Setup the Amlogic FBC decoder for the VD1 video overlay plane.
The VD1 Amlogic FBC decoder is integrated in the pipeline like the
YUV pixel reading/formatter but used a direct memory address instead.
This adds support for the basic layout, and needs to calculate the content
body size since the header is allocated after.
Signed-off-by: Neil Armstrong <narmstrong@baylibre.com>
Tested-by: Kevin Hilman <khilman@baylibre.com>
Reviewed-by: Kevin Hilman <khilman@baylibre.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200703080728.25207-4-narmstrong@baylibre.com
The Amlogic S805X/Y uses the same die as the S905X, but with more
limited graphics capabilities.
This adds a soc version detection adding specific limitations on the HDMI
mode selections.
Here, we limit to HDMI 1.2a max HDMI PHY clock frequency.
Changes sinces v1:
- Moved frequency check in the vclk code, and also checks DMT modes
Signed-off-by: Neil Armstrong <narmstrong@baylibre.com>
Acked-by: Martin Blumenstingl <martin.blumenstingl@googlemail.com>
[narmstrong: fixed commit message with HDMI 1.2a instead of HDMI 1.3a]
Link: https://patchwork.freedesktop.org/patch/msgid/20200428092147.13698-1-narmstrong@baylibre.com
Casting a pointer to dma_addr_t produces a warning:
drivers/gpu/drm/meson/meson_rdma.c: In function 'meson_rdma_free':
drivers/gpu/drm/meson/meson_rdma.c:59:25: error: cast from pointer to integer of different size [-Werror=pointer-to-int-cast]
priv->rdma.addr_phys = (dma_addr_t)NULL;
In this case, it's worse because the variable name has the suffix
'_phys', which often indicates a phys_addr_t rather than dma_addr_t,
i.e. yet another incompatible type.
Change it to use consistent naming and avoid NULL.
Fixes: 63fba242c4 ("drm/meson: add RDMA module driver")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Neil Armstrong <narmstrong@baylibre.com>
Signed-off-by: Neil Armstrong <narmstrong@baylibre.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200107214653.1173199-1-arnd@arndb.de
This adds all the OSD configuration plumbing to support the AFBC decoders
path to display of the OSD1 plane.
The Amlogic GXM and G12A AFBC decoders are integrated very differently.
The Amlogic GXM has a direct output path to the OSD1 VIU pixel input,
because the GXM AFBC decoder seem to be a custom IP developed by Amlogic.
On the other side, the Amlogic G12A AFBC decoder seems to be an external
IP that emit pixels on an AXI master hooked to a "Mali Unpack" block
feeding the OSD1 VIU pixel input.
This uses a weird "0x1000000" internal HW physical address on both
sides to transfer the pixels.
For Amlogic GXM, the supported pixel formats are the same as the normal
linear OSD1 mode.
On the other side, Amlogic added support for all AFBC v1.2 formats for
the G12A AFBC integration.
For simplicity, we stick to the already supported formats for now.
Signed-off-by: Neil Armstrong <narmstrong@baylibre.com>
Reviewed-by: Kevin Hilman <khilman@baylibre.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191021091509.3864-7-narmstrong@baylibre.com
This adds the driver for the ARM Framebuffer Compression decoders found
in the Amlogic GXM and G12A SoCs.
The Amlogic GXM and G12A AFBC decoder are totally different, the GXM only
handling only the AFBC v1.0 modes and the G12A decoder handling the
AFBC v1.2 modes.
The G12A AFBC decoder is an external IP integrated in the video pipeline,
and the GXM AFBC decoder seems to the an Amlogic custom decoder more
tighly integrated in the video pipeline.
The GXM AFBC decoder can handle only one AFBC plane for 2 available
OSD planes available in HW, and the G12A AFBC decoder can handle up
to 4 AFBC planes for up to 3 OSD planes available in HW.
The Amlogic GXM supports 16x16 SPARSE and 16x16 SPLIT AFBC buffers up
to 4k.
