Commit graph

232 commits

Author SHA1 Message Date
Linus Torvalds
98931dd95f Yang Shi has improved the behaviour of khugepaged collapsing of readonly
file-backed transparent hugepages.
 
 Johannes Weiner has arranged for zswap memory use to be tracked and
 managed on a per-cgroup basis.
 
 Munchun Song adds a /proc knob ("hugetlb_optimize_vmemmap") for runtime
 enablement of the recent huge page vmemmap optimization feature.
 
 Baolin Wang contributes a series to fix some issues around hugetlb
 pagetable invalidation.
 
 Zhenwei Pi has fixed some interactions between hwpoisoned pages and
 virtualization.
 
 Tong Tiangen has enabled the use of the presently x86-only
 page_table_check debugging feature on arm64 and riscv.
 
 David Vernet has done some fixup work on the memcg selftests.
 
 Peter Xu has taught userfaultfd to handle write protection faults against
 shmem- and hugetlbfs-backed files.
 
 More DAMON development from SeongJae Park - adding online tuning of the
 feature and support for monitoring of fixed virtual address ranges.  Also
 easier discovery of which monitoring operations are available.
 
 Nadav Amit has done some optimization of TLB flushing during mprotect().
 
 Neil Brown continues to labor away at improving our swap-over-NFS support.
 
 David Hildenbrand has some fixes to anon page COWing versus
 get_user_pages().
 
 Peng Liu fixed some errors in the core hugetlb code.
 
 Joao Martins has reduced the amount of memory consumed by device-dax's
 compound devmaps.
 
 Some cleanups of the arch-specific pagemap code from Anshuman Khandual.
 
 Muchun Song has found and fixed some errors in the TLB flushing of
 transparent hugepages.
 
 Roman Gushchin has done more work on the memcg selftests.
 
 And, of course, many smaller fixes and cleanups.  Notably, the customary
 million cleanup serieses from Miaohe Lin.
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCYo52xQAKCRDdBJ7gKXxA
 jtJFAQD238KoeI9z5SkPMaeBRYSRQmNll85mxs25KapcEgWgGQD9FAb7DJkqsIVk
 PzE+d9hEfirUGdL6cujatwJ6ejYR8Q8=
 =nFe6
 -----END PGP SIGNATURE-----

Merge tag 'mm-stable-2022-05-25' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

Pull MM updates from Andrew Morton:
 "Almost all of MM here. A few things are still getting finished off,
  reviewed, etc.

   - Yang Shi has improved the behaviour of khugepaged collapsing of
     readonly file-backed transparent hugepages.

   - Johannes Weiner has arranged for zswap memory use to be tracked and
     managed on a per-cgroup basis.

   - Munchun Song adds a /proc knob ("hugetlb_optimize_vmemmap") for
     runtime enablement of the recent huge page vmemmap optimization
     feature.

   - Baolin Wang contributes a series to fix some issues around hugetlb
     pagetable invalidation.

   - Zhenwei Pi has fixed some interactions between hwpoisoned pages and
     virtualization.

   - Tong Tiangen has enabled the use of the presently x86-only
     page_table_check debugging feature on arm64 and riscv.

   - David Vernet has done some fixup work on the memcg selftests.

   - Peter Xu has taught userfaultfd to handle write protection faults
     against shmem- and hugetlbfs-backed files.

   - More DAMON development from SeongJae Park - adding online tuning of
     the feature and support for monitoring of fixed virtual address
     ranges. Also easier discovery of which monitoring operations are
     available.

   - Nadav Amit has done some optimization of TLB flushing during
     mprotect().

   - Neil Brown continues to labor away at improving our swap-over-NFS
     support.

   - David Hildenbrand has some fixes to anon page COWing versus
     get_user_pages().

   - Peng Liu fixed some errors in the core hugetlb code.

   - Joao Martins has reduced the amount of memory consumed by
     device-dax's compound devmaps.

   - Some cleanups of the arch-specific pagemap code from Anshuman
     Khandual.

   - Muchun Song has found and fixed some errors in the TLB flushing of
     transparent hugepages.

   - Roman Gushchin has done more work on the memcg selftests.

  ... and, of course, many smaller fixes and cleanups. Notably, the
  customary million cleanup serieses from Miaohe Lin"

* tag 'mm-stable-2022-05-25' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (381 commits)
  mm: kfence: use PAGE_ALIGNED helper
  selftests: vm: add the "settings" file with timeout variable
  selftests: vm: add "test_hmm.sh" to TEST_FILES
  selftests: vm: check numa_available() before operating "merge_across_nodes" in ksm_tests
  selftests: vm: add migration to the .gitignore
  selftests/vm/pkeys: fix typo in comment
  ksm: fix typo in comment
  selftests: vm: add process_mrelease tests
  Revert "mm/vmscan: never demote for memcg reclaim"
  mm/kfence: print disabling or re-enabling message
  include/trace/events/percpu.h: cleanup for "percpu: improve percpu_alloc_percpu event trace"
  include/trace/events/mmflags.h: cleanup for "tracing: incorrect gfp_t conversion"
  mm: fix a potential infinite loop in start_isolate_page_range()
  MAINTAINERS: add Muchun as co-maintainer for HugeTLB
  zram: fix Kconfig dependency warning
  mm/shmem: fix shmem folio swapoff hang
  cgroup: fix an error handling path in alloc_pagecache_max_30M()
  mm: damon: use HPAGE_PMD_SIZE
  tracing: incorrect isolate_mote_t cast in mm_vmscan_lru_isolate
  nodemask.h: fix compilation error with GCC12
  ...
2022-05-26 12:32:41 -07:00
Peter Collingbourne
d949a8155d mm: make minimum slab alignment a runtime property
When CONFIG_KASAN_HW_TAGS is enabled we currently increase the minimum
slab alignment to 16.  This happens even if MTE is not supported in
hardware or disabled via kasan=off, which creates an unnecessary memory
overhead in those cases.  Eliminate this overhead by making the minimum
slab alignment a runtime property and only aligning to 16 if KASAN is
enabled at runtime.

On a DragonBoard 845c (non-MTE hardware) with a kernel built with
CONFIG_KASAN_HW_TAGS, waiting for quiescence after a full Android boot I
see the following Slab measurements in /proc/meminfo (median of 3
reboots):

Before: 169020 kB
After:  167304 kB

[akpm@linux-foundation.org: make slab alignment type `unsigned int' to avoid casting]
Link: https://linux-review.googlesource.com/id/I752e725179b43b144153f4b6f584ceb646473ead
Link: https://lkml.kernel.org/r/20220427195820.1716975-2-pcc@google.com
Signed-off-by: Peter Collingbourne <pcc@google.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Tested-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Acked-by: David Rientjes <rientjes@google.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Kees Cook <keescook@chromium.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-13 07:20:07 -07:00
Andrey Konovalov
154036a3b3 mm: slab: fix comment for __assume_kmalloc_alignment
The comment next to the __assume_kmalloc_alignment definition is not
precise: kmalloc relies on kmem_cache_alloc, so kmalloc technically returns
pointers aligned to both ARCH_KMALLOC_MINALIGN and ARCH_SLAB_MINALIGN,
not only to ARCH_KMALLOC_MINALIGN.

(See create_kmalloc_cache()->create_boot_cache()->calculate_alignment()
 for SLAB and SLUB and __do_kmalloc_node() for SLOB.)

Clarify the comment.

The assumption specified by __assume_kmalloc_alignment is still correct,
although it can be made stronger. I'll leave this to a separate patch.

Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Link: https://lore.kernel.org/r/84d8142747230f2015eaf9705ee7c2e1a9f56596.1651161548.git.andreyknvl@google.com
2022-05-02 10:47:25 +02:00
Andrey Konovalov
8cf9e1210a mm: slab: fix comment for ARCH_KMALLOC_MINALIGN
The comment next to the ARCH_KMALLOC_MINALIGN definition says that
ARCH_KMALLOC_MINALIGN can be defined in arch headers. This is incorrect:
it's actually ARCH_DMA_MINALIGN that can be defined there.

Fix the comment.

Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Link: https://lore.kernel.org/r/fe1ca7a25a054b61d1038686d07569416e287e7b.1651161548.git.andreyknvl@google.com
2022-05-02 10:47:07 +02:00
Hyeonggon Yoo
a285909f47 mm/slub, kunit: Make slub_kunit unaffected by user specified flags
slub_kunit does not expect other debugging flags to be set when running
tests. When SLAB_RED_ZONE flag is set globally, test fails because the
flag affects number of errors reported.

To make slub_kunit unaffected by user specified debugging flags,
introduce SLAB_NO_USER_FLAGS to ignore them. With this flag, only flags
specified in the code are used and others are ignored.

