Replace uses of mem_encrypt_active() with calls to cc_platform_has() with
the CC_ATTR_MEM_ENCRYPT attribute.
Remove the implementation of mem_encrypt_active() across all arches.
For s390, since the default implementation of the cc_platform_has()
matches the s390 implementation of mem_encrypt_active(), cc_platform_has()
does not need to be implemented in s390 (the config option
ARCH_HAS_CC_PLATFORM is not set).
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210928191009.32551-9-bp@alien8.de
Replace uses of sev_es_active() with the more generic cc_platform_has()
using CC_ATTR_GUEST_STATE_ENCRYPT. If future support is added for other
memory encyrption techonologies, the use of CC_ATTR_GUEST_STATE_ENCRYPT
can be updated, as required.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210928191009.32551-8-bp@alien8.de
Replace uses of sev_active() with the more generic cc_platform_has()
using CC_ATTR_GUEST_MEM_ENCRYPT. If future support is added for other
memory encryption technologies, the use of CC_ATTR_GUEST_MEM_ENCRYPT
can be updated, as required.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210928191009.32551-7-bp@alien8.de
Replace uses of sme_active() with the more generic cc_platform_has()
using CC_ATTR_HOST_MEM_ENCRYPT. If future support is added for other
memory encryption technologies, the use of CC_ATTR_HOST_MEM_ENCRYPT
can be updated, as required.
This also replaces two usages of sev_active() that are really geared
towards detecting if SME is active.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210928191009.32551-6-bp@alien8.de
Introduce an x86 version of the cc_platform_has() function. This will be
used to replace vendor specific calls like sme_active(), sev_active(),
etc.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210928191009.32551-4-bp@alien8.de
In preparation for other uses of the cc_platform_has() function
besides AMD's memory encryption support, selectively build the
AMD memory encryption architecture override functions only when
CONFIG_AMD_MEM_ENCRYPT=y. These functions are:
- early_memremap_pgprot_adjust()
- arch_memremap_can_ram_remap()
Additionally, routines that are only invoked by these architecture
override functions can also be conditionally built. These functions are:
- memremap_should_map_decrypted()
- memremap_is_efi_data()
- memremap_is_setup_data()
- early_memremap_is_setup_data()
And finally, phys_mem_access_encrypted() is conditionally built as well,
but requires a static inline version of it when CONFIG_AMD_MEM_ENCRYPT is
not set.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210928191009.32551-2-bp@alien8.de
Current code has an explicit check for hitting the task stack guard;
but overflowing any of the other stacks will get you a non-descript
general #DF warning.
Improve matters by using get_stack_info_noinstr() to detetrmine if and
which stack guard page got hit, enabling a better stack warning.
In specific, Michael Wang reported what turned out to be an NMI
exception stack overflow, which is now clearly reported as such:
[] BUG: NMI stack guard page was hit at 0000000085fd977b (stack is 000000003a55b09e..00000000d8cce1a5)
Reported-by: Michael Wang <yun.wang@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Wang <yun.wang@linux.alibaba.com>
Link: https://lkml.kernel.org/r/YUTE/NuqnaWbST8n@hirez.programming.kicks-ass.net
The function __bad_area_nosemaphore() calls kernelmode_fixup_or_oops()
with the parameter @signal being actually @pkey, which will send a
signal numbered with the argument in @pkey.
This bug can be triggered when the kernel fails to access user-given
memory pages that are protected by a pkey, so it can go down the
do_user_addr_fault() path and pass the !user_mode() check in
__bad_area_nosemaphore().
Most cases will simply run the kernel fixup code to make an -EFAULT. But
when another condition current->thread.sig_on_uaccess_err is met, which
is only used to emulate vsyscall, the kernel will generate the wrong
signal.
Add a new parameter @pkey to kernelmode_fixup_or_oops() to fix this.
[ bp: Massage commit message, fix build error as reported by the 0day
bot: https://lkml.kernel.org/r/202109202245.APvuT8BX-lkp@intel.com ]
Fixes: 5042d40a26 ("x86/fault: Bypass no_context() for implicit kernel faults from usermode")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Jiashuo Liang <liangjs@pku.edu.cn>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lkml.kernel.org/r/20210730030152.249106-1-liangjs@pku.edu.cn
- Prevent a infinite loop in the MCE recovery on return to user space,
which was caused by a second MCE queueing work for the same page and
thereby creating a circular work list.
- Make kern_addr_valid() handle existing PMD entries, which are marked not
present in the higher level page table, correctly instead of blindly
dereferencing them.
- Pass a valid address to sanitize_phys(). This was caused by the mixture
of inclusive and exclusive ranges. memtype_reserve() expect 'end' being
exclusive, but sanitize_phys() wants it inclusive. This worked so far,
but with end being the end of the physical address space the fail is
exposed.
- Increase the maximum supported GPIO numbers for 64bit. Newer SoCs exceed
the previous maximum.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmFHhPIACgkQEsHwGGHe
VUqqQA/+MHQ2HxVOPxnJ0i/D1nK8ccNqTEkSN08z23RGnjqKQun/VaNIIceJY25f
Abeb2tI+0qRrdWVPVd5YqcTHuBLmnPs6Je3MfOrG47eQNW4/SmkXYuOexK80Bew3
YDgEV73d40rHcolXZCaonVajx+FmjoNvkDt5LpLvLcCxIyv0GClFBcZrFAm70AxI
Feax30koh3/MIFxHoXyADN8D+MJu1GxA6QWuoTK40s3G/gTTAwimkDgnNU1JXbcj
VvVVZaNnnAxjxrCa81blr9nDpHJCDinG9bdvDT3UDLous52hGMZTsHoHogxwfogT
EhIgPvL8hf+wm1WXA4NyvSNKZxsGfdkvIXaUq9XYHpLRD6Ao6x7jQDL039imucqb
9YtaH52GhG0SgJlYjkm/zrKezIjKLDen0ZYr/2iNTDM1p2GqQEFo07wC/ME8TkQ6
/BvtbkIvOuUz3nJeV4/AO+O4kaNvto9O2eHq9oodIN9nrwmlO5fMg8XO9nrhWB11
ChXEz6kPqta1nyZXy0mwOrlXlqzcusiroG4G9F7IBBz+t/gNwlu3uZuIgkQCXyYw
DgKz9cnQ3RdgCFknbmEwV5oCjewm7UdcgwaDAaelHIDuWMcshZFvMf1uSjnyg4Z/
39WI8W7W2aZnIoKWpvu8s7Gr8f1krE7C3xrkvl2WmbKPkxNAin8=
=7cq3
-----END PGP SIGNATURE-----
Merge tag 'x86_urgent_for_v5.15_rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Borislav Petkov:
- Prevent a infinite loop in the MCE recovery on return to user space,
which was caused by a second MCE queueing work for the same page and
thereby creating a circular work list.
- Make kern_addr_valid() handle existing PMD entries, which are marked
not present in the higher level page table, correctly instead of
blindly dereferencing them.
- Pass a valid address to sanitize_phys(). This was caused by the
mixture of inclusive and exclusive ranges. memtype_reserve() expect
'end' being exclusive, but sanitize_phys() wants it inclusive. This
worked so far, but with end being the end of the physical address
space the fail is exposed.
- Increase the maximum supported GPIO numbers for 64bit. Newer SoCs
exceed the previous maximum.
* tag 'x86_urgent_for_v5.15_rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mce: Avoid infinite loop for copy from user recovery
x86/mm: Fix kern_addr_valid() to cope with existing but not present entries
x86/platform: Increase maximum GPIO number for X86_64
x86/pat: Pass valid address to sanitize_phys()
The boot-time allocation interface for memblock is a mess, with
'memblock_alloc()' returning a virtual pointer, but then you are
supposed to free it with 'memblock_free()' that takes a _physical_
address.
Not only is that all kinds of strange and illogical, but it actually
causes bugs, when people then use it like a normal allocation function,
and it fails spectacularly on a NULL pointer:
https://lore.kernel.org/all/20210912140820.GD25450@xsang-OptiPlex-9020/
or just random memory corruption if the debug checks don't catch it:
https://lore.kernel.org/all/61ab2d0c-3313-aaab-514c-e15b7aa054a0@suse.cz/
I really don't want to apply patches that treat the symptoms, when the
fundamental cause is this horribly confusing interface.
