called SEV by also encrypting the guest register state, making the
registers inaccessible to the hypervisor by en-/decrypting them on world
switches. Thus, it adds additional protection to Linux guests against
exfiltration, control flow and rollback attacks.
With SEV-ES, the guest is in full control of what registers the
hypervisor can access. This is provided by a guest-host exchange
mechanism based on a new exception vector called VMM Communication
Exception (#VC), a new instruction called VMGEXIT and a shared
Guest-Host Communication Block which is a decrypted page shared between
the guest and the hypervisor.
Intercepts to the hypervisor become #VC exceptions in an SEV-ES guest so
in order for that exception mechanism to work, the early x86 init code
needed to be made able to handle exceptions, which, in itself, brings
a bunch of very nice cleanups and improvements to the early boot code
like an early page fault handler, allowing for on-demand building of the
identity mapping. With that, !KASLR configurations do not use the EFI
page table anymore but switch to a kernel-controlled one.
The main part of this series adds the support for that new exchange
mechanism. The goal has been to keep this as much as possibly
separate from the core x86 code by concentrating the machinery in two
SEV-ES-specific files:
arch/x86/kernel/sev-es-shared.c
arch/x86/kernel/sev-es.c
Other interaction with core x86 code has been kept at minimum and behind
static keys to minimize the performance impact on !SEV-ES setups.
Work by Joerg Roedel and Thomas Lendacky and others.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAl+FiKYACgkQEsHwGGHe
VUqS5BAAlh5mKwtxXMyFyAIHa5tpsgDjbecFzy1UVmZyxN0JHLlM3NLmb+K52drY
PiWjNNMi/cFMFazkuLFHuY0poBWrZml8zRS/mExKgUJC6EtguS9FQnRE9xjDBoWQ
gOTSGJWEzT5wnFqo8qHwlC2CDCSF1hfL8ks3cUFW2tCWus4F9pyaMSGfFqD224rg
Lh/8+arDMSIKE4uH0cm7iSuyNpbobId0l5JNDfCEFDYRigQZ6pZsQ9pbmbEpncs4
rmjDvBA5eHDlNMXq0ukqyrjxWTX4ZLBOBvuLhpyssSXnnu2T+Tcxg09+ZSTyJAe0
LyC9Wfo0v78JASXMAdeH9b1d1mRYNMqjvnBItNQoqweoqUXWz7kvgxCOp6b/G4xp
cX5YhB6BprBW2DXL45frMRT/zX77UkEKYc5+0IBegV2xfnhRsjqQAQaWLIksyEaX
nz9/C6+1Sr2IAv271yykeJtY6gtlRjg/usTlYpev+K0ghvGvTmuilEiTltjHrso1
XAMbfWHQGSd61LNXofvx/GLNfGBisS6dHVHwtkayinSjXNdWxI6w9fhbWVjQ+y2V
hOF05lmzaJSG5kPLrsFHFqm2YcxOmsWkYYDBHvtmBkMZSf5B+9xxDv97Uy9NETcr
eSYk//TEkKQqVazfCQS/9LSm0MllqKbwNO25sl0Tw2k6PnheO2g=
=toqi
-----END PGP SIGNATURE-----
Merge tag 'x86_seves_for_v5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 SEV-ES support from Borislav Petkov:
"SEV-ES enhances the current guest memory encryption support called SEV
by also encrypting the guest register state, making the registers
inaccessible to the hypervisor by en-/decrypting them on world
switches. Thus, it adds additional protection to Linux guests against
exfiltration, control flow and rollback attacks.
With SEV-ES, the guest is in full control of what registers the
hypervisor can access. This is provided by a guest-host exchange
mechanism based on a new exception vector called VMM Communication
Exception (#VC), a new instruction called VMGEXIT and a shared
Guest-Host Communication Block which is a decrypted page shared
between the guest and the hypervisor.
Intercepts to the hypervisor become #VC exceptions in an SEV-ES guest
so in order for that exception mechanism to work, the early x86 init
code needed to be made able to handle exceptions, which, in itself,
brings a bunch of very nice cleanups and improvements to the early
boot code like an early page fault handler, allowing for on-demand
building of the identity mapping. With that, !KASLR configurations do
not use the EFI page table anymore but switch to a kernel-controlled
one.
The main part of this series adds the support for that new exchange
mechanism. The goal has been to keep this as much as possibly separate
from the core x86 code by concentrating the machinery in two
SEV-ES-specific files:
arch/x86/kernel/sev-es-shared.c
arch/x86/kernel/sev-es.c
Other interaction with core x86 code has been kept at minimum and
behind static keys to minimize the performance impact on !SEV-ES
setups.
Work by Joerg Roedel and Thomas Lendacky and others"
* tag 'x86_seves_for_v5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (73 commits)
x86/sev-es: Use GHCB accessor for setting the MMIO scratch buffer
x86/sev-es: Check required CPU features for SEV-ES
x86/efi: Add GHCB mappings when SEV-ES is active
x86/sev-es: Handle NMI State
x86/sev-es: Support CPU offline/online
x86/head/64: Don't call verify_cpu() on starting APs
x86/smpboot: Load TSS and getcpu GDT entry before loading IDT
x86/realmode: Setup AP jump table
x86/realmode: Add SEV-ES specific trampoline entry point
x86/vmware: Add VMware-specific handling for VMMCALL under SEV-ES
x86/kvm: Add KVM-specific VMMCALL handling under SEV-ES
x86/paravirt: Allow hypervisor-specific VMMCALL handling under SEV-ES
x86/sev-es: Handle #DB Events
x86/sev-es: Handle #AC Events
x86/sev-es: Handle VMMCALL Events
x86/sev-es: Handle MWAIT/MWAITX Events
x86/sev-es: Handle MONITOR/MONITORX Events
x86/sev-es: Handle INVD Events
x86/sev-es: Handle RDPMC Events
x86/sev-es: Handle RDTSC(P) Events
...
