Commit graph

4 commits

Author SHA1 Message Date
Thomas Gleixner
b4d0d230cc treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 36
Based on 1 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public licence as published by
  the free software foundation either version 2 of the licence or at
  your option any later version

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-or-later

has been chosen to replace the boilerplate/reference in 114 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190520170857.552531963@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-24 17:27:11 +02:00
David Howells
233ce79db4 ASN.1: Handle 'ANY OPTIONAL' in grammar
An ANY object in an ASN.1 grammar that is marked OPTIONAL should be skipped
if there is no more data to be had.

This can be tested by editing X.509 certificates or PKCS#7 messages to
remove the NULL from subobjects that look like the following:

	SEQUENCE {
	  OBJECT(2a864886f70d01010b);
	  NULL();
	}

This is an algorithm identifier plus an optional parameter.

The modified DER can be passed to one of:

	keyctl padd asymmetric "" @s </tmp/modified.x509
	keyctl padd pkcs7_test foo @s </tmp/modified.pkcs7

It should work okay with the patch and produce EBADMSG without.

Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Marcel Holtmann <marcel@holtmann.org>
Reviewed-by: David Woodhouse <David.Woodhouse@intel.com>
2015-08-05 13:38:07 +01:00
David Howells
3f3af97d82 ASN.1: Fix actions on CHOICE elements with IMPLICIT tags
In an ASN.1 description where there is a CHOICE construct that contains
elements with IMPLICIT tags that refer to constructed types, actions to be
taken on those elements should be conditional on the corresponding element
actually being matched.  Currently, however, such actions are performed
unconditionally in the middle of processing the CHOICE.

For example, look at elements 'b' and 'e' here:

	A ::= SEQUENCE {
			CHOICE {
			b [0] IMPLICIT B ({ do_XXXXXXXXXXXX_b }),
			c [1] EXPLICIT C ({ do_XXXXXXXXXXXX_c }),
			d [2] EXPLICIT B ({ do_XXXXXXXXXXXX_d }),
			e [3] IMPLICIT C ({ do_XXXXXXXXXXXX_e }),
			f [4] IMPLICIT INTEGER ({ do_XXXXXXXXXXXX_f })
			}
		} ({ do_XXXXXXXXXXXX_A })

	B ::= SET OF OBJECT IDENTIFIER ({ do_XXXXXXXXXXXX_oid })

	C ::= SET OF INTEGER ({ do_XXXXXXXXXXXX_int })

They each have an action (do_XXXXXXXXXXXX_b and do_XXXXXXXXXXXX_e) that
should only be processed if that element is matched.

The problem is that there's no easy place to hang the action off in the
subclause (type B for element 'b' and type C for element 'e') because
subclause opcode sequences can be shared.

To fix this, introduce a conditional action opcode(ASN1_OP_MAYBE_ACT) that
the decoder only processes if the preceding match was successful.  This can
be seen in an excerpt from the output of the fixed ASN.1 compiler for the
above ASN.1 description:

	[  13] =  ASN1_OP_COND_MATCH_JUMP_OR_SKIP,		// e
	[  14] =  _tagn(CONT, CONS,  3),
	[  15] =  _jump_target(45),		// --> C
	[  16] =  ASN1_OP_MAYBE_ACT,
	[  17] =  _action(ACT_do_XXXXXXXXXXXX_e),

In this, if the op at [13] is matched (ie. element 'e' above) then the
action at [16] will be performed.  However, if the op at [13] doesn't match
or is skipped because it is conditional and some previous op matched, then
the action at [16] will be ignored.

Note that to make this work in the decoder, the ASN1_OP_RETURN op must set
the flag to indicate that a match happened.  This is necessary because the
_jump_target() seen above introduces a subclause (in this case an object of
type 'C') which is likely to alter the flag.  Setting the flag here is okay
because to process a subclause, a match must have happened and caused a
jump.

This cannot be tested with the code as it stands, but rather affects future
code.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: David Woodhouse <David.Woodhouse@intel.com>
2015-08-05 12:54:46 +01:00
David Howells
4520c6a49a X.509: Add simple ASN.1 grammar compiler
Add a simple ASN.1 grammar compiler.  This produces a bytecode output that can
be fed to a decoder to inform the decoder how to interpret the ASN.1 stream it
is trying to parse.

Action functions can be specified in the grammar by interpolating:

	({ foo })

after a type, for example:

	SubjectPublicKeyInfo ::= SEQUENCE {
		algorithm		AlgorithmIdentifier,
		subjectPublicKey	BIT STRING ({ do_key_data })
		}

The decoder is expected to call these after matching this type and parsing the
contents if it is a constructed type.

The grammar compiler does not currently support the SET type (though it does
support SET OF) as I can't see a good way of tracking which members have been
encountered yet without using up extra stack space.

Currently, the grammar compiler will fail if more than 256 bytes of bytecode
would be produced or more than 256 actions have been specified as it uses
8-bit jump values and action indices to keep space usage down.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2012-10-08 13:50:19 +10:30