Suggested-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Link: https://lore.kernel.org/r/Yk0sY9yoJhFEXWOg@hyeyoo
2022-04-06 10:11:48 +02:00
Linus Torvalds
c5c009e250 slab updates for 5.18
-----BEGIN PGP SIGNATURE-----
 
 iQEzBAABCAAdFiEEjUuTAak14xi+SF7M4CHKc/GJqRAFAmI4yWsACgkQ4CHKc/GJ
 qRAUhQf8CE5dBIblFU6Nfbiv/GHSu2AoHw8DRseeC7uSLGUzP9h2l1c0zMBzLIrf
 ujKQGU/8n2AgUZBwxd59vbi0WHLD7K9qr3Yj6hH0QnTmHiv89GXEnYXrHHAJ506q
 OGzT7NUiz5pEHrFyE5yqKQ2axy+Q+JrAfyzHQPEdzNtl0DJurVuHATYz5b9Pk6zW
 27PrCIFjQyIkqw2s9oBCYZevAZkiAoxXntzhXicrqksZs4htArzn7LDTulpccnhy
 6hwrCSg91E1Tza8oTNOCNvXt/YUGa6Q1RBEeUDmLOLwHSuOIfTPb5zW25vCvpyMK
 008OYHcw7tspWnEfAEWqIDwMFWcjDg==
 =2g9n
 -----END PGP SIGNATURE-----

Merge tag 'slab-for-5.18' of git://git.kernel.org/pub/scm/linux/kernel/git/vbabka/slab

Pull slab updates from Vlastimil Babka:

 - A few non-trivial SLUB code cleanups, most notably a refactoring of
   deactivate_slab().

 - A bunch of trivial changes, such as removal of unused parameters,
   making stuff static, and employing helper functions.

* tag 'slab-for-5.18' of git://git.kernel.org/pub/scm/linux/kernel/git/vbabka/slab:
  mm: slub: Delete useless parameter of alloc_slab_page()
  mm: slab: Delete unused SLAB_DEACTIVATED flag
  mm/slub: remove forced_order parameter in calculate_sizes
  mm/slub: refactor deactivate_slab()
  mm/slub: limit number of node partial slabs only in cache creation
  mm/slub: use helper macro __ATTR_XX_MODE for SLAB_ATTR(_RO)
  mm/slab_common: use helper function is_power_of_2()
  mm/slob: make kmem_cache_boot static
2022-03-23 12:33:21 -07:00
Muchun Song
88f2ef73fd mm: introduce kmem_cache_alloc_lru
We currently allocate scope for every memcg to be able to tracked on
every superblock instantiated in the system, regardless of whether that
superblock is even accessible to that memcg.

These huge memcg counts come from container hosts where memcgs are
confined to just a small subset of the total number of superblocks that
instantiated at any given point in time.

For these systems with huge container counts, list_lru does not need the
capability of tracking every memcg on every superblock.  What it comes
down to is that adding the memcg to the list_lru at the first insert.
So introduce kmem_cache_alloc_lru to allocate objects and its list_lru.
In the later patch, we will convert all inode and dentry allocation from
kmem_cache_alloc to kmem_cache_alloc_lru.

Link: https://lkml.kernel.org/r/20220228122126.37293-3-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Cc: Alex Shi <alexs@kernel.org>
Cc: Anna Schumaker <Anna.Schumaker@Netapp.com>
Cc: Chao Yu <chao@kernel.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Fam Zheng <fam.zheng@bytedance.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kari Argillander <kari.argillander@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Trond Myklebust <trond.myklebust@hammerspace.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-22 15:57:03 -07:00
Vlastimil Babka
acbfab16cc Merge branch 'slab/for-5.18/trivial' into slab/for-linus
Trivial slab code changes:
- deleting unused parameters and flags
- using helper macros and functions
- making structures static
2022-03-21 19:46:05 +01:00
Xiongwei Song
382627824a mm: slab: Delete unused SLAB_DEACTIVATED flag
Since commit 9855609bde ("mm: memcg/slab: use a single set of
kmem_caches for all accounted allocations") deleted all SLAB_DEACTIVATED
users, therefore this flag is not needed any more, let's delete it.

Signed-off-by: Xiongwei Song <sxwjean@gmail.com>
Acked-by: David Rientjes <rientjes@google.com>
Reviewed-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Link: https://lore.kernel.org/r/20220310140701.87908-2-sxwjean@me.com
2022-03-10 18:14:15 +01:00
Greg Kroah-Hartman
93dd04ab0b slab: remove __alloc_size attribute from __kmalloc_track_caller
Commit c37495d625 ("slab: add __alloc_size attributes for better
bounds checking") added __alloc_size attributes to a bunch of kmalloc
function prototypes.  Unfortunately the change to __kmalloc_track_caller
seems to cause clang to generate broken code and the first time this is
called when booting, the box will crash.

While the compiler problems are being reworked and attempted to be
solved [1], let's just drop the attribute to solve the issue now.  Once
it is resolved it can be added back.

[1] https://github.com/ClangBuiltLinux/linux/issues/1599

Fixes: c37495d625 ("slab: add __alloc_size attributes for better bounds checking")
Cc: stable <stable@vger.kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Daniel Micay <danielmicay@gmail.com>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Nathan Chancellor <nathan@kernel.org>
Cc: linux-mm@kvack.org
Cc: linux-kernel@vger.kernel.org
Cc: llvm@lists.linux.dev
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Acked-by: Nick Desaulniers <ndesaulniers@google.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Link: https://lore.kernel.org/r/20220218131358.3032912-1-gregkh@linuxfoundation.org
2022-02-21 11:32:44 +01:00
Linus Torvalds
fd6f57bfda Kbuild updates for v5.17
- Add new kconfig target 'make mod2noconfig', which will be useful to
    speed up the build and test iteration.
 
  - Raise the minimum supported version of LLVM to 11.0.0
 
  - Refactor certs/Makefile
 
  - Change the format of include/config/auto.conf to stop double-quoting
    string type CONFIG options.
 
  - Fix ARCH=sh builds in dash
 
  - Separate compression macros for general purposes (cmd_bzip2 etc.) and
    the ones for decompressors (cmd_bzip2_with_size etc.)
 
  - Misc Makefile cleanups
 -----BEGIN PGP SIGNATURE-----
 
 iQJJBAABCgAzFiEEbmPs18K1szRHjPqEPYsBB53g2wYFAmHnFNIVHG1hc2FoaXJv
 eUBrZXJuZWwub3JnAAoJED2LAQed4NsGiQEP/1tkt9IHP7vFvkN9xChQI8HQ7HOC
 mPIxBAUzHIp1V2IALb0lfojjnpkzcMNpJZVlmqjgyYShLEPPBFwKVXs1War6GViX
 aprUMz7w1zR/vZJ2fplFmrkNwSxNp3+LSE6sHVmsliS4Vfzh7CjHb8DnaKjBvQLZ
 M+eQugjHsWI3d3E81/qtRG5EaVs6q8osF3b0Km59mrESWVYKqwlUP3aUyQCCUGFK
 mI+zC4SrHH6EAIZd//VpaleXxVtDcjjadb7Iru5MFhFdCBIRoSC3d1IWPUNUKNnK
 i0ocDXuIoAulA/mROgrpyAzLXg10qYMwwTmX+tplkHA055gKcY/v4aHym6ypH+TX
 6zd34UMTLM32LSjs8hssiQT8BiZU0uZoa/m2E9IBaiExA2sTsRZxgQMKXFFaPQJl
 jn4cRiG0K1NDeRKtq4xh2WO46OS4sPlR6zW9EXDEsS/bI05Y7LpUz7Flt6iA2Mq3
 0g8uYIYr/9drl96X83tFgTkxxB6lpB29tbsmsrKJRGxvrCDnAhXlXhPCkMajkm2Q
 PjJfNtMFzwemSZWq09+F+X5BgCjzZtroOdFI9FTMNhGWyaUJZXCtcXQ6UTIKnTHO
 cDjcURvh+l56eNEQ5SMTNtAkxB+pX8gPUmyO1wLwRUT4YodxylkTUXGyBBR9tgTn
 Yks1TnPD06ld364l
 =8BQf
 -----END PGP SIGNATURE-----

Merge tag 'kbuild-v5.17' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild

Pull Kbuild updates from Masahiro Yamada:

 - Add new kconfig target 'make mod2noconfig', which will be useful to
   speed up the build and test iteration.

 - Raise the minimum supported version of LLVM to 11.0.0

 - Refactor certs/Makefile

 - Change the format of include/config/auto.conf to stop double-quoting
   string type CONFIG options.

 - Fix ARCH=sh builds in dash

 - Separate compression macros for general purposes (cmd_bzip2 etc.) and
   the ones for decompressors (cmd_bzip2_with_size etc.)

 - Misc Makefile cleanups

* tag 'kbuild-v5.17' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild: (34 commits)
  kbuild: add cmd_file_size
  arch: decompressor: remove useless vmlinux.bin.all-y
  kbuild: rename cmd_{bzip2,lzma,lzo,lz4,xzkern,zstd22}
  kbuild: drop $(size_append) from cmd_zstd
  sh: rename suffix-y to suffix_y
  doc: kbuild: fix default in `imply` table
  microblaze: use built-in function to get CPU_{MAJOR,MINOR,REV}
  certs: move scripts/extract-cert to certs/
  kbuild: do not quote string values in include/config/auto.conf
  kbuild: do not include include/config/auto.conf from shell scripts
  certs: simplify $(srctree)/ handling and remove config_filename macro
  kbuild: stop using config_filename in scripts/Makefile.modsign
  certs: remove misleading comments about GCC PR
  certs: refactor file cleaning
  certs: remove unneeded -I$(srctree) option for system_certificates.o
  certs: unify duplicated cmd_extract_certs and improve the log
  certs: use $< and $@ to simplify the key generation rule
  kbuild: remove headers_check stub
  kbuild: move headers_check.pl to usr/include/
  certs: use if_changed to re-generate the key when the key type is changed
  ...
2022-01-19 11:15:19 +02:00
Matthew Wilcox (Oracle)
0b3eb091d5 mm: Convert check_heap_object() to use struct slab
Ensure that we're not seeing a tail page inside __check_heap_object() by
converting to a slab instead of a page.  Take the opportunity to mark
the slab as const since we're not modifying it.  Also move the
declaration of __check_heap_object() to mm/slab.h so it's not available
to the wider kernel.