All instructions copying data between kernel and user memory
are tagged with either _ASM_EXTABLE_UA or _ASM_EXTABLE_CPY
entries in the exception table. ex_fault_handler_type() returns
EX_HANDLER_UACCESS for both of these.
Recovery is only possible when the machine check was triggered
on a read from user memory. In this case the same strategy for
recovery applies as if the user had made the access in ring3. If
the fault was in kernel memory while copying to user there is no
current recovery plan.
For MOV and MOVZ instructions a full decode of the instruction
is done to find the source address. For MOVS instructions
the source address is in the %rsi register. The function
fault_in_kernel_space() determines whether the source address is
kernel or user, upgrade it from "static" so it can be used here.
Co-developed-by: Youquan Song <youquan.song@intel.com>
Signed-off-by: Youquan Song <youquan.song@intel.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20201006210910.21062-7-tony.luck@intel.com
The #VC handler needs special entry code because:
1. It runs on an IST stack
2. It needs to be able to handle nested #VC exceptions
To make this work, the entry code is implemented to pretend it doesn't
use an IST stack. When entered from user-mode or early SYSCALL entry
path it switches to the task stack. If entered from kernel-mode it tries
to switch back to the previous stack in the IRET frame.
The stack found in the IRET frame is validated first, and if it is not
safe to use it for the #VC handler, the code will switch to a
fall-back stack (the #VC2 IST stack). From there, it can cause nested
exceptions again.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200907131613.12703-46-joro@8bytes.org
Move the definition of the x86 page-fault error code bits to a new
header file asm/trap_pf.h. This makes it easier to include them into
pre-decompression boot code. No functional changes.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200907131613.12703-7-joro@8bytes.org
Convert various system vectors to IDTENTRY_SYSVEC:
- Implement the C entry point with DEFINE_IDTENTRY_SYSVEC
- Emit the ASM stub with DECLARE_IDTENTRY_SYSVEC
- Remove the ASM idtentries in 64-bit
- Remove the BUILD_INTERRUPT entries in 32-bit
- Remove the old prototypes
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lore.kernel.org/r/20200521202119.464812973@linutronix.de
Convert SMP system vectors to IDTENTRY_SYSVEC:
- Implement the C entry point with DEFINE_IDTENTRY_SYSVEC
- Emit the ASM stub with DECLARE_IDTENTRY_SYSVEC
- Remove the ASM idtentries in 64-bit
- Remove the BUILD_INTERRUPT entries in 32-bit
- Remove the old prototypes
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lore.kernel.org/r/20200521202119.372234635@linutronix.de
Convert APIC interrupts to IDTENTRY_SYSVEC:
- Implement the C entry point with DEFINE_IDTENTRY_SYSVEC
- Emit the ASM stub with DECLARE_IDTENTRY_SYSVEC
- Remove the ASM idtentries in 64-bit
- Remove the BUILD_INTERRUPT entries in 32-bit
- Remove the old prototypes
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lore.kernel.org/r/20200521202119.280728850@linutronix.de
Replace the extra interrupt handling code and reuse the existing idtentry
machinery. This moves the irq stack switching on 64-bit from ASM to C code;
32-bit already does the stack switching in C.
This requires to remove HAVE_IRQ_EXIT_ON_IRQ_STACK as the stack switch is
not longer in the low level entry code.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lore.kernel.org/r/20200521202119.078690991@linutronix.de
Device interrupts which go through do_IRQ() or the spurious interrupt
handler have their separate entry code on 64 bit for no good reason.
Both 32 and 64 bit transport the vector number through ORIG_[RE]AX in
pt_regs. Further the vector number is forced to fit into an u8 and is
complemented and offset by 0x80 so it's in the signed character
range. Otherwise GAS would expand the pushq to a 5 byte instruction for any
vector > 0x7F.
Treat the vector number like an error code and hand it to the C function as
argument. This allows to get rid of the extra entry code in a later step.
Simplify the error code push magic by implementing the pushq imm8 via a
'.byte 0x6a, vector' sequence so GAS is not able to screw it up. As the
pushq imm8 is sign extending the resulting error code needs to be truncated
to 8 bits in C code.
Originally-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lore.kernel.org/r/20200521202118.796915981@linutronix.de
Convert page fault exceptions to IDTENTRY_RAW:
- Implement the C entry point with DEFINE_IDTENTRY_RAW
- Add the CR2 read into the exception handler
- Add the idtentry_enter/exit_cond_rcu() invocations in
in the regular page fault handler and in the async PF
part.
- Emit the ASM stub with DECLARE_IDTENTRY_RAW
- Remove the ASM idtentry in 64-bit
- Remove the CR2 read from 64-bit
- Remove the open coded ASM entry code in 32-bit
- Fix up the XEN/PV code
- Remove the old prototypes
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lore.kernel.org/r/20200521202118.238455120@linutronix.de
Convert #DF to IDTENTRY_DF
- Implement the C entry point with DEFINE_IDTENTRY_DF
- Emit the ASM stub with DECLARE_IDTENTRY_DF on 64bit
- Remove the ASM idtentry in 64bit
- Adjust the 32bit shim code
- Fixup the XEN/PV code
- Remove the old prototypes
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20200505135315.583415264@linutronix.de
Convert #DB to IDTENTRY_ERRORCODE:
- Implement the C entry point with DEFINE_IDTENTRY_DB
- Emit the ASM stub with DECLARE_IDTENTRY
- Remove the ASM idtentry in 64bit
- Remove the open coded ASM entry code in 32bit
- Fixup the XEN/PV code
- Remove the old prototypes
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20200505135314.900297476@linutronix.de
Convert #NMI to IDTENTRY_NMI:
- Implement the C entry point with DEFINE_IDTENTRY_NMI
- Fixup the XEN/PV code
- Remove the old prototypes
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20200505135314.609932306@linutronix.de
Convert #MC to IDTENTRY_MCE:
- Implement the C entry points with DEFINE_IDTENTRY_MCE
- Emit the ASM stub with DECLARE_IDTENTRY_MCE
- Remove the ASM idtentry in 64bit
- Remove the open coded ASM entry code in 32bit
- Fixup the XEN/PV code
- Remove the old prototypes
- Remove the error code from *machine_check_vector() as
it is always 0 and not used by any of the functions
it can point to. Fixup all the functions as well.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20200505135314.334980426@linutronix.de
Convert #BP to IDTENTRY_RAW:
- Implement the C entry point with DEFINE_IDTENTRY_RAW
- Invoke idtentry_enter/exit() from the function body
- Emit the ASM stub with DECLARE_IDTENTRY_RAW
- Remove the ASM idtentry in 64bit
- Remove the open coded ASM entry code in 32bit
- Fixup the XEN/PV code
- Remove the old prototypes
No functional change.