I started out looking at just automating a sane replacement sequence,
but because of this mix or virtual and physical addresses, and because
people have used the "__pa()" macro that can take either a regular
kernel pointer, or just the raw "unsigned long" address, it's all quite
messy.
So this just introduces a new saner interface for freeing a virtual
address that was allocated using 'memblock_alloc()', and that was kept
as a regular kernel pointer. And then it converts a couple of users
that are obvious and easy to test, including the 'xbc_nodes' case in
lib/bootconfig.c that caused problems.
Reported-by: kernel test robot <oliver.sang@intel.com>
Fixes: 40caa127f3 ("init: bootconfig: Remove all bootconfig data when the init memory is removed")
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge more updates from Andrew Morton:
"147 patches, based on 7d2a07b769.
Subsystems affected by this patch series: mm (memory-hotplug, rmap,
ioremap, highmem, cleanups, secretmem, kfence, damon, and vmscan),
alpha, percpu, procfs, misc, core-kernel, MAINTAINERS, lib,
checkpatch, epoll, init, nilfs2, coredump, fork, pids, criu, kconfig,
selftests, ipc, and scripts"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (94 commits)
scripts: check_extable: fix typo in user error message
mm/workingset: correct kernel-doc notations
ipc: replace costly bailout check in sysvipc_find_ipc()
selftests/memfd: remove unused variable
Kconfig.debug: drop selecting non-existing HARDLOCKUP_DETECTOR_ARCH
configs: remove the obsolete CONFIG_INPUT_POLLDEV
prctl: allow to setup brk for et_dyn executables
pid: cleanup the stale comment mentioning pidmap_init().
kernel/fork.c: unexport get_{mm,task}_exe_file
coredump: fix memleak in dump_vma_snapshot()
fs/coredump.c: log if a core dump is aborted due to changed file permissions
nilfs2: use refcount_dec_and_lock() to fix potential UAF
nilfs2: fix memory leak in nilfs_sysfs_delete_snapshot_group
nilfs2: fix memory leak in nilfs_sysfs_create_snapshot_group
nilfs2: fix memory leak in nilfs_sysfs_delete_##name##_group
nilfs2: fix memory leak in nilfs_sysfs_create_##name##_group
nilfs2: fix NULL pointer in nilfs_##name##_attr_release
nilfs2: fix memory leak in nilfs_sysfs_create_device_group
trap: cleanup trap_init()
init: move usermodehelper_enable() to populate_rootfs()
...
Jiri Olsa reported a fault when running:
# cat /proc/kallsyms | grep ksys_read
ffffffff8136d580 T ksys_read
# objdump -d --start-address=0xffffffff8136d580 --stop-address=0xffffffff8136d590 /proc/kcore
/proc/kcore: file format elf64-x86-64
Segmentation fault
general protection fault, probably for non-canonical address 0xf887ffcbff000: 0000 [#1] SMP PTI
CPU: 12 PID: 1079 Comm: objdump Not tainted 5.14.0-rc5qemu+ #508
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.14.0-4.fc34 04/01/2014
RIP: 0010:kern_addr_valid
Call Trace:
read_kcore
? rcu_read_lock_sched_held
? rcu_read_lock_sched_held
? rcu_read_lock_sched_held
? trace_hardirqs_on
? rcu_read_lock_sched_held
? lock_acquire
? lock_acquire
? rcu_read_lock_sched_held
? lock_acquire
? rcu_read_lock_sched_held
? rcu_read_lock_sched_held
? rcu_read_lock_sched_held
? lock_release
? _raw_spin_unlock
? __handle_mm_fault
? rcu_read_lock_sched_held
? lock_acquire
? rcu_read_lock_sched_held
? lock_release
proc_reg_read
? vfs_read
vfs_read
ksys_read
do_syscall_64
entry_SYSCALL_64_after_hwframe
The fault happens because kern_addr_valid() dereferences existent but not
present PMD in the high kernel mappings.
Such PMDs are created when free_kernel_image_pages() frees regions larger
than 2Mb. In this case, a part of the freed memory is mapped with PMDs and
the set_memory_np_noalias() -> ... -> __change_page_attr() sequence will
mark the PMD as not present rather than wipe it completely.
Have kern_addr_valid() check whether higher level page table entries are
present before trying to dereference them to fix this issue and to avoid
similar issues in the future.
Stable backporting note:
------------------------
Note that the stable marking is for all active stable branches because
there could be cases where pagetable entries exist but are not valid -
see 9a14aefc1d ("x86: cpa, fix lookup_address"), for example. So make
sure to be on the safe side here and use pXY_present() accessors rather
than pXY_none() which could #GP when accessing pages in the direct map.
Also see:
c40a56a781 ("x86/mm/init: Remove freed kernel image areas from alias mapping")
for more info.
Reported-by: Jiri Olsa <jolsa@redhat.com>
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Tested-by: Jiri Olsa <jolsa@redhat.com>
Cc: <stable@vger.kernel.org> # 4.4+
Link: https://lkml.kernel.org/r/20210819132717.19358-1-rppt@kernel.org
Merge misc updates from Andrew Morton:
"173 patches.
Subsystems affected by this series: ia64, ocfs2, block, and mm (debug,
pagecache, gup, swap, shmem, memcg, selftests, pagemap, mremap,
bootmem, sparsemem, vmalloc, kasan, pagealloc, memory-failure,
hugetlb, userfaultfd, vmscan, compaction, mempolicy, memblock,
oom-kill, migration, ksm, percpu, vmstat, and madvise)"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (173 commits)
mm/madvise: add MADV_WILLNEED to process_madvise()
mm/vmstat: remove unneeded return value
mm/vmstat: simplify the array size calculation
mm/vmstat: correct some wrong comments
mm/percpu,c: remove obsolete comments of pcpu_chunk_populated()
selftests: vm: add COW time test for KSM pages
selftests: vm: add KSM merging time test
mm: KSM: fix data type
selftests: vm: add KSM merging across nodes test
selftests: vm: add KSM zero page merging test
selftests: vm: add KSM unmerge test
selftests: vm: add KSM merge test
mm/migrate: correct kernel-doc notation
mm: wire up syscall process_mrelease
mm: introduce process_mrelease system call
memblock: make memblock_find_in_range method private
mm/mempolicy.c: use in_task() in mempolicy_slab_node()
mm/mempolicy: unify the create() func for bind/interleave/prefer-many policies
mm/mempolicy: advertise new MPOL_PREFERRED_MANY
mm/hugetlb: add support for mempolicy MPOL_PREFERRED_MANY
...
There are a lot of uses of memblock_find_in_range() along with
memblock_reserve() from the times memblock allocation APIs did not exist.
memblock_find_in_range() is the very core of memblock allocations, so any
future changes to its internal behaviour would mandate updates of all the
users outside memblock.
Replace the calls to memblock_find_in_range() with an equivalent calls to
memblock_phys_alloc() and memblock_phys_alloc_range() and make
memblock_find_in_range() private method of memblock.
This simplifies the callers, ensures that (unlikely) errors in
memblock_reserve() are handled and improves maintainability of
memblock_find_in_range().
