Commit graph

1681 commits

Author SHA1 Message Date
Suzuki K Poulose
ba7d9233c2 arm64: capabilities: Handle shared entries
Some capabilities have different criteria for detection and associated
actions based on the matching criteria, even though they all share the
same capability bit. So far we have used multiple entries with the same
capability bit to handle this. This is prone to errors, as the
cpu_enable is invoked for each entry, irrespective of whether the
detection rule applies to the CPU or not. And also this complicates
other helpers, e.g, __this_cpu_has_cap.

This patch adds a wrapper entry to cover all the possible variations
of a capability by maintaining list of matches + cpu_enable callbacks.
To avoid complicating the prototypes for the "matches()", we use
arm64_cpu_capabilities maintain the list and we ignore all the other
fields except the matches & cpu_enable.

This ensures :

 1) The capabilitiy is set when at least one of the entry detects
 2) Action is only taken for the entries that "matches".

This avoids explicit checks in the cpu_enable() take some action.
The only constraint here is that, all the entries should have the
same "type" (i.e, scope and conflict rules).

If a cpu_enable() method is associated with multiple matches for a
single capability, care should be taken that either the match criteria
are mutually exclusive, or that the method is robust against being
called multiple times.

This also reverts the changes introduced by commit 67948af41f
("arm64: capabilities: Handle duplicate entries for a capability").

Cc: Robin Murphy <robin.murphy@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-26 18:01:43 +01:00
Suzuki K Poulose
be5b299830 arm64: capabilities: Add support for checks based on a list of MIDRs
Add helpers for detecting an errata on list of midr ranges
of affected CPUs, with the same work around.

Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-26 18:01:42 +01:00
Suzuki K Poulose
1df310505d arm64: Add helpers for checking CPU MIDR against a range
Add helpers for checking if the given CPU midr falls in a range
of variants/revisions for a given model.

Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-26 18:01:42 +01:00
Suzuki K Poulose
5e7951ce19 arm64: capabilities: Clean up midr range helpers
We are about to introduce generic MIDR range helpers. Clean
up the existing helpers in erratum handling, preparing them
to use generic version.

Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-26 18:01:42 +01:00
Suzuki K Poulose
830dcc9f9a arm64: capabilities: Change scope of VHE to Boot CPU feature
We expect all CPUs to be running at the same EL inside the kernel
with or without VHE enabled and we have strict checks to ensure
that any mismatch triggers a kernel panic. If VHE is enabled,
we use the feature based on the boot CPU and all other CPUs
should follow. This makes it a perfect candidate for a capability
based on the boot CPU,  which should be matched by all the CPUs
(both when is ON and OFF). This saves us some not-so-pretty
hooks and special code, just for verifying the conflict.

The patch also makes the VHE capability entry depend on
CONFIG_ARM64_VHE.

Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-26 18:01:41 +01:00
Suzuki K Poulose
fd9d63da17 arm64: capabilities: Add support for features enabled early
The kernel detects and uses some of the features based on the boot
CPU and expects that all the following CPUs conform to it. e.g,
with VHE and the boot CPU running at EL2, the kernel decides to
keep the kernel running at EL2. If another CPU is brought up without
this capability, we use custom hooks (via check_early_cpu_features())
to handle it. To handle such capabilities add support for detecting
and enabling capabilities based on the boot CPU.

A bit is added to indicate if the capability should be detected
early on the boot CPU. The infrastructure then ensures that such
capabilities are probed and "enabled" early on in the boot CPU
and, enabled on the subsequent CPUs.

Cc: Julien Thierry <julien.thierry@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-26 18:01:41 +01:00
Suzuki K Poulose
d3aec8a28b arm64: capabilities: Restrict KPTI detection to boot-time CPUs
KPTI is treated as a system wide feature and is only detected if all
the CPUs in the sysetm needs the defense, unless it is forced via kernel
command line. This leaves a system with a mix of CPUs with and without
the defense vulnerable. Also, if a late CPU needs KPTI but KPTI was not
activated at boot time, the CPU is currently allowed to boot, which is a
potential security vulnerability.
This patch ensures that the KPTI is turned on if at least one CPU detects
the capability (i.e, change scope to SCOPE_LOCAL_CPU). Also rejetcs a late
CPU, if it requires the defense, when the system hasn't enabled it,

Cc: Will Deacon <will.deacon@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-26 18:01:40 +01:00
Suzuki K Poulose
5c137714dd arm64: capabilities: Introduce weak features based on local CPU
Now that we have the flexibility of defining system features based
on individual CPUs, introduce CPU feature type that can be detected
on a local SCOPE and ignores the conflict on late CPUs. This is
applicable for ARM64_HAS_NO_HW_PREFETCH, where it is fine for
the system to have CPUs without hardware prefetch turning up
later. We only suffer a performance penalty, nothing fatal.

Cc: Will Deacon <will.deacon@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-26 18:01:40 +01:00
Suzuki K Poulose
ed478b3f9e arm64: capabilities: Group handling of features and errata workarounds
Now that the features and errata workarounds have the same
rules and flow, group the handling of the tables.

Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-26 18:01:40 +01:00
Suzuki K Poulose
fbd890b9b8 arm64: capabilities: Allow features based on local CPU scope
So far we have treated the feature capabilities as system wide
and this wouldn't help with features that could be detected locally
on one or more CPUs (e.g, KPTI, Software prefetch). This patch
splits the feature detection to two phases :

 1) Local CPU features are checked on all boot time active CPUs.
 2) System wide features are checked only once after all CPUs are
    active.

Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-26 18:01:39 +01:00
Suzuki K Poulose
d69fe9a7e7 arm64: capabilities: Split the processing of errata work arounds
Right now we run through the errata workarounds check on all boot
active CPUs, with SCOPE_ALL. This wouldn't help for detecting erratum
workarounds with a SYSTEM_SCOPE. There are none yet, but we plan to
introduce some: let us clean this up so that such workarounds can be
detected and enabled correctly.

So, we run the checks with SCOPE_LOCAL_CPU on all CPUs and SCOPE_SYSTEM
checks are run only once after all the boot time CPUs are active.

Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-26 18:01:39 +01:00
Suzuki K Poulose
600b9c919c arm64: capabilities: Prepare for grouping features and errata work arounds
We are about to group the handling of all capabilities (features
and errata workarounds). This patch open codes the wrapper routines
to make it easier to merge the handling.

Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-26 18:01:38 +01:00
Suzuki K Poulose
cce360b54c arm64: capabilities: Filter the entries based on a given mask
While processing the list of capabilities, it is useful to
filter out some of the entries based on the given mask for the
scope of the capabilities to allow better control. This can be
used later for handling LOCAL vs SYSTEM wide capabilities and more.
All capabilities should have their scope set to either LOCAL_CPU or
SYSTEM. No functional/flow change.

Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-26 18:01:38 +01:00
Suzuki K Poulose
eaac4d83da arm64: capabilities: Unify the verification
Now that each capability describes how to treat the conflicts
of CPU cap state vs System wide cap state, we can unify the
verification logic to a single place.

Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-26 18:01:38 +01:00
Suzuki K Poulose
5b4747c5dc arm64: capabilities: Add flags to handle the conflicts on late CPU
When a CPU is brought up, it is checked against the caps that are
known to be enabled on the system (via verify_local_cpu_capabilities()).
Based on the state of the capability on the CPU vs. that of System we
could have the following combinations of conflict.

	x-----------------------------x
	| Type  | System   | Late CPU |
	|-----------------------------|
	|  a    |   y      |    n     |
	|-----------------------------|
	|  b    |   n      |    y     |
	x-----------------------------x

Case (a) is not permitted for caps which are system features, which the
system expects all the CPUs to have (e.g VHE). While (a) is ignored for
all errata work arounds. However, there could be exceptions to the plain
filtering approach. e.g, KPTI is an optional feature for a late CPU as
long as the system already enables it.

Case (b) is not permitted for errata work arounds that cannot be activated
after the kernel has finished booting.And we ignore (b) for features. Here,
yet again, KPTI is an exception, where if a late CPU needs KPTI we are too
late to enable it (because we change the allocation of ASIDs etc).

Add two different flags to indicate how the conflict should be handled.

 ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU - CPUs may have the capability
 ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU - CPUs may not have the cappability.

Now that we have the flags to describe the behavior of the errata and
the features, as we treat them, define types for ERRATUM and FEATURE.

Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-26 18:01:37 +01:00
Suzuki K Poulose
143ba05d86 arm64: capabilities: Prepare for fine grained capabilities
We use arm64_cpu_capabilities to represent CPU ELF HWCAPs exposed
to the userspace and the CPU hwcaps used by the kernel, which
include cpu features and CPU errata work arounds. Capabilities
have some properties that decide how they should be treated :

 1) Detection, i.e scope : A cap could be "detected" either :
    - if it is present on at least one CPU (SCOPE_LOCAL_CPU)
	Or
    - if it is present on all the CPUs (SCOPE_SYSTEM)

 2) When is it enabled ? - A cap is treated as "enabled" when the
  system takes some action based on whether the capability is detected or
  not. e.g, setting some control register, patching the kernel code.
  Right now, we treat all caps are enabled at boot-time, after all
  the CPUs are brought up by the kernel. But there are certain caps,
  which are enabled early during the boot (e.g, VHE, GIC_CPUIF for NMI)
  and kernel starts using them, even before the secondary CPUs are brought
  up. We would need a way to describe this for each capability.

 3) Conflict on a late CPU - When a CPU is brought up, it is checked
  against the caps that are known to be enabled on the system (via
  verify_local_cpu_capabilities()). Based on the state of the capability
  on the CPU vs. that of System we could have the following combinations
  of conflict.

	x-----------------------------x
	| Type	| System   | Late CPU |
	------------------------------|
	|  a    |   y      |    n     |
	------------------------------|
	|  b    |   n      |    y     |
	x-----------------------------x

  Case (a) is not permitted for caps which are system features, which the
  system expects all the CPUs to have (e.g VHE). While (a) is ignored for
  all errata work arounds. However, there could be exceptions to the plain
  filtering approach. e.g, KPTI is an optional feature for a late CPU as
  long as the system already enables it.

  Case (b) is not permitted for errata work arounds which requires some
  work around, which cannot be delayed. And we ignore (b) for features.
  Here, yet again, KPTI is an exception, where if a late CPU needs KPTI we
  are too late to enable it (because we change the allocation of ASIDs
  etc).

