Commit Graph

7826 Commits

Author SHA1 Message Date
Dave Jones ba3253c78d slab: fix wrong retval on kmem_cache_create_memcg error path
On kmem_cache_create_memcg() error path we set 'err', but leave 's' (the
new cache ptr) undefined.  The latter can be NULL if we could not
allocate the cache, or pointing to a freed area if we failed somewhere
later while trying to initialize it.  Initially we checked 'err'
immediately before exiting the function and returned NULL if it was set
ignoring the value of 's':

    out_unlock:
        ...
        if (err) {
            /* report error */
            return NULL;
        }
        return s;

Recently this check was, in fact, broken by commit f717eb3abb ("slab:
do not panic if we fail to create memcg cache"), which turned it to:

    out_unlock:
        ...
        if (err && !memcg) {
            /* report error */
            return NULL;
        }
        return s;

As a result, if we are failing creating a cache for a memcg, we will
skip the check and return 's' that can contain crap.  Obviously, commit
f717eb3abb intended not to return crap on error allocating a cache for
a memcg, but only to remove the error reporting in this case, so the
check should look like this:

    out_unlock:
        ...
        if (err) {
            if (!memcg)
                return NULL;
            /* report error */
            return NULL;
        }
        return s;

[rientjes@google.com: despaghettification]
[vdavydov@parallels.com: patch monkeying]
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Dave Jones <davej@redhat.com>
Reported-by: Dave Jones <davej@redhat.com>
Acked-by: Pekka Enberg <penberg@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-29 16:22:40 -08:00
Andrew Morton 4a404bea94 mm/mempolicy.c: convert to pr_foo()
A few printk(KERN_*'s have snuck in there.

Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-29 16:22:39 -08:00
Mel Gorman c297663c0b mm: numa: initialise numa balancing after jump label initialisation
The command line parsing takes place before jump labels are initialised
which generates a warning if numa_balancing= is specified and
CONFIG_JUMP_LABEL is set.

On older kernels before commit c4b2c0c5f6 ("static_key: WARN on usage
before jump_label_init was called") the kernel would have crashed.  This
patch enables automatic numa balancing later in the initialisation
process if numa_balancing= is specified.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: stable <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-29 16:22:39 -08:00
Johannes Weiner a1c3bfb2f6 mm/page-writeback.c: do not count anon pages as dirtyable memory
The VM is currently heavily tuned to avoid swapping.  Whether that is
good or bad is a separate discussion, but as long as the VM won't swap
to make room for dirty cache, we can not consider anonymous pages when
calculating the amount of dirtyable memory, the baseline to which
dirty_background_ratio and dirty_ratio are applied.

A simple workload that occupies a significant size (40+%, depending on
memory layout, storage speeds etc.) of memory with anon/tmpfs pages and
uses the remainder for a streaming writer demonstrates this problem.  In
that case, the actual cache pages are a small fraction of what is
considered dirtyable overall, which results in an relatively large
portion of the cache pages to be dirtied.  As kswapd starts rotating
these, random tasks enter direct reclaim and stall on IO.

Only consider free pages and file pages dirtyable.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Tejun Heo <tj@kernel.org>
Tested-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-29 16:22:39 -08:00
Johannes Weiner a804552b9a mm/page-writeback.c: fix dirty_balance_reserve subtraction from dirtyable memory
Tejun reported stuttering and latency spikes on a system where random
tasks would enter direct reclaim and get stuck on dirty pages.  Around
50% of memory was occupied by tmpfs backed by an SSD, and another disk
(rotating) was reading and writing at max speed to shrink a partition.

: The problem was pretty ridiculous.  It's a 8gig machine w/ one ssd and 10k
: rpm harddrive and I could reliably reproduce constant stuttering every
: several seconds for as long as buffered IO was going on on the hard drive
: either with tmpfs occupying somewhere above 4gig or a test program which
: allocates about the same amount of anon memory.  Although swap usage was
: zero, turning off swap also made the problem go away too.
:
: The trigger conditions seem quite plausible - high anon memory usage w/
: heavy buffered IO and swap configured - and it's highly likely that this
: is happening in the wild too.  (this can happen with copying large files
: to usb sticks too, right?)

This patch (of 2):

The dirty_balance_reserve is an approximation of the fraction of free
pages that the page allocator does not make available for page cache
allocations.  As a result, it has to be taken into account when
calculating the amount of "dirtyable memory", the baseline to which
dirty_background_ratio and dirty_ratio are applied.

However, currently the reserve is subtracted from the sum of free and
reclaimable pages, which is non-sensical and leads to erroneous results
when the system is dominated by unreclaimable pages and the
dirty_balance_reserve is bigger than free+reclaimable.  In that case, at
least the already allocated cache should be considered dirtyable.

Fix the calculation by subtracting the reserve from the amount of free
pages, then adding the reclaimable pages on top.

[akpm@linux-foundation.org: fix CONFIG_HIGHMEM build]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Tejun Heo <tj@kernel.org>
Tested-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-29 16:22:39 -08:00
Linus Torvalds bf3d846b78 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull vfs updates from Al Viro:
 "Assorted stuff; the biggest pile here is Christoph's ACL series.  Plus
  assorted cleanups and fixes all over the place...

  There will be another pile later this week"

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (43 commits)
  __dentry_path() fixes
  vfs: Remove second variable named error in __dentry_path
  vfs: Is mounted should be testing mnt_ns for NULL or error.
  Fix race when checking i_size on direct i/o read
  hfsplus: remove can_set_xattr
  nfsd: use get_acl and ->set_acl
  fs: remove generic_acl
  nfs: use generic posix ACL infrastructure for v3 Posix ACLs
  gfs2: use generic posix ACL infrastructure
  jfs: use generic posix ACL infrastructure
  xfs: use generic posix ACL infrastructure
  reiserfs: use generic posix ACL infrastructure
  ocfs2: use generic posix ACL infrastructure
  jffs2: use generic posix ACL infrastructure
  hfsplus: use generic posix ACL infrastructure
  f2fs: use generic posix ACL infrastructure
  ext2/3/4: use generic posix ACL infrastructure
  btrfs: use generic posix ACL infrastructure
  fs: make posix_acl_create more useful
  fs: make posix_acl_chmod more useful
  ...
2014-01-28 08:38:04 -08:00
Linus Torvalds 54c0a4b461 Merge branch 'akpm' (incoming from Andrew)
Merge misc updates from Andrew Morton:

 - a few hotfixes

 - dynamic-debug updates

 - ipc updates

 - various other sweepings off the factory floor

* akpm: (31 commits)
  firmware/google: drop 'select EFI' to avoid recursive dependency
  compat: fix sys_fanotify_mark
  checkpatch.pl: check for function declarations without arguments
  mm/migrate.c: fix setting of cpupid on page migration twice against normal page
  softirq: use const char * const for softirq_to_name, whitespace neatening
  softirq: convert printks to pr_<level>
  softirq: use ffs() in __do_softirq()
  kernel/kexec.c: use vscnprintf() instead of vsnprintf() in vmcoreinfo_append_str()
  splice: fix unexpected size truncation
  ipc: fix compat msgrcv with negative msgtyp
  ipc,msg: document barriers
  ipc: delete seq_max field in struct ipc_ids
  ipc: simplify sysvipc_proc_open() return
  ipc: remove useless return statement
  ipc: remove braces for single statements
  ipc: standardize code comments
  ipc: whitespace cleanup
  ipc: change kern_ipc_perm.deleted type to bool
  ipc: introduce ipc_valid_object() helper to sort out IPC_RMID races
  ipc/sem.c: avoid overflow of semop undo (semadj) value
  ...
2014-01-27 21:17:55 -08:00
Linus Torvalds 1b17366d69 Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc
Pull powerpc updates from Ben Herrenschmidt:
 "So here's my next branch for powerpc.  A bit late as I was on vacation
  last week.  It's mostly the same stuff that was in next already, I
  just added two patches today which are the wiring up of lockref for
  powerpc, which for some reason fell through the cracks last time and
  is trivial.

  The highlights are, in addition to a bunch of bug fixes:

   - Reworked Machine Check handling on kernels running without a
     hypervisor (or acting as a hypervisor).  Provides hooks to handle
     some errors in real mode such as TLB errors, handle SLB errors,
     etc...

   - Support for retrieving memory error information from the service
     processor on IBM servers running without a hypervisor and routing
     them to the memory poison infrastructure.

   - _PAGE_NUMA support on server processors

   - 32-bit BookE relocatable kernel support

   - FSL e6500 hardware tablewalk support

   - A bunch of new/revived board support

   - FSL e6500 deeper idle states and altivec powerdown support

  You'll notice a generic mm change here, it has been acked by the
  relevant authorities and is a pre-req for our _PAGE_NUMA support"

* 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc: (121 commits)
  powerpc: Implement arch_spin_is_locked() using arch_spin_value_unlocked()
  powerpc: Add support for the optimised lockref implementation
  powerpc/powernv: Call OPAL sync before kexec'ing
  powerpc/eeh: Escalate error on non-existing PE
  powerpc/eeh: Handle multiple EEH errors
  powerpc: Fix transactional FP/VMX/VSX unavailable handlers
  powerpc: Don't corrupt transactional state when using FP/VMX in kernel
  powerpc: Reclaim two unused thread_info flag bits
  powerpc: Fix races with irq_work
  Move precessing of MCE queued event out from syscall exit path.
  pseries/cpuidle: Remove redundant call to ppc64_runlatch_off() in cpu idle routines
  powerpc: Make add_system_ram_resources() __init
  powerpc: add SATA_MV to ppc64_defconfig
  powerpc/powernv: Increase candidate fw image size
  powerpc: Add debug checks to catch invalid cpu-to-node mappings
  powerpc: Fix the setup of CPU-to-Node mappings during CPU online
  powerpc/iommu: Don't detach device without IOMMU group
  powerpc/eeh: Hotplug improvement
  powerpc/eeh: Call opal_pci_reinit() on powernv for restoring config space
  powerpc/eeh: Add restore_config operation
  ...
2014-01-27 21:11:26 -08:00
Linus Torvalds d12de1ef5e Merge branch 'merge' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc
Pull powerpc mremap fix from Ben Herrenschmidt:
 "This is the patch that I had sent after -rc8 and which we decided to
  wait before merging.  It's based on a different tree than my -next
  branch (it needs some pre-reqs that were in -rc4 or so while my -next
  is based on -rc1) so I left it as a separate branch for your to pull.
  It's identical to the request I did 2 or 3 weeks back.

  This fixes crashes in mremap with THP on powerpc.

  The fix however requires a small change in the generic code.  It moves
  a condition into a helper we can override from the arch which is
  harmless, but it *also* slightly changes the order of the set_pmd and
  the withdraw & deposit, which should be fine according to Kirill (who
  wrote that code) but I agree -rc8 is a bit late...

  It was acked by Kirill and Andrew told me to just merge it via powerpc"

* 'merge' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc:
  powerpc/thp: Fix crash on mremap
2014-01-27 21:03:39 -08:00
Wanpeng Li a3978a5194 mm/migrate.c: fix setting of cpupid on page migration twice against normal page
Commit 7851a45cd3 ("mm: numa: Copy cpupid on page migration") copies
over the cpupid at page migration time.  It is unnecessary to set it
again in alloc_misplaced_dst_page().

Signed-off-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-27 21:02:40 -08:00
Hugh Dickins e82cb95d62 mm: bring back /sys/kernel/mm
Commit da29bd3622 ("mm/mm_init.c: make creation of the mm_kobj happen
earlier than device_initcall") changed to pure_initcall(mm_sysfs_init).

That's too early: mm_sysfs_init() depends on core_initcall(ksysfs_init)
to have made the kernel_kobj directory "kernel" in which to create "mm".

Make it postcore_initcall(mm_sysfs_init).  We could use core_initcall(),
and depend upon Makefile link order kernel/ mm/ fs/ ipc/ security/ ...
as core_initcall(debugfs_init) and core_initcall(securityfs_init) do;
but better not.

Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-27 21:02:39 -08:00
malc add688fbd3 Revert "mm/vmalloc: interchage the implementation of vmalloc_to_{pfn,page}"
Revert commit ece86e222d, which was intended as a small performance
improvement.

Despite the claim that the patch doesn't introduce any functional
changes in fact it does.