Link: https://lkml.kernel.org/r/20210816122622.30279-1-rppt@kernel.org
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> [arm64]
Acked-by: Kirill A. Shutemov <kirill.shtuemov@linux.intel.com>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> [ACPI]
Acked-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Acked-by: Nick Kossifidis <mick@ics.forth.gr> [riscv]
Tested-by: Guenter Roeck <linux@roeck-us.net>
Acked-by: Rob Herring <robh@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The end address passed to memtype_reserve() is handed directly to
sanitize_phys(). However, end is exclusive and sanitize_phys() expects
an inclusive address. If end falls at the end of the physical address
space, sanitize_phys() will return 0. This can result in drivers
failing to load, and the following warning:
WARNING: CPU: 26 PID: 749 at arch/x86/mm/pat.c:354 reserve_memtype+0x262/0x450
reserve_memtype failed: [mem 0x3ffffff00000-0xffffffffffffffff], req uncached-minus
Call Trace:
[<ffffffffa427b1f2>] reserve_memtype+0x262/0x450
[<ffffffffa42764aa>] ioremap_nocache+0x1a/0x20
[<ffffffffc04620a1>] mpt3sas_base_map_resources+0x151/0xa60 [mpt3sas]
[<ffffffffc0465555>] mpt3sas_base_attach+0xf5/0xa50 [mpt3sas]
---[ end trace 6d6eea4438db89ef ]---
ioremap reserve_memtype failed -22
mpt3sas_cm0: unable to map adapter memory! or resource not found
mpt3sas_cm0: failure at drivers/scsi/mpt3sas/mpt3sas_scsih.c:10597/_scsih_probe()!
Fix this by passing the inclusive end address to sanitize_phys().
Fixes: 510ee090ab ("x86/mm/pat: Prepare {reserve, free}_memtype() for "decoy" addresses")
Signed-off-by: Jeff Moyer <jmoyer@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/x49o8a3pu5i.fsf@segfault.boston.devel.redhat.com
A stop gap for potential future speculation related hardware
vulnerabilities and a mechanism for truly security paranoid
applications.
It allows a task to request that the L1D cache is flushed when the kernel
switches to a different mm. This can be requested via prctl().
Changes vs. the previous versions:
- Get rid of the software flush fallback
- Make the handling consistent with other mitigations
- Kill the task when it ends up on a SMT enabled core which defeats the
purpose of L1D flushing obviously
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmEsn0oTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoa5fD/47vHGtjAtDr/DaXR1C6F9AvVbKEl8p
oNHn8IukE6ts6G4dFH9wUvo/Ut0K3kxX54I+BATew0LTy6tsQeUYh/xjwXMupgNV
oKOc9waoqdFvju3ayLFWJmuACLdXpyrGC1j35Aji61zSbR/GdtZ4oDxbuN2YJDAT
BTcgKrBM5nQm94JNa083RQSCU5LJxbC7ETkIh6NR73RSPCjUC1Wpxy1sAQAa2MPD
8EzcJ/DjVGaHCI7adX10sz3xdUcyOz7qYz16HpoMGx+oSiq7pGEBtUiK97EYMcrB
s+ADFUjYmx/pbEWv2r4c9zxNh7ZV3aLBsWwi7bScHIsv8GjrsA/mYLWskuwOV6BB
22qZjfd0c4raiJwd+nmSx+D2Szv6lZ20gP+krtP2VNC6hUv7ft0VPLySiaFMmUHj
quooDZis/W5n+4C9Q8Rk9uUtKzzJOngqW+duftiixHiNQ/ECP/QCAHhZYck/NOkL
tZkNj6lJj9+2iR7mhbYROZ+wrYQzRvqNb2pJJQoi/wA0q7wPSKBi3m+51lPsht5W
tn94CpaDDZ4IB7Fe1NtcA0UpYJSWpDQGlau4qp92HMCCIcRFfQEm+m9x8axwcj7m
ECblHJYBPHuNcCHvPA8kHvr1nd6UUXrGPIo8TK8YhUUbK6pO0OjdNzZX496ia/2g
pLzaW2ENTPLbXg==
=27wH
-----END PGP SIGNATURE-----
Merge tag 'x86-cpu-2021-08-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cache flush updates from Thomas Gleixner:
"A reworked version of the opt-in L1D flush mechanism.
This is a stop gap for potential future speculation related hardware
vulnerabilities and a mechanism for truly security paranoid
applications.
It allows a task to request that the L1D cache is flushed when the
kernel switches to a different mm. This can be requested via prctl().
Changes vs the previous versions:
- Get rid of the software flush fallback
- Make the handling consistent with other mitigations
- Kill the task when it ends up on a SMT enabled core which defeats
the purpose of L1D flushing obviously"
* tag 'x86-cpu-2021-08-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
Documentation: Add L1D flushing Documentation
x86, prctl: Hook L1D flushing in via prctl
x86/mm: Prepare for opt-in based L1D flush in switch_mm()
x86/process: Make room for TIF_SPEC_L1D_FLUSH
sched: Add task_work callback for paranoid L1D flush
x86/mm: Refactor cond_ibpb() to support other use cases
x86/smp: Add a per-cpu view of SMT state
The functions get_online_cpus() and put_online_cpus() have been
deprecated during the CPU hotplug rework. They map directly to
cpus_read_lock() and cpus_read_unlock().
Replace deprecated CPU-hotplug functions with the official version.
The behavior remains unchanged.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Karol Herbst <kherbst@redhat.com>
Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Link: https://lore.kernel.org/r/20210803141621.780504-7-bigeasy@linutronix.de
The goal of this is to allow tasks that want to protect sensitive
information, against e.g. the recently found snoop assisted data sampling
vulnerabilites, to flush their L1D on being switched out. This protects
their data from being snooped or leaked via side channels after the task
has context switched out.
This could also be used to wipe L1D when an untrusted task is switched in,
but that's not a really well defined scenario while the opt-in variant is
clearly defined.
The mechanism is default disabled and can be enabled on the kernel command
line.
Prepare for the actual prctl based opt-in:
1) Provide the necessary setup functionality similar to the other
mitigations and enable the static branch when the command line option
is set and the CPU provides support for hardware assisted L1D
flushing. Software based L1D flush is not supported because it's CPU
model specific and not really well defined.
This does not come with a sysfs file like the other mitigations
because it is not bound to any specific vulnerability.
Support has to be queried via the prctl(2) interface.
2) Add TIF_SPEC_L1D_FLUSH next to L1D_SPEC_IB so the two bits can be
mangled into the mm pointer in one go which allows to reuse the
existing mechanism in switch_mm() for the conditional IBPB speculation
barrier efficiently.
3) Add the L1D flush specific functionality which flushes L1D when the
outgoing task opted in.
Also check whether the incoming task has requested L1D flush and if so
validate that it is not accidentaly running on an SMT sibling as this
makes the whole excercise moot because SMT siblings share L1D which
opens tons of other attack vectors. If that happens schedule task work
which signals the incoming task on return to user/guest with SIGBUS as
this is part of the paranoid L1D flush contract.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Balbir Singh <sblbir@amazon.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210108121056.21940-1-sblbir@amazon.com
cond_ibpb() has the necessary bits required to track the previous mm in
switch_mm_irqs_off(). This can be reused for other use cases like L1D
flushing on context switch.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Balbir Singh <sblbir@amazon.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210108121056.21940-3-sblbir@amazon.com
This reverts commit c742199a01.
c742199a01 ("mm/pgtable: add stubs for {pmd/pub}_{set/clear}_huge")
breaks arm64 in at least two ways for configurations where PUD or PMD
folding occur:
1. We no longer install huge-vmap mappings and silently fall back to
page-granular entries, despite being able to install block entries
at what is effectively the PGD level.
2. If the linear map is backed with block mappings, these will now
silently fail to be created in alloc_init_pud(), causing a panic
early during boot.
The pgtable selftests caught this, although a fix has not been
forthcoming and Christophe is AWOL at the moment, so just revert the
change for now to get a working -rc3 on which we can queue patches for
5.15.
A simple revert breaks the build for 32-bit PowerPC 8xx machines, which
rely on the default function definitions when the corresponding
page-table levels are folded, since commit a6a8f7c4aa ("powerpc/8xx:
add support for huge pages on VMAP and VMALLOC"), eg:
powerpc64-linux-ld: mm/vmalloc.o: in function `vunmap_pud_range':
linux/mm/vmalloc.c:362: undefined reference to `pud_clear_huge'
To avoid that, add stubs for pud_clear_huge() and pmd_clear_huge() in
arch/powerpc/mm/nohash/8xx.c as suggested by Christophe.
