simon.horman@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-11-05 22:26:18 +09:00
Jakub Kicinski
ab3f0063c4 bpf: offload: add infrastructure for loading programs for a specific netdev
The fact that we don't know which device the program is going
to be used on is quite limiting in current eBPF infrastructure.
We have to reverse or limit the changes which kernel makes to
the loaded bytecode if we want it to be offloaded to a networking
device.  We also have to invent new APIs for debugging and
troubleshooting support.

Make it possible to load programs for a specific netdev.  This
helps us to bring the debug information closer to the core
eBPF infrastructure (e.g. we will be able to reuse the verifer
log in device JIT).  It allows device JITs to perform translation
on the original bytecode.

__bpf_prog_get() when called to get a reference for an attachment
point will now refuse to give it if program has a device assigned.
Following patches will add a version of that function which passes
the expected netdev in. @type argument in __bpf_prog_get() is
renamed to attach_type to make it clearer that it's only set on
attachment.

All calls to ndo_bpf are protected by rtnl, only verifier callbacks
are not.  We need a wait queue to make sure netdev doesn't get
destroyed while verifier is still running and calling its driver.

Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Simon Horman <simon.horman@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-11-05 22:26:18 +09:00
Gianluca Borello
035226b964 bpf: remove tail_call and get_stackid helper declarations from bpf.h
commit afdb09c720 ("security: bpf: Add LSM hooks for bpf object related
syscall") included linux/bpf.h in linux/security.h. As a result, bpf
programs including bpf_helpers.h and some other header that ends up
pulling in also security.h, such as several examples under samples/bpf,
fail to compile because bpf_tail_call and bpf_get_stackid are now
"redefined as different kind of symbol".

>From bpf.h:

u64 bpf_tail_call(u64 ctx, u64 r2, u64 index, u64 r4, u64 r5);
u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);

Whereas in bpf_helpers.h they are:

static void (*bpf_tail_call)(void *ctx, void *map, int index);
static int (*bpf_get_stackid)(void *ctx, void *map, int flags);

Fix this by removing the unused declaration of bpf_tail_call and moving
the declaration of bpf_get_stackid in bpf_trace.c, which is the only
place where it's needed.

Signed-off-by: Gianluca Borello <g.borello@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-27 22:14:22 +09:00
Yonghong Song
e87c6bc385 bpf: permit multiple bpf attachments for a single perf event
This patch enables multiple bpf attachments for a
kprobe/uprobe/tracepoint single trace event.
Each trace_event keeps a list of attached perf events.
When an event happens, all attached bpf programs will
be executed based on the order of attachment.

A global bpf_event_mutex lock is introduced to protect
prog_array attaching and detaching. An alternative will
be introduce a mutex lock in every trace_event_call
structure, but it takes a lot of extra memory.
So a global bpf_event_mutex lock is a good compromise.

The bpf prog detachment involves allocation of memory.
If the allocation fails, a dummy do-nothing program
will replace to-be-detached program in-place.

Signed-off-by: Yonghong Song <yhs@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-25 10:47:47 +09:00
Chenbo Feng
f66e448cfd selinux: bpf: Add addtional check for bpf object file receive
Introduce a bpf object related check when sending and receiving files
through unix domain socket as well as binder. It checks if the receiving
process have privilege to read/write the bpf map or use the bpf program.
This check is necessary because the bpf maps and programs are using a
anonymous inode as their shared inode so the normal way of checking the
files and sockets when passing between processes cannot work properly on
eBPF object. This check only works when the BPF_SYSCALL is configured.

Signed-off-by: Chenbo Feng <fengc@google.com>
Acked-by: Stephen Smalley <sds@tycho.nsa.gov>
Reviewed-by: James Morris <james.l.morris@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-20 13:32:59 +01:00
Chenbo Feng
afdb09c720 security: bpf: Add LSM hooks for bpf object related syscall
Introduce several LSM hooks for the syscalls that will allow the
userspace to access to eBPF object such as eBPF programs and eBPF maps.
The security check is aimed to enforce a per object security protection
for eBPF object so only processes with the right priviliges can
read/write to a specific map or use a specific eBPF program. Besides
that, a general security hook is added before the multiplexer of bpf
syscall to check the cmd and the attribute used for the command. The
actual security module can decide which command need to be checked and
how the cmd should be checked.