This could be a plain IDTENTRY, but as Peter pointed out INT3 is broken
vs. the static key in the context tracking code as this static key might be
in the state of being patched and has an int3 which would recurse forever.
IDTENTRY_RAW is therefore chosen to allow addressing this issue without
lots of code churn.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20200505135313.938474960@linutronix.de
Convert the IRET exception handler to IDTENTRY_SW. This is slightly
different than the conversions of hardware exceptions as the IRET exception
is invoked via an exception table when IRET faults. So it just uses the
IDTENTRY_SW mechanism for consistency. It does not emit ASM code as it does
not fit the other idtentry exceptions.
- Implement the C entry point with DEFINE_IDTENTRY_SW() which maps to
DEFINE_IDTENTRY()
- Fixup the XEN/PV code
- Remove the old prototypes
- Remove the RCU warning as the new entry macro ensures correctness
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20200505134906.128769226@linutronix.de
Convert #XF to IDTENTRY_ERRORCODE:
- Implement the C entry point with DEFINE_IDTENTRY
- Emit the ASM stub with DECLARE_IDTENTRY
- Handle INVD_BUG in C
- Remove the ASM idtentry in 64bit
- Remove the open coded ASM entry code in 32bit
- Fixup the XEN/PV code
- Remove the old prototypes
- Remove the RCU warning as the new entry macro ensures correctness
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20200505134906.021552202@linutronix.de
Convert #AC to IDTENTRY_ERRORCODE:
- Implement the C entry point with DEFINE_IDTENTRY
- Emit the ASM stub with DECLARE_IDTENTRY
- Remove the ASM idtentry in 64bit
- Remove the open coded ASM entry code in 32bit
- Fixup the XEN/PV code
- Remove the old prototypes
- Remove the RCU warning as the new entry macro ensures correctness
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20200505134905.928967113@linutronix.de
Convert #MF to IDTENTRY_ERRORCODE:
- Implement the C entry point with DEFINE_IDTENTRY
- Emit the ASM stub with DECLARE_IDTENTRY
- Remove the ASM idtentry in 64bit
- Remove the open coded ASM entry code in 32bit
- Fixup the XEN/PV code
- Remove the old prototypes
- Remove the RCU warning as the new entry macro ensures correctness
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20200505134905.838823510@linutronix.de
Convert #SPURIOUS to IDTENTRY_ERRORCODE:
- Implement the C entry point with DEFINE_IDTENTRY
- Emit the ASM stub with DECLARE_IDTENTRY
- Remove the ASM idtentry in 64bit
- Remove the open coded ASM entry code in 32bit
- Fixup the XEN/PV code
- Remove the old prototypes
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20200505134905.728077036@linutronix.de
Convert #GP to IDTENTRY_ERRORCODE:
- Implement the C entry point with DEFINE_IDTENTRY
- Emit the ASM stub with DECLARE_IDTENTRY
- Remove the ASM idtentry in 64bit
- Remove the open coded ASM entry code in 32bit
- Fixup the XEN/PV code
- Remove the old prototypes
- Remove the RCU warning as the new entry macro ensures correctness
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20200505134905.637269946@linutronix.de
Convert #SS to IDTENTRY_ERRORCODE:
- Implement the C entry point with DEFINE_IDTENTRY
- Emit the ASM stub with DECLARE_IDTENTRY
- Remove the ASM idtentry in 64bit
- Remove the open coded ASM entry code in 32bit
- Fixup the XEN/PV code
- Remove the old prototypes
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20200505134905.539867572@linutronix.de
Convert #NP to IDTENTRY_ERRORCODE:
- Implement the C entry point with DEFINE_IDTENTRY
- Emit the ASM stub with DECLARE_IDTENTRY
- Remove the ASM idtentry in 64bit
- Remove the open coded ASM entry code in 32bit
- Fixup the XEN/PV code
- Remove the old prototypes
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Andy Lutomirski <luto@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200505134905.443591450@linutronix.de
Convert #TS to IDTENTRY_ERRORCODE:
- Implement the C entry point with DEFINE_IDTENTRY
- Emit the ASM stub with DECLARE_IDTENTRY
- Remove the ASM idtentry in 64bit
- Remove the open coded ASM entry code in 32bit
- Fixup the XEN/PV code
- Remove the old prototypes
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Andy Lutomirski <luto@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200505134905.350676449@linutronix.de
Convert #OLD_MF to IDTENTRY:
- Implement the C entry point with DEFINE_IDTENTRY
- Emit the ASM stub with DECLARE_IDTENTRY
- Remove the ASM idtentry in 64bit
- Remove the open coded ASM entry code in 32bit
- Fixup the XEN/PV code
- Remove the old prototypes
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Andy Lutomirski <luto@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200505134905.838823510@linutronix.de
Convert #NM to IDTENTRY:
- Implement the C entry point with DEFINE_IDTENTRY
- Emit the ASM stub with DECLARE_IDTENTRY
- Remove the ASM idtentry in 64bit
- Remove the open coded ASM entry code in 32bit
- Fixup the XEN/PV code
- Remove the old prototypes
- Remove the RCU warning as the new entry macro ensures correctness
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Andy Lutomirski <luto@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200505134905.056243863@linutronix.de
Convert #UD to IDTENTRY:
- Implement the C entry point with DEFINE_IDTENTRY
- Emit the ASM stub with DECLARE_IDTENTRY
- Remove the ASM idtentry in 64bit
- Remove the open coded ASM entry code in 32bit
- Fixup the XEN/PV code
- Fixup the FOOF bug call in fault.c
- Remove the old prototypes
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Andy Lutomirski <luto@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200505134904.955511913@linutronix.de
Convert #BR to IDTENTRY:
- Implement the C entry point with DEFINE_IDTENTRY
- Emit the ASM stub with DECLARE_IDTENTRY
- Remove the ASM idtentry in 64bit
- Remove the open coded ASM entry code in 32bit
- Fixup the XEN/PV code
- Remove the old prototypes
- Remove the RCU warning as the new entry macro ensures correctness
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Andy Lutomirski <luto@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200505134904.863001309@linutronix.de
Convert #OF to IDTENTRY:
- Implement the C entry point with DEFINE_IDTENTRY
- Emit the ASM stub with DECLARE_IDTENTRY
- Remove the ASM idtentry in 64bit
- Remove the open coded ASM entry code in 32bit
- Fixup the XEN/PV code
- Remove the old prototypes
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Andy Lutomirski <luto@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200505134904.771457898@linutronix.de
Convert #DE to IDTENTRY:
- Implement the C entry point with DEFINE_IDTENTRY
- Emit the ASM stub with DECLARE_IDTENTRY
- Remove the ASM idtentry in 64bit
- Remove the open coded ASM entry code in 32bit
- Fixup the XEN/PV code
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20200505134904.663914713@linutronix.de
Provide DECLARE/DEFINE_IDTENTRY() macros.