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Fixes: c742199a01 ("mm/pgtable: add stubs for {pmd/pub}_{set/clear}_huge")
Signed-off-by: Jonathan Marek <jonathan@marek.ca>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Marc Zyngier <maz@kernel.org>
[mpe: Fold in 8xx.c changes from Christophe and mention in change log]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/linux-arm-kernel/CAMuHMdXShORDox-xxaeUfDW3wx2PeggFSqhVSHVZNKCGK-y_vQ@mail.gmail.com/
Link: https://lore.kernel.org/r/20210717160118.9855-1-jonathan@marek.ca
Link: https://lore.kernel.org/r/87r1fs1762.fsf@mpe.ellerman.id.au
Signed-off-by: Will Deacon <will@kernel.org>
- Prevent sigaltstack out of bounds writes. The kernel unconditionally
writes the FPU state to the alternate stack without checking whether
the stack is large enough to accomodate it.
Check the alternate stack size before doing so and in case it's too
small force a SIGSEGV instead of silently corrupting user space data.
- MINSIGSTKZ and SIGSTKSZ are constants in signal.h and have never been
updated despite the fact that the FPU state which is stored on the
signal stack has grown over time which causes trouble in the field
when AVX512 is available on a CPU. The kernel does not expose the
minimum requirements for the alternate stack size depending on the
available and enabled CPU features.
ARM already added an aux vector AT_MINSIGSTKSZ for the same reason.
Add it to x86 as well
- A major cleanup of the x86 FPU code. The recent discoveries of XSTATE
related issues unearthed quite some inconsistencies, duplicated code
and other issues.
The fine granular overhaul addresses this, makes the code more robust
and maintainable, which allows to integrate upcoming XSTATE related
features in sane ways.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmDlcpETHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoeP5D/4i+AgYYeiMLgGb+NS7iaKPfoWo6LIz
y3qdTSA0DQaIYbYivWwRO/g0GYdDMXDWeZalFi7eGnVI8O3eOog+22Zrf/y0UINB
KJHdYd4ApWHhs401022y5hexrWQvnV8w1yQCuj/zLm6eC+AVhdwt2AY+IBoRrdUj
wqY97B/4rJNsBvvqTDn9EeDrJA2y0y0Suc7AhIp2BGMI+dpIdxys8RJDamXNWyDL
gJf0YRgUoiIn3AHKb+fgv60AoxfC175NSg/5/y/scFNXqVlW0Up4YCb7pqG9o2Ga
f3XvtWfbw1N5PmUYjFkALwEkzGUbM3v0RA3xLY2j2WlWm9fBPPy59dt+i/h/VKyA
GrA7i7lcIqX8dfVH6XkrReZBkRDSB6t9SZTvV54jAz5fcIZO2Rg++UFUvI/R6GKK
XCcxukYaArwo+IG62iqDszS3gfLGhcor/cviOeULRC5zMUIO4Jah+IhDnifmShtC
M5s9QzrwIRD/XMewGRQmvkiN4kBfE7jFoBQr1J9leCXJKrM+2JQmMzVInuubTQIq
SdlKOaAIn7xtekz+6XdFG9Gmhck0PCLMJMOLNvQkKWI3KqGLRZ+dAWKK0vsCizAx
0BA7ZeB9w9lFT+D8mQCX77JvW9+VNwyfwIOLIrJRHk3VqVpS5qvoiFTLGJJBdZx4
/TbbRZu7nXDN2w==
=Mq1m
-----END PGP SIGNATURE-----
Merge tag 'x86-fpu-2021-07-07' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fpu updates from Thomas Gleixner:
"Fixes and improvements for FPU handling on x86:
- Prevent sigaltstack out of bounds writes.
The kernel unconditionally writes the FPU state to the alternate
stack without checking whether the stack is large enough to
accomodate it.
Check the alternate stack size before doing so and in case it's too
small force a SIGSEGV instead of silently corrupting user space
data.
- MINSIGSTKZ and SIGSTKSZ are constants in signal.h and have never
been updated despite the fact that the FPU state which is stored on
the signal stack has grown over time which causes trouble in the
field when AVX512 is available on a CPU. The kernel does not expose
the minimum requirements for the alternate stack size depending on
the available and enabled CPU features.
ARM already added an aux vector AT_MINSIGSTKSZ for the same reason.
Add it to x86 as well.
- A major cleanup of the x86 FPU code. The recent discoveries of
XSTATE related issues unearthed quite some inconsistencies,
duplicated code and other issues.
The fine granular overhaul addresses this, makes the code more
robust and maintainable, which allows to integrate upcoming XSTATE
related features in sane ways"
* tag 'x86-fpu-2021-07-07' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (74 commits)
x86/fpu/xstate: Clear xstate header in copy_xstate_to_uabi_buf() again
x86/fpu/signal: Let xrstor handle the features to init
x86/fpu/signal: Handle #PF in the direct restore path
x86/fpu: Return proper error codes from user access functions
x86/fpu/signal: Split out the direct restore code
x86/fpu/signal: Sanitize copy_user_to_fpregs_zeroing()
x86/fpu/signal: Sanitize the xstate check on sigframe
x86/fpu/signal: Remove the legacy alignment check
x86/fpu/signal: Move initial checks into fpu__restore_sig()
x86/fpu: Mark init_fpstate __ro_after_init
x86/pkru: Remove xstate fiddling from write_pkru()
x86/fpu: Don't store PKRU in xstate in fpu_reset_fpstate()
x86/fpu: Remove PKRU handling from switch_fpu_finish()
x86/fpu: Mask PKRU from kernel XRSTOR[S] operations
x86/fpu: Hook up PKRU into ptrace()
x86/fpu: Add PKRU storage outside of task XSAVE buffer
x86/fpu: Dont restore PKRU in fpregs_restore_userspace()
x86/fpu: Rename xfeatures_mask_user() to xfeatures_mask_uabi()
x86/fpu: Move FXSAVE_LEAK quirk info __copy_kernel_to_fpregs()
x86/fpu: Rename __fpregs_load_activate() to fpregs_restore_userregs()
...
Merge more updates from Andrew Morton:
"190 patches.
Subsystems affected by this patch series: mm (hugetlb, userfaultfd,
vmscan, kconfig, proc, z3fold, zbud, ras, mempolicy, memblock,
migration, thp, nommu, kconfig, madvise, memory-hotplug, zswap,
zsmalloc, zram, cleanups, kfence, and hmm), procfs, sysctl, misc,
core-kernel, lib, lz4, checkpatch, init, kprobes, nilfs2, hfs,
signals, exec, kcov, selftests, compress/decompress, and ipc"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (190 commits)
ipc/util.c: use binary search for max_idx
ipc/sem.c: use READ_ONCE()/WRITE_ONCE() for use_global_lock
ipc: use kmalloc for msg_queue and shmid_kernel
ipc sem: use kvmalloc for sem_undo allocation
lib/decompressors: remove set but not used variabled 'level'
selftests/vm/pkeys: exercise x86 XSAVE init state
selftests/vm/pkeys: refill shadow register after implicit kernel write
selftests/vm/pkeys: handle negative sys_pkey_alloc() return code
selftests/vm/pkeys: fix alloc_random_pkey() to make it really, really random
kcov: add __no_sanitize_coverage to fix noinstr for all architectures
exec: remove checks in __register_bimfmt()
x86: signal: don't do sas_ss_reset() until we are certain that sigframe won't be abandoned
hfsplus: report create_date to kstat.btime
hfsplus: remove unnecessary oom message
nilfs2: remove redundant continue statement in a while-loop
kprobes: remove duplicated strong free_insn_page in x86 and s390
init: print out unknown kernel parameters
checkpatch: do not complain about positive return values starting with EPOLL
checkpatch: improve the indented label test
checkpatch: scripts/spdxcheck.py now requires python3
...
The preparation of splitting huge PMD mapping of vmemmap pages is ready,
so switch the mapping from PTE to PMD.
Link: https://lkml.kernel.org/r/20210616094915.34432-3-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Chen Huang <chenhuang5@huawei.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add a kernel parameter hugetlb_free_vmemmap to enable the feature of
freeing unused vmemmap pages associated with each hugetlb page on boot.