On the other side, for G12A SPLIT is mandatory in 16x16 block mode, but
for 4k modes 32x8+SPLIT AFBC buffers is manadatory for performances reasons.
The RDMA is used here to reset and program the AFBC decoder unit
on each vsync without involving the interrupt handler that can
be masked for a long period of time, producing display glitches.
For this we use the meson_rdma_writel_sync() which adds the register
write tuple (VPU register offset and register value) to the RDMA buffer
and write the value to the HW.
When enabled, the RDMA is enabled to rewrite the same sequence at the
next VSYNC event, until a new buffer is committed to the OSD plane.
Then the Amlogic G12A is switched to RDMA, the Amlogic GXM Decoder
doesn't need a reset/reprogram at each vsync, but needs to keep the
vsync interrupt enabled to trigger the RDMA module.
Signed-off-by: Neil Armstrong <narmstrong@baylibre.com>
Reviewed-by: Kevin Hilman <khilman@baylibre.com>
[narmstrong: fixed typo in commit log]
Link: https://patchwork.freedesktop.org/patch/msgid/20191021091509.3864-6-narmstrong@baylibre.com
The VPU embeds a "Register DMA" that can write a sequence of registers
on the VPU AHB bus, either manually or triggered by an internal IRQ
event like VSYNC or a line input counter.
The initial implementation handles a single channel (over 8), triggered
by the VSYNC irq and does not handle the RDMA irq.
The RDMA will be usefull to reset and program the AFBC decoder unit
on each vsync without involving the interrupt handler that can
be masked for a log period of time, producing display glitches.
Signed-off-by: Neil Armstrong <narmstrong@baylibre.com>
Reviewed-by: Kevin Hilman <khilman@baylibre.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191021091509.3864-5-narmstrong@baylibre.com
This patch introduce new enum which contains all VPU family (GXBB,
GXL, GXM and G12A).
This enum is used to detect the VPU compatible with the device.
We only need to set .data to the corresponding enum in the device
table, no need to check .compatible string anymore.
Signed-off-by: Julien Masson <jmasson@baylibre.com>
Tested-by: Neil Armstrong <narmstrong@baylibre.com>
Acked-by: Neil Armstrong <narmstrong@baylibre.com>
Signed-off-by: Neil Armstrong <narmstrong@baylibre.com>
Link: https://patchwork.freedesktop.org/patch/msgid/87imqpz21w.fsf@masson.i-did-not-set--mail-host-address--so-tickle-me
Drop use of the deprecated drmP.h header.
While doing so used the opportunity
to clean up a little so includes are now
sorted and removed unused include files.
In a few cases added some forwards to allow header
files to built in different include order.
Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Acked-by: Emil Velikov <emil.velikov@collabora.com>
Reviewed-by: Alex Deucher <alexander.deucher@amd.com>
Cc: Neil Armstrong <narmstrong@baylibre.com>
Cc: Kevin Hilman <khilman@baylibre.com>
Cc: Maxime Jourdan <mjourdan@baylibre.com>
Cc: Jerome Brunet <jbrunet@baylibre.com>
Cc: linux-amlogic@lists.infradead.org
Cc: linux-arm-kernel@lists.infradead.org
Link: https://patchwork.freedesktop.org/patch/msgid/20190716064220.18157-2-sam@ravnborg.org
Based on 2 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation either version 2 of the license or at
your option any later version this program is distributed in the
hope that it will be useful but without any warranty without even
the implied warranty of merchantability or fitness for a particular
purpose see the gnu general public license for more details you
should have received a copy of the gnu general public license along
with this program if not see http www gnu org licenses
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation either version 2 of the license or at
your option any later version this program is distributed in the
hope that it will be useful but without any warranty without even
the implied warranty of merchantability or fitness for a particular
purpose see the gnu general public license for more details [based]
[from] [clk] [highbank] [c] you should have received a copy of the
gnu general public license along with this program if not see http
www gnu org licenses
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-or-later
has been chosen to replace the boilerplate/reference in 355 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Jilayne Lovejoy <opensource@jilayne.com>
Reviewed-by: Steve Winslow <swinslow@gmail.com>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190519154041.837383322@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This patch adds support for the new OSD+VD Plane blending module
in the CRTC code by adding the G12A code to manage the blending
module and setting the right OSD1 & VD1 plane registers.