DEFINE_IDTENTRY() provides a wrapper which acts as the function
definition. The exception handler body is just appended to it with curly
brackets. The entry point is marked noinstr so that irq tracing and the
enter_from_user_mode() can be moved into the C-entry point. As all
C-entries use the same macro (or a later variant) the necessary entry
handling can be implemented at one central place.
DECLARE_IDTENTRY() provides the function prototypes:
- The C entry point cfunc
- The ASM entry point asm_cfunc
- The XEN/PV entry point xen_asm_cfunc
They all follow the same naming convention.
When included from ASM code DECLARE_IDTENTRY() is a macro which emits the
low level entry point in assembly by instantiating idtentry.
IDTENTRY is the simplest variant which just has a pt_regs argument. It's
going to be used for all exceptions which have no error code.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Andy Lutomirski <luto@kernel.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200505134904.273363275@linutronix.de
So they can be used in ASM code. For this it is also necessary to convert
them to defines. Will be used for the rework of the entry code.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Andy Lutomirski <luto@kernel.org>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200505134903.731004084@linutronix.de
- Branch Target Identification (BTI)
* Support for ARMv8.5-BTI in both user- and kernel-space. This
allows branch targets to limit the types of branch from which
they can be called and additionally prevents branching to
arbitrary code, although kernel support requires a very recent
toolchain.
* Function annotation via SYM_FUNC_START() so that assembly
functions are wrapped with the relevant "landing pad"
instructions.
* BPF and vDSO updates to use the new instructions.
* Addition of a new HWCAP and exposure of BTI capability to
userspace via ID register emulation, along with ELF loader
support for the BTI feature in .note.gnu.property.
* Non-critical fixes to CFI unwind annotations in the sigreturn
trampoline.
- Shadow Call Stack (SCS)
* Support for Clang's Shadow Call Stack feature, which reserves
platform register x18 to point at a separate stack for each
task that holds only return addresses. This protects function
return control flow from buffer overruns on the main stack.
* Save/restore of x18 across problematic boundaries (user-mode,
hypervisor, EFI, suspend, etc).
* Core support for SCS, should other architectures want to use it
too.
* SCS overflow checking on context-switch as part of the existing
stack limit check if CONFIG_SCHED_STACK_END_CHECK=y.
- CPU feature detection
* Removed numerous "SANITY CHECK" errors when running on a system
with mismatched AArch32 support at EL1. This is primarily a
concern for KVM, which disabled support for 32-bit guests on
such a system.
* Addition of new ID registers and fields as the architecture has
been extended.
- Perf and PMU drivers
* Minor fixes and cleanups to system PMU drivers.
- Hardware errata
* Unify KVM workarounds for VHE and nVHE configurations.
* Sort vendor errata entries in Kconfig.
- Secure Monitor Call Calling Convention (SMCCC)
* Update to the latest specification from Arm (v1.2).
* Allow PSCI code to query the SMCCC version.
- Software Delegated Exception Interface (SDEI)
* Unexport a bunch of unused symbols.
* Minor fixes to handling of firmware data.
- Pointer authentication
* Add support for dumping the kernel PAC mask in vmcoreinfo so
that the stack can be unwound by tools such as kdump.
* Simplification of key initialisation during CPU bringup.
- BPF backend
* Improve immediate generation for logical and add/sub
instructions.
- vDSO
- Minor fixes to the linker flags for consistency with other
architectures and support for LLVM's unwinder.
- Clean up logic to initialise and map the vDSO into userspace.
- ACPI
- Work around for an ambiguity in the IORT specification relating
to the "num_ids" field.
- Support _DMA method for all named components rather than only
PCIe root complexes.
- Minor other IORT-related fixes.
- Miscellaneous
* Initialise debug traps early for KGDB and fix KDB cacheflushing
deadlock.
* Minor tweaks to early boot state (documentation update, set
TEXT_OFFSET to 0x0, increase alignment of PE/COFF sections).