[ vbabka@suse.cz: in check_heap_object() only convert to struct slab for
  actual PageSlab pages; use folio as intermediate step instead of page ]

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Roman Gushchin <guro@fb.com>
2022-01-06 12:25:51 +01:00
Nathan Chancellor
57b2b72ac1 mm, slab: Remove compiler check in __kmalloc_index
The minimum supported version of LLVM has been raised to 11.0.0, meaning
this check is always true, so it can be dropped.

Signed-off-by: Nathan Chancellor <nathan@kernel.org>
Reviewed-by: Miguel Ojeda <ojeda@kernel.org>
Reviewed-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
2021-12-02 17:24:51 +09:00
Stephen Kitt
53944f171a mm: remove HARDENED_USERCOPY_FALLBACK
This has served its purpose and is no longer used.  All usercopy
violations appear to have been handled by now, any remaining instances
(or new bugs) will cause copies to be rejected.

This isn't a direct revert of commit 2d891fbc3b ("usercopy: Allow
strict enforcement of whitelists"); since usercopy_fallback is
effectively 0, the fallback handling is removed too.

This also removes the usercopy_fallback module parameter on slab_common.

Link: https://github.com/KSPP/linux/issues/153
Link: https://lkml.kernel.org/r/20210921061149.1091163-1-steve@sk2.org
Signed-off-by: Stephen Kitt <steve@sk2.org>
Suggested-by: Kees Cook <keescook@chromium.org>
Acked-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Joel Stanley <joel@jms.id.au>	[defconfig change]
Acked-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: James Morris <jmorris@namei.org>
Cc: "Serge E . Hallyn" <serge@hallyn.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:43 -07:00
Kees Cook
56bcf40f91 mm/kvmalloc: add __alloc_size attributes for better bounds checking
As already done in GrapheneOS, add the __alloc_size attribute for
regular kvmalloc interfaces, to provide additional hinting for better
bounds checking, assisting CONFIG_FORTIFY_SOURCE and other compiler
optimizations.

Link: https://lkml.kernel.org/r/20210930222704.2631604-6-keescook@chromium.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Co-developed-by: Daniel Micay <danielmicay@gmail.com>
Signed-off-by: Daniel Micay <danielmicay@gmail.com>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Dwaipayan Ray <dwaipayanray1@gmail.com>
Cc: Joe Perches <joe@perches.com>
Cc: Lukas Bulwahn <lukas.bulwahn@gmail.com>
Cc: Miguel Ojeda <ojeda@kernel.org>
Cc: Nathan Chancellor <nathan@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Alexandre Bounine <alex.bou9@gmail.com>
Cc: Gustavo A. R. Silva <gustavoars@kernel.org>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Jing Xiangfeng <jingxiangfeng@huawei.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: kernel test robot <lkp@intel.com>
Cc: Matt Porter <mporter@kernel.crashing.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:34 -07:00
Kees Cook
c37495d625 slab: add __alloc_size attributes for better bounds checking
As already done in GrapheneOS, add the __alloc_size attribute for
regular kmalloc interfaces, to provide additional hinting for better
bounds checking, assisting CONFIG_FORTIFY_SOURCE and other compiler
optimizations.

Link: https://lkml.kernel.org/r/20210930222704.2631604-5-keescook@chromium.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Co-developed-by: Daniel Micay <danielmicay@gmail.com>
Signed-off-by: Daniel Micay <danielmicay@gmail.com>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Dwaipayan Ray <dwaipayanray1@gmail.com>
Cc: Joe Perches <joe@perches.com>
Cc: Lukas Bulwahn <lukas.bulwahn@gmail.com>
Cc: Miguel Ojeda <ojeda@kernel.org>
Cc: Nathan Chancellor <nathan@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Alexandre Bounine <alex.bou9@gmail.com>
Cc: Gustavo A. R. Silva <gustavoars@kernel.org>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Jing Xiangfeng <jingxiangfeng@huawei.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: kernel test robot <lkp@intel.com>
Cc: Matt Porter <mporter@kernel.crashing.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:34 -07:00
Kees Cook
72d67229f5 slab: clean up function prototypes
Based on feedback from Joe Perches and Linus Torvalds, regularize the
slab function prototypes before making attribute changes.

Link: https://lkml.kernel.org/r/20210930222704.2631604-4-keescook@chromium.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Alexandre Bounine <alex.bou9@gmail.com>
Cc: Andy Whitcroft <apw@canonical.com>
Cc: Daniel Micay <danielmicay@gmail.com>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Dwaipayan Ray <dwaipayanray1@gmail.com>
Cc: Gustavo A. R. Silva <gustavoars@kernel.org>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Jing Xiangfeng <jingxiangfeng@huawei.com>
Cc: Joe Perches <joe@perches.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: kernel test robot <lkp@intel.com>
Cc: Lukas Bulwahn <lukas.bulwahn@gmail.com>
Cc: Matt Porter <mporter@kernel.crashing.org>
Cc: Miguel Ojeda <ojeda@kernel.org>
Cc: Nathan Chancellor <nathan@kernel.org>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:34 -07:00
Matthew Wilcox (Oracle)
8587ca6f34 mm: move kvmalloc-related functions to slab.h
Not all files in the kernel should include mm.h.  Migrating callers from
kmalloc to kvmalloc is easier if the kvmalloc functions are in slab.h.

[akpm@linux-foundation.org: move the new kvrealloc() also]
[akpm@linux-foundation.org: drivers/hwmon/occ/p9_sbe.c needs slab.h]

Link: https://lkml.kernel.org/r/20210622215757.3525604-1-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: Pekka Enberg <penberg@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-11-06 13:30:32 -07:00
Waiman Long
494c1dfe85 mm: memcg/slab: create a new set of kmalloc-cg-<n> caches
There are currently two problems in the way the objcg pointer array
(memcg_data) in the page structure is being allocated and freed.

On its allocation, it is possible that the allocated objcg pointer
array comes from the same slab that requires memory accounting. If this
happens, the slab will never become empty again as there is at least
one object left (the obj_cgroup array) in the slab.

When it is freed, the objcg pointer array object may be the last one
in its slab and hence causes kfree() to be called again. With the
right workload, the slab cache may be set up in a way that allows the
recursive kfree() calling loop to nest deep enough to cause a kernel
stack overflow and panic the system.

One way to solve this problem is to split the kmalloc-<n> caches
(KMALLOC_NORMAL) into two separate sets - a new set of kmalloc-<n>
(KMALLOC_NORMAL) caches for unaccounted objects only and a new set of
kmalloc-cg-<n> (KMALLOC_CGROUP) caches for accounted objects only. All
the other caches can still allow a mix of accounted and unaccounted
objects.

With this change, all the objcg pointer array objects will come from
KMALLOC_NORMAL caches which won't have their objcg pointer arrays. So
both the recursive kfree() problem and non-freeable slab problem are
gone.

Since both the KMALLOC_NORMAL and KMALLOC_CGROUP caches no longer have
mixed accounted and unaccounted objects, this will slightly reduce the
number of objcg pointer arrays that need to be allocated and save a bit
of memory. On the other hand, creating a new set of kmalloc caches does
have the effect of reducing cache utilization. So it is properly a wash.

The new KMALLOC_CGROUP is added between KMALLOC_NORMAL and
KMALLOC_RECLAIM so that the first for loop in create_kmalloc_caches()
will include the newly added caches without change.

[vbabka@suse.cz: don't create kmalloc-cg caches with cgroup.memory=nokmem]
  Link: https://lkml.kernel.org/r/20210512145107.6208-1-longman@redhat.com
[akpm@linux-foundation.org: un-fat-finger v5 delta creation]
[longman@redhat.com: disable cache merging for KMALLOC_NORMAL caches]
  Link: https://lkml.kernel.org/r/20210505200610.13943-4-longman@redhat.com

Link: https://lkml.kernel.org/r/20210512145107.6208-1-longman@redhat.com
Link: https://lkml.kernel.org/r/20210505200610.13943-3-longman@redhat.com
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Suggested-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Roman Gushchin <guro@fb.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
[longman@redhat.com: fix for CONFIG_ZONE_DMA=n]
Suggested-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29 10:53:49 -07:00
Hyeonggon Yoo
588c7fa022 mm, slub: change run-time assertion in kmalloc_index() to compile-time
Currently when size is not supported by kmalloc_index, compiler will
generate a run-time BUG() while compile-time error is also possible, and
better.  So change BUG to BUILD_BUG_ON_MSG to make compile-time check
possible.

Also remove code that allocates more than 32MB because current
implementation supports only up to 32MB.

[42.hyeyoo@gmail.com: fix support for clang 10]
  Link: https://lkml.kernel.org/r/20210518181247.GA10062@hyeyoo
[vbabka@suse.cz: fix false-positive assert in kernel/bpf/local_storage.c]
  Link: https://lkml.kernel.org/r/bea97388-01df-8eac-091b-a3c89b4a4a09@suse.czLink: https://lkml.kernel.org/r/20210511173448.GA54466@hyeyoo
[elver@google.com: kfence fix]
  Link: https://lkml.kernel.org/r/20210512195227.245000695c9014242e9a00e5@linux-foundation.org

Signed-off-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Marco Elver <elver@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Marco Elver <elver@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29 10:53:46 -07:00
Paul E. McKenney
5bb1bb353c mm: Don't build mm_dump_obj() on CONFIG_PRINTK=n kernels
The mem_dump_obj() functionality adds a few hundred bytes, which is a
small price to pay.  Except on kernels built with CONFIG_PRINTK=n, in
which mem_dump_obj() messages will be suppressed.  This commit therefore
makes mem_dump_obj() be a static inline empty function on kernels built
with CONFIG_PRINTK=n and excludes all of its support functions as well.
This avoids kernel bloat on systems that cannot use mem_dump_obj().

Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: <linux-mm@kvack.org>
Suggested-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-03-08 14:18:46 -08:00
Paul E. McKenney
8e7f37f2aa mm: Add mem_dump_obj() to print source of memory block
There are kernel facilities such as per-CPU reference counts that give
error messages in generic handlers or callbacks, whose messages are
unenlightening.  In the case of per-CPU reference-count underflow, this
is not a problem when creating a new use of this facility because in that
case the bug is almost certainly in the code implementing that new use.
However, trouble arises when deploying across many systems, which might
exercise corner cases that were not seen during development and testing.
Here, it would be really nice to get some kind of hint as to which of
several uses the underflow was caused by.

This commit therefore exposes a mem_dump_obj() function that takes
a pointer to memory (which must still be allocated if it has been
dynamically allocated) and prints available information on where that
memory came from.  This pointer can reference the middle of the block as
well as the beginning of the block, as needed by things like RCU callback
functions and timer handlers that might not know where the beginning of
the memory block is.  These functions and handlers can use mem_dump_obj()
to print out better hints as to where the problem might lie.

The information printed can depend on kernel configuration.  For example,
the allocation return address can be printed only for slab and slub,
and even then only when the necessary debug has been enabled.  For slab,
build with CONFIG_DEBUG_SLAB=y, and either use sizes with ample space
to the next power of two or use the SLAB_STORE_USER when creating the
kmem_cache structure.  For slub, build with CONFIG_SLUB_DEBUG=y and
boot with slub_debug=U, or pass SLAB_STORE_USER to kmem_cache_create()
if more focused use is desired.  Also for slub, use CONFIG_STACKTRACE
to enable printing of the allocation-time stack trace.

Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: <linux-mm@kvack.org>
Reported-by: Andrii Nakryiko <andrii@kernel.org>
[ paulmck: Convert to printing and change names per Joonsoo Kim. ]
[ paulmck: Move slab definition per Stephen Rothwell and kbuild test robot. ]
[ paulmck: Handle CONFIG_MMU=n case where vmalloc() is kmalloc(). ]
[ paulmck: Apply Vlastimil Babka feedback on slab.c kmem_provenance(). ]
[ paulmck: Extract more info from !SLUB_DEBUG per Joonsoo Kim. ]
[ paulmck: Explicitly check for small pointers per Naresh Kamboju. ]
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2021-01-22 15:16:01 -08:00
Bartosz Golaszewski
f0dbd2bd1c mm: slab: provide krealloc_array()
When allocating an array of elements, users should check for
multiplication overflow or preferably use one of the provided helpers
like: kmalloc_array().

There's no krealloc_array() counterpart but there are many users who use
regular krealloc() to reallocate arrays.  Let's provide an actual
krealloc_array() implementation.

While at it: add some documentation regarding krealloc.

Link: https://lkml.kernel.org/r/20201109110654.12547-3-brgl@bgdev.pl
Signed-off-by: Bartosz Golaszewski <bgolaszewski@baylibre.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Christian Knig <christian.koenig@amd.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: David Airlie <airlied@linux.ie>
Cc: David Rientjes <rientjes@google.com>
Cc: Gustavo Padovan <gustavo@padovan.org>
Cc: James Morse <james.morse@arm.com>
Cc: Jaroslav Kysela <perex@perex.cz>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Linus Walleij <linus.walleij@linaro.org>
Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
Cc: Mauro Carvalho Chehab <mchehab@kernel.org>
Cc: Maxime Ripard <mripard@kernel.org>
Cc: "Michael S . Tsirkin" <mst@redhat.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Robert Richter <rric@kernel.org>
Cc: Sumit Semwal <sumit.semwal@linaro.org>
Cc: Takashi Iwai <tiwai@suse.com>
Cc: Takashi Iwai <tiwai@suse.de>
Cc: Thomas Zimmermann <tzimmermann@suse.de>
Cc: Tony Luck <tony.luck@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15 12:13:37 -08:00
Eric Biggers
23224e4500 mm: remove kzfree() compatibility definition
Commit 453431a549 ("mm, treewide: rename kzfree() to
kfree_sensitive()") renamed kzfree() to kfree_sensitive(),
but it left a compatibility definition of kzfree() to avoid
being too disruptive.

Since then a few more instances of kzfree() have slipped in.

Just get rid of them and remove the compatibility definition
once and for all.

Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-25 11:39:02 -07:00
tangjianqiang
d7cff4ded8 include/linux/slab.h: fix a typo error in comment
fix a typo error in slab.h
"allocagtor" -> "allocator"

Signed-off-by: tangjianqiang <tangjianqiang@xiaomi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Souptick Joarder <jrdr.linux@gmail.com>
Link: https://lkml.kernel.org/r/1600230053-24303-1-git-send-email-tangjianqiang@xiaomi.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13 18:38:27 -07:00
Roman Gushchin
10befea91b mm: memcg/slab: use a single set of kmem_caches for all allocations
Instead of having two sets of kmem_caches: one for system-wide and
non-accounted allocations and the second one shared by all accounted
allocations, we can use just one.

The idea is simple: space for obj_cgroup metadata can be allocated on
demand and filled only for accounted allocations.

It allows to remove a bunch of code which is required to handle kmem_cache
clones for accounted allocations.  There is no more need to create them,
accumulate statistics, propagate attributes, etc.  It's a quite
significant simplification.

Also, because the total number of slab_caches is reduced almost twice (not
all kmem_caches have a memcg clone), some additional memory savings are
expected.  On my devvm it additionally saves about 3.5% of slab memory.

[guro@fb.com: fix build on MIPS]
  Link: http://lkml.kernel.org/r/20200717214810.3733082-1-guro@fb.com

Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Naresh Kamboju <naresh.kamboju@linaro.org>
Link: http://lkml.kernel.org/r/20200623174037.3951353-18-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:25 -07:00
Roman Gushchin
9855609bde mm: memcg/slab: use a single set of kmem_caches for all accounted allocations
This is fairly big but mostly red patch, which makes all accounted slab
allocations use a single set of kmem_caches instead of creating a separate
set for each memory cgroup.

Because the number of non-root kmem_caches is now capped by the number of
root kmem_caches, there is no need to shrink or destroy them prematurely.
They can be perfectly destroyed together with their root counterparts.
This allows to dramatically simplify the management of non-root
kmem_caches and delete a ton of code.

This patch performs the following changes:
1) introduces memcg_params.memcg_cache pointer to represent the
   kmem_cache which will be used for all non-root allocations
2) reuses the existing memcg kmem_cache creation mechanism
   to create memcg kmem_cache on the first allocation attempt
3) memcg kmem_caches are named <kmemcache_name>-memcg,
   e.g. dentry-memcg
4) simplifies memcg_kmem_get_cache() to just return memcg kmem_cache
   or schedule it's creation and return the root cache
5) removes almost all non-root kmem_cache management code
   (separate refcounter, reparenting, shrinking, etc)
6) makes slab debugfs to display root_mem_cgroup css id and never
   show :dead and :deact flags in the memcg_slabinfo attribute.

Following patches in the series will simplify the kmem_cache creation.

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20200623174037.3951353-13-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:25 -07:00
Waiman Long
453431a549 mm, treewide: rename kzfree() to kfree_sensitive()
As said by Linus:

  A symmetric naming is only helpful if it implies symmetries in use.
  Otherwise it's actively misleading.

  In "kzalloc()", the z is meaningful and an important part of what the
  caller wants.

  In "kzfree()", the z is actively detrimental, because maybe in the
  future we really _might_ want to use that "memfill(0xdeadbeef)" or
  something. The "zero" part of the interface isn't even _relevant_.

The main reason that kzfree() exists is to clear sensitive information
that should not be leaked to other future users of the same memory
objects.

Rename kzfree() to kfree_sensitive() to follow the example of the recently
added kvfree_sensitive() and make the intention of the API more explicit.
In addition, memzero_explicit() is used to clear the memory to make sure
that it won't get optimized away by the compiler.

The renaming is done by using the command sequence:

  git grep -w --name-only kzfree |\
  xargs sed -i 's/kzfree/kfree_sensitive/'

followed by some editing of the kfree_sensitive() kerneldoc and adding
a kzfree backward compatibility macro in slab.h.

[akpm@linux-foundation.org: fs/crypto/inline_crypt.c needs linux/slab.h]
[akpm@linux-foundation.org: fix fs/crypto/inline_crypt.c some more]

Suggested-by: Joe Perches <joe@perches.com>
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: David Howells <dhowells@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
Cc: James Morris <jmorris@namei.org>
Cc: "Serge E. Hallyn" <serge@hallyn.com>
Cc: Joe Perches <joe@perches.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: "Jason A . Donenfeld" <Jason@zx2c4.com>
Link: http://lkml.kernel.org/r/20200616154311.12314-3-longman@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:22 -07:00
Mauro Carvalho Chehab
2370ae4b1d docs: mm: slab.h: fix a broken cross-reference
There is a typo at the cross-reference link, causing this warning:

  include/linux/slab.h:11: WARNING: undefined label: memory-allocation (if the link has no caption the label must precede a section header)

Signed-off-by: Mauro Carvalho Chehab <mchehab+huawei@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Link: http://lkml.kernel.org/r/0aeac24235d356ebd935d11e147dcc6edbb6465c.1586359676.git.mchehab+huawei@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-10 15:36:20 -07:00
Florian Westphal
1c948715a1 mm: remove __krealloc
Since 5.5-rc1 the last user of this function is gone, so remove the
functionality.