Signed-off-by: Neil Armstrong <narmstrong@baylibre.com>
Tested-by: Jerome Brunet <jbrunet@baylibre.com>
Reviewed-by: Jerome Brunet <jbrunet@baylibre.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190325141824.21259-8-narmstrong@baylibre.com
Now that the DMC register range is no longer in the bindings, remove any
mention towards it and exclusively use the meson-canvas module.
Signed-off-by: Maxime Jourdan <mjourdan@baylibre.com>
Acked-by: Neil Armstrong <narmstrong@baylibre.com>
Signed-off-by: Neil Armstrong <narmstrong@baylibre.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190311105144.7276-3-mjourdan@baylibre.com
In preparation to support the Primary Plane scaling, move the basic
OSD Interlace-Only scaler setup code into the primary plane atomic
update callback and handle the vsync scaler update like the overlay
plane scaling registers update.
Signed-off-by: Neil Armstrong <narmstrong@baylibre.com>
Acked-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Link: https://patchwork.freedesktop.org/patch/msgid/1541497202-20570-3-git-send-email-narmstrong@baylibre.com
The Amlogic Meson GX SoCs support an Overlay plane behind the primary
plane for video rendering.
This Overlay plane support various YUV layouts :
- YUYV
- NV12 / NV21
- YUV444 / 422 / 420 / 411 / 410
The scaler supports a wide range of scaling ratios, but for simplicity,
plane atomic check limits the scaling from x5 to /5 in vertical and
horizontal scaling.
The z-order is fixed and always behind the primary plane and cannot be changed.
The scaling parameter algorithm was taken from the Amlogic vendor kernel
code and rewritten to match the atomic universal plane requirements.
The video rendering using this overlay plane support has been tested using
the new Kodi DRM-KMS Prime rendering path along the in-review V4L2 Mem2Mem
Hardware Video Decoder up to 3840x2160 NV12 frames on various display modes.
Signed-off-by: Neil Armstrong <narmstrong@baylibre.com>
Acked-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Tested-by: Maxime Jourdan <mjourdan@baylibre.com>
Link: https://patchwork.freedesktop.org/patch/msgid/1541497202-20570-2-git-send-email-narmstrong@baylibre.com
This is the first step into converting the meson/drm driver to use
the canvas module.
If a canvas provider node is detected in DT, use it. Otherwise,
fall back to what is currently being done.
Signed-off-by: Maxime Jourdan <mjourdan@baylibre.com>
Reviewed-by: Neil Armstrong <narmstrong@baylibre.com>
[narmstrong: added back priv in meson_drv_unbind()]
Signed-off-by: Neil Armstrong <narmstrong@baylibre.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20181105104508.23090-3-mjourdan@baylibre.com
The CMA helper is already using the drm_fb_helper_generic_probe part of
the generic fbdev emulation. This patch makes full use of the generic
fbdev emulation by using its drm_client callbacks. This means that
drm_mode_config_funcs->output_poll_changed and drm_driver->lastclose are
now handled by the emulation code. Additionally fbdev unregister happens
automatically on drm_dev_unregister().
The drm_fbdev_generic_setup() call is put after drm_dev_register() in the
driver. This is done to highlight the fact that fbdev emulation is an
internal client that makes use of the driver, it is not part of the
driver as such. If fbdev setup fails, an error is printed, but the driver
succeeds probing.