So this calls for a lot more fine grained behavior for each capability.
And if we define all the attributes to control their behavior properly,
we may be able to use a single table for the CPU hwcaps (which cover
errata and features, not the ELF HWCAPs). This is a prepartory step
to get there. More bits would be added for the properties listed above.

We are going to use a bit-mask to encode all the properties of a
capabilities. This patch encodes the "SCOPE" of the capability.

As such there is no change in how the capabilities are treated.

Cc: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-26 18:01:37 +01:00
Suzuki K Poulose
1e89baed5d arm64: capabilities: Move errata processing code
We have errata work around processing code in cpu_errata.c,
which calls back into helpers defined in cpufeature.c. Now
that we are going to make the handling of capabilities
generic, by adding the information to each capability,
move the errata work around specific processing code.
No functional changes.

Cc: Will Deacon <will.deacon@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-26 18:01:36 +01:00
Suzuki K Poulose
5e91107b06 arm64: capabilities: Move errata work around check on boot CPU
We trigger CPU errata work around check on the boot CPU from
smp_prepare_boot_cpu() to make sure that we run the checks only
after the CPU feature infrastructure is initialised. While this
is correct, we can also do this from init_cpu_features() which
initilises the infrastructure, and is called only on the
Boot CPU. This helps to consolidate the CPU capability handling
to cpufeature.c. No functional changes.

Cc: Will Deacon <will.deacon@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-26 18:01:36 +01:00
Dave Martin
c0cda3b8ee arm64: capabilities: Update prototype for enable call back
We issue the enable() call back for all CPU hwcaps capabilities
available on the system, on all the CPUs. So far we have ignored
the argument passed to the call back, which had a prototype to
accept a "void *" for use with on_each_cpu() and later with
stop_machine(). However, with commit 0a0d111d40
("arm64: cpufeature: Pass capability structure to ->enable callback"),
there are some users of the argument who wants the matching capability
struct pointer where there are multiple matching criteria for a single
capability. Clean up the declaration of the call back to make it clear.

 1) Renamed to cpu_enable(), to imply taking necessary actions on the
    called CPU for the entry.
 2) Pass const pointer to the capability, to allow the call back to
    check the entry. (e.,g to check if any action is needed on the CPU)
 3) We don't care about the result of the call back, turning this to
    a void.

Cc: Will Deacon <will.deacon@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andre Przywara <andre.przywara@arm.com>
Cc: James Morse <james.morse@arm.com>
Acked-by: Robin Murphy <robin.murphy@arm.com>
Reviewed-by: Julien Thierry <julien.thierry@arm.com>
Signed-off-by: Dave Martin <dave.martin@arm.com>
[suzuki: convert more users, rename call back and drop results]
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-26 18:00:37 +01:00
Dave Martin
af4a81b9cd arm64: fpsimd: Fix bad si_code for undiagnosed SIGFPE
Currently a SIGFPE delivered in response to a floating-point
exception trap may have si_code set to 0 on arm64.  As reported by
Eric, this is a bad idea since this is the value of SI_USER -- yet
this signal is definitely not the result of kill(2), tgkill(2) etc.
and si_uid and si_pid make limited sense whereas we do want to
yield a value for si_addr (which doesn't exist for SI_USER).

It's not entirely clear whether the architecure permits a
"spurious" fp exception trap where none of the exception flag bits
in ESR_ELx is set.  (IMHO the architectural intent is to forbid
this.)  However, it does permit those bits to contain garbage if
the TFV bit in ESR_ELx is 0.  That case isn't currently handled at
all and may result in si_code == 0 or si_code containing a FPE_FLT*
constant corresponding to an exception that did not in fact happen.

There is nothing sensible we can return for si_code in such cases,
but SI_USER is certainly not appropriate and will lead to violation
of legitimate userspace assumptions.

This patch allocates a new si_code value FPE_UNKNOWN that at least
does not conflict with any existing SI_* or FPE_* code, and yields
this in si_code for undiagnosable cases.  This is probably the best
simplicity/incorrectness tradeoff achieveable without relying on
implementation-dependent features or adding a lot of code.  In any
case, there appears to be no perfect solution possible that would
justify a lot of effort here.

Yielding FPE_UNKNOWN when some well-defined fp exception caused the
trap is a violation of POSIX, but this is forced by the
architecture.  We have no realistic prospect of yielding the
correct code in such cases.  At present I am not aware of any ARMv8
implementation that supports trapped floating-point exceptions in
any case.

The new code may be applicable to other architectures for similar
reasons.

No attempt is made to provide ESR_ELx to userspace in the signal
frame, since architectural limitations mean that it is unlikely to
provide much diagnostic value, doesn't benefit existing software
and would create ABI with no proven purpose.  The existing
mechanism for passing it also has problems of its own which may
result in the wrong value being passed to userspace due to
interaction with mm faults.  The implied rework does not appear
justified.

Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Reported-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-20 10:03:11 +00:00
Suzuki K Poulose
7206dc93a5 arm64: Expose Arm v8.4 features
Expose the new features introduced by Arm v8.4 extensions to
Arm v8-A profile.

These include :

 1) Data indpendent timing of instructions. (DIT, exposed as HWCAP_DIT)
 2) Unaligned atomic instructions and Single-copy atomicity of loads
    and stores. (AT, expose as HWCAP_USCAT)
 3) LDAPR and STLR instructions with immediate offsets (extension to
    LRCPC, exposed as HWCAP_ILRCPC)
 4) Flag manipulation instructions (TS, exposed as HWCAP_FLAGM).

Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-19 18:14:27 +00:00
Arnd Bergmann
bd99f9a159 arm64: fix undefined reference to 'printk'
The printk symbol was intended as a generic address that is always
exported, however that turned out to be false with CONFIG_PRINTK=n:

ERROR: "printk" [arch/arm64/kernel/arm64-reloc-test.ko] undefined!

This changes the references to memstart_addr, which should be there
regardless of configuration.

Fixes: a257e02579 ("arm64/kernel: don't ban ADRP to work around Cortex-A53 erratum #843419")
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-19 18:14:25 +00:00
Dave Martin
af40ff687b arm64: signal: Ensure si_code is valid for all fault signals
Currently, as reported by Eric, an invalid si_code value 0 is
passed in many signals delivered to userspace in response to faults
and other kernel errors.  Typically 0 is passed when the fault is
insufficiently diagnosable or when there does not appear to be any
sensible alternative value to choose.

This appears to violate POSIX, and is intuitively wrong for at
least two reasons arising from the fact that 0 == SI_USER:

 1) si_code is a union selector, and SI_USER (and si_code <= 0 in
    general) implies the existence of a different set of fields
    (siginfo._kill) from that which exists for a fault signal
    (siginfo._sigfault).  However, the code raising the signal
    typically writes only the _sigfault fields, and the _kill
    fields make no sense in this case.

    Thus when userspace sees si_code == 0 (SI_USER) it may
    legitimately inspect fields in the inactive union member _kill
    and obtain garbage as a result.

    There appears to be software in the wild relying on this,
    albeit generally only for printing diagnostic messages.

 2) Software that wants to be robust against spurious signals may
    discard signals where si_code == SI_USER (or <= 0), or may
    filter such signals based on the si_uid and si_pid fields of
    siginfo._sigkill.  In the case of fault signals, this means
    that important (and usually fatal) error conditions may be
    silently ignored.

In practice, many of the faults for which arm64 passes si_code == 0
are undiagnosable conditions such as exceptions with syndrome
values in ESR_ELx to which the architecture does not yet assign any
meaning, or conditions indicative of a bug or error in the kernel
or system and thus that are unrecoverable and should never occur in
normal operation.

The approach taken in this patch is to translate all such
undiagnosable or "impossible" synchronous fault conditions to
SIGKILL, since these are at least probably localisable to a single
process.  Some of these conditions should really result in a kernel
panic, but due to the lack of diagnostic information it is
difficult to be certain: this patch does not add any calls to
panic(), but this could change later if justified.

Although si_code will not reach userspace in the case of SIGKILL,
it is still desirable to pass a nonzero value so that the common
siginfo handling code can detect incorrect use of si_code == 0
without false positives.  In this case the si_code dependent
siginfo fields will not be correctly initialised, but since they
are not passed to userspace I deem this not to matter.

A few faults can reasonably occur in realistic userspace scenarios,
and _should_ raise a regular, handleable (but perhaps not
ignorable/blockable) signal: for these, this patch attempts to
choose a suitable standard si_code value for the raised signal in
each case instead of 0.

arm64 was the only arch to define a BUS_FIXME code, so after this
patch nobody defines it.  This patch therefore also removes the
relevant code from siginfo_layout().

Cc: James Morse <james.morse@arm.com>
Reported-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-09 13:58:36 +00:00
Shanker Donthineni
6ae4b6e057 arm64: Add support for new control bits CTR_EL0.DIC and CTR_EL0.IDC
The DCache clean & ICache invalidation requirements for instructions
to be data coherence are discoverable through new fields in CTR_EL0.
The following two control bits DIC and IDC were defined for this
purpose. No need to perform point of unification cache maintenance
operations from software on systems where CPU caches are transparent.

This patch optimize the three functions __flush_cache_user_range(),
clean_dcache_area_pou() and invalidate_icache_range() if the hardware
reports CTR_EL0.IDC and/or CTR_EL0.IDC. Basically it skips the two
instructions 'DC CVAU' and 'IC IVAU', and the associated loop logic
in order to avoid the unnecessary overhead.

CTR_EL0.DIC: Instruction cache invalidation requirements for
 instruction to data coherence. The meaning of this bit[29].
  0: Instruction cache invalidation to the point of unification
     is required for instruction to data coherence.
  1: Instruction cache cleaning to the point of unification is
      not required for instruction to data coherence.

CTR_EL0.IDC: Data cache clean requirements for instruction to data
 coherence. The meaning of this bit[28].
  0: Data cache clean to the point of unification is required for
     instruction to data coherence, unless CLIDR_EL1.LoC == 0b000
     or (CLIDR_EL1.LoUIS == 0b000 && CLIDR_EL1.LoUU == 0b000).
  1: Data cache clean to the point of unification is not required
     for instruction to data coherence.