Signed-off-by: Chenbo Feng <fengc@google.com>
Acked-by: James Morris <james.l.morris@oracle.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-20 13:32:59 +01:00
Chenbo Feng
6e71b04a82 bpf: Add file mode configuration into bpf maps
Introduce the map read/write flags to the eBPF syscalls that returns the
map fd. The flags is used to set up the file mode when construct a new
file descriptor for bpf maps. To not break the backward capability, the
f_flags is set to O_RDWR if the flag passed by syscall is 0. Otherwise
it should be O_RDONLY or O_WRONLY. When the userspace want to modify or
read the map content, it will check the file mode to see if it is
allowed to make the change.

Signed-off-by: Chenbo Feng <fengc@google.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-20 13:32:59 +01:00
Jakub Kicinski
4f9218aaf8 bpf: move knowledge about post-translation offsets out of verifier
Use the fact that verifier ops are now separate from program
ops to define a separate set of callbacks for verification of
already translated programs.

Since we expect the analyzer ops to be defined only for
a small subset of all program types initialize their array
by hand (don't use linux/bpf_types.h).

Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-18 14:17:10 +01:00
Jakub Kicinski
00176a34d9 bpf: remove the verifier ops from program structure
Since the verifier ops don't have to be associated with
the program for its entire lifetime we can move it to
verifier's struct bpf_verifier_env.

Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-18 14:17:10 +01:00
Jakub Kicinski
7de16e3a35 bpf: split verifier and program ops
struct bpf_verifier_ops contains both verifier ops and operations
used later during program's lifetime (test_run).  Split the runtime
ops into a different structure.

BPF_PROG_TYPE() will now append ## _prog_ops or ## _verifier_ops
to the names.

Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-18 14:17:10 +01:00
Jesper Dangaard Brouer
9c270af37b bpf: XDP_REDIRECT enable use of cpumap
This patch connects cpumap to the xdp_do_redirect_map infrastructure.

Still no SKB allocation are done yet.  The XDP frames are transferred
to the other CPU, but they are simply refcnt decremented on the remote
CPU.  This served as a good benchmark for measuring the overhead of
remote refcnt decrement.  If driver page recycle cache is not
efficient then this, exposes a bottleneck in the page allocator.

A shout-out to MST's ptr_ring, which is the secret behind is being so
efficient to transfer memory pointers between CPUs, without constantly
bouncing cache-lines between CPUs.

V3: Handle !CONFIG_BPF_SYSCALL pointed out by kbuild test robot.

V4: Make Generic-XDP aware of cpumap type, but don't allow redirect yet,
 as implementation require a separate upstream discussion.

V5:
 - Fix a maybe-uninitialized pointed out by kbuild test robot.
 - Restrict bpf-prog side access to cpumap, open when use-cases appear
 - Implement cpu_map_enqueue() as a more simple void pointer enqueue

V6:
 - Allow cpumap type for usage in helper bpf_redirect_map,
   general bpf-prog side restriction moved to earlier patch.

Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-18 12:12:18 +01:00
David S. Miller
d93fa2ba64 Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net 2017-10-09 20:11:09 -07:00
Shmulik Ladkani
98589a0998 netfilter: xt_bpf: Fix XT_BPF_MODE_FD_PINNED mode of 'xt_bpf_info_v1'
Commit 2c16d60332 ("netfilter: xt_bpf: support ebpf") introduced
support for attaching an eBPF object by an fd, with the
'bpf_mt_check_v1' ABI expecting the '.fd' to be specified upon each
IPT_SO_SET_REPLACE call.