We disable PMD mapping of vmemmap pages for x86-64 arch when this feature
is enabled. Because vmemmap_remap_free() depends on vmemmap being base
page mapped.
Link: https://lkml.kernel.org/r/20210510030027.56044-8-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Barry Song <song.bao.hua@hisilicon.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Tested-by: Chen Huang <chenhuang5@huawei.com>
Tested-by: Bodeddula Balasubramaniam <bodeddub@amazon.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Oliver Neukum <oneukum@suse.com>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The option HUGETLB_PAGE_FREE_VMEMMAP allows for the freeing of some
vmemmap pages associated with pre-allocated HugeTLB pages. For example,
on X86_64 6 vmemmap pages of size 4KB each can be saved for each 2MB
HugeTLB page. 4094 vmemmap pages of size 4KB each can be saved for each
1GB HugeTLB page.
When a HugeTLB page is allocated or freed, the vmemmap array representing
the range associated with the page will need to be remapped. When a page
is allocated, vmemmap pages are freed after remapping. When a page is
freed, previously discarded vmemmap pages must be allocated before
remapping.
The config option is introduced early so that supporting code can be
written to depend on the option. The initial version of the code only
provides support for x86-64.
If config HAVE_BOOTMEM_INFO_NODE is enabled, the freeing vmemmap page code
denpend on it to free vmemmap pages. Otherwise, just use
free_reserved_page() to free vmemmmap pages. The routine
register_page_bootmem_info() is used to register bootmem info. Therefore,
make sure register_page_bootmem_info is enabled if
HUGETLB_PAGE_FREE_VMEMMAP is defined.
Link: https://lkml.kernel.org/r/20210510030027.56044-3-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Tested-by: Chen Huang <chenhuang5@huawei.com>
Tested-by: Bodeddula Balasubramaniam <bodeddub@amazon.com>
Reviewed-by: Balbir Singh <bsingharora@gmail.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Barry Song <song.bao.hua@hisilicon.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Oliver Neukum <oneukum@suse.com>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Free some vmemmap pages of HugeTLB page", v23.
This patch series will free some vmemmap pages(struct page structures)
associated with each HugeTLB page when preallocated to save memory.
In order to reduce the difficulty of the first version of code review. In
this version, we disable PMD/huge page mapping of vmemmap if this feature
was enabled. This acutely eliminates a bunch of the complex code doing
page table manipulation. When this patch series is solid, we cam add the
code of vmemmap page table manipulation in the future.
The struct page structures (page structs) are used to describe a physical
page frame. By default, there is an one-to-one mapping from a page frame
to it's corresponding page struct.
The HugeTLB pages consist of multiple base page size pages and is
supported by many architectures. See hugetlbpage.rst in the Documentation
directory for more details. On the x86 architecture, HugeTLB pages of
size 2MB and 1GB are currently supported. Since the base page size on x86
is 4KB, a 2MB HugeTLB page consists of 512 base pages and a 1GB HugeTLB
page consists of 4096 base pages. For each base page, there is a
corresponding page struct.
Within the HugeTLB subsystem, only the first 4 page structs are used to
contain unique information about a HugeTLB page. HUGETLB_CGROUP_MIN_ORDER
provides this upper limit. The only 'useful' information in the remaining
page structs is the compound_head field, and this field is the same for
all tail pages.
By removing redundant page structs for HugeTLB pages, memory can returned
to the buddy allocator for other uses.
When the system boot up, every 2M HugeTLB has 512 struct page structs which
size is 8 pages(sizeof(struct page) * 512 / PAGE_SIZE).
HugeTLB struct pages(8 pages) page frame(8 pages)
+-----------+ ---virt_to_page---> +-----------+ mapping to +-----------+
| | | 0 | -------------> | 0 |
| | +-----------+ +-----------+
| | | 1 | -------------> | 1 |
| | +-----------+ +-----------+
| | | 2 | -------------> | 2 |
| | +-----------+ +-----------+
| | | 3 | -------------> | 3 |
| | +-----------+ +-----------+
| | | 4 | -------------> | 4 |
| 2MB | +-----------+ +-----------+
| | | 5 | -------------> | 5 |
| | +-----------+ +-----------+
| | | 6 | -------------> | 6 |
| | +-----------+ +-----------+
| | | 7 | -------------> | 7 |
| | +-----------+ +-----------+
| |
| |
| |
+-----------+
The value of page->compound_head is the same for all tail pages. The
first page of page structs (page 0) associated with the HugeTLB page
contains the 4 page structs necessary to describe the HugeTLB. The only
use of the remaining pages of page structs (page 1 to page 7) is to point
to page->compound_head. Therefore, we can remap pages 2 to 7 to page 1.
Only 2 pages of page structs will be used for each HugeTLB page. This
will allow us to free the remaining 6 pages to the buddy allocator.
Here is how things look after remapping.
HugeTLB struct pages(8 pages) page frame(8 pages)
+-----------+ ---virt_to_page---> +-----------+ mapping to +-----------+
| | | 0 | -------------> | 0 |
| | +-----------+ +-----------+
| | | 1 | -------------> | 1 |
| | +-----------+ +-----------+
| | | 2 | ----------------^ ^ ^ ^ ^ ^
| | +-----------+ | | | | |
| | | 3 | ------------------+ | | | |
| | +-----------+ | | | |
| | | 4 | --------------------+ | | |
| 2MB | +-----------+ | | |
| | | 5 | ----------------------+ | |
| | +-----------+ | |
| | | 6 | ------------------------+ |
| | +-----------+ |
| | | 7 | --------------------------+
| | +-----------+
| |
| |
| |
+-----------+
When a HugeTLB is freed to the buddy system, we should allocate 6 pages
for vmemmap pages and restore the previous mapping relationship.
Apart from 2MB HugeTLB page, we also have 1GB HugeTLB page. It is similar
to the 2MB HugeTLB page. We also can use this approach to free the
vmemmap pages.
In this case, for the 1GB HugeTLB page, we can save 4094 pages. This is a
very substantial gain. On our server, run some SPDK/QEMU applications
which will use 1024GB HugeTLB page. With this feature enabled, we can
save ~16GB (1G hugepage)/~12GB (2MB hugepage) memory.
Because there are vmemmap page tables reconstruction on the
freeing/allocating path, it increases some overhead. Here are some
overhead analysis.
1) Allocating 10240 2MB HugeTLB pages.
a) With this patch series applied:
# time echo 10240 > /proc/sys/vm/nr_hugepages
real 0m0.166s
user 0m0.000s
sys 0m0.166s
# bpftrace -e 'kprobe:alloc_fresh_huge_page { @start[tid] = nsecs; }
kretprobe:alloc_fresh_huge_page /@start[tid]/ { @latency = hist(nsecs -
@start[tid]); delete(@start[tid]); }'
Attaching 2 probes...
@latency:
[8K, 16K) 5476 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
[16K, 32K) 4760 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ |
[32K, 64K) 4 | |
b) Without this patch series:
# time echo 10240 > /proc/sys/vm/nr_hugepages
real 0m0.067s
user 0m0.000s
sys 0m0.067s
# bpftrace -e 'kprobe:alloc_fresh_huge_page { @start[tid] = nsecs; }
kretprobe:alloc_fresh_huge_page /@start[tid]/ { @latency = hist(nsecs -
@start[tid]); delete(@start[tid]); }'
Attaching 2 probes...
@latency:
[4K, 8K) 10147 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
[8K, 16K) 93 | |
Summarize: this feature is about ~2x slower than before.
2) Freeing 10240 2MB HugeTLB pages.
a) With this patch series applied:
# time echo 0 > /proc/sys/vm/nr_hugepages
real 0m0.213s
user 0m0.000s
sys 0m0.213s
# bpftrace -e 'kprobe:free_pool_huge_page { @start[tid] = nsecs; }
kretprobe:free_pool_huge_page /@start[tid]/ { @latency = hist(nsecs -
@start[tid]); delete(@start[tid]); }'
Attaching 2 probes...