Co-authored-by: Philip Elcan <pelcan@codeaurora.org>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Shanker Donthineni <shankerd@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-09 13:57:57 +00:00
Ard Biesheuvel
ca79acca27 arm64/kernel: enable A53 erratum #8434319 handling at runtime
Omit patching of ADRP instruction at module load time if the current
CPUs are not susceptible to the erratum.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
[will: Drop duplicate initialisation of .def_scope field]
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-09 13:23:09 +00:00
Ard Biesheuvel
e8002e02ab arm64/errata: add REVIDR handling to framework
In some cases, core variants that are affected by a certain erratum
also exist in versions that have the erratum fixed, and this fact is
recorded in a dedicated bit in system register REVIDR_EL1.

Since the architecture does not require that a certain bit retains
its meaning across different variants of the same model, each such
REVIDR bit is tightly coupled to a certain revision/variant value,
and so we need a list of revidr_mask/midr pairs to carry this
information.

So add the struct member and the associated macros and handling to
allow REVIDR fixes to be taken into account.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-09 13:23:08 +00:00
Ard Biesheuvel
a257e02579 arm64/kernel: don't ban ADRP to work around Cortex-A53 erratum #843419
Working around Cortex-A53 erratum #843419 involves special handling of
ADRP instructions that end up in the last two instruction slots of a
4k page, or whose output register gets overwritten without having been
read. (Note that the latter instruction sequence is never emitted by
a properly functioning compiler, which is why it is disregarded by the
handling of the same erratum in the bfd.ld linker which we rely on for
the core kernel)

Normally, this gets taken care of by the linker, which can spot such
sequences at final link time, and insert a veneer if the ADRP ends up
at a vulnerable offset. However, linux kernel modules are partially
linked ELF objects, and so there is no 'final link time' other than the
runtime loading of the module, at which time all the static relocations
are resolved.

For this reason, we have implemented the #843419 workaround for modules
by avoiding ADRP instructions altogether, by using the large C model,
and by passing -mpc-relative-literal-loads to recent versions of GCC
that may emit adrp/ldr pairs to perform literal loads. However, this
workaround forces us to keep literal data mixed with the instructions
in the executable .text segment, and literal data may inadvertently
turn into an exploitable speculative gadget depending on the relative
offsets of arbitrary symbols.

So let's reimplement this workaround in a way that allows us to switch
back to the small C model, and to drop the -mpc-relative-literal-loads
GCC switch, by patching affected ADRP instructions at runtime:
- ADRP instructions that do not appear at 4k relative offset 0xff8 or
  0xffc are ignored
- ADRP instructions that are within 1 MB of their target symbol are
  converted into ADR instructions
- remaining ADRP instructions are redirected via a veneer that performs
  the load using an unaffected movn/movk sequence.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
[will: tidied up ADRP -> ADR instruction patching.]
[will: use ULL suffix for 64-bit immediate]
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-09 13:21:53 +00:00
Ard Biesheuvel
f2b9ba871b arm64/kernel: kaslr: reduce module randomization range to 4 GB
We currently have to rely on the GCC large code model for KASLR for
two distinct but related reasons:
- if we enable full randomization, modules will be loaded very far away
  from the core kernel, where they are out of range for ADRP instructions,
- even without full randomization, the fact that the 128 MB module region
  is now no longer fully reserved for kernel modules means that there is
  a very low likelihood that the normal bottom-up allocation of other
  vmalloc regions may collide, and use up the range for other things.

Large model code is suboptimal, given that each symbol reference involves
a literal load that goes through the D-cache, reducing cache utilization.
But more importantly, literals are not instructions but part of .text
nonetheless, and hence mapped with executable permissions.

So let's get rid of our dependency on the large model for KASLR, by:
- reducing the full randomization range to 4 GB, thereby ensuring that
  ADRP references between modules and the kernel are always in range,
- reduce the spillover range to 4 GB as well, so that we fallback to a
  region that is still guaranteed to be in range
- move the randomization window of the core kernel to the middle of the
  VMALLOC space

Note that KASAN always uses the module region outside of the vmalloc space,
so keep the kernel close to that if KASAN is enabled.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-08 13:49:26 +00:00
Ard Biesheuvel
5e8307b9c6 arm64: module: don't BUG when exceeding preallocated PLT count
When PLTs are emitted at relocation time, we really should not exceed
the number that we counted when parsing the relocation tables, and so
currently, we BUG() on this condition. However, even though this is a
clear bug in this particular piece of code, we can easily recover by
failing to load the module.

So instead, return 0 from module_emit_plt_entry() if this condition
occurs, which is not a valid kernel address, and can hence serve as
a flag value that makes the relocation routine bail out.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-08 13:49:26 +00:00
Douglas Anderson
24153c03d4 arm64/debug: Fix registers on sleeping tasks
This is the equivalent of commit 001bf455d2 ("ARM: 8428/1: kgdb: Fix
registers on sleeping tasks") but for arm64.  Nuff said.

...well, perhaps I could also add that task_pt_regs are userspace
registers and that's not what kgdb is supposed to be reporting.  We're
supposed to be reporting kernel registers.

Signed-off-by: Douglas Anderson <dianders@chromium.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-06 18:52:34 +00:00
Catalin Marinas
1f85b42a69 arm64: Revert L1_CACHE_SHIFT back to 6 (64-byte cache line size)
Commit 9730348075 ("arm64: Increase the max granular size") increased
the cache line size to 128 to match Cavium ThunderX, apparently for some
performance benefit which could not be confirmed. This change, however,
has an impact on the network packets allocation in certain
circumstances, requiring slightly over a 4K page with a significant
performance degradation.