However this breaks subsequent iptables calls:

 # iptables -A INPUT -m bpf --object-pinned /sys/fs/bpf/xxx -j ACCEPT
 # iptables -A INPUT -s 5.6.7.8 -j ACCEPT
 iptables: Invalid argument. Run `dmesg' for more information.

That's because iptables works by loading existing rules using
IPT_SO_GET_ENTRIES to userspace, then issuing IPT_SO_SET_REPLACE with
the replacement set.

However, the loaded 'xt_bpf_info_v1' has an arbitrary '.fd' number
(from the initial "iptables -m bpf" invocation) - so when 2nd invocation
occurs, userspace passes a bogus fd number, which leads to
'bpf_mt_check_v1' to fail.

One suggested solution [1] was to hack iptables userspace, to perform a
"entries fixup" immediatley after IPT_SO_GET_ENTRIES, by opening a new,
process-local fd per every 'xt_bpf_info_v1' entry seen.

However, in [2] both Pablo Neira Ayuso and Willem de Bruijn suggested to
depricate the xt_bpf_info_v1 ABI dealing with pinned ebpf objects.

This fix changes the XT_BPF_MODE_FD_PINNED behavior to ignore the given
'.fd' and instead perform an in-kernel lookup for the bpf object given
the provided '.path'.

It also defines an alias for the XT_BPF_MODE_FD_PINNED mode, named
XT_BPF_MODE_PATH_PINNED, to better reflect the fact that the user is
expected to provide the path of the pinned object.

Existing XT_BPF_MODE_FD_ELF behavior (non-pinned fd mode) is preserved.

References: [1] https://marc.info/?l=netfilter-devel&m=150564724607440&w=2
            [2] https://marc.info/?l=netfilter-devel&m=150575727129880&w=2

Reported-by: Rafael Buchbinder <rafi@rbk.ms>
Signed-off-by: Shmulik Ladkani <shmulik.ladkani@gmail.com>
Acked-by: Willem de Bruijn <willemb@google.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2017-10-09 15:18:04 +02:00
Martin KaFai Lau
067cae4777 bpf: Use char in prog and map name
Instead of u8, use char for prog and map name.  It can avoid the
userspace tool getting compiler's signess warning.  The
bpf_prog_aux, bpf_map, bpf_attr, bpf_prog_info and
bpf_map_info are changed.

Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Cc: Jakub Kicinski <jakub.kicinski@netronome.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@fb.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-07 23:29:39 +01:00
Alexei Starovoitov
468e2f64d2 bpf: introduce BPF_PROG_QUERY command
introduce BPF_PROG_QUERY command to retrieve a set of either
attached programs to given cgroup or a set of effective programs
that will execute for events within a cgroup

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
for cgroup bits
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-04 16:05:05 -07:00
Alexei Starovoitov
324bda9e6c bpf: multi program support for cgroup+bpf
introduce BPF_F_ALLOW_MULTI flag that can be used to attach multiple
bpf programs to a cgroup.

The difference between three possible flags for BPF_PROG_ATTACH command:
- NONE(default): No further bpf programs allowed in the subtree.
- BPF_F_ALLOW_OVERRIDE: If a sub-cgroup installs some bpf program,
  the program in this cgroup yields to sub-cgroup program.
- BPF_F_ALLOW_MULTI: If a sub-cgroup installs some bpf program,
  that cgroup program gets run in addition to the program in this cgroup.

NONE and BPF_F_ALLOW_OVERRIDE existed before. This patch doesn't
change their behavior. It only clarifies the semantics in relation
to new flag.

Only one program is allowed to be attached to a cgroup with
NONE or BPF_F_ALLOW_OVERRIDE flag.
Multiple programs are allowed to be attached to a cgroup with
BPF_F_ALLOW_MULTI flag. They are executed in FIFO order
(those that were attached first, run first)
The programs of sub-cgroup are executed first, then programs of
this cgroup and then programs of parent cgroup.
All eligible programs are executed regardless of return code from
earlier programs.