@latency:
[8K, 16K) 6 | |
[16K, 32K) 10227 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
[32K, 64K) 7 | |
b) Without this patch series:
# time echo 0 > /proc/sys/vm/nr_hugepages
real 0m0.081s
user 0m0.000s
sys 0m0.081s
# bpftrace -e 'kprobe:free_pool_huge_page { @start[tid] = nsecs; }
kretprobe:free_pool_huge_page /@start[tid]/ { @latency = hist(nsecs -
@start[tid]); delete(@start[tid]); }'
Attaching 2 probes...
@latency:
[4K, 8K) 6805 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
[8K, 16K) 3427 |@@@@@@@@@@@@@@@@@@@@@@@@@@ |
[16K, 32K) 8 | |
Summary: The overhead of __free_hugepage is about ~2-3x slower than before.
Although the overhead has increased, the overhead is not significant.
Like Mike said, "However, remember that the majority of use cases create
HugeTLB pages at or shortly after boot time and add them to the pool. So,
additional overhead is at pool creation time. There is no change to
'normal run time' operations of getting a page from or returning a page to
the pool (think page fault/unmap)".
Despite the overhead and in addition to the memory gains from this series.
The following data is obtained by Joao Martins. Very thanks to his
effort.
There's an additional benefit which is page (un)pinners will see an improvement
and Joao presumes because there are fewer memmap pages and thus the tail/head
pages are staying in cache more often.
Out of the box Joao saw (when comparing linux-next against linux-next +
this series) with gup_test and pinning a 16G HugeTLB file (with 1G pages):
get_user_pages(): ~32k -> ~9k
unpin_user_pages(): ~75k -> ~70k
Usually any tight loop fetching compound_head(), or reading tail pages
data (e.g. compound_head) benefit a lot. There's some unpinning
inefficiencies Joao was fixing[2], but with that in added it shows even
more:
unpin_user_pages(): ~27k -> ~3.8k
[1] https://lore.kernel.org/linux-mm/20210409205254.242291-1-mike.kravetz@oracle.com/
[2] https://lore.kernel.org/linux-mm/20210204202500.26474-1-joao.m.martins@oracle.com/
This patch (of 9):
Move bootmem info registration common API to individual bootmem_info.c.
And we will use {get,put}_page_bootmem() to initialize the page for the
vmemmap pages or free the vmemmap pages to buddy in the later patch. So
move them out of CONFIG_MEMORY_HOTPLUG_SPARSE. This is just code movement
without any functional change.
Link: https://lkml.kernel.org/r/20210510030027.56044-1-songmuchun@bytedance.com
Link: https://lkml.kernel.org/r/20210510030027.56044-2-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Tested-by: Chen Huang <chenhuang5@huawei.com>
Tested-by: Bodeddula Balasubramaniam <bodeddub@amazon.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: x86@kernel.org
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Oliver Neukum <oneukum@suse.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Mina Almasry <almasrymina@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Barry Song <song.bao.hua@hisilicon.com>
Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge misc updates from Andrew Morton:
"191 patches.
Subsystems affected by this patch series: kthread, ia64, scripts,
ntfs, squashfs, ocfs2, kernel/watchdog, and mm (gup, pagealloc, slab,
slub, kmemleak, dax, debug, pagecache, gup, swap, memcg, pagemap,
mprotect, bootmem, dma, tracing, vmalloc, kasan, initialization,
pagealloc, and memory-failure)"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (191 commits)
mm,hwpoison: make get_hwpoison_page() call get_any_page()
mm,hwpoison: send SIGBUS with error virutal address
mm/page_alloc: split pcp->high across all online CPUs for cpuless nodes
mm/page_alloc: allow high-order pages to be stored on the per-cpu lists
mm: replace CONFIG_FLAT_NODE_MEM_MAP with CONFIG_FLATMEM
mm: replace CONFIG_NEED_MULTIPLE_NODES with CONFIG_NUMA
docs: remove description of DISCONTIGMEM
arch, mm: remove stale mentions of DISCONIGMEM
mm: remove CONFIG_DISCONTIGMEM
m68k: remove support for DISCONTIGMEM
arc: remove support for DISCONTIGMEM
arc: update comment about HIGHMEM implementation
alpha: remove DISCONTIGMEM and NUMA
mm/page_alloc: move free_the_page
mm/page_alloc: fix counting of managed_pages
mm/page_alloc: improve memmap_pages dbg msg
mm: drop SECTION_SHIFT in code comments
mm/page_alloc: introduce vm.percpu_pagelist_high_fraction
mm/page_alloc: limit the number of pages on PCP lists when reclaim is active
mm/page_alloc: scale the number of pages that are batch freed
...
After removal of DISCINTIGMEM the NEED_MULTIPLE_NODES and NUMA
configuration options are equivalent.
Drop CONFIG_NEED_MULTIPLE_NODES and use CONFIG_NUMA instead.
Done with
$ sed -i 's/CONFIG_NEED_MULTIPLE_NODES/CONFIG_NUMA/' \
$(git grep -wl CONFIG_NEED_MULTIPLE_NODES)
$ sed -i 's/NEED_MULTIPLE_NODES/NUMA/' \
$(git grep -wl NEED_MULTIPLE_NODES)
with manual tweaks afterwards.
[rppt@linux.ibm.com: fix arm boot crash]
Link: https://lkml.kernel.org/r/YMj9vHhHOiCVN4BF@linux.ibm.com
Link: https://lkml.kernel.org/r/20210608091316.3622-9-rppt@kernel.org
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Vineet Gupta <vgupta@synopsys.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmDZe2gRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1iE/A/7BogdpwtZJmhfEALc4MPnRoEV5gD8x7Gl
oD8U/nlQa44q5qNO9Dxvfq9DnJHWAvt1eVTYw+fQ51NcPLhdtingqr/xmss20oLS
NWucku+sIcIUsSDMlcV4TiCwCzeAYUIH0QMDBuX4IXoChjwTEv2AVFtfaXfEheUu
ewl9VOMOP0pWEOfcfQVhjUBpPPZcXSX7QCKQv1iq5TLESfq5jCBEMee1NCB0GKOD
StAja4dFZ5KNsHi5koZ6ScyJwKISanRfs5fHizKxbfgUJa/D7h2TS1yHKTwBx4Uc
vlox5lMKh24RH8cNyhuNXJ/mIkka7S+X9PUcrc9bHk8r/nsyQ3ZH6pTAnt1KFBsR
SJwVQ9HwFfjM1fJWh5lXz/BLSP3RnmubjEMZkkSdEP5knxGOjp9gjlI/SwrcEF2/
JyiUtQgpeMKs2eEWKymg7NXSQYCVrlFqfIRXh0gytIUe3wUmxKcO4mY+4b4TVFAe
Xz45oRBWNO38Q6fyTcCPbOIa/GvHDiLgSiL0ddjiPki4ZybvonHhB2hEZtS5AD2/
2ozZa74Jq9cpdqLYJi+VOl/Zprc0c5XTdV5p9L5pfk9Q+rQb8SbTKHsVmV2s7d6R
9NvX0EwVFYnqsB5QHiN3LoQJhXRYTTbCTWbxanvq3/I8Km98NLBKX0bw4cM/wEuG
AJ0aiUQIyK8=
=A9h/
-----END PGP SIGNATURE-----
Merge tag 'x86-mm-2021-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 mm update from Ingo Molnar:
"Do not create the x86/init_pkru debugfs file if the CPU doesn't
support PKRU"
* tag 'x86-mm-2021-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/pkeys: Skip 'init_pkru' debugfs file creation when pkeys not supported
- Platform PMU driver updates:
- x86 Intel uncore driver updates for Skylake (SNR) and Icelake (ICX) servers
- Fix RDPMC support
- Fix [extended-]PEBS-via-PT support
- Fix Sapphire Rapids event constraints
- Fix :ppp support on Sapphire Rapids
- Fix fixed counter sanity check on Alder Lake & X86_FEATURE_HYBRID_CPU
- Other heterogenous-PMU fixes
- Kprobes:
- Remove the unused and misguided kprobe::fault_handler callbacks.
- Warn about kprobes taking a page fault.
- Fix the 'nmissed' stat counter.