* Refactoring and cleanup
-----BEGIN PGP SIGNATURE-----
iQFEBAABCgAuFiEEPxTL6PPUbjXGY88ct6xw3ITBYzQFAl7U9csQHHdpbGxAa2Vy
bmVsLm9yZwAKCRC3rHDchMFjNLBHCACs/YU4SM7Om5f+7QnxIKao5DBr2CnGGvdC
yTfDghFDTLQVv3MufLlfno3yBe5G8sQpcZfcc+hewfcGoMzVZXu8s7LzH6VSn9T9
jmT3KjDMrg0RjSHzyumJp2McyelTk0a4FiKArSIIKsJSXUyb1uPSgm7SvKVDwEwU
JGDzL9IGilmq59GiXfDzGhTZgmC37QdwRoRxDuqtqWQe5CHoRXYexg87HwBKOQxx
HgU9L7ehri4MRZfpyjaDrr6quJo3TVnAAKXNBh3mZAskVS9ZrfKpEH0kYWYuqybv
znKyHRecl/rrGePV8RTMtrwnSdU26zMXE/omsVVauDfG9hqzqm+Q
=w3qi
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Will Deacon:
"A sizeable pile of arm64 updates for 5.8.
Summary below, but the big two features are support for Branch Target
Identification and Clang's Shadow Call stack. The latter is currently
arm64-only, but the high-level parts are all in core code so it could
easily be adopted by other architectures pending toolchain support
Branch Target Identification (BTI):
- Support for ARMv8.5-BTI in both user- and kernel-space. This allows
branch targets to limit the types of branch from which they can be
called and additionally prevents branching to arbitrary code,
although kernel support requires a very recent toolchain.
- Function annotation via SYM_FUNC_START() so that assembly functions
are wrapped with the relevant "landing pad" instructions.
- BPF and vDSO updates to use the new instructions.
- Addition of a new HWCAP and exposure of BTI capability to userspace
via ID register emulation, along with ELF loader support for the
BTI feature in .note.gnu.property.
- Non-critical fixes to CFI unwind annotations in the sigreturn
trampoline.
Shadow Call Stack (SCS):
- Support for Clang's Shadow Call Stack feature, which reserves
platform register x18 to point at a separate stack for each task
that holds only return addresses. This protects function return
control flow from buffer overruns on the main stack.
- Save/restore of x18 across problematic boundaries (user-mode,
hypervisor, EFI, suspend, etc).
- Core support for SCS, should other architectures want to use it
too.
- SCS overflow checking on context-switch as part of the existing
stack limit check if CONFIG_SCHED_STACK_END_CHECK=y.
CPU feature detection:
- Removed numerous "SANITY CHECK" errors when running on a system
with mismatched AArch32 support at EL1. This is primarily a concern
for KVM, which disabled support for 32-bit guests on such a system.
- Addition of new ID registers and fields as the architecture has
been extended.
Perf and PMU drivers:
- Minor fixes and cleanups to system PMU drivers.
Hardware errata:
- Unify KVM workarounds for VHE and nVHE configurations.
- Sort vendor errata entries in Kconfig.
Secure Monitor Call Calling Convention (SMCCC):
- Update to the latest specification from Arm (v1.2).
- Allow PSCI code to query the SMCCC version.
Software Delegated Exception Interface (SDEI):
- Unexport a bunch of unused symbols.
- Minor fixes to handling of firmware data.
Pointer authentication:
- Add support for dumping the kernel PAC mask in vmcoreinfo so that
the stack can be unwound by tools such as kdump.
- Simplification of key initialisation during CPU bringup.
BPF backend:
- Improve immediate generation for logical and add/sub instructions.
vDSO:
- Minor fixes to the linker flags for consistency with other
architectures and support for LLVM's unwinder.
- Clean up logic to initialise and map the vDSO into userspace.
ACPI:
- Work around for an ambiguity in the IORT specification relating to
the "num_ids" field.
- Support _DMA method for all named components rather than only PCIe
root complexes.
- Minor other IORT-related fixes.
Miscellaneous:
- Initialise debug traps early for KGDB and fix KDB cacheflushing
deadlock.
- Minor tweaks to early boot state (documentation update, set
TEXT_OFFSET to 0x0, increase alignment of PE/COFF sections).
- Refactoring and cleanup"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (148 commits)
KVM: arm64: Move __load_guest_stage2 to kvm_mmu.h
KVM: arm64: Check advertised Stage-2 page size capability
arm64/cpufeature: Add get_arm64_ftr_reg_nowarn()
ACPI/IORT: Remove the unused __get_pci_rid()
arm64/cpuinfo: Add ID_MMFR4_EL1 into the cpuinfo_arm64 context
arm64/cpufeature: Add remaining feature bits in ID_AA64PFR1 register
arm64/cpufeature: Add remaining feature bits in ID_AA64PFR0 register
arm64/cpufeature: Add remaining feature bits in ID_AA64ISAR0 register
arm64/cpufeature: Add remaining feature bits in ID_MMFR4 register
arm64/cpufeature: Add remaining feature bits in ID_PFR0 register
arm64/cpufeature: Introduce ID_MMFR5 CPU register
arm64/cpufeature: Introduce ID_DFR1 CPU register
arm64/cpufeature: Introduce ID_PFR2 CPU register
arm64/cpufeature: Make doublelock a signed feature in ID_AA64DFR0
arm64/cpufeature: Drop TraceFilt feature exposure from ID_DFR0 register
arm64/cpufeature: Add explicit ftr_id_isar0[] for ID_ISAR0 register
arm64: mm: Add asid_gen_match() helper
firmware: smccc: Fix missing prototype warning for arm_smccc_version_init
arm64: vdso: Fix CFI directives in sigreturn trampoline
arm64: vdso: Don't prefix sigreturn trampoline with a BTI C instruction
...
A few exceptions (like #DB and #BP) can happen at any location in the code,
this then means that tracers should treat events from these exceptions as
NMI-like. The interrupted context could be holding locks with interrupts
disabled for instance.
Similarly, #MC is an actual NMI-like exception.
