Commit graph

2 commits

Author SHA1 Message Date
Thomas Gleixner
b4d0d230cc treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 36
Based on 1 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public licence as published by
  the free software foundation either version 2 of the licence or at
  your option any later version

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-or-later

has been chosen to replace the boilerplate/reference in 114 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190520170857.552531963@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-24 17:27:11 +02:00
David Howells
46c6f1776e KEYS: Asymmetric key pluggable data parsers
The instantiation data passed to the asymmetric key type are expected to be
formatted in some way, and there are several possible standard ways to format
the data.

The two obvious standards are OpenPGP keys and X.509 certificates.  The latter
is especially useful when dealing with UEFI, and the former might be useful
when dealing with, say, eCryptfs.

Further, it might be desirable to provide formatted blobs that indicate
hardware is to be accessed to retrieve the keys or that the keys live
unretrievably in a hardware store, but that the keys can be used by means of
the hardware.

From userspace, the keys can be loaded using the keyctl command, for example,
an X.509 binary certificate:

	keyctl padd asymmetric foo @s <dhowells.pem

or a PGP key:

	keyctl padd asymmetric bar @s <dhowells.pub

or a pointer into the contents of the TPM:

	keyctl add asymmetric zebra "TPM:04982390582905f8" @s

Inside the kernel, pluggable parsers register themselves and then get to
examine the payload data to see if they can handle it.  If they can, they get
to:

  (1) Propose a name for the key, to be used it the name is "" or NULL.

  (2) Specify the key subtype.

  (3) Provide the data for the subtype.

The key type asks the parser to do its stuff before a key is allocated and thus
before the name is set.  If successful, the parser stores the suggested data
into the key_preparsed_payload struct, which will be either used (if the key is
successfully created and instantiated or updated) or discarded.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-10-08 13:50:13 +10:30