The "no page" path behaves different now.  Originally, vmalloc_to_page
might return NULL under some conditions, with new implementation it
returns pfn_to_page(0) which is not the same as NULL.

Simple test shows the difference.

test.c

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/mm.h>

int __init myi(void)
{
	struct page *p;
	void *v;

	v = vmalloc(PAGE_SIZE);
	/* trigger the "no page" path in vmalloc_to_page*/
	vfree(v);

	p = vmalloc_to_page(v);

	pr_err("expected val = NULL, returned val = %p", p);

	return -EBUSY;
}

void __exit mye(void)
{

}
module_init(myi)
module_exit(mye)

Before interchange:
expected val = NULL, returned val =   (null)

After interchange:
expected val = NULL, returned val = c7ebe000

Signed-off-by: Vladimir Murzin <murzin.v@gmail.com>
Cc: Jianyu Zhan <nasa4836@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-27 21:02:39 -08:00
Yinghai Lu fb5bb60cd0 memblock: don't silently align size in memblock_virt_alloc()
In original __alloc_memory_core_early() for bootmem wrapper, we do not
align size silently.

We should not do that, as later free with old size will leave some range
not freed.

It's obvious that code is copied from memblock_base_nid(), and that code
is wrong for the same reason.

Also remove that in memblock_alloc_base.

Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Acked-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-27 21:02:39 -08:00
Steven Whitehouse 9fe55eea7e Fix race when checking i_size on direct i/o read
So far I've had one ACK for this, and no other comments. So I think it
is probably time to send this via some suitable tree. I'm guessing that
the vfs tree would be the most appropriate route, but not sure that
there is one at the moment (don't see anything recent at kernel.org)
so in that case I think -mm is the "back up plan". Al, please let me
know if you will take this?

Steve.

---------------------

Following on from the "Re: [PATCH v3] vfs: fix a bug when we do some dio
reads with append dio writes" thread on linux-fsdevel, this patch is my
current version of the fix proposed as option (b) in that thread.

Removing the i_size test from the direct i/o read path at vfs level
means that filesystems now have to deal with requests which are beyond
i_size themselves. These I've divided into three sets:

 a) Those with "no op" ->direct_IO (9p, cifs, ceph)
These are obviously not going to be an issue

 b) Those with "home brew" ->direct_IO (nfs, fuse)
I've been told that NFS should not have any problem with the larger
i_size, however I've added an extra test to FUSE to duplicate the
original behaviour just to be on the safe side.

 c) Those using __blockdev_direct_IO()
These call through to ->get_block() which should deal with the EOF
condition correctly. I've verified that with GFS2 and I believe that
Zheng has verified it for ext4. I've also run the test on XFS and it
passes both before and after this change.

The part of the patch in filemap.c looks a lot larger than it really is
- there are only two lines of real change. The rest is just indentation
of the contained code.

There remains a test of i_size though, which was added for btrfs. It
doesn't cause the other filesystems a problem as the test is performed
after ->direct_IO has been called. It is possible that there is a race
that does matter to btrfs, however this patch doesn't change that, so
its still an overall improvement.

Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
Reported-by: Zheng Liu <gnehzuil.liu@gmail.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Dave Chinner <david@fromorbit.com>
Acked-by: Miklos Szeredi <miklos@szeredi.hu>
Cc: Chris Mason <clm@fb.com>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2014-01-26 08:26:42 -05:00
Christoph Hellwig feda821e76 fs: remove generic_acl
And instead convert tmpfs to use the new generic ACL code, with two stub
methods provided for in-memory filesystems.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2014-01-26 08:26:40 -05:00
Cyrill Gorcunov 34228d473e mm: ignore VM_SOFTDIRTY on VMA merging
The VM_SOFTDIRTY bit affects vma merge routine: if two VMAs has all bits
in vm_flags matched except dirty bit the kernel can't longer merge them
and this forces the kernel to generate new VMAs instead.

It finally may lead to the situation when userspace application reaches
vm.max_map_count limit and get crashed in worse case

 | (gimp:11768): GLib-ERROR **: gmem.c:110: failed to allocate 4096 bytes
 |
 | (file-tiff-load:12038): LibGimpBase-WARNING **: file-tiff-load: gimp_wire_read(): error
 | xinit: connection to X server lost
 |
 | waiting for X server to shut down
 | /usr/lib64/gimp/2.0/plug-ins/file-tiff-load terminated: Hangup
 | /usr/lib64/gimp/2.0/plug-ins/script-fu terminated: Hangup
 | /usr/lib64/gimp/2.0/plug-ins/script-fu terminated: Hangup

  https://bugzilla.kernel.org/show_bug.cgi?id=67651
  https://bugzilla.gnome.org/show_bug.cgi?id=719619#c0

Initial problem came from missed VM_SOFTDIRTY in do_brk() routine but
even if we would set up VM_SOFTDIRTY here, there is still a way to
prevent VMAs from merging: one can call

 | echo 4 > /proc/$PID/clear_refs

and clear all VM_SOFTDIRTY over all VMAs presented in memory map, then
new do_brk() will try to extend old VMA and finds that dirty bit doesn't
match thus new VMA will be generated.

As discussed with Pavel, the right approach should be to ignore
VM_SOFTDIRTY bit when we're trying to merge VMAs and if merge successed
we mark extended VMA with dirty bit where needed.

Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
Reported-by: Bastian Hougaard <gnome@rvzt.net>
Reported-by: Mel Gorman <mgorman@suse.de>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:53 -08:00
Fengguang Wu 871beb8c31 mm/rmap: fix coccinelle warnings
mm/rmap.c:851:9-10: WARNING: return of 0/1 in function 'invalid_mkclean_vma' with return type bool

 Return statements in functions returning bool should use
 true/false instead of 1/0.

Generated by: coccinelle/misc/boolreturn.cocci

Signed-off-by: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:53 -08:00
Jamie Liu a5998061da mm/swapfile.c: do not skip lowest_bit in scan_swap_map() scan loop
In the second half of scan_swap_map()'s scan loop, offset is set to
si->lowest_bit and then incremented before entering the loop for the
first time, causing si->swap_map[si->lowest_bit] to be skipped.