All of them use ist_enter() which only concerns itself with RCU, but does
not do any of the other setup that NMIs need. This means things like:
printk()
raw_spin_lock_irq(&logbuf_lock);
<#DB/#BP/#MC>
printk()
raw_spin_lock_irq(&logbuf_lock);
are entirely possible (well, not really since printk tries hard to
play nice, but the concept stands).
So replace ist_enter() with nmi_enter(). Also observe that any nmi_enter()
caller must be both notrace and NOKPROBE, or in the noinstr text section.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Link: https://lkml.kernel.org/r/20200505134101.525508608@linutronix.de
This is completely overengineered and definitely not an interface which
should be made available to anything else than this particular MCE case.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200505134059.462640294@linutronix.de
Make the doublefault exception handler unconditional on 32-bit. Yes,
it is important to be able to catch #DF exceptions instead of silent
reboots. Yes, the code size increase is worth every byte. And one less
CONFIG symbol is just the cherry on top.
No functional changes.
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20200404083646.8897-1-bp@alien8.de
do_machine_check() can be raised in almost any context including the most
fragile ones. Prevent kprobes and tracing.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Reviewed-by: Andy Lutomirski <luto@kernel.org>
Link: https://lkml.kernel.org/r/20200225220216.315548935@linutronix.de
The old x86_32 doublefault_fn() was old and crufty, and it did not
even try to recover. do_double_fault() is much nicer. Rewrite the
32-bit double fault code to sanitize CPU state and call
do_double_fault(). This is mostly an exercise i386 archaeology.
With this patch applied, 32-bit double faults get a real stack trace,
just like 64-bit double faults.
[ mingo: merged the patch to a later kernel base. ]
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 fixes from Thomas Gleixner:
"A set of x86 specific fixes and updates:
- The CR2 corruption fixes which store CR2 early in the entry code
and hand the stored address to the fault handlers.
- Revert a forgotten leftover of the dropped FSGSBASE series.
- Plug a memory leak in the boot code.
- Make the Hyper-V assist functionality robust by zeroing the shadow
page.
- Remove a useless check for dead processes with LDT
- Update paravirt and VMware maintainers entries.
- A few cleanup patches addressing various compiler warnings"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/entry/64: Prevent clobbering of saved CR2 value
x86/hyper-v: Zero out the VP ASSIST PAGE on allocation
x86, boot: Remove multiple copy of static function sanitize_boot_params()
x86/boot/compressed/64: Remove unused variable
x86/boot/efi: Remove unused variables
x86/mm, tracing: Fix CR2 corruption
x86/entry/64: Update comments and sanity tests for create_gap
x86/entry/64: Simplify idtentry a little
x86/entry/32: Simplify common_exception
x86/paravirt: Make read_cr2() CALLEE_SAVE
MAINTAINERS: Update PARAVIRT_OPS_INTERFACE and VMWARE_HYPERVISOR_INTERFACE
x86/process: Delete useless check for dead process with LDT
x86: math-emu: Hide clang warnings for 16-bit overflow
x86/e820: Use proper booleans instead of 0/1
x86/apic: Silence -Wtype-limits compiler warnings
x86/mm: Free sme_early_buffer after init
x86/boot: Fix memory leak in default_get_smp_config()
Revert "x86/ptrace: Prevent ptrace from clearing the FS/GS selector" and fix the test
Despite the current efforts to read CR2 before tracing happens there still
exist a number of possible holes:
idtentry page_fault do_page_fault has_error_code=1
call error_entry
TRACE_IRQS_OFF
call trace_hardirqs_off*
#PF // modifies CR2
CALL_enter_from_user_mode
__context_tracking_exit()
trace_user_exit(0)
#PF // modifies CR2
call do_page_fault
address = read_cr2(); /* whoopsie */
And similar for i386.
Fix it by pulling the CR2 read into the entry code, before any of that
stuff gets a chance to run and ruin things.
Reported-by: He Zhe <zhe.he@windriver.com>
Reported-by: Eiichi Tsukata <devel@etsukata.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Andy Lutomirski <luto@kernel.org>
Cc: bp@alien8.de
Cc: rostedt@goodmis.org
Cc: torvalds@linux-foundation.org
Cc: hpa@zytor.com
Cc: dave.hansen@linux.intel.com
Cc: jgross@suse.com
Cc: joel@joelfernandes.org
Link: https://lkml.kernel.org/r/20190711114336.116812491@infradead.org
Debugged-by: Steven Rostedt <rostedt@goodmis.org>
Commit 7457c0da02 ("x86/alternatives: Add int3_emulate_call()
selftest") is used to ensure there is a gap setup in int3 exception stack
which could be used for inserting call return address.
This gap is missed in XEN PV int3 exception entry path, then below panic
triggered:
[ 0.772876] general protection fault: 0000 [#1] SMP NOPTI
[ 0.772886] CPU: 0 PID: 0 Comm: swapper/0 Not tainted 5.2.0+ #11
[ 0.772893] RIP: e030:int3_magic+0x0/0x7
[ 0.772905] RSP: 3507:ffffffff82203e98 EFLAGS: 00000246
[ 0.773334] Call Trace:
[ 0.773334] alternative_instructions+0x3d/0x12e
[ 0.773334] check_bugs+0x7c9/0x887
[ 0.773334] ? __get_locked_pte+0x178/0x1f0
[ 0.773334] start_kernel+0x4ff/0x535
[ 0.773334] ? set_init_arg+0x55/0x55
[ 0.773334] xen_start_kernel+0x571/0x57a
For 64bit PV guests, Xen's ABI enters the kernel with using SYSRET, with
%rcx/%r11 on the stack. To convert back to "normal" looking exceptions,
the xen thunks do 'xen_*: pop %rcx; pop %r11; jmp *'.
E.g. Extracting 'xen_pv_trap xenint3' we have:
xen_xenint3:
pop %rcx;
pop %r11;
jmp xenint3
As xenint3 and int3 entry code are same except xenint3 doesn't generate
a gap, we can fix it by using int3 and drop useless xenint3.