See commit
2ad9d7747c ("netfilter: conntrack: free extension area immediately")
for details.

Link: http://lkml.kernel.org/r/20191212223442.22141-1-fw@strlen.de
Signed-off-by: Florian Westphal <fw@strlen.de>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: David Rientjes <rientjes@google.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-02-04 03:05:24 +00:00
Pengfei Li
dc0a7f7558 mm, slab: remove unused kmalloc_size()
The size of kmalloc can be obtained from kmalloc_info[], so remove
kmalloc_size() that will not be used anymore.

Link: http://lkml.kernel.org/r/1569241648-26908-3-git-send-email-lpf.vector@gmail.com
Signed-off-by: Pengfei Li <lpf.vector@gmail.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-01 06:29:17 -08:00
Vlastimil Babka
59bb47985c mm, sl[aou]b: guarantee natural alignment for kmalloc(power-of-two)
In most configurations, kmalloc() happens to return naturally aligned
(i.e.  aligned to the block size itself) blocks for power of two sizes.

That means some kmalloc() users might unknowingly rely on that
alignment, until stuff breaks when the kernel is built with e.g.
CONFIG_SLUB_DEBUG or CONFIG_SLOB, and blocks stop being aligned.  Then
developers have to devise workaround such as own kmem caches with
specified alignment [1], which is not always practical, as recently
evidenced in [2].

The topic has been discussed at LSF/MM 2019 [3].  Adding a
'kmalloc_aligned()' variant would not help with code unknowingly relying
on the implicit alignment.  For slab implementations it would either
require creating more kmalloc caches, or allocate a larger size and only
give back part of it.  That would be wasteful, especially with a generic
alignment parameter (in contrast with a fixed alignment to size).

Ideally we should provide to mm users what they need without difficult
workarounds or own reimplementations, so let's make the kmalloc()
alignment to size explicitly guaranteed for power-of-two sizes under all
configurations.  What this means for the three available allocators?

* SLAB object layout happens to be mostly unchanged by the patch.  The
  implicitly provided alignment could be compromised with
  CONFIG_DEBUG_SLAB due to redzoning, however SLAB disables redzoning for
  caches with alignment larger than unsigned long long.  Practically on at
  least x86 this includes kmalloc caches as they use cache line alignment,
  which is larger than that.  Still, this patch ensures alignment on all
  arches and cache sizes.

* SLUB layout is also unchanged unless redzoning is enabled through
  CONFIG_SLUB_DEBUG and boot parameter for the particular kmalloc cache.
  With this patch, explicit alignment is guaranteed with redzoning as
  well.  This will result in more memory being wasted, but that should be
  acceptable in a debugging scenario.

* SLOB has no implicit alignment so this patch adds it explicitly for
  kmalloc().  The potential downside is increased fragmentation.  While
  pathological allocation scenarios are certainly possible, in my testing,
  after booting a x86_64 kernel+userspace with virtme, around 16MB memory
  was consumed by slab pages both before and after the patch, with
  difference in the noise.

[1] https://lore.kernel.org/linux-btrfs/c3157c8e8e0e7588312b40c853f65c02fe6c957a.1566399731.git.christophe.leroy@c-s.fr/
[2] https://lore.kernel.org/linux-fsdevel/20190225040904.5557-1-ming.lei@redhat.com/
[3] https://lwn.net/Articles/787740/

[akpm@linux-foundation.org: documentation fixlet, per Matthew]
Link: http://lkml.kernel.org/r/20190826111627.7505-3-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Cc: David Sterba <dsterba@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Ming Lei <ming.lei@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: "Darrick J . Wong" <darrick.wong@oracle.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-10-07 15:47:20 -07:00
Waiman Long
9adeaa2269 mm, slab: move memcg_cache_params structure to mm/slab.h
The memcg_cache_params structure is only embedded into the kmem_cache of
slab and slub allocators as defined in slab_def.h and slub_def.h and used
internally by mm code.  There is no needed to expose it in a public
header.  So move it from include/linux/slab.h to mm/slab.h.  It is just a
refactoring patch with no code change.

In fact both the slub_def.h and slab_def.h should be moved into the mm
directory as well, but that will probably cause many merge conflicts.

Link: http://lkml.kernel.org/r/20190718180827.18758-1-longman@redhat.com
Signed-off-by: Waiman Long <longman@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24 15:54:07 -07:00
Waiman Long
fcf8a1e483 mm, memcg: add a memcg_slabinfo debugfs file
There are concerns about memory leaks from extensive use of memory cgroups
as each memory cgroup creates its own set of kmem caches.  There is a
possiblity that the memcg kmem caches may remain even after the memory
cgroups have been offlined.  Therefore, it will be useful to show the
status of each of memcg kmem caches.

This patch introduces a new <debugfs>/memcg_slabinfo file which is
somewhat similar to /proc/slabinfo in format, but lists only information
about kmem caches that have child memcg kmem caches.  Information
available in /proc/slabinfo are not repeated in memcg_slabinfo.

A portion of a sample output of the file was:

  # <name> <css_id[:dead]> <active_objs> <num_objs> <active_slabs> <num_slabs>
  rpc_inode_cache   root          13     51      1      1
  rpc_inode_cache     48           0      0      0      0
  fat_inode_cache   root           1     45      1      1
  fat_inode_cache     41           2     45      1      1
  xfs_inode         root         770    816     24     24
  xfs_inode           92          22     34      1      1
  xfs_inode           88:dead      1     34      1      1
  xfs_inode           89:dead     23     34      1      1
  xfs_inode           85           4     34      1      1
  xfs_inode           84           9     34      1      1

The css id of the memcg is also listed. If a memcg is not online,
the tag ":dead" will be attached as shown above.

[longman@redhat.com: memcg: add ":deact" tag for reparented kmem caches in memcg_slabinfo]
  Link: http://lkml.kernel.org/r/20190621173005.31514-1-longman@redhat.com
[longman@redhat.com: set the flag in the common code as suggested by Roman]
  Link: http://lkml.kernel.org/r/20190627184324.5875-1-longman@redhat.com
Link: http://lkml.kernel.org/r/20190619171621.26209-1-longman@redhat.com
Signed-off-by: Waiman Long <longman@redhat.com>
Suggested-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-12 11:05:44 -07:00
Roman Gushchin
fb2f2b0adb mm: memcg/slab: reparent memcg kmem_caches on cgroup removal
Let's reparent non-root kmem_caches on memcg offlining.  This allows us to
release the memory cgroup without waiting for the last outstanding kernel
object (e.g.  dentry used by another application).

Since the parent cgroup is already charged, everything we need to do is to
splice the list of kmem_caches to the parent's kmem_caches list, swap the
memcg pointer, drop the css refcounter for each kmem_cache and adjust the
parent's css refcounter.

Please, note that kmem_cache->memcg_params.memcg isn't a stable pointer
anymore.  It's safe to read it under rcu_read_lock(), cgroup_mutex held,
or any other way that protects the memory cgroup from being released.

We can race with the slab allocation and deallocation paths.  It's not a
big problem: parent's charge and slab global stats are always correct, and
we don't care anymore about the child usage and global stats.  The child
cgroup is already offline, so we don't use or show it anywhere.

Local slab stats (NR_SLAB_RECLAIMABLE and NR_SLAB_UNRECLAIMABLE) aren't
used anywhere except count_shadow_nodes().  But even there it won't break
anything: after reparenting "nodes" will be 0 on child level (because
we're already reparenting shrinker lists), and on parent level page stats
always were 0, and this patch won't change anything.

[guro@fb.com: properly handle kmem_caches reparented to root_mem_cgroup]
  Link: http://lkml.kernel.org/r/20190620213427.1691847-1-guro@fb.com
Link: http://lkml.kernel.org/r/20190611231813.3148843-11-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Waiman Long <longman@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Andrei Vagin <avagin@gmail.com>
Cc: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-12 11:05:44 -07:00
Roman Gushchin
f0a3a24b53 mm: memcg/slab: rework non-root kmem_cache lifecycle management
Currently each charged slab page holds a reference to the cgroup to which
it's charged.  Kmem_caches are held by the memcg and are released all
together with the memory cgroup.  It means that none of kmem_caches are
released unless at least one reference to the memcg exists, which is very
far from optimal.

Let's rework it in a way that allows releasing individual kmem_caches as
soon as the cgroup is offline, the kmem_cache is empty and there are no
pending allocations.

To make it possible, let's introduce a new percpu refcounter for non-root
kmem caches.  The counter is initialized to the percpu mode, and is
switched to the atomic mode during kmem_cache deactivation.  The counter
is bumped for every charged page and also for every running allocation.
So the kmem_cache can't be released unless all allocations complete.

To shutdown non-active empty kmem_caches, let's reuse the work queue,
previously used for the kmem_cache deactivation.  Once the reference
counter reaches 0, let's schedule an asynchronous kmem_cache release.