Signed-off-by: Jamie Liu <jamieliu@google.com>
Cc: Shaohua Li <shli@fusionio.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Akinobu Mita <akinobu.mita@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:53 -08:00
Vladimir Davydov 0d8a4a3799 memcg: remove unused code from kmem_cache_destroy_work_func
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:53 -08:00
Mel Gorman 6c14466cc0 mm: improve documentation of page_order
Developers occasionally try and optimise PFN scanners by using
page_order but miss that in general it requires zone->lock.  This has
happened twice for compaction.c and rejected both times.  This patch
clarifies the documentation of page_order and adds a note to
compaction.c why page_order is not used.

[akpm@linux-foundation.org: tweaks]
[lauraa@codeaurora.org: Corrected a page_zone(page)->lock reference]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rafael Aquini <aquini@redhat.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Laura Abbott <lauraa@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:53 -08:00
Michal Hocko 0eef615665 memcg: fix css reference leak and endless loop in mem_cgroup_iter
Commit 19f3940286 ("memcg: simplify mem_cgroup_iter") has reorganized
mem_cgroup_iter code in order to simplify it.  A part of that change was
dropping an optimization which didn't call css_tryget on the root of the
walked tree.  The patch however didn't change the css_put part in
mem_cgroup_iter which excludes root.

This wasn't an issue at the time because __mem_cgroup_iter_next bailed
out for root early without taking a reference as cgroup iterators
(css_next_descendant_pre) didn't visit root themselves.

Nevertheless cgroup iterators have been reworked to visit root by commit
bd8815a6d8 ("cgroup: make css_for_each_descendant() and friends
include the origin css in the iteration") when the root bypass have been
dropped in __mem_cgroup_iter_next.  This means that css_put is not
called for root and so css along with mem_cgroup and other cgroup
internal object tied by css lifetime are never freed.

Fix the issue by reintroducing root check in __mem_cgroup_iter_next and
do not take css reference for it.

This reference counting magic protects us also from another issue, an
endless loop reported by Hugh Dickins when reclaim races with root
removal and css_tryget called by iterator internally would fail.  There
would be no other nodes to visit so __mem_cgroup_iter_next would return
NULL and mem_cgroup_iter would interpret it as "start looping from root
again" and so mem_cgroup_iter would loop forever internally.

Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reported-by: Hugh Dickins <hughd@google.com>
Tested-by: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: <stable@vger.kernel.org>	[3.12+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:53 -08:00
Michal Hocko ecc736fc3c memcg: fix endless loop caused by mem_cgroup_iter
Hugh has reported an endless loop when the hardlimit reclaim sees the
same group all the time.  This might happen when the reclaim races with
the memcg removal.

shrink_zone
                                                [rmdir root]
  mem_cgroup_iter(root, NULL, reclaim)
    // prev = NULL
    rcu_read_lock()
    mem_cgroup_iter_load
      last_visited = iter->last_visited   // gets root || NULL
      css_tryget(last_visited)            // failed
      last_visited = NULL                 [1]
    memcg = root = __mem_cgroup_iter_next(root, NULL)
    mem_cgroup_iter_update
      iter->last_visited = root;
    reclaim->generation = iter->generation

 mem_cgroup_iter(root, root, reclaim)
   // prev = root
   rcu_read_lock
    mem_cgroup_iter_load
      last_visited = iter->last_visited   // gets root
      css_tryget(last_visited)            // failed
    [1]

The issue seemed to be introduced by commit 5f57816197 ("memcg: relax
memcg iter caching") which has replaced unconditional css_get/css_put by
css_tryget/css_put for the cached iterator.

This patch fixes the issue by skipping css_tryget on the root of the
tree walk in mem_cgroup_iter_load and symmetrically doesn't release it
in mem_cgroup_iter_update.

Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reported-by: Hugh Dickins <hughd@google.com>
Tested-by: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: <stable@vger.kernel.org>	[3.10+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:53 -08:00
David Rientjes d49ad93554 mm, oom: prefer thread group leaders for display purposes
When two threads have the same badness score, it's preferable to kill
the thread group leader so that the actual process name is printed to
the kernel log rather than the thread group name which may be shared
amongst several processes.

This was the behavior when select_bad_process() used to do
for_each_process(), but it now iterates threads instead and leads to
ambiguity.

Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:53 -08:00
Hugh Dickins d8ad305597 mm/memcg: iteration skip memcgs not yet fully initialized
It is surprising that the mem_cgroup iterator can return memcgs which
have not yet been fully initialized.  By accident (or trial and error?)
this appears not to present an actual problem; but it may be better to
prevent such surprises, by skipping memcgs not yet online.

Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Tejun Heo <tj@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: <stable@vger.kernel.org>	[3.12+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:53 -08:00
Hugh Dickins d2ab70aaae mm/memcg: fix last_dead_count memory wastage
Shorten mem_cgroup_reclaim_iter.last_dead_count from unsigned long to
int: it's assigned from an int and compared with an int, and adjacent to
an unsigned int: so there's no point to it being unsigned long, which
wasted 104 bytes in every mem_cgroup_per_zone.

Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:53 -08:00
Paul Gortmaker a64fb3cd61 mm: audit/fix non-modular users of module_init in core code
Code that is obj-y (always built-in) or dependent on a bool Kconfig
(built-in or absent) can never be modular.  So using module_init as an
alias for __initcall can be somewhat misleading.

Fix these up now, so that we can relocate module_init from init.h into
module.h in the future.  If we don't do this, we'd have to add module.h
to obviously non-modular code, and that would be a worse thing.

The audit targets the following module_init users for change:
 mm/ksm.c                       bool KSM
 mm/mmap.c                      bool MMU
 mm/huge_memory.c               bool TRANSPARENT_HUGEPAGE
 mm/mmu_notifier.c              bool MMU_NOTIFIER

Note that direct use of __initcall is discouraged, vs.  one of the
priority categorized subgroups.  As __initcall gets mapped onto
device_initcall, our use of subsys_initcall (which makes sense for these
files) will thus change this registration from level 6-device to level
4-subsys (i.e.  slightly earlier).

However no observable impact of that difference has been observed during
testing.