Signed-off-by: Zhenzhong Duan <zhenzhong.duan@oracle.com>
Reviewed-by: Juergen Gross <jgross@suse.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
... with the goal of eventually enabling -Wmissing-prototypes by
default. At least on x86.
Make functions static where possible, otherwise add prototypes or make
them visible through includes.
asm/trace/ changes courtesy of Steven Rostedt <rostedt@goodmis.org>.
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Masami Hiramatsu <mhiramat@kernel.org>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> # ACPI + cpufreq bits
Cc: Andrew Banman <andrew.banman@hpe.com>
Cc: Dimitri Sivanich <dimitri.sivanich@hpe.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mike Travis <mike.travis@hpe.com>
Cc: "Steven Rostedt (VMware)" <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Yi Wang <wang.yi59@zte.com.cn>
Cc: linux-acpi@vger.kernel.org
When building the kernel with W=1 we get a lot of -Wmissing-prototypes
warnings, which are trivial in nature and easy to fix - and which may
mask some real future bugs if the prototypes get out of sync with
the function definition.
This patch fixes most of -Wmissing-prototypes warnings which
are in the root directory of arch/x86/kernel, not including
the subdirectories.
These are the warnings fixed in this patch:
arch/x86/kernel/signal.c:865:17: warning: no previous prototype for ‘sys32_x32_rt_sigreturn’ [-Wmissing-prototypes]
arch/x86/kernel/signal_compat.c:164:6: warning: no previous prototype for ‘sigaction_compat_abi’ [-Wmissing-prototypes]
arch/x86/kernel/traps.c:625:46: warning: no previous prototype for ‘sync_regs’ [-Wmissing-prototypes]
arch/x86/kernel/traps.c:640:24: warning: no previous prototype for ‘fixup_bad_iret’ [-Wmissing-prototypes]
arch/x86/kernel/traps.c:929:13: warning: no previous prototype for ‘trap_init’ [-Wmissing-prototypes]
arch/x86/kernel/irq.c:270:28: warning: no previous prototype for ‘smp_x86_platform_ipi’ [-Wmissing-prototypes]
arch/x86/kernel/irq.c:301:16: warning: no previous prototype for ‘smp_kvm_posted_intr_ipi’ [-Wmissing-prototypes]
arch/x86/kernel/irq.c:314:16: warning: no previous prototype for ‘smp_kvm_posted_intr_wakeup_ipi’ [-Wmissing-prototypes]
arch/x86/kernel/irq.c:328:16: warning: no previous prototype for ‘smp_kvm_posted_intr_nested_ipi’ [-Wmissing-prototypes]
arch/x86/kernel/irq_work.c:16:28: warning: no previous prototype for ‘smp_irq_work_interrupt’ [-Wmissing-prototypes]
arch/x86/kernel/irqinit.c:79:13: warning: no previous prototype for ‘init_IRQ’ [-Wmissing-prototypes]
arch/x86/kernel/quirks.c:672:13: warning: no previous prototype for ‘early_platform_quirks’ [-Wmissing-prototypes]
arch/x86/kernel/tsc.c:1499:15: warning: no previous prototype for ‘calibrate_delay_is_known’ [-Wmissing-prototypes]
arch/x86/kernel/process.c:653:13: warning: no previous prototype for ‘arch_post_acpi_subsys_init’ [-Wmissing-prototypes]
arch/x86/kernel/process.c:717:15: warning: no previous prototype for ‘arch_randomize_brk’ [-Wmissing-prototypes]
arch/x86/kernel/process.c:784:6: warning: no previous prototype for ‘do_arch_prctl_common’ [-Wmissing-prototypes]
arch/x86/kernel/reboot.c:869:6: warning: no previous prototype for ‘nmi_panic_self_stop’ [-Wmissing-prototypes]
arch/x86/kernel/smp.c:176:27: warning: no previous prototype for ‘smp_reboot_interrupt’ [-Wmissing-prototypes]
arch/x86/kernel/smp.c:260:28: warning: no previous prototype for ‘smp_reschedule_interrupt’ [-Wmissing-prototypes]
arch/x86/kernel/smp.c:281:28: warning: no previous prototype for ‘smp_call_function_interrupt’ [-Wmissing-prototypes]
arch/x86/kernel/smp.c:291:28: warning: no previous prototype for ‘smp_call_function_single_interrupt’ [-Wmissing-prototypes]
arch/x86/kernel/ftrace.c:840:6: warning: no previous prototype for ‘arch_ftrace_update_trampoline’ [-Wmissing-prototypes]
arch/x86/kernel/ftrace.c:934:7: warning: no previous prototype for ‘arch_ftrace_trampoline_func’ [-Wmissing-prototypes]
arch/x86/kernel/ftrace.c:946:6: warning: no previous prototype for ‘arch_ftrace_trampoline_free’ [-Wmissing-prototypes]
arch/x86/kernel/crash.c:114:6: warning: no previous prototype for ‘crash_smp_send_stop’ [-Wmissing-prototypes]
arch/x86/kernel/crash.c:351:5: warning: no previous prototype for ‘crash_setup_memmap_entries’ [-Wmissing-prototypes]
arch/x86/kernel/crash.c:424:5: warning: no previous prototype for ‘crash_load_segments’ [-Wmissing-prototypes]
arch/x86/kernel/machine_kexec_64.c:372:7: warning: no previous prototype for ‘arch_kexec_kernel_image_load’ [-Wmissing-prototypes]
arch/x86/kernel/paravirt-spinlocks.c:12:16: warning: no previous prototype for ‘__native_queued_spin_unlock’ [-Wmissing-prototypes]
arch/x86/kernel/paravirt-spinlocks.c:18:6: warning: no previous prototype for ‘pv_is_native_spin_unlock’ [-Wmissing-prototypes]
arch/x86/kernel/paravirt-spinlocks.c:24:16: warning: no previous prototype for ‘__native_vcpu_is_preempted’ [-Wmissing-prototypes]