This patch reverts L1_CACHE_SHIFT back to 6 (64-byte cache line) while
keeping ARCH_DMA_MINALIGN at 128. The cache_line_size() function was
changed to default to ARCH_DMA_MINALIGN in the absence of a meaningful
CTR_EL0.CWG bit field.

In addition, if a system with ARCH_DMA_MINALIGN < CTR_EL0.CWG is
detected, the kernel will force swiotlb bounce buffering for all
non-coherent devices since DMA cache maintenance on sub-CWG ranges is
not safe, leading to data corruption.

Cc: Tirumalesh Chalamarla <tchalamarla@cavium.com>
Cc: Timur Tabi <timur@codeaurora.org>
Cc: Florian Fainelli <f.fainelli@gmail.com>
Acked-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-06 18:52:32 +00:00
Will Deacon
4e829b6735 arm64: Use arm64_force_sig_info instead of force_sig_info
Using arm64_force_sig_info means that printing messages about unhandled
signals is dealt with for us, so use that in preference to force_sig_info
and remove any homebrew printing code.

Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-06 18:52:32 +00:00
Will Deacon
a26731d9d1 arm64: Move show_unhandled_signals_ratelimited into traps.c
show_unhandled_signals_ratelimited is only called in traps.c, so move it
out of its macro in the dreaded system_misc.h and into a static function
in traps.c

Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-06 18:52:31 +00:00
Will Deacon
f71016a8a8 arm64: signal: Call arm64_notify_segfault when failing to deliver signal
If we fail to deliver a signal due to taking an unhandled fault on the
stackframe, we can call arm64_notify_segfault to deliver a SEGV can deal
with printing any unhandled signal messages for us, rather than roll our
own printing code.

A side-effect of this change is that we now deliver the frame address
in si_addr along with an si_code of SEGV_{ACC,MAP}ERR, rather than an
si_addr of 0 and an si_code of SI_KERNEL as before.

Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-06 18:52:25 +00:00
Will Deacon
15b67321e7 arm64: signal: Don't print anything directly in force_signal_inject
arm64_notify_die deals with printing out information regarding unhandled
signals, so there's no need to roll our own code here.

Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-06 18:52:23 +00:00
Will Deacon
a1ece8216c arm64: Introduce arm64_force_sig_info and hook up in arm64_notify_die
In preparation for consolidating our handling of printing unhandled
signals, introduce a wrapper around force_sig_info which can act as
the canonical place for dealing with show_unhandled_signals.

Initially, we just hook this up to arm64_notify_die.

Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-06 18:52:23 +00:00
Will Deacon
a7e6f1ca90 arm64: signal: Force SIGKILL for unknown signals in force_signal_inject
For signals other than SIGKILL or those with siginfo_layout(signal, code)
== SIL_FAULT then force_signal_inject does not initialise the siginfo_t
properly. Since the signal number is determined solely by the caller,
simply WARN on unknown signals and force to SIGKILL.

Reported-by: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-06 18:52:23 +00:00
Will Deacon
2c9120f3a8 arm64: signal: Make force_signal_inject more robust
force_signal_inject is a little flakey:

  * It only knows about SIGILL and SIGSEGV, so can potentially deliver
    other signals based on a partially initialised siginfo_t

  * It sets si_addr to point at the PC for SIGSEGV

  * It always operates on current, so doesn't need the regs argument

This patch fixes these issues by always assigning the si_addr field to
the address parameter of the function and updates the callers (including
those that indirectly call via arm64_notify_segfault) accordingly.

Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-06 18:52:22 +00:00
Kees Cook
e0f6429dc1 arm64: cpufeature: Remove redundant "feature" in reports
The word "feature" is repeated in the CPU features reporting. This drops it
for improved readability.

Before (redundant "feature" word):

 SMP: Total of 4 processors activated.
 CPU features: detected feature: 32-bit EL0 Support
 CPU features: detected feature: Kernel page table isolation (KPTI)
 CPU features: emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching
 CPU: All CPU(s) started at EL2

After:

 SMP: Total of 4 processors activated.
 CPU features: detected: 32-bit EL0 Support
 CPU features: detected: Kernel page table isolation (KPTI)
 CPU features: emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching
 CPU: All CPU(s) started at EL2

Signed-off-by: Kees Cook <keescook@chromium.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-05 12:06:44 +00:00
Kees Cook
2e6f549fe9 arm64: cpufeature: Relocate PAN emulation report
The PAN emulation notification was only happening for non-boot CPUs
if CPU capabilities had already been configured. This seems to be the
wrong place, as it's system-wide and isn't attached to capabilities,
so its reporting didn't normally happen. Instead, report it once from
the boot CPU.

Before (missing PAN emulation report):

 SMP: Total of 4 processors activated.
 CPU features: detected feature: 32-bit EL0 Support
 CPU features: detected feature: Kernel page table isolation (KPTI)
 CPU: All CPU(s) started at EL2

After:

 SMP: Total of 4 processors activated.
 CPU features: detected feature: 32-bit EL0 Support
 CPU features: detected feature: Kernel page table isolation (KPTI)
 CPU features: emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching
 CPU: All CPU(s) started at EL2

Signed-off-by: Kees Cook <keescook@chromium.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-05 12:06:43 +00:00
Ard Biesheuvel
6141ac1c27 arm64/kernel: kaslr: drop special Image placement logic
Now that the early kernel mapping logic can tolerate placements of
Image that cross swapper table boundaries, we can remove the logic
that adjusts the offset if the dice roll produced an offset that
puts the kernel right on top of one.