One might think that core_initcall (l2) or postcore_initcall (l3) would
be more appropriate for anything in mm/ but if we look at some actual
init functions themselves, we see things like:

mm/huge_memory.c --> hugepage_init     --> hugepage_init_sysfs
mm/mmap.c        --> init_user_reserve --> sysctl_user_reserve_kbytes
mm/ksm.c         --> ksm_init          --> sysfs_create_group

and hence the choice of subsys_initcall (l4) seems reasonable, and at
the same time minimizes the risk of changing the priority too
drastically all at once.  We can adjust further in the future.

Also, several instances of missing ";" at EOL are fixed.

Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:52 -08:00
Paul Gortmaker da29bd3622 mm/mm_init.c: make creation of the mm_kobj happen earlier than device_initcall
The use of __initcall is to be eventually replaced by choosing one from
the prioritized groupings laid out in init.h header:

	pure_initcall               0
	core_initcall               1
	postcore_initcall           2
	arch_initcall               3
	subsys_initcall             4
	fs_initcall                 5
	device_initcall             6
	late_initcall               7

In the interim, all __initcall are mapped onto device_initcall, which as
can be seen above, comes quite late in the ordering.

Currently the mm_kobj is created with __initcall in mm_sysfs_init().
This means that any other initcalls that want to reference the mm_kobj
have to be device_initcall (or later), otherwise we will for example,
trip the BUG_ON(!kobj) in sysfs's internal_create_group().  This
unfairly restricts those users; for example something that clearly makes
sense to be an arch_initcall will not be able to choose that.

However, upon examination, it is only this way for historical reasons
(i.e.  simply not reprioritized yet).  We see that sysfs is ready quite
earlier in init/main.c via:

 vfs_caches_init
 |_ mnt_init
    |_ sysfs_init

well ahead of the processing of the prioritized calls listed above.

So we can recategorize mm_sysfs_init to be a pure_initcall, which in
turn allows any mm_kobj initcall users a wider range (1 --> 7) of
initcall priorities to choose from.

Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:52 -08:00
Han Pingtian 42aa83cb67 mm: show message when updating min_free_kbytes in thp
min_free_kbytes may be raised during THP's initialization.  Sometimes,
this will change the value which was set by the user.  Showing this
message will clarify this confusion.

Only show this message when changing a value which was set by the user
according to Michal Hocko's suggestion.

Show the old value of min_free_kbytes according to Dave Hansen's
suggestion.  This will give user the chance to restore old value of
min_free_kbytes.

Signed-off-by: Han Pingtian <hanpt@linux.vnet.ibm.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:52 -08:00
Nathan Zimmer ac13c4622b mm/memory_hotplug.c: move register_memory_resource out of the lock_memory_hotplug
We don't need to do register_memory_resource() under
lock_memory_hotplug() since it has its own lock and doesn't make any
callbacks.

Also register_memory_resource return NULL on failure so we don't have
anything to cleanup at this point.

The reason for this rfc is I was doing some experiments with hotplugging
of memory on some of our larger systems.  While it seems to work, it can
be quite slow.  With some preliminary digging I found that
lock_memory_hotplug is clearly ripe for breakup.

It could be broken up per nid or something but it also covers the
online_page_callback.  The online_page_callback shouldn't be very hard
to break out.

Also there is the issue of various structures(wmarks come to mind) that
are only updated under the lock_memory_hotplug that would need to be
dealt with.

Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com>
Cc: Hedi <hedi@sgi.com>
Cc: Mike Travis <travis@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:52 -08:00
Philipp Hachtmann 354f17e1e2 mm/nobootmem: free_all_bootmem again
get_allocated_memblock_reserved_regions_info() should work if it is
compiled in.  Extended the ifdef around
get_allocated_memblock_memory_regions_info() to include
get_allocated_memblock_reserved_regions_info() as well.  Similar changes
in nobootmem.c/free_low_memory_core_early() where the two functions are
called.

[akpm@linux-foundation.org: cleanup]
Signed-off-by: Philipp Hachtmann <phacht@linux.vnet.ibm.com>
Cc: qiuxishi <qiuxishi@huawei.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Daeseok Youn <daeseok.youn@gmail.com>
Cc: Jiang Liu <liuj97@gmail.com>
Acked-by: Yinghai Lu <yinghai@kernel.org>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Santosh Shilimkar <santosh.shilimkar@ti.com>
Cc: Grygorii Strashko <grygorii.strashko@ti.com>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:52 -08:00
Vladimir Davydov ec97097bca mm: vmscan: call NUMA-unaware shrinkers irrespective of nodemask
If a shrinker is not NUMA-aware, shrink_slab() should call it exactly
once with nid=0, but currently it is not true: if node 0 is not set in
the nodemask or if it is not online, we will not call such shrinkers at
all.  As a result some slabs will be left untouched under some
circumstances.  Let us fix it.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Reported-by: Dave Chinner <dchinner@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Glauber Costa <glommer@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:52 -08:00
Vladimir Davydov 0b1fb40a3b mm: vmscan: shrink all slab objects if tight on memory
When reclaiming kmem, we currently don't scan slabs that have less than
batch_size objects (see shrink_slab_node()):

        while (total_scan >= batch_size) {
                shrinkctl->nr_to_scan = batch_size;
                shrinker->scan_objects(shrinker, shrinkctl);
                total_scan -= batch_size;
        }

If there are only a few shrinkers available, such a behavior won't cause
any problems, because the batch_size is usually small, but if we have a
lot of slab shrinkers, which is perfectly possible since FS shrinkers
are now per-superblock, we can end up with hundreds of megabytes of
practically unreclaimable kmem objects.  For instance, mounting a
thousand of ext2 FS images with a hundred of files in each and iterating
over all the files using du(1) will result in about 200 Mb of FS caches
that cannot be dropped even with the aid of the vm.drop_caches sysctl!

This problem was initially pointed out by Glauber Costa [*].  Glauber
proposed to fix it by making the shrink_slab() always take at least one
pass, to put it simply, turning the scan loop above to a do{}while()
loop.  However, this proposal was rejected, because it could result in
more aggressive and frequent slab shrinking even under low memory
pressure when total_scan is naturally very small.

This patch is a slightly modified version of Glauber's approach.
Similarly to Glauber's patch, it makes shrink_slab() scan less than
batch_size objects, but only if the total number of objects we want to
scan (total_scan) is greater than the total number of objects available
(max_pass).  Since total_scan is biased as half max_pass if the current
delta change is small:

        if (delta < max_pass / 4)
                total_scan = min(total_scan, max_pass / 2);

this is only possible if we are scanning at high prio.  That said, this
patch shouldn't change the vmscan behaviour if the memory pressure is
low, but if we are tight on memory, we will do our best by trying to
reclaim all available objects, which sounds reasonable.