- Misc cleanups and fixes.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmDZaxMRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1hPgw//f9SnGzFoP1uR5TBqM8j/QHulMewew/iD
dM5lh2emdmqHWYPBeRxUHgag38K2Golr3Y+NxLA3R+RMx+OZQe8Mz/wYvPQcBvsV
k1HHImU3GRMn4GM7GwxH3vPIottDUx3mNS2J6pzlw3kwRUVqrxUdj/0/pSY/4eJ7
ZT4uq4yLV83Jd3qioU7o7e/u6MrdNIIcAXRpVDdE9Mm1+kWXSVN7/h3Vsiz4tj5E
iS+UXEtSc1a2mnmekv63pYkJHHNUb6guD8jgI/wrm1KIFGjDRifM+3TV6R/kB96/
TfD2LhCcTShfSp8KI191pgV7/NQbB/PmLdSYmff3rTBiii4cqXuCygJCHInZ09z0
4fTSSqM6aHg7kfTQyOCp+DUQ+9vNVXWo8mxt9c6B8xA0GyCI3zhjQ4UIiSUWRpjs
Be5ZyF0kNNuPxYrKFnGnBf8+51DURpCz3sDdYRuK4KNkj1+4ZvJo/KzGTMUUIE4B
IDQG6wDP5Kb388eRDtKrG5X7IXg+L5F/kezin60j0QF5MwDgxirT217teN8H1lNn
YgWMjRK8Tw0flUJsbCxa51/nl93UtByB+fIRIc88MSeLxcI6/ORW+TxBBEqkYm5Z
6BLFtmHSuAqAXUuyZXSGLcW7XLJvIaDoHgvbDn6l4g7FMWHqPOIq6nJQY3L8ben2
e+fQrGh4noI=
=20Vc
-----END PGP SIGNATURE-----
Merge tag 'perf-core-2021-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf events updates from Ingo Molnar:
- Platform PMU driver updates:
- x86 Intel uncore driver updates for Skylake (SNR) and Icelake (ICX) servers
- Fix RDPMC support
- Fix [extended-]PEBS-via-PT support
- Fix Sapphire Rapids event constraints
- Fix :ppp support on Sapphire Rapids
- Fix fixed counter sanity check on Alder Lake & X86_FEATURE_HYBRID_CPU
- Other heterogenous-PMU fixes
- Kprobes:
- Remove the unused and misguided kprobe::fault_handler callbacks.
- Warn about kprobes taking a page fault.
- Fix the 'nmissed' stat counter.
- Misc cleanups and fixes.
* tag 'perf-core-2021-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf: Fix task context PMU for Hetero
perf/x86/intel: Fix instructions:ppp support in Sapphire Rapids
perf/x86/intel: Add more events requires FRONTEND MSR on Sapphire Rapids
perf/x86/intel: Fix fixed counter check warning for some Alder Lake
perf/x86/intel: Fix PEBS-via-PT reload base value for Extended PEBS
perf/x86: Reset the dirty counter to prevent the leak for an RDPMC task
kprobes: Do not increment probe miss count in the fault handler
x86,kprobes: WARN if kprobes tries to handle a fault
kprobes: Remove kprobe::fault_handler
uprobes: Update uprobe_write_opcode() kernel-doc comment
perf/hw_breakpoint: Fix DocBook warnings in perf hw_breakpoint
perf/core: Fix DocBook warnings
perf/core: Make local function perf_pmu_snapshot_aux() static
perf/x86/intel/uncore: Enable I/O stacks to IIO PMON mapping on ICX
perf/x86/intel/uncore: Enable I/O stacks to IIO PMON mapping on SNR
perf/x86/intel/uncore: Generalize I/O stacks to PMON mapping procedure
perf/x86/intel/uncore: Drop unnecessary NULL checks after container_of()
As the PKRU state is managed separately restoring it from the xstate
buffer would be counterproductive as it might either restore a stale
value or reinit the PKRU state to 0.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210623121456.606745195@linutronix.de
There is no point in using copy_init_pkru_to_fpregs() which in turn calls
write_pkru(). write_pkru() tries to fiddle with the task's xstate buffer
for nothing because the XRSTOR[S](init_fpstate) just cleared the xfeature
flag in the xstate header which makes get_xsave_addr() fail.
It's a useless exercise anyway because the reinitialization activates the
FPU so before the task's xstate buffer can be used again a XRSTOR[S] must
happen which in turn dumps the PKRU value.
Get rid of the now unused copy_init_pkru_to_fpregs().
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210623121455.732508792@linutronix.de
X86_FEATURE_OSPKE is enabled first on the boot CPU and the feature flag is
set. Secondary CPUs have to enable CR4.PKE as well and set their per CPU
feature flag. That's ineffective because all call sites have checks for
boot_cpu_data.
Make it smarter and force the feature flag when PKU is enabled on the boot
cpu which allows then to use cpu_feature_enabled(X86_FEATURE_OSPKE) all
over the place. That either compiles the code out when PKEY support is
disabled in Kconfig or uses a static_cpu_has() for the feature check which
makes a significant difference in hotpaths, e.g. context switch.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210623121455.305113644@linutronix.de
write_pkru() was originally used just to write to the PKRU register. It
was mercifully short and sweet and was not out of place in pgtable.h with
some other pkey-related code.
But, later work included a requirement to also modify the task XSAVE
buffer when updating the register. This really is more related to the
XSAVE architecture than to paging.
Move the read/write_pkru() to asm/pkru.h. pgtable.h won't miss them.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210623121455.102647114@linutronix.de
This is not a copy functionality. It restores the register state from the
supplied kernel buffer.
No functional changes.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210623121454.716058365@linutronix.de
This cannot work and it's unclear how that ever made a difference.
init_fpstate.xsave.header.xfeatures is always 0 so get_xsave_addr() will
always return a NULL pointer, which will prevent storing the default PKRU
value in init_fpstate.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210623121451.451391598@linutronix.de
tl;dr:
Several SGX users reported seeing the following message on NUMA systems:
sgx: [Firmware Bug]: Unable to map EPC section to online node. Fallback to the NUMA node 0.
This turned out to be the memblock code mistakenly throwing away SGX
memory.
=== Full Changelog ===
The 'max_pfn' variable represents the highest known RAM address. It can
be used, for instance, to quickly determine for which physical addresses
there is mem_map[] space allocated. The numa_meminfo code makes an
effort to throw out ("trim") all memory blocks which are above 'max_pfn'.
SGX memory is not considered RAM (it is marked as "Reserved" in the
e820) and is not taken into account by max_pfn. Despite this, SGX memory
areas have NUMA affinity and are enumerated in the ACPI SRAT table. The
existing SGX code uses the numa_meminfo mechanism to look up the NUMA
affinity for its memory areas.
In cases where SGX memory was above max_pfn (usually just the one EPC
section in the last highest NUMA node), the numa_memblock is truncated
at 'max_pfn', which is below the SGX memory. When the SGX code tries to
look up the affinity of this memory, it fails and produces an error message:
sgx: [Firmware Bug]: Unable to map EPC section to online node. Fallback to the NUMA node 0.
and assigns the memory to NUMA node 0.
Instead of silently truncating the memory block at 'max_pfn' and
dropping the SGX memory, add the truncated portion to
'numa_reserved_meminfo'. This allows the SGX code to later determine
the NUMA affinity of its 'Reserved' area.
Before, numa_meminfo looked like this (from 'crash'):
blk = { start = 0x0, end = 0x2080000000, nid = 0x0 }
{ start = 0x2080000000, end = 0x4000000000, nid = 0x1 }
numa_reserved_meminfo is empty.
With this, numa_meminfo looks like this:
blk = { start = 0x0, end = 0x2080000000, nid = 0x0 }
{ start = 0x2080000000, end = 0x4000000000, nid = 0x1 }
and numa_reserved_meminfo has an entry for node 1's SGX memory:
blk = { start = 0x4000000000, end = 0x4080000000, nid = 0x1 }
[ daveh: completely rewrote/reworked changelog ]
Fixes: 5d30f92e76 ("x86/NUMA: Provide a range-to-target_node lookup facility")
Reported-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Fan Du <fan.du@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20210617194657.0A99CB22@viggo.jf.intel.com
The counter value of a perf task may leak to another RDPMC task.