* I used the following simple approach to test the performance
(stolen from another patchset by T. Harding):

    time find / -name fname-no-exist
    echo 2 > /proc/sys/vm/drop_caches
    repeat 10 times

Results:

        orig		patched

real	0m1.455s	real	0m1.355s
user	0m0.206s	user	0m0.219s
sys	0m0.855s	sys	0m0.807s

real	0m1.487s	real	0m1.699s
user	0m0.221s	user	0m0.256s
sys	0m0.806s	sys	0m0.948s

real	0m1.515s	real	0m1.505s
user	0m0.183s	user	0m0.215s
sys	0m0.876s	sys	0m0.858s

real	0m1.291s	real	0m1.380s
user	0m0.193s	user	0m0.198s
sys	0m0.843s	sys	0m0.786s

real	0m1.364s	real	0m1.374s
user	0m0.180s	user	0m0.182s
sys	0m0.868s	sys	0m0.806s

real	0m1.352s	real	0m1.312s
user	0m0.201s	user	0m0.212s
sys	0m0.820s	sys	0m0.761s

real	0m1.302s	real	0m1.349s
user	0m0.205s	user	0m0.203s
sys	0m0.803s	sys	0m0.792s

real	0m1.334s	real	0m1.301s
user	0m0.194s	user	0m0.201s
sys	0m0.806s	sys	0m0.779s

real	0m1.426s	real	0m1.434s
user	0m0.216s	user	0m0.181s
sys	0m0.824s	sys	0m0.864s

real	0m1.350s	real	0m1.295s
user	0m0.200s	user	0m0.190s
sys	0m0.842s	sys	0m0.811s

So it looks like the difference is not noticeable in this test.

[cai@lca.pw: fix an use-after-free in kmemcg_workfn()]
  Link: http://lkml.kernel.org/r/1560977573-10715-1-git-send-email-cai@lca.pw
Link: http://lkml.kernel.org/r/20190611231813.3148843-9-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Qian Cai <cai@lca.pw>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Waiman Long <longman@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Andrei Vagin <avagin@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-12 11:05:44 -07:00
Roman Gushchin
0b14e8aa68 mm: memcg/slab: rename slab delayed deactivation functions and fields
The delayed work/rcu deactivation infrastructure of non-root kmem_caches
can be also used for asynchronous release of these objects.  Let's get rid
of the word "deactivation" in corresponding names to make the code look
better after generalization.

It's easier to make the renaming first, so that the generalized code will
look consistent from scratch.

Let's rename struct memcg_cache_params fields:
  deact_fn -> work_fn
  deact_rcu_head -> rcu_head
  deact_work -> work

And RCU/delayed work callbacks in slab common code:
  kmemcg_deactivate_rcufn -> kmemcg_rcufn
  kmemcg_deactivate_workfn -> kmemcg_workfn

This patch contains no functional changes, only renamings.

Link: http://lkml.kernel.org/r/20190611231813.3148843-3-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Waiman Long <longman@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Andrei Vagin <avagin@gmail.com>
Cc: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-12 11:05:44 -07:00
Marco Elver
10d1f8cb39 mm/slab: refactor common ksize KASAN logic into slab_common.c
This refactors common code of ksize() between the various allocators into
slab_common.c: __ksize() is the allocator-specific implementation without
instrumentation, whereas ksize() includes the required KASAN logic.

Link: http://lkml.kernel.org/r/20190626142014.141844-5-elver@google.com
Signed-off-by: Marco Elver <elver@google.com>
Acked-by: Christoph Lameter <cl@linux.com>
Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Kees Cook <keescook@chromium.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-12 11:05:42 -07:00
Nicolas Boichat
6d6ea1e967 mm: add support for kmem caches in DMA32 zone
Patch series "iommu/io-pgtable-arm-v7s: Use DMA32 zone for page tables",
v6.

This is a followup to the discussion in [1], [2].

IOMMUs using ARMv7 short-descriptor format require page tables (level 1
and 2) to be allocated within the first 4GB of RAM, even on 64-bit
systems.

For L1 tables that are bigger than a page, we can just use
__get_free_pages with GFP_DMA32 (on arm64 systems only, arm would still
use GFP_DMA).

For L2 tables that only take 1KB, it would be a waste to allocate a full
page, so we considered 3 approaches:
 1. This series, adding support for GFP_DMA32 slab caches.
 2. genalloc, which requires pre-allocating the maximum number of L2 page
    tables (4096, so 4MB of memory).
 3. page_frag, which is not very memory-efficient as it is unable to reuse
    freed fragments until the whole page is freed. [3]

This series is the most memory-efficient approach.

stable@ note:
  We confirmed that this is a regression, and IOMMU errors happen on 4.19
  and linux-next/master on MT8173 (elm, Acer Chromebook R13). The issue
  most likely starts from commit ad67f5a654 ("arm64: replace ZONE_DMA
  with ZONE_DMA32"), i.e. 4.15, and presumably breaks a number of Mediatek
  platforms (and maybe others?).

[1] https://lists.linuxfoundation.org/pipermail/iommu/2018-November/030876.html
[2] https://lists.linuxfoundation.org/pipermail/iommu/2018-December/031696.html
[3] https://patchwork.codeaurora.org/patch/671639/

This patch (of 3):

IOMMUs using ARMv7 short-descriptor format require page tables to be
allocated within the first 4GB of RAM, even on 64-bit systems.  On arm64,
this is done by passing GFP_DMA32 flag to memory allocation functions.

For IOMMU L2 tables that only take 1KB, it would be a waste to allocate
a full page using get_free_pages, so we considered 3 approaches:
 1. This patch, adding support for GFP_DMA32 slab caches.
 2. genalloc, which requires pre-allocating the maximum number of L2
    page tables (4096, so 4MB of memory).
 3. page_frag, which is not very memory-efficient as it is unable
    to reuse freed fragments until the whole page is freed.

This change makes it possible to create a custom cache in DMA32 zone using
kmem_cache_create, then allocate memory using kmem_cache_alloc.

We do not create a DMA32 kmalloc cache array, as there are currently no
users of kmalloc(..., GFP_DMA32).  These calls will continue to trigger a
warning, as we keep GFP_DMA32 in GFP_SLAB_BUG_MASK.

This implies that calls to kmem_cache_*alloc on a SLAB_CACHE_DMA32
kmem_cache must _not_ use GFP_DMA32 (it is anyway redundant and
unnecessary).

Link: http://lkml.kernel.org/r/20181210011504.122604-2-drinkcat@chromium.org
Signed-off-by: Nicolas Boichat <drinkcat@chromium.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Sasha Levin <Alexander.Levin@microsoft.com>
Cc: Huaisheng Ye <yehs1@lenovo.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Yong Wu <yong.wu@mediatek.com>
Cc: Matthias Brugger <matthias.bgg@gmail.com>
Cc: Tomasz Figa <tfiga@google.com>
Cc: Yingjoe Chen <yingjoe.chen@mediatek.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Hsin-Yi Wang <hsinyi@chromium.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-29 10:01:37 -07:00
Linus Torvalds
3868772b99 A fairly normal cycle for documentation stuff. We have a new
document on perf security, more Italian translations, more
 improvements to the memory-management docs, improvements to the
 pathname lookup documentation, and the usual array of smaller
 fixes.
 -----BEGIN PGP SIGNATURE-----
 
 iQFDBAABCAAtFiEEIw+MvkEiF49krdp9F0NaE2wMflgFAlwmSPkPHGNvcmJldEBs
 d24ubmV0AAoJEBdDWhNsDH5Y9ZoH/joPnMFykOxS0SmdfI7Z+F4EiJct/ZwF9bHx
 T673T0RC30IgnUXGmBl5OtktfWqVh9aGqHOGwgh65ybp2QvzemdP0k6Lu6RtwNk9
 6LfkpvuUb8FzaQmCHnSMzMSDmXtZUw3Z/mOjCBcQtfGAsUULNT08xl+Dr+gwWIWt
 H+gPEEP+MCXTOQO1jm2dHOHW8NGm6XOijMTpOxp/pkoEY5tUxkVB1T//8EeX7LVh
 c1QHzFrufE3bmmubCLtIuyVqZbm/V5l6rHREDQ46fnH/G9fM4gojzsrAL/Y2m4bt
 E4y0XJHycjLMRDimAnYhbPm1ryTFAX1lNzHP3M/EF6Heqx8YHAk=
 =vtwu
 -----END PGP SIGNATURE-----

Merge tag 'docs-5.0' of git://git.lwn.net/linux

Pull documentation update from Jonathan Corbet:
 "A fairly normal cycle for documentation stuff. We have a new document
  on perf security, more Italian translations, more improvements to the
  memory-management docs, improvements to the pathname lookup
  documentation, and the usual array of smaller fixes.