[*] http://www.spinics.net/lists/cgroups/msg06913.html

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Glauber Costa <glommer@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:52 -08:00
Wanpeng Li baae911b27 sched/numa: fix setting of cpupid on page migration twice
Commit 7851a45cd3 ("mm: numa: Copy cpupid on page migration") copiess
over the cpupid at page migration time.  It is unnecessary to set it
again in migrate_misplaced_transhuge_page().

Signed-off-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:52 -08:00
Jianguo Wu c980e66a55 mm: do_mincore() cleanup
Two cleanups:
1. remove redundant codes for hugetlb pages.
2. end = pmd_addr_end(addr, end) restricts [addr, end) within PMD_SIZE,
   this may increase do_mincore() calls, remove it.

Signed-off-by: Jianguo Wu <wujianguo@huawei.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: qiuxishi <qiuxishi@huawei.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:52 -08:00
Han Pingtian da8c757b08 mm: prevent setting of a value less than 0 to min_free_kbytes
If echo -1 > /proc/vm/sys/min_free_kbytes, the system will hang.  Changing
proc_dointvec() to proc_dointvec_minmax() in the
min_free_kbytes_sysctl_handler() can prevent this to happen.

mhocko said:

: You can still do echo $BIG_VALUE > /proc/vm/sys/min_free_kbytes and make
: your machine unusable but I agree that proc_dointvec_minmax is more
: suitable here as we already have:
:
: 	.proc_handler   = min_free_kbytes_sysctl_handler,
: 	.extra1         = &zero,
:
: It used to work properly but then 6fce56ec91 ("sysctl: Remove references
: to ctl_name and strategy from the generic sysctl table") has removed
: sysctl_intvec strategy and so extra1 is ignored.

Signed-off-by: Han Pingtian <hanpt@linux.vnet.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:52 -08:00
Michal Hocko cc81717ed3 mm: new_vma_page() cannot see NULL vma for hugetlb pages
Commit 11c731e81b ("mm/mempolicy: fix !vma in new_vma_page()") has
removed BUG_ON(!vma) from new_vma_page which is partially correct
because page_address_in_vma will return EFAULT for non-linear mappings
and at least shared shmem might be mapped this way.

The patch also tried to prevent NULL ptr for hugetlb pages which is not
correct AFAICS because hugetlb pages cannot be mapped as VM_NONLINEAR
and other conditions in page_address_in_vma seem to be legit and catch
real bugs.

This patch restores BUG_ON for PageHuge to catch potential issues when
the to-be-migrated page is not setup properly.

Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Bob Liu <bob.liu@oracle.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:52 -08:00
Naoya Horiguchi 54b9dd14d0 mm/memory-failure.c: shift page lock from head page to tail page after thp split
After thp split in hwpoison_user_mappings(), we hold page lock on the
raw error page only between try_to_unmap, hence we are in danger of race
condition.

I found in the RHEL7 MCE-relay testing that we have "bad page" error
when a memory error happens on a thp tail page used by qemu-kvm:

  Triggering MCE exception on CPU 10
  mce: [Hardware Error]: Machine check events logged
  MCE exception done on CPU 10
  MCE 0x38c535: Killing qemu-kvm:8418 due to hardware memory corruption
  MCE 0x38c535: dirty LRU page recovery: Recovered
  qemu-kvm[8418]: segfault at 20 ip 00007ffb0f0f229a sp 00007fffd6bc5240 error 4 in qemu-kvm[7ffb0ef14000+420000]
  BUG: Bad page state in process qemu-kvm  pfn:38c400
  page:ffffea000e310000 count:0 mapcount:0 mapping:          (null) index:0x7ffae3c00
  page flags: 0x2fffff0008001d(locked|referenced|uptodate|dirty|swapbacked)
  Modules linked in: hwpoison_inject mce_inject vhost_net macvtap macvlan ...
  CPU: 0 PID: 8418 Comm: qemu-kvm Tainted: G   M        --------------   3.10.0-54.0.1.el7.mce_test_fixed.x86_64 #1
  Hardware name: NEC NEC Express5800/R120b-1 [N8100-1719F]/MS-91E7-001, BIOS 4.6.3C19 02/10/2011
  Call Trace:
    dump_stack+0x19/0x1b
    bad_page.part.59+0xcf/0xe8
    free_pages_prepare+0x148/0x160
    free_hot_cold_page+0x31/0x140
    free_hot_cold_page_list+0x46/0xa0
    release_pages+0x1c1/0x200
    free_pages_and_swap_cache+0xad/0xd0
    tlb_flush_mmu.part.46+0x4c/0x90
    tlb_finish_mmu+0x55/0x60
    exit_mmap+0xcb/0x170
    mmput+0x67/0xf0
    vhost_dev_cleanup+0x231/0x260 [vhost_net]
    vhost_net_release+0x3f/0x90 [vhost_net]
    __fput+0xe9/0x270
    ____fput+0xe/0x10
    task_work_run+0xc4/0xe0
    do_exit+0x2bb/0xa40
    do_group_exit+0x3f/0xa0
    get_signal_to_deliver+0x1d0/0x6e0
    do_signal+0x48/0x5e0
    do_notify_resume+0x71/0xc0
    retint_signal+0x48/0x8c

The reason of this bug is that a page fault happens before unlocking the
head page at the end of memory_failure().  This strange page fault is
trying to access to address 0x20 and I'm not sure why qemu-kvm does
this, but anyway as a result the SIGSEGV makes qemu-kvm exit and on the
way we catch the bad page bug/warning because we try to free a locked
page (which was the former head page.)

To fix this, this patch suggests to shift page lock from head page to
tail page just after thp split.  SIGSEGV still happens, but it affects
only error affected VMs, not a whole system.

Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: <stable@vger.kernel.org>        [3.9+] # a3e0f9e47d "mm/memory-failure.c: transfer page count from head page to tail page after split thp"
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:52 -08:00
Andi Kleen 54a43d5498 numa: add a sysctl for numa_balancing
Add a working sysctl to enable/disable automatic numa memory balancing
at runtime.