Reviewed-by: Steve Capper <steve.capper@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-05 12:06:43 +00:00
Michael Weiser
532826f371 arm64: Mirror arm for unimplemented compat syscalls
Mirror arm behaviour for unimplemented syscalls: Below 2048 return
-ENOSYS, above 2048 raise SIGILL.

Signed-off-by: Michael Weiser <michael.weiser@gmx.de>
[will: Tweak die string to identify as compat syscall]
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-03-05 12:06:43 +00:00
Linus Torvalds
297ea1b7f7 Merge branch 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull cleanup patchlet from Thomas Gleixner:
 "A single commit removing a bunch of bogus double semicolons all over
  the tree"

* 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  treewide/trivial: Remove ';;$' typo noise
2018-02-25 16:27:51 -08:00
Pratyush Anand
9f416319f4 arm64: fix unwind_frame() for filtered out fn for function graph tracing
do_task_stat() calls get_wchan(), which further does unwind_frame().
unwind_frame() restores frame->pc to original value in case function
graph tracer has modified a return address (LR) in a stack frame to hook
a function return. However, if function graph tracer has hit a filtered
function, then we can't unwind it as ftrace_push_return_trace() has
biased the index(frame->graph) with a 'huge negative'
offset(-FTRACE_NOTRACE_DEPTH).

Moreover, arm64 stack walker defines index(frame->graph) as unsigned
int, which can not compare a -ve number.

Similar problem we can have with calling of walk_stackframe() from
save_stack_trace_tsk() or dump_backtrace().

This patch fixes unwind_frame() to test the index for -ve value and
restore index accordingly before we can restore frame->pc.

Reproducer:

cd /sys/kernel/debug/tracing/
echo schedule > set_graph_notrace
echo 1 > options/display-graph
echo wakeup > current_tracer
ps -ef | grep -i agent

Above commands result in:
Unable to handle kernel paging request at virtual address ffff801bd3d1e000
pgd = ffff8003cbe97c00
[ffff801bd3d1e000] *pgd=0000000000000000, *pud=0000000000000000
Internal error: Oops: 96000006 [#1] SMP
[...]
CPU: 5 PID: 11696 Comm: ps Not tainted 4.11.0+ #33
[...]
task: ffff8003c21ba000 task.stack: ffff8003cc6c0000
PC is at unwind_frame+0x12c/0x180
LR is at get_wchan+0xd4/0x134
pc : [<ffff00000808892c>] lr : [<ffff0000080860b8>] pstate: 60000145
sp : ffff8003cc6c3ab0
x29: ffff8003cc6c3ab0 x28: 0000000000000001
x27: 0000000000000026 x26: 0000000000000026
x25: 00000000000012d8 x24: 0000000000000000
x23: ffff8003c1c04000 x22: ffff000008c83000
x21: ffff8003c1c00000 x20: 000000000000000f
x19: ffff8003c1bc0000 x18: 0000fffffc593690
x17: 0000000000000000 x16: 0000000000000001
x15: 0000b855670e2b60 x14: 0003e97f22cf1d0f
x13: 0000000000000001 x12: 0000000000000000
x11: 00000000e8f4883e x10: 0000000154f47ec8
x9 : 0000000070f367c0 x8 : 0000000000000000
x7 : 00008003f7290000 x6 : 0000000000000018
x5 : 0000000000000000 x4 : ffff8003c1c03cb0
x3 : ffff8003c1c03ca0 x2 : 00000017ffe80000
x1 : ffff8003cc6c3af8 x0 : ffff8003d3e9e000

Process ps (pid: 11696, stack limit = 0xffff8003cc6c0000)
Stack: (0xffff8003cc6c3ab0 to 0xffff8003cc6c4000)
[...]
[<ffff00000808892c>] unwind_frame+0x12c/0x180
[<ffff000008305008>] do_task_stat+0x864/0x870
[<ffff000008305c44>] proc_tgid_stat+0x3c/0x48
[<ffff0000082fde0c>] proc_single_show+0x5c/0xb8
[<ffff0000082b27e0>] seq_read+0x160/0x414
[<ffff000008289e6c>] __vfs_read+0x58/0x164
[<ffff00000828b164>] vfs_read+0x88/0x144
[<ffff00000828c2e8>] SyS_read+0x60/0xc0
[<ffff0000080834a0>] __sys_trace_return+0x0/0x4

Fixes: 20380bb390 (arm64: ftrace: fix a stack tracer's output under function graph tracer)
Signed-off-by: Pratyush Anand <panand@redhat.com>
Signed-off-by: Jerome Marchand <jmarchan@redhat.com>
[catalin.marinas@arm.com: replace WARN_ON with WARN_ON_ONCE]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-02-23 13:46:38 +00:00
Ingo Molnar
ed7158bae4 treewide/trivial: Remove ';;$' typo noise
On lkml suggestions were made to split up such trivial typo fixes into per subsystem
patches:

  --- a/arch/x86/boot/compressed/eboot.c
  +++ b/arch/x86/boot/compressed/eboot.c
  @@ -439,7 +439,7 @@ setup_uga32(void **uga_handle, unsigned long size, u32 *width, u32 *height)
          struct efi_uga_draw_protocol *uga = NULL, *first_uga;
          efi_guid_t uga_proto = EFI_UGA_PROTOCOL_GUID;
          unsigned long nr_ugas;
  -       u32 *handles = (u32 *)uga_handle;;
  +       u32 *handles = (u32 *)uga_handle;
          efi_status_t status = EFI_INVALID_PARAMETER;
          int i;

This patch is the result of the following script:

  $ sed -i 's/;;$/;/g' $(git grep -E ';;$'  | grep "\.[ch]:"  | grep -vwE 'for|ia64' | cut -d: -f1 | sort | uniq)

... followed by manual review to make sure it's all good.

Splitting this up is just crazy talk, let's get over with this and just do it.

Reported-by: Pavel Machek <pavel@ucw.cz>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-02-22 10:59:33 +01:00
Mark Rutland
0331365edb arm64: perf: correct PMUVer probing
The ID_AA64DFR0_EL1.PMUVer field doesn't follow the usual ID registers
scheme. While value 0xf indicates a non-architected PMU is implemented,
values 0x1 to 0xe indicate an increasingly featureful architected PMU,
as if the field were unsigned.

For more details, see ARM DDI 0487C.a, D10.1.4, "Alternative ID scheme
used for the Performance Monitors Extension version".

Currently, we treat the field as signed, and erroneously bail out for
values 0x8 to 0xe. Let's correct that.

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-02-20 11:34:54 +00:00
Will Deacon
a06f818a70 arm64: __show_regs: Only resolve kernel symbols when running at EL1
__show_regs pretty prints PC and LR by attempting to map them to kernel
function names to improve the utility of crash reports. Unfortunately,
this mapping is applied even when the pt_regs corresponds to user mode,
resulting in a KASLR oracle.

Avoid this issue by only looking up the function symbols when the register
state indicates that we're actually running at EL1.

Cc: <stable@vger.kernel.org>
Reported-by: NCSC Security <security@ncsc.gov.uk>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-02-19 17:07:12 +00:00
Michael Weiser
1962682d2b arm64: Remove unimplemented syscall log message
Stop printing a (ratelimited) kernel message for each instance of an
unimplemented syscall being called. Userland making an unimplemented
syscall is not necessarily misbehaviour and to be expected with a
current userland running on an older kernel. Also, the current message
looks scary to users but does not actually indicate a real problem nor
help them narrow down the cause. Just rely on sys_ni_syscall() to return
-ENOSYS.

Cc: <stable@vger.kernel.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Michael Weiser <michael.weiser@gmx.de>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-02-19 17:05:53 +00:00
Michael Weiser
5ee39a71fd arm64: Disable unhandled signal log messages by default
aarch64 unhandled signal kernel messages are very verbose, suggesting
them to be more of a debugging aid:

sigsegv[33]: unhandled level 2 translation fault (11) at 0x00000000, esr
0x92000046, in sigsegv[400000+71000]
CPU: 1 PID: 33 Comm: sigsegv Tainted: G        W        4.15.0-rc3+ #3
Hardware name: linux,dummy-virt (DT)
pstate: 60000000 (nZCv daif -PAN -UAO)
pc : 0x4003f4
lr : 0x4006bc
sp : 0000fffffe94a060
x29: 0000fffffe94a070 x28: 0000000000000000
x27: 0000000000000000 x26: 0000000000000000
x25: 0000000000000000 x24: 00000000004001b0
x23: 0000000000486ac8 x22: 00000000004001c8
x21: 0000000000000000 x20: 0000000000400be8
x19: 0000000000400b30 x18: 0000000000484728
x17: 000000000865ffc8 x16: 000000000000270f
x15: 00000000000000b0 x14: 0000000000000002
x13: 0000000000000001 x12: 0000000000000000
x11: 0000000000000000 x10: 0008000020008008
x9 : 000000000000000f x8 : ffffffffffffffff
x7 : 0004000000000000 x6 : ffffffffffffffff
x5 : 0000000000000000 x4 : 0000000000000000
x3 : 00000000004003e4 x2 : 0000fffffe94a1e8
x1 : 000000000000000a x0 : 0000000000000000

Disable them by default, so they can be enabled using
/proc/sys/debug/exception-trace.

Cc: <stable@vger.kernel.org>
Signed-off-by: Michael Weiser <michael.weiser@gmx.de>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2018-02-19 17:05:26 +00:00
Will Deacon
be68a8aaf9 arm64: cpufeature: Fix CTR_EL0 field definitions
Our field definitions for CTR_EL0 suffer from a number of problems:

  - The IDC and DIC fields are missing, which causes us to enable CTR
    trapping on CPUs with either of these returning non-zero values.

  - The ERG is FTR_LOWER_SAFE, whereas it should be treated like CWG as
    FTR_HIGHER_SAFE so that applications can use it to avoid false sharing.

  - [nit] A RES1 field is described as "RAO"

This patch updates the CTR_EL0 field definitions to fix these issues.

Cc: <stable@vger.kernel.org>
Cc: Shanker Donthineni <shankerd@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-02-19 17:02:09 +00:00