For example, a perf stat task as below is running on CPU 0.
perf stat -e 'branches,cycles' -- taskset -c 0 ./workload
In the meantime, an RDPMC task, which is also running on CPU 0, may read
the GP counters periodically. (The RDPMC task creates a fixed event,
but read four GP counters.)
$./rdpmc_read_all_counters
index 0x0 value 0x8001e5970f99
index 0x1 value 0x8005d750edb6
index 0x2 value 0x0
index 0x3 value 0x0
index 0x0 value 0x8002358e48a5
index 0x1 value 0x8006bd1e3bc9
index 0x2 value 0x0
index 0x3 value 0x0
It is a potential security issue. Once the attacker knows what the other
thread is counting. The PerfMon counter can be used as a side-channel to
attack cryptosystems.
The counter value of the perf stat task leaks to the RDPMC task because
perf never clears the counter when it's stopped.
Three methods were considered to address the issue.
- Unconditionally reset the counter in x86_pmu_del(). It can bring extra
overhead even when there is no RDPMC task running.
- Only reset the un-assigned dirty counters when the RDPMC task is
scheduled in via sched_task(). It fails for the below case.
Thread A Thread B
clone(CLONE_THREAD) --->
set_affine(0)
set_affine(1)
while (!event-enabled)
;
event = perf_event_open()
mmap(event)
ioctl(event, IOC_ENABLE); --->
RDPMC
Counters are still leaked to the thread B.
- Only reset the un-assigned dirty counters before updating the CR4.PCE
bit. The method is implemented here.
The dirty counter is a counter, on which the assigned event has been
deleted, but the counter is not reset. To track the dirty counters,
add a 'dirty' variable in the struct cpu_hw_events.
The security issue can only be found with an RDPMC task. To enable the
RDMPC, the CR4.PCE bit has to be updated. Add a
perf_clear_dirty_counters() right before updating the CR4.PCE bit to
clear the existing dirty counters. Only the current un-assigned dirty
counters are reset, because the RDPMC assigned dirty counters will be
updated soon.
After applying the patch,
$ ./rdpmc_read_all_counters
index 0x0 value 0x0
index 0x1 value 0x0
index 0x2 value 0x0
index 0x3 value 0x0
index 0x0 value 0x0
index 0x1 value 0x0
index 0x2 value 0x0
index 0x3 value 0x0
Performance
The performance of a context switch only be impacted when there are two
or more perf users and one of the users must be an RDPMC user. In other
cases, there is no performance impact.
The worst-case occurs when there are two users: the RDPMC user only
uses one counter; while the other user uses all available counters.
When the RDPMC task is scheduled in, all the counters, other than the
RDPMC assigned one, have to be reset.
Test results for the worst-case, using a modified lat_ctx as measured
on an Ice Lake platform, which has 8 GP and 3 FP counters (ignoring
SLOTS).
lat_ctx -s 128K -N 1000 processes 2
Without the patch:
The context switch time is 4.97 us
With the patch:
The context switch time is 5.16 us
There is ~4% performance drop for the context switching time in the
worst-case.
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1623693582-187370-1-git-send-email-kan.liang@linux.intel.com
Some drivers require memory that is marked as EFI boot services
data. In order for this memory to not be re-used by the kernel
after ExitBootServices(), efi_mem_reserve() is used to preserve it
by inserting a new EFI memory descriptor and marking it with the
EFI_MEMORY_RUNTIME attribute.
Under SEV, memory marked with the EFI_MEMORY_RUNTIME attribute needs to
be mapped encrypted by Linux, otherwise the kernel might crash at boot
like below:
EFI Variables Facility v0.08 2004-May-17
general protection fault, probably for non-canonical address 0x3597688770a868b2: 0000 [#1] SMP NOPTI
CPU: 13 PID: 1 Comm: swapper/0 Not tainted 5.12.4-2-default #1 openSUSE Tumbleweed
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
RIP: 0010:efi_mokvar_entry_next
[...]
Call Trace:
efi_mokvar_sysfs_init
? efi_mokvar_table_init
do_one_initcall
? __kmalloc
kernel_init_freeable
? rest_init
kernel_init
ret_from_fork
Expand the __ioremap_check_other() function to additionally check for
this other type of boot data reserved at runtime and indicate that it
should be mapped encrypted for an SEV guest.
[ bp: Massage commit message. ]
Fixes: 58c909022a ("efi: Support for MOK variable config table")
Reported-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Joerg Roedel <jroedel@suse.de>
Cc: <stable@vger.kernel.org> # 5.10+
Link: https://lkml.kernel.org/r/20210608095439.12668-2-joro@8bytes.org
The first two bits of the CPUID leaf 0x8000001F EAX indicate whether SEV
or SME is supported, respectively. It's better to check whether SEV or
SME is actually supported before accessing the MSR_AMD64_SEV to check
whether SEV or SME is enabled.
This is both a bare-metal issue and a guest/VM issue. Since the first
generation Hygon Dhyana CPU doesn't support the MSR_AMD64_SEV, reading that
MSR results in a #GP - either directly from hardware in the bare-metal
case or via the hypervisor (because the RDMSR is actually intercepted)
in the guest/VM case, resulting in a failed boot. And since this is very
early in the boot phase, rdmsrl_safe()/native_read_msr_safe() can't be
used.
So check the CPUID bits first, before accessing the MSR.
[ tlendacky: Expand and improve commit message. ]
[ bp: Massage commit message. ]
Fixes: eab696d8e8 ("x86/sev: Do not require Hypervisor CPUID bit for SEV guests")
Signed-off-by: Pu Wen <puwen@hygon.cn>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Tom Lendacky <thomas.lendacky@amd.com>
Cc: <stable@vger.kernel.org> # v5.10+
Link: https://lkml.kernel.org/r/20210602070207.2480-1-puwen@hygon.cn
The PKRU hardware is permissive by default: all reads and writes are
allowed. The in-kernel policy is restrictive by default: deny all
unnecessary access until explicitly requested.
That policy can be modified with a debugfs file: "x86/init_pkru".
This file is created unconditionally, regardless of PKRU support in
the hardware, which is a little silly.
Avoid creating the file when pkeys are not available. This also
removes the need to check for pkey support at runtime, which would be
required once the new pkey modification infrastructure is put in place
later in this series.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210603230810.113FF3F2@viggo.jf.intel.com
__bad_area_nosemaphore() calls both force_sig_pkuerr() and
force_sig_fault() when handling SEGV_PKUERR. This does not cause
problems because the second signal is filtered by the legacy_queue()
check in __send_signal() because in both cases, the signal is SIGSEGV,
the second one seeing that the first one is already pending.
This causes the kernel to do unnecessary work so send the signal only
once for SEGV_PKUERR.
[ bp: Massage commit message. ]
Fixes: 9db812dbb2 ("signal/x86: Call force_sig_pkuerr from __bad_area_nosemaphore")
Suggested-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Jiashuo Liang <liangjs@pku.edu.cn>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Link: https://lkml.kernel.org/r/20210601085203.40214-1-liangjs@pku.edu.cn
With the removal of kprobe::handle_fault there is no reason left that
kprobe_page_fault() would ever return true on x86, make sure it
doesn't happen by accident.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Link: https://lore.kernel.org/r/20210525073213.660594073@infradead.org
The SYSCFG MSR continued being updated beyond the K8 family; drop the K8
name from it.
Suggested-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Joerg Roedel <jroedel@suse.de>
Link: https://lkml.kernel.org/r/20210427111636.1207-4-brijesh.singh@amd.com
SEV-SNP builds upon the SEV-ES functionality while adding new hardware
protection. Version 2 of the GHCB specification adds new NAE events that
are SEV-SNP specific. Rename the sev-es.{ch} to sev.{ch} so that all
SEV* functionality can be consolidated in one place.
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Joerg Roedel <jroedel@suse.de>
Link: https://lkml.kernel.org/r/20210427111636.1207-2-brijesh.singh@amd.com