This allows us to track down performance problems with this feature and
is generally a good idea.

This was possible earlier through debugfs, but only with special
debugging options set.  Also fix the boot message.

[akpm@linux-foundation.org: s/sched_numa_balancing/sysctl_numa_balancing/]
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:51 -08:00
Philipp Hachtmann 5e270e2548 mm: free memblock.memory in free_all_bootmem
When calling free_all_bootmem() the free areas under memblock's control
are released to the buddy allocator.  Additionally the reserved list is
freed if it was reallocated by memblock.  The same should apply for the
memory list.

Signed-off-by: Philipp Hachtmann <phacht@linux.vnet.ibm.com>
Reviewed-by: Tejun Heo <tj@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: Jianguo Wu <wujianguo@huawei.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:51 -08:00
Philipp Hachtmann 87379ec8c2 mm/nobootmem.c: add return value check in __alloc_memory_core_early()
When memblock_reserve() fails because memblock.reserved.regions cannot
be resized, the caller (e.g.  alloc_bootmem()) is not informed of the
failed allocation.  Therefore alloc_bootmem() silently returns the same
pointer again and again.

This patch adds a check for the return value of memblock_reserve() in
__alloc_memory_core().

Signed-off-by: Philipp Hachtmann <phacht@linux.vnet.ibm.com>
Reviewed-by: Tejun Heo <tj@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Toshi Kani <toshi.kani@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:51 -08:00
Vladimir Davydov d644163770 memcg: rework memcg_update_kmem_limit synchronization
Currently we take both the memcg_create_mutex and the set_limit_mutex
when we enable kmem accounting for a memory cgroup, which makes kmem
activation events serialize with both memcg creations and other memcg
limit updates (memory.limit, memory.memsw.limit).  However, there is no
point in such strict synchronization rules there.

First, the set_limit_mutex was introduced to keep the memory.limit and
memory.memsw.limit values in sync.  Since memory.kmem.limit can be set
independently of them, it is better to introduce a separate mutex to
synchronize against concurrent kmem limit updates.

Second, we take the memcg_create_mutex in order to make sure all
children of this memcg will be kmem-active as well.  For achieving that,
it is enough to hold this mutex only while checking if
memcg_has_children() though.  This guarantees that if a child is added
after we checked that the memcg has no children, the newly added cgroup
will see its parent kmem-active (of course if the latter succeeded), and
call kmem activation for itself.

This patch simplifies the locking rules of memcg_update_kmem_limit()
according to these considerations.

[vdavydov@parallels.com: fix unintialized var warning]
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:51 -08:00
Vladimir Davydov 6de64beb34 memcg: remove KMEM_ACCOUNTED_ACTIVATED flag
Currently we have two state bits in mem_cgroup::kmem_account_flags
regarding kmem accounting activation, ACTIVATED and ACTIVE.  We start
kmem accounting only if both flags are set (memcg_can_account_kmem()),
plus throughout the code there are several places where we check only
the ACTIVE flag, but we never check the ACTIVATED flag alone.  These
flags are both set from memcg_update_kmem_limit() under the
set_limit_mutex, the ACTIVE flag always being set after ACTIVATED, and
they never get cleared.  That said checking if both flags are set is
equivalent to checking only for the ACTIVE flag, and since there is no
ACTIVATED flag checks, we can safely remove the ACTIVATED flag, and
nothing will change.

Let's try to understand what was the reason for introducing these flags.
The purpose of the ACTIVE flag is clear - it states that kmem should be
accounting to the cgroup.  The only requirement for it is that it should
be set after we have fully initialized kmem accounting bits for the
cgroup and patched all static branches relating to kmem accounting.
Since we always check if static branch is enabled before actually
considering if we should account (otherwise we wouldn't benefit from
static branching), this guarantees us that we won't skip a commit or
uncharge after a charge due to an unpatched static branch.

Now let's move on to the ACTIVATED bit.  As I proved in the beginning of
this message, it is absolutely useless, and removing it will change
nothing.  So what was the reason introducing it?

The ACTIVATED flag was introduced by commit a8964b9b84 ("memcg: use
static branches when code not in use") in order to guarantee that
static_key_slow_inc(&memcg_kmem_enabled_key) would be called only once
for each memory cgroup when its kmem accounting was activated.  The
point was that at that time the memcg_update_kmem_limit() function's
work-flow looked like this:

        bool must_inc_static_branch = false;

        cgroup_lock();
        mutex_lock(&set_limit_mutex);
        if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
                /* The kmem limit is set for the first time */
                ret = res_counter_set_limit(&memcg->kmem, val);

                memcg_kmem_set_activated(memcg);
                must_inc_static_branch = true;
        } else
                ret = res_counter_set_limit(&memcg->kmem, val);
        mutex_unlock(&set_limit_mutex);
        cgroup_unlock();

        if (must_inc_static_branch) {
                /* We can't do this under cgroup_lock */
                static_key_slow_inc(&memcg_kmem_enabled_key);
                memcg_kmem_set_active(memcg);
        }

So that without the ACTIVATED flag we could race with other threads
trying to set the limit and increment the static branching ref-counter
more than once.  Today we call the whole memcg_update_kmem_limit()
function under the set_limit_mutex and this race is impossible.

As now we understand why the ACTIVATED bit was introduced and why we
don't need it now, and know that removing it will change nothing anyway,
let's get rid of it.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:51 -08:00
Vladimir Davydov f8570263ee memcg, slab: RCU protect memcg_params for root caches
We relocate root cache's memcg_params whenever we need to grow the
memcg_caches array to accommodate all kmem-active memory cgroups.
Currently on relocation we free the old version immediately, which can
lead to use-after-free, because the memcg_caches array is accessed
lock-free (see cache_from_memcg_idx()).  This patch fixes this by making
memcg_params RCU-protected for root caches.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:51 -08:00
Vladimir Davydov f717eb3abb slab: do not panic if we fail to create memcg cache
There is no point in flooding logs with warnings or especially crashing
the system if we fail to create a cache for a memcg.  In this case we
will be accounting the memcg allocation to the root cgroup until we
succeed to create its own cache, but it isn't that critical.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:51 -08:00
Vladimir Davydov 842e287369 memcg: get rid of kmem_cache_dup()
kmem_cache_dup() is only called from memcg_create_kmem_cache().  The
latter, in fact, does nothing besides this, so let's fold
kmem_cache_dup() into memcg_create_kmem_cache().