To allow efficient execution of multiple programs attached to a cgroup
and to avoid penalizing cgroups without any programs attached
introduce 'struct bpf_prog_array' which is RCU protected array
of pointers to bpf programs.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
for cgroup bits
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-10-04 16:05:05 -07:00
Martin KaFai Lau
ad5b177bd7 bpf: Add map_name to bpf_map_info
This patch allows userspace to specify a name for a map
during BPF_MAP_CREATE.

The map's name can later be exported to user space
via BPF_OBJ_GET_INFO_BY_FD.

Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Alexei Starovoitov <ast@fb.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-09-29 06:17:05 +01:00
Martin KaFai Lau
cb4d2b3f03 bpf: Add name, load_time, uid and map_ids to bpf_prog_info
The patch adds name and load_time to struct bpf_prog_aux.  They
are also exported to bpf_prog_info.

The bpf_prog's name is passed by userspace during BPF_PROG_LOAD.
The kernel only stores the first (BPF_PROG_NAME_LEN - 1) bytes
and the name stored in the kernel is always \0 terminated.

The kernel will reject name that contains characters other than
isalnum() and '_'.  It will also reject name that is not null
terminated.

The existing 'user->uid' of the bpf_prog_aux is also exported to
the bpf_prog_info as created_by_uid.

The existing 'used_maps' of the bpf_prog_aux is exported to
the newly added members 'nr_map_ids' and 'map_ids' of
the bpf_prog_info.  On the input, nr_map_ids tells how
big the userspace's map_ids buffer is.  On the output,
nr_map_ids tells the exact user_map_cnt and it will only
copy up to the userspace's map_ids buffer is allowed.

Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Alexei Starovoitov <ast@fb.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-09-29 06:17:05 +01:00
Daniel Borkmann
de8f3a83b0 bpf: add meta pointer for direct access
This work enables generic transfer of metadata from XDP into skb. The
basic idea is that we can make use of the fact that the resulting skb
must be linear and already comes with a larger headroom for supporting
bpf_xdp_adjust_head(), which mangles xdp->data. Here, we base our work
on a similar principle and introduce a small helper bpf_xdp_adjust_meta()
for adjusting a new pointer called xdp->data_meta. Thus, the packet has
a flexible and programmable room for meta data, followed by the actual
packet data. struct xdp_buff is therefore laid out that we first point
to data_hard_start, then data_meta directly prepended to data followed
by data_end marking the end of packet. bpf_xdp_adjust_head() takes into
account whether we have meta data already prepended and if so, memmove()s
this along with the given offset provided there's enough room.

xdp->data_meta is optional and programs are not required to use it. The
rationale is that when we process the packet in XDP (e.g. as DoS filter),
we can push further meta data along with it for the XDP_PASS case, and
give the guarantee that a clsact ingress BPF program on the same device
can pick this up for further post-processing. Since we work with skb
there, we can also set skb->mark, skb->priority or other skb meta data
out of BPF, thus having this scratch space generic and programmable
allows for more flexibility than defining a direct 1:1 transfer of
potentially new XDP members into skb (it's also more efficient as we
don't need to initialize/handle each of such new members). The facility
also works together with GRO aggregation. The scratch space at the head
of the packet can be multiple of 4 byte up to 32 byte large. Drivers not
yet supporting xdp->data_meta can simply be set up with xdp->data_meta
as xdp->data + 1 as bpf_xdp_adjust_meta() will detect this and bail out,
such that the subsequent match against xdp->data for later access is
guaranteed to fail.

The verifier treats xdp->data_meta/xdp->data the same way as we treat
xdp->data/xdp->data_end pointer comparisons. The requirement for doing
the compare against xdp->data is that it hasn't been modified from it's
original address we got from ctx access. It may have a range marking
already from prior successful xdp->data/xdp->data_end pointer comparisons
though.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-09-26 13:36:44 -07:00
John Fastabend
5a67da2a71 bpf: add support for sockmap detach programs
The bpf map sockmap supports adding programs via attach commands. This
patch adds the detach command to keep the API symmetric and allow
users to remove previously added programs. Otherwise the user would
have to delete the map and re-add it to get in this state.