Cc: Neil Armstrong <narmstrong@baylibre.com>
Signed-off-by: Noralf Trønnes <noralf@tronnes.org>
Acked-by: Neil Armstrong <narmstrong@baylibre.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20180908134648.2582-6-noralf@tronnes.org
The plane buffer address/stride/height was incorrectly updated in the
plane_atomic_update operation instead of the vsync irq.
This patch delays this operation in the vsync irq along with the
other plane delayed setup.
This issue was masked using legacy framebuffer and X11 modesetting, but
is clearly visible using gbm rendering when buffer is submitted late after
vblank, like using software decoding and OpenGL rendering in Kodi.
With this patch, tearing and other artifacts disappears completely.
Cc: Michal Lazo <michal.lazo@gmail.com>
Fixes: bbbe775ec5 ("drm: Add support for Amlogic Meson Graphic Controller")
Signed-off-by: Neil Armstrong <narmstrong@baylibre.com>
Acked-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Link: https://patchwork.freedesktop.org/patch/msgid/1518689976-23292-1-git-send-email-narmstrong@baylibre.com
The Amlogic Meson GXBB/GXL/GXM SoCs embeds a Synopsys DesignWare HDMI TX
Controller with a custom Bridge + PHY around the Controller.
This driver makes uses of all the custom PHY plat data callbacks and enables
the compatible HDMI modes to be configured as a drm_encoder instance.
Acked-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Signed-off-by: Neil Armstrong <narmstrong@baylibre.com>
The Amlogic Meson Display controller is composed of several components :
DMC|---------------VPU (Video Processing Unit)----------------|------HHI------|
| vd1 _______ _____________ _________________ | |
D |-------| |----| | | | | HDMI PLL |
D | vd2 | VIU | | Video Post | | Video Encoders |<---|-----VCLK |
R |-------| |----| Processing | | | | |
| osd2 | | | |---| Enci ----------|----|-----VDAC------|
R |-------| CSC |----| Scalers | | Encp ----------|----|----HDMI-TX----|
A | osd1 | | | Blenders | | Encl ----------|----|---------------|
M |-------|______|----|____________| |________________| | |
___|__________________________________________________________|_______________|
VIU: Video Input Unit
---------------------
The Video Input Unit is in charge of the pixel scanout from the DDR memory.
It fetches the frames addresses, stride and parameters from the "Canvas" memory.
This part is also in charge of the CSC (Colorspace Conversion).
It can handle 2 OSD Planes and 2 Video Planes.
VPP: Video Post Processing
--------------------------
The Video Post Processing is in charge of the scaling and blending of the
various planes into a single pixel stream.
There is a special "pre-blending" used by the video planes with a dedicated
scaler and a "post-blending" to merge with the OSD Planes.
The OSD planes also have a dedicated scaler for one of the OSD.
VENC: Video Encoders
--------------------
The VENC is composed of the multiple pixel encoders :
- ENCI : Interlace Video encoder for CVBS and Interlace HDMI
- ENCP : Progressive Video Encoder for HDMI
- ENCL : LCD LVDS Encoder
The VENC Unit gets a Pixel Clocks (VCLK) from a dedicated HDMI PLL and clock
tree and provides the scanout clock to the VPP and VIU.
The ENCI is connected to a single VDAC for Composite Output.
The ENCI and ENCP are connected to an on-chip HDMI Transceiver.
This driver is a DRM/KMS driver using the following DRM components :
- GEM-CMA
- PRIME-CMA
- Atomic Modesetting
- FBDev-CMA
For the following SoCs :
- GXBB Family (S905)
- GXL Family (S905X, S905D)
- GXM Family (S912)
The current driver only supports the CVBS PAL/NTSC output modes, but the
CRTC/Planes management should support bigger modes.
But Advanced Colorspace Conversion, Scaling and HDMI Modes will be added in
a second time.
The Device Tree bindings makes use of the endpoints video interface definitions
to connect to the optional CVBS and in the future the HDMI Connector nodes.
HDMI Support is planned for a next release.
Acked-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Signed-off-by: Neil Armstrong <narmstrong@baylibre.com>