  As is often the case, there are a few reaches outside of
  Documentation/ to adjust kerneldoc comments"

* tag 'docs-5.0' of git://git.lwn.net/linux: (38 commits)
  docs: improve pathname-lookup document structure
  configfs: fix wrong name of struct in documentation
  docs/mm-api: link slab_common.c to "The Slab Cache" section
  slab: make kmem_cache_create{_usercopy} description proper kernel-doc
  doc:process: add links where missing
  docs/core-api: make mm-api.rst more structured
  x86, boot: documentation whitespace fixup
  Documentation: devres: note checking needs when converting
  doc🇮🇹 add some process/* translations
  doc🇮🇹 fixes in process/1.Intro
  Documentation: convert path-lookup from markdown to resturctured text
  Documentation/admin-guide: update admin-guide index.rst
  Documentation/admin-guide: introduce perf-security.rst file
  scripts/kernel-doc: Fix struct and struct field attribute processing
  Documentation: dev-tools: Fix typos in index.rst
  Correct gen_init_cpio tool's documentation
  Document /proc/pid PID reuse behavior
  Documentation: update path-lookup.md for parallel lookups
  Documentation: Use "while" instead of "whilst"
  dmaengine: Add mailing list address to the documentation
  ...
2018-12-29 11:21:49 -08:00
Vlastimil Babka
4e45f712d8 include/linux/slab.h: fix sparse warning in kmalloc_type()
Multiple people have reported the following sparse warning:

./include/linux/slab.h:332:43: warning: dubious: x & !y

The minimal fix would be to change the logical & to boolean &&, which
emits the same code, but Andrew has suggested that the branch-avoiding
tricks are maybe not worthwile.  David Laight provided a nice comparison
of disassembly of multiple variants, which shows that the current version
produces a 4 deep dependency chain, and fixing the sparse warning by
changing logical and to multiplication emits an IMUL, making it even more
expensive.

The code as rewritten by this patch yielded the best disassembly, with a
single predictable branch for the most common case, and a ternary operator
for the rest, which gcc seems to compile without a branch or cmov by
itself.

The result should be more readable, without a sparse warning and probably
also faster for the common case.

Link: http://lkml.kernel.org/r/80340595-d7c5-97b9-4f6c-23fa893a91e9@suse.cz
Fixes: 1291523f2c ("mm, slab/slub: introduce kmalloc-reclaimable caches")
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: Bart Van Assche <bvanassche@acm.org>
Reported-by: Darryl T. Agostinelli <dagostinelli@gmail.com>
Reported-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Suggested-by: Andrew Morton <akpm@linux-foundation.org>
Suggested-by: David Laight <David.Laight@ACULAB.COM>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 12:11:46 -08:00
Andrey Konovalov
0116523cff kasan, mm: change hooks signatures
Patch series "kasan: add software tag-based mode for arm64", v13.

This patchset adds a new software tag-based mode to KASAN [1].  (Initially
this mode was called KHWASAN, but it got renamed, see the naming rationale
at the end of this section).

The plan is to implement HWASan [2] for the kernel with the incentive,
that it's going to have comparable to KASAN performance, but in the same
time consume much less memory, trading that off for somewhat imprecise bug
detection and being supported only for arm64.

The underlying ideas of the approach used by software tag-based KASAN are:

1. By using the Top Byte Ignore (TBI) arm64 CPU feature, we can store
   pointer tags in the top byte of each kernel pointer.

2. Using shadow memory, we can store memory tags for each chunk of kernel
   memory.

3. On each memory allocation, we can generate a random tag, embed it into
   the returned pointer and set the memory tags that correspond to this
   chunk of memory to the same value.

4. By using compiler instrumentation, before each memory access we can add
   a check that the pointer tag matches the tag of the memory that is being
   accessed.

5. On a tag mismatch we report an error.

With this patchset the existing KASAN mode gets renamed to generic KASAN,
with the word "generic" meaning that the implementation can be supported
by any architecture as it is purely software.

The new mode this patchset adds is called software tag-based KASAN.  The
word "tag-based" refers to the fact that this mode uses tags embedded into
the top byte of kernel pointers and the TBI arm64 CPU feature that allows
to dereference such pointers.  The word "software" here means that shadow
memory manipulation and tag checking on pointer dereference is done in
software.  As it is the only tag-based implementation right now, "software
tag-based" KASAN is sometimes referred to as simply "tag-based" in this
patchset.

A potential expansion of this mode is a hardware tag-based mode, which
would use hardware memory tagging support (announced by Arm [3]) instead
of compiler instrumentation and manual shadow memory manipulation.

Same as generic KASAN, software tag-based KASAN is strictly a debugging
feature.

[1] https://www.kernel.org/doc/html/latest/dev-tools/kasan.html

[2] http://clang.llvm.org/docs/HardwareAssistedAddressSanitizerDesign.html

[3] https://community.arm.com/processors/b/blog/posts/arm-a-profile-architecture-2018-developments-armv85a

====== Rationale

On mobile devices generic KASAN's memory usage is significant problem.
One of the main reasons to have tag-based KASAN is to be able to perform a
similar set of checks as the generic one does, but with lower memory
requirements.

Comment from Vishwath Mohan <vishwath@google.com>:

I don't have data on-hand, but anecdotally both ASAN and KASAN have proven
problematic to enable for environments that don't tolerate the increased
memory pressure well.  This includes

(a) Low-memory form factors - Wear, TV, Things, lower-tier phones like Go,
(c) Connected components like Pixel's visual core [1].

These are both places I'd love to have a low(er) memory footprint option at
my disposal.

Comment from Evgenii Stepanov <eugenis@google.com>:

Looking at a live Android device under load, slab (according to
/proc/meminfo) + kernel stack take 8-10% available RAM (~350MB).  KASAN's
overhead of 2x - 3x on top of it is not insignificant.

Not having this overhead enables near-production use - ex.  running
KASAN/KHWASAN kernel on a personal, daily-use device to catch bugs that do
not reproduce in test configuration.  These are the ones that often cost
the most engineering time to track down.

CPU overhead is bad, but generally tolerable.  RAM is critical, in our
experience.  Once it gets low enough, OOM-killer makes your life
miserable.

[1] https://www.blog.google/products/pixel/pixel-visual-core-image-processing-and-machine-learning-pixel-2/

====== Technical details

Software tag-based KASAN mode is implemented in a very similar way to the
generic one. This patchset essentially does the following:

1. TCR_TBI1 is set to enable Top Byte Ignore.

2. Shadow memory is used (with a different scale, 1:16, so each shadow
   byte corresponds to 16 bytes of kernel memory) to store memory tags.

3. All slab objects are aligned to shadow scale, which is 16 bytes.

4. All pointers returned from the slab allocator are tagged with a random
   tag and the corresponding shadow memory is poisoned with the same value.

5. Compiler instrumentation is used to insert tag checks. Either by
   calling callbacks or by inlining them (CONFIG_KASAN_OUTLINE and
   CONFIG_KASAN_INLINE flags are reused).

6. When a tag mismatch is detected in callback instrumentation mode
   KASAN simply prints a bug report. In case of inline instrumentation,
   clang inserts a brk instruction, and KASAN has it's own brk handler,
   which reports the bug.

7. The memory in between slab objects is marked with a reserved tag, and
   acts as a redzone.

8. When a slab object is freed it's marked with a reserved tag.

Bug detection is imprecise for two reasons:

1. We won't catch some small out-of-bounds accesses, that fall into the
   same shadow cell, as the last byte of a slab object.

2. We only have 1 byte to store tags, which means we have a 1/256
   probability of a tag match for an incorrect access (actually even
   slightly less due to reserved tag values).

Despite that there's a particular type of bugs that tag-based KASAN can
detect compared to generic KASAN: use-after-free after the object has been
allocated by someone else.

====== Testing

Some kernel developers voiced a concern that changing the top byte of
kernel pointers may lead to subtle bugs that are difficult to discover.
To address this concern deliberate testing has been performed.

It doesn't seem feasible to do some kind of static checking to find
potential issues with pointer tagging, so a dynamic approach was taken.
All pointer comparisons/subtractions have been instrumented in an LLVM
compiler pass and a kernel module that would print a bug report whenever
two pointers with different tags are being compared/subtracted (ignoring
comparisons with NULL pointers and with pointers obtained by casting an
error code to a pointer type) has been used.  Then the kernel has been
booted in QEMU and on an Odroid C2 board and syzkaller has been run.

This yielded the following results.

The two places that look interesting are:

is_vmalloc_addr in include/linux/mm.h
is_kernel_rodata in mm/util.c

Here we compare a pointer with some fixed untagged values to make sure
that the pointer lies in a particular part of the kernel address space.
Since tag-based KASAN doesn't add tags to pointers that belong to rodata
or vmalloc regions, this should work as is.  To make sure debug checks to
those two functions that check that the result doesn't change whether we
operate on pointers with or without untagging has been added.

A few other cases that don't look that interesting:

Comparing pointers to achieve unique sorting order of pointee objects
(e.g. sorting locks addresses before performing a double lock):

tty_ldisc_lock_pair_timeout in drivers/tty/tty_ldisc.c
pipe_double_lock in fs/pipe.c
unix_state_double_lock in net/unix/af_unix.c
lock_two_nondirectories in fs/inode.c
mutex_lock_double in kernel/events/core.c

ep_cmp_ffd in fs/eventpoll.c
fsnotify_compare_groups fs/notify/mark.c

Nothing needs to be done here, since the tags embedded into pointers
don't change, so the sorting order would still be unique.

Checks that a pointer belongs to some particular allocation:

is_sibling_entry in lib/radix-tree.c
object_is_on_stack in include/linux/sched/task_stack.h

Nothing needs to be done here either, since two pointers can only belong
to the same allocation if they have the same tag.

Overall, since the kernel boots and works, there are no critical bugs.
As for the rest, the traditional kernel testing way (use until fails) is
the only one that looks feasible.

Another point here is that tag-based KASAN is available under a separate
config option that needs to be deliberately enabled. Even though it might
be used in a "near-production" environment to find bugs that are not found
during fuzzing or running tests, it is still a debug tool.

====== Benchmarks

The following numbers were collected on Odroid C2 board. Both generic and
tag-based KASAN were used in inline instrumentation mode.