This patch also makes the memcg_cache_mutex private to
memcg_create_kmem_cache(), because it is not used anywhere else.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:51 -08:00
Vladimir Davydov 2edefe1155 memcg, slab: fix races in per-memcg cache creation/destruction
We obtain a per-memcg cache from a root kmem_cache by dereferencing an
entry of the root cache's memcg_params::memcg_caches array.  If we find
no cache for a memcg there on allocation, we initiate the memcg cache
creation (see memcg_kmem_get_cache()).  The cache creation proceeds
asynchronously in memcg_create_kmem_cache() in order to avoid lock
clashes, so there can be several threads trying to create the same
kmem_cache concurrently, but only one of them may succeed.  However, due
to a race in the code, it is not always true.  The point is that the
memcg_caches array can be relocated when we activate kmem accounting for
a memcg (see memcg_update_all_caches(), memcg_update_cache_size()).  If
memcg_update_cache_size() and memcg_create_kmem_cache() proceed
concurrently as described below, we can leak a kmem_cache.

Asume two threads schedule creation of the same kmem_cache.  One of them
successfully creates it.  Another one should fail then, but if
memcg_create_kmem_cache() interleaves with memcg_update_cache_size() as
follows, it won't:

  memcg_create_kmem_cache()             memcg_update_cache_size()
  (called w/o mutexes held)             (called with slab_mutex,
                                         set_limit_mutex held)
  -------------------------             -------------------------

  mutex_lock(&memcg_cache_mutex)

                                        s->memcg_params=kzalloc(...)

  new_cachep=cache_from_memcg_idx(cachep,idx)
  // new_cachep==NULL => proceed to creation

                                        s->memcg_params->memcg_caches[i]
                                            =cur_params->memcg_caches[i]

  // kmem_cache_create_memcg takes slab_mutex
  // so we will hang around until
  // memcg_update_cache_size finishes, but
  // nothing will prevent it from succeeding so
  // memcg_caches[idx] will be overwritten in
  // memcg_register_cache!

  new_cachep = kmem_cache_create_memcg(...)
  mutex_unlock(&memcg_cache_mutex)

Let's fix this by moving the check for existence of the memcg cache to
kmem_cache_create_memcg() to be called under the slab_mutex and make it
return NULL if so.

A similar race is possible when destroying a memcg cache (see
kmem_cache_destroy()).  Since memcg_unregister_cache(), which clears the
pointer in the memcg_caches array, is called w/o protection, we can race
with memcg_update_cache_size() and omit clearing the pointer.  Therefore
memcg_unregister_cache() should be moved before we release the
slab_mutex.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:51 -08:00
Vladimir Davydov 96403da244 memcg: fix possible NULL deref while traversing memcg_slab_caches list
All caches of the same memory cgroup are linked in the memcg_slab_caches
list via kmem_cache::memcg_params::list.  This list is traversed, for
example, when we read memory.kmem.slabinfo.

Since the list actually consists of memcg_cache_params objects, we have
to convert an element of the list to a kmem_cache object using
memcg_params_to_cache(), which obtains the pointer to the cache from the
memcg_params::memcg_caches array of the corresponding root cache.  That
said the pointer to a kmem_cache in its parent's memcg_params must be
initialized before adding the cache to the list, and cleared only after
it has been unlinked.  Currently it is vice-versa, which can result in a
NULL ptr dereference while traversing the memcg_slab_caches list.  This
patch restores the correct order.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:51 -08:00
Vladimir Davydov 959c8963fc memcg, slab: fix barrier usage when accessing memcg_caches
Each root kmem_cache has pointers to per-memcg caches stored in its
memcg_params::memcg_caches array.  Whenever we want to allocate a slab
for a memcg, we access this array to get per-memcg cache to allocate
from (see memcg_kmem_get_cache()).  The access must be lock-free for
performance reasons, so we should use barriers to assert the kmem_cache
is up-to-date.

First, we should place a write barrier immediately before setting the
pointer to it in the memcg_caches array in order to make sure nobody
will see a partially initialized object.  Second, we should issue a read
barrier before dereferencing the pointer to conform to the write
barrier.

However, currently the barrier usage looks rather strange.  We have a
write barrier *after* setting the pointer and a read barrier *before*
reading the pointer, which is incorrect.  This patch fixes this.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:51 -08:00
Vladimir Davydov 1aa1325425 memcg, slab: clean up memcg cache initialization/destruction
Currently, we have rather a messy function set relating to per-memcg
kmem cache initialization/destruction.

Per-memcg caches are created in memcg_create_kmem_cache().  This
function calls kmem_cache_create_memcg() to allocate and initialize a
kmem cache and then "registers" the new cache in the
memcg_params::memcg_caches array of the parent cache.

During its work-flow, kmem_cache_create_memcg() executes the following
memcg-related functions:

 - memcg_alloc_cache_params(), to initialize memcg_params of the newly
   created cache;
 - memcg_cache_list_add(), to add the new cache to the memcg_slab_caches
   list.

On the other hand, kmem_cache_destroy() called on a cache destruction
only calls memcg_release_cache(), which does all the work: it cleans the
reference to the cache in its parent's memcg_params::memcg_caches,
removes the cache from the memcg_slab_caches list, and frees
memcg_params.

Such an inconsistency between destruction and initialization paths make
the code difficult to read, so let's clean this up a bit.

This patch moves all the code relating to registration of per-memcg
caches (adding to memcg list, setting the pointer to a cache from its
parent) to the newly created memcg_register_cache() and
memcg_unregister_cache() functions making the initialization and
destruction paths look symmetrical.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:51 -08:00
Vladimir Davydov 363a044f73 memcg, slab: kmem_cache_create_memcg(): fix memleak on fail path
We do not free the cache's memcg_params if __kmem_cache_create fails.
Fix this.

Plus, rename memcg_register_cache() to memcg_alloc_cache_params(),
because it actually does not register the cache anywhere, but simply
initialize kmem_cache::memcg_params.

[akpm@linux-foundation.org: fix build]
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:51 -08:00