arch/x86/kernel/paravirt-spinlocks.c:30:6: warning: no previous prototype for ‘pv_is_native_vcpu_is_preempted’ [-Wmissing-prototypes]
arch/x86/kernel/kvm.c:258:1: warning: no previous prototype for ‘do_async_page_fault’ [-Wmissing-prototypes]
arch/x86/kernel/jailhouse.c:200:6: warning: no previous prototype for ‘jailhouse_paravirt’ [-Wmissing-prototypes]
arch/x86/kernel/check.c:91:13: warning: no previous prototype for ‘setup_bios_corruption_check’ [-Wmissing-prototypes]
arch/x86/kernel/check.c:139:6: warning: no previous prototype for ‘check_for_bios_corruption’ [-Wmissing-prototypes]
arch/x86/kernel/devicetree.c:32:13: warning: no previous prototype for ‘early_init_dt_scan_chosen_arch’ [-Wmissing-prototypes]
arch/x86/kernel/devicetree.c:42:13: warning: no previous prototype for ‘add_dtb’ [-Wmissing-prototypes]
arch/x86/kernel/devicetree.c:108:6: warning: no previous prototype for ‘x86_of_pci_init’ [-Wmissing-prototypes]
arch/x86/kernel/devicetree.c:314:13: warning: no previous prototype for ‘x86_dtb_init’ [-Wmissing-prototypes]
arch/x86/kernel/tracepoint.c:16:5: warning: no previous prototype for ‘trace_pagefault_reg’ [-Wmissing-prototypes]
arch/x86/kernel/tracepoint.c:22:6: warning: no previous prototype for ‘trace_pagefault_unreg’ [-Wmissing-prototypes]
arch/x86/kernel/head64.c:113:22: warning: no previous prototype for ‘__startup_64’ [-Wmissing-prototypes]
arch/x86/kernel/head64.c:262:15: warning: no previous prototype for ‘__startup_secondary_64’ [-Wmissing-prototypes]
arch/x86/kernel/head64.c:350:12: warning: no previous prototype for ‘early_make_pgtable’ [-Wmissing-prototypes]
[ mingo: rewrote the changelog, fixed build errors. ]
Signed-off-by: Yi Wang <wang.yi59@zte.com.cn>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: akataria@vmware.com
Cc: akpm@linux-foundation.org
Cc: andy.shevchenko@gmail.com
Cc: anton@enomsg.org
Cc: ard.biesheuvel@linaro.org
Cc: bhe@redhat.com
Cc: bhelgaas@google.com
Cc: bp@alien8.de
Cc: ccross@android.com
Cc: devicetree@vger.kernel.org
Cc: douly.fnst@cn.fujitsu.com
Cc: dwmw@amazon.co.uk
Cc: dyoung@redhat.com
Cc: ebiederm@xmission.com
Cc: frank.rowand@sony.com
Cc: frowand.list@gmail.com
Cc: ivan.gorinov@intel.com
Cc: jailhouse-dev@googlegroups.com
Cc: jan.kiszka@siemens.com
Cc: jgross@suse.com
Cc: jroedel@suse.de
Cc: keescook@chromium.org
Cc: kexec@lists.infradead.org
Cc: konrad.wilk@oracle.com
Cc: kvm@vger.kernel.org
Cc: linux-efi@vger.kernel.org
Cc: linux-pci@vger.kernel.org
Cc: luto@kernel.org
Cc: m.mizuma@jp.fujitsu.com
Cc: namit@vmware.com
Cc: oleg@redhat.com
Cc: pasha.tatashin@oracle.com
Cc: pbonzini@redhat.com
Cc: prarit@redhat.com
Cc: pravin.shedge4linux@gmail.com
Cc: rajvi.jingar@intel.com
Cc: rkrcmar@redhat.com
Cc: robh+dt@kernel.org
Cc: robh@kernel.org
Cc: rostedt@goodmis.org
Cc: takahiro.akashi@linaro.org
Cc: thomas.lendacky@amd.com
Cc: tony.luck@intel.com
Cc: up2wing@gmail.com
Cc: virtualization@lists.linux-foundation.org
Cc: zhe.he@windriver.com
Cc: zhong.weidong@zte.com.cn
Link: http://lkml.kernel.org/r/1542852249-19820-1-git-send-email-wang.yi59@zte.com.cn
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add the proper includes and make smca_get_name() static.
Fix an actual bug too which the warning triggered:
arch/x86/kernel/cpu/mcheck/therm_throt.c:395:39: error: conflicting \
types for ‘smp_thermal_interrupt’
asmlinkage __visible void __irq_entry smp_thermal_interrupt(struct pt_regs *r)
^~~~~~~~~~~~~~~~~~~~~
In file included from arch/x86/kernel/cpu/mcheck/therm_throt.c:29:
./arch/x86/include/asm/traps.h:107:17: note: previous declaration of \
‘smp_thermal_interrupt’ was here
asmlinkage void smp_thermal_interrupt(void);
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Yi Wang <wang.yi59@zte.com.cn>
Cc: Michael Matz <matz@suse.de>
Cc: x86@kernel.org
Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1811081633160.1549@nanos.tec.linutronix.de
The machine check idtentry uses an indirect branch directly from the low
level code. This evades the speculation protection.
Replace it by a direct call into C code and issue the indirect call there
so the compiler can apply the proper speculation protection.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by:Borislav Petkov <bp@alien8.de>
Reviewed-by: David Woodhouse <dwmw@amazon.co.uk>
Niced-by: Peter Zijlstra <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/alpine.DEB.2.20.1801181626290.1847@nanos
Historically, IDT entries from usermode have always gone directly
to the running task's kernel stack. Rearrange it so that we enter on
a per-CPU trampoline stack and then manually switch to the task's stack.
This touches a couple of extra cachelines, but it gives us a chance
to run some code before we touch the kernel stack.
The asm isn't exactly beautiful, but I think that fully refactoring
it can wait.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bpetkov@suse.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Link: https://lkml.kernel.org/r/20171204150606.225330557@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>