This also adds a series of additional tests to capture detach operation
and also attaching/detaching invalid prog types.

API note: socks will run (or not run) programs depending on the state
of the map at the time the sock is added. We do not for example walk
the map and remove programs from previously attached socks.

Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-09-08 21:11:00 -07:00
John Fastabend
464bc0fd62 bpf: convert sockmap field attach_bpf_fd2 to type
In the initial sockmap API we provided strparser and verdict programs
using a single attach command by extending the attach API with a the
attach_bpf_fd2 field.

However, if we add other programs in the future we will be adding a
field for every new possible type, attach_bpf_fd(3,4,..). This
seems a bit clumsy for an API. So lets push the programs using two
new type fields.

   BPF_SK_SKB_STREAM_PARSER
   BPF_SK_SKB_STREAM_VERDICT

This has the advantage of having a readable name and can easily be
extended in the future.

Updates to samples and sockmap included here also generalize tests
slightly to support upcoming patch for multiple map support.

Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Fixes: 174a79ff95 ("bpf: sockmap with sk redirect support")
Suggested-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-08-28 11:13:21 -07:00
David S. Miller
d6e1e46f69 bpf: linux/bpf.h needs linux/numa.h
Reported-by: kbuild test robot <fengguang.wu@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-08-19 23:34:03 -07:00
Martin KaFai Lau
96eabe7a40 bpf: Allow selecting numa node during map creation
The current map creation API does not allow to provide the numa-node
preference.  The memory usually comes from where the map-creation-process
is running.  The performance is not ideal if the bpf_prog is known to
always run in a numa node different from the map-creation-process.

One of the use case is sharding on CPU to different LRU maps (i.e.
an array of LRU maps).  Here is the test result of map_perf_test on
the INNER_LRU_HASH_PREALLOC test if we force the lru map used by
CPU0 to be allocated from a remote numa node:

[ The machine has 20 cores. CPU0-9 at node 0. CPU10-19 at node 1 ]

># taskset -c 10 ./map_perf_test 512 8 1260000 8000000
5:inner_lru_hash_map_perf pre-alloc 1628380 events per sec
4:inner_lru_hash_map_perf pre-alloc 1626396 events per sec
3:inner_lru_hash_map_perf pre-alloc 1626144 events per sec
6:inner_lru_hash_map_perf pre-alloc 1621657 events per sec
2:inner_lru_hash_map_perf pre-alloc 1621534 events per sec
1:inner_lru_hash_map_perf pre-alloc 1620292 events per sec
7:inner_lru_hash_map_perf pre-alloc 1613305 events per sec
0:inner_lru_hash_map_perf pre-alloc 1239150 events per sec  #<<<

After specifying numa node:
># taskset -c 10 ./map_perf_test 512 8 1260000 8000000
5:inner_lru_hash_map_perf pre-alloc 1629627 events per sec
3:inner_lru_hash_map_perf pre-alloc 1628057 events per sec
1:inner_lru_hash_map_perf pre-alloc 1623054 events per sec
6:inner_lru_hash_map_perf pre-alloc 1616033 events per sec
2:inner_lru_hash_map_perf pre-alloc 1614630 events per sec
4:inner_lru_hash_map_perf pre-alloc 1612651 events per sec
7:inner_lru_hash_map_perf pre-alloc 1609337 events per sec
0:inner_lru_hash_map_perf pre-alloc 1619340 events per sec #<<<

This patch adds one field, numa_node, to the bpf_attr.  Since numa node 0
is a valid node, a new flag BPF_F_NUMA_NODE is also added.  The numa_node
field is honored if and only if the BPF_F_NUMA_NODE flag is set.

Numa node selection is not supported for percpu map.

This patch does not change all the kmalloc.  F.e.
'htab = kzalloc()' is not changed since the object
is small enough to stay in the cache.

Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@fb.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-08-19 21:35:43 -07:00
John Fastabend
6bdc9c4c31 bpf: sock_map fixes for !CONFIG_BPF_SYSCALL and !STREAM_PARSER
Resolve issues with !CONFIG_BPF_SYSCALL and !STREAM_PARSER

net/core/filter.c: In function ‘do_sk_redirect_map’:
net/core/filter.c:1881:3: error: implicit declaration of function ‘__sock_map_lookup_elem’ [-Werror=implicit-function-declaration]
   sk = __sock_map_lookup_elem(ri->map, ri->ifindex);
   ^
net/core/filter.c:1881:6: warning: assignment makes pointer from integer without a cast [enabled by default]
   sk = __sock_map_lookup_elem(ri->map, ri->ifindex);

Fixes: 174a79ff95 ("bpf: sockmap with sk redirect support")
Reported-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-08-16 15:34:13 -07:00
John Fastabend
174a79ff95 bpf: sockmap with sk redirect support
Recently we added a new map type called dev map used to forward XDP
packets between ports (6093ec2dc3). This patches introduces a
similar notion for sockets.

A sockmap allows users to add participating sockets to a map. When
sockets are added to the map enough context is stored with the
map entry to use the entry with a new helper

  bpf_sk_redirect_map(map, key, flags)

This helper (analogous to bpf_redirect_map in XDP) is given the map
and an entry in the map. When called from a sockmap program, discussed
below, the skb will be sent on the socket using skb_send_sock().

With the above we need a bpf program to call the helper from that will
then implement the send logic. The initial site implemented in this
series is the recv_sock hook. For this to work we implemented a map
attach command to add attributes to a map. In sockmap we add two
programs a parse program and a verdict program. The parse program
uses strparser to build messages and pass them to the verdict program.
The parse programs use the normal strparser semantics. The verdict
program is of type SK_SKB.

The verdict program returns a verdict SK_DROP, or  SK_REDIRECT for
now. Additional actions may be added later. When SK_REDIRECT is
returned, expected when bpf program uses bpf_sk_redirect_map(), the
sockmap logic will consult per cpu variables set by the helper routine
and pull the sock entry out of the sock map. This pattern follows the
existing redirect logic in cls and xdp programs.

This gives the flow,

 recv_sock -> str_parser (parse_prog) -> verdict_prog -> skb_send_sock
                                                     \
                                                      -> kfree_skb

As an example use case a message based load balancer may use specific
logic in the verdict program to select the sock to send on.

Sample programs are provided in future patches that hopefully illustrate
the user interfaces. Also selftests are in follow-on patches.

Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-08-16 11:27:53 -07:00
John Fastabend
a6f6df69c4 bpf: export bpf_prog_inc_not_zero
bpf_prog_inc_not_zero will be used by upcoming sockmap patches this
patch simply exports it so we can pull it in.

Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-08-16 11:27:53 -07:00
Edward Cree
f1174f77b5 bpf/verifier: rework value tracking
Unifies adjusted and unadjusted register value types (e.g. FRAME_POINTER is
 now just a PTR_TO_STACK with zero offset).
Tracks value alignment by means of tracking known & unknown bits.  This
 also replaces the 'reg->imm' (leading zero bits) calculations for (what
 were) UNKNOWN_VALUEs.
If pointer leaks are allowed, and adjust_ptr_min_max_vals returns -EACCES,
 treat the pointer as an unknown scalar and try again, because we might be
 able to conclude something about the result (e.g. pointer & 0x40 is either
 0 or 0x40).
Verifier hooks in the netronome/nfp driver were changed to match the new
 data structures.

Signed-off-by: Edward Cree <ecree@solarflare.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-08-08 17:51:34 -07:00
John Fastabend
46f55cffa4 net: fix build error in devmap helper calls
Initial patches missed case with CONFIG_BPF_SYSCALL not set.

Fixes: 11393cc9b9 ("xdp: Add batching support to redirect map")
Fixes: 97f91a7cf0 ("bpf: add bpf_redirect_map helper routine")
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-07-17 21:58:32 -07:00