Boot time [1]:
* ~1.7 sec for clean kernel
* ~5.0 sec for generic KASAN
* ~5.0 sec for tag-based KASAN

Network performance [2]:
* 8.33 Gbits/sec for clean kernel
* 3.17 Gbits/sec for generic KASAN
* 2.85 Gbits/sec for tag-based KASAN

Slab memory usage after boot [3]:
* ~40 kb for clean kernel
* ~105 kb (~260% overhead) for generic KASAN
* ~47 kb (~20% overhead) for tag-based KASAN

KASAN memory overhead consists of three main parts:
1. Increased slab memory usage due to redzones.
2. Shadow memory (the whole reserved once during boot).
3. Quaratine (grows gradually until some preset limit; the more the limit,
   the more the chance to detect a use-after-free).

Comparing tag-based vs generic KASAN for each of these points:
1. 20% vs 260% overhead.
2. 1/16th vs 1/8th of physical memory.
3. Tag-based KASAN doesn't require quarantine.

[1] Time before the ext4 driver is initialized.
[2] Measured as `iperf -s & iperf -c 127.0.0.1 -t 30`.
[3] Measured as `cat /proc/meminfo | grep Slab`.

====== Some notes

A few notes:

1. The patchset can be found here:
   https://github.com/xairy/kasan-prototype/tree/khwasan

2. Building requires a recent Clang version (7.0.0 or later).

3. Stack instrumentation is not supported yet and will be added later.

This patch (of 25):

Tag-based KASAN changes the value of the top byte of pointers returned
from the kernel allocation functions (such as kmalloc).  This patch
updates KASAN hooks signatures and their usage in SLAB and SLUB code to
reflect that.

Link: http://lkml.kernel.org/r/aec2b5e3973781ff8a6bb6760f8543643202c451.1544099024.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 12:11:43 -08:00
Jonathan Corbet
3870a23712 Merge branch 'kmalloc' into docs-next
jc: fixed conflict with willy's memory-allocation tag patch.
2018-11-20 09:22:24 -07:00
Mike Rapoport
01598ba6b1 docs/mm: update kmalloc kernel-doc description
Add references to GFP documentation and the memory-allocation.rst and remove
GFP_USER, GFP_DMA and GFP_NOIO descriptions.

While on it slightly change the formatting so that the list of GFP flags
will be rendered as "description" in the generated html.

Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
2018-11-20 09:20:34 -07:00
Vlastimil Babka
1291523f2c mm, slab/slub: introduce kmalloc-reclaimable caches
Kmem caches can be created with a SLAB_RECLAIM_ACCOUNT flag, which
indicates they contain objects which can be reclaimed under memory
pressure (typically through a shrinker).  This makes the slab pages
accounted as NR_SLAB_RECLAIMABLE in vmstat, which is reflected also the
MemAvailable meminfo counter and in overcommit decisions.  The slab pages
are also allocated with __GFP_RECLAIMABLE, which is good for
anti-fragmentation through grouping pages by mobility.

The generic kmalloc-X caches are created without this flag, but sometimes
are used also for objects that can be reclaimed, which due to varying size
cannot have a dedicated kmem cache with SLAB_RECLAIM_ACCOUNT flag.  A
prominent example are dcache external names, which prompted the creation
of a new, manually managed vmstat counter NR_INDIRECTLY_RECLAIMABLE_BYTES
in commit f1782c9bc5 ("dcache: account external names as indirectly
reclaimable memory").

To better handle this and any other similar cases, this patch introduces
SLAB_RECLAIM_ACCOUNT variants of kmalloc caches, named kmalloc-rcl-X.
They are used whenever the kmalloc() call passes __GFP_RECLAIMABLE among
gfp flags.  They are added to the kmalloc_caches array as a new type.
Allocations with both __GFP_DMA and __GFP_RECLAIMABLE will use a dma type
cache.

This change only applies to SLAB and SLUB, not SLOB.  This is fine, since
SLOB's target are tiny system and this patch does add some overhead of
kmem management objects.

Link: http://lkml.kernel.org/r/20180731090649.16028-3-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Christoph Lameter <cl@linux.com>
Acked-by: Roman Gushchin <guro@fb.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Sumit Semwal <sumit.semwal@linaro.org>
Cc: Vijayanand Jitta <vjitta@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 16:26:31 -07:00
Vlastimil Babka
cc252eae85 mm, slab: combine kmalloc_caches and kmalloc_dma_caches
Patch series "kmalloc-reclaimable caches", v4.

As discussed at LSF/MM [1] here's a patchset that introduces
kmalloc-reclaimable caches (more details in the second patch) and uses
them for dcache external names.  That allows us to repurpose the
NR_INDIRECTLY_RECLAIMABLE_BYTES counter later in the series.

With patch 3/6, dcache external names are allocated from kmalloc-rcl-*
caches, eliminating the need for manual accounting.  More importantly, it
also ensures the reclaimable kmalloc allocations are grouped in pages
separate from the regular kmalloc allocations.  The need for proper
accounting of dcache external names has shown it's easy for misbehaving
process to allocate lots of them, causing premature OOMs.  Without the
added grouping, it's likely that a similar workload can interleave the
dcache external names allocations with regular kmalloc allocations (note:
I haven't searched myself for an example of such regular kmalloc
allocation, but I would be very surprised if there wasn't some).  A
pathological case would be e.g.  one 64byte regular allocations with 63
external dcache names in a page (64x64=4096), which means the page is not
freed even after reclaiming after all dcache names, and the process can
thus "steal" the whole page with single 64byte allocation.

If other kmalloc users similar to dcache external names become identified,
they can also benefit from the new functionality simply by adding
__GFP_RECLAIMABLE to the kmalloc calls.

Side benefits of the patchset (that could be also merged separately)
include removed branch for detecting __GFP_DMA kmalloc(), and shortening
kmalloc cache names in /proc/slabinfo output.  The latter is potentially
an ABI break in case there are tools parsing the names and expecting the
values to be in bytes.

This is how /proc/slabinfo looks like after booting in virtme:

...
kmalloc-rcl-4M         0      0 4194304    1 1024 : tunables    1    1    0 : slabdata      0      0      0
...
kmalloc-rcl-96         7     32    128   32    1 : tunables  120   60    8 : slabdata      1      1      0
kmalloc-rcl-64        25    128     64   64    1 : tunables  120   60    8 : slabdata      2      2      0
kmalloc-rcl-32         0      0     32  124    1 : tunables  120   60    8 : slabdata      0      0      0
kmalloc-4M             0      0 4194304    1 1024 : tunables    1    1    0 : slabdata      0      0      0
kmalloc-2M             0      0 2097152    1  512 : tunables    1    1    0 : slabdata      0      0      0
kmalloc-1M             0      0 1048576    1  256 : tunables    1    1    0 : slabdata      0      0      0
...

/proc/vmstat with renamed nr_indirectly_reclaimable_bytes counter:

...
nr_slab_reclaimable 2817
nr_slab_unreclaimable 1781
...
nr_kernel_misc_reclaimable 0
...

/proc/meminfo with new KReclaimable counter:

...
Shmem:               564 kB
KReclaimable:      11260 kB
Slab:              18368 kB
SReclaimable:      11260 kB
SUnreclaim:         7108 kB
KernelStack:        1248 kB
...

This patch (of 6):

The kmalloc caches currently mainain separate (optional) array
kmalloc_dma_caches for __GFP_DMA allocations.  There are tests for
__GFP_DMA in the allocation hotpaths.  We can avoid the branches by
combining kmalloc_caches and kmalloc_dma_caches into a single
two-dimensional array where the outer dimension is cache "type".  This
will also allow to add kmalloc-reclaimable caches as a third type.

Link: http://lkml.kernel.org/r/20180731090649.16028-2-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Christoph Lameter <cl@linux.com>
Acked-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Sumit Semwal <sumit.semwal@linaro.org>
Cc: Vijayanand Jitta <vjitta@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 16:26:31 -07:00
Kirill Tkhai
84c07d11aa mm: introduce CONFIG_MEMCG_KMEM as combination of CONFIG_MEMCG && !CONFIG_SLOB
Introduce new config option, which is used to replace repeating
CONFIG_MEMCG && !CONFIG_SLOB pattern.  Next patches add a little more
memcg+kmem related code, so let's keep the defines more clearly.

Link: http://lkml.kernel.org/r/153063053670.1818.15013136946600481138.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Tested-by: Shakeel Butt <shakeelb@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Li RongQing <lirongqing@baidu.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matthias Kaehlcke <mka@chromium.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Sahitya Tummala <stummala@codeaurora.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-17 16:20:30 -07:00
Shakeel Butt
92ee383f6d mm: fix race between kmem_cache destroy, create and deactivate
The memcg kmem cache creation and deactivation (SLUB only) is
asynchronous.  If a root kmem cache is destroyed whose memcg cache is in
the process of creation or deactivation, the kernel may crash.

Example of one such crash:
	general protection fault: 0000 [#1] SMP PTI
	CPU: 1 PID: 1721 Comm: kworker/14:1 Not tainted 4.17.0-smp
	...
	Workqueue: memcg_kmem_cache kmemcg_deactivate_workfn
	RIP: 0010:has_cpu_slab
	...
	Call Trace:
	? on_each_cpu_cond
	__kmem_cache_shrink
	kmemcg_cache_deact_after_rcu
	kmemcg_deactivate_workfn
	process_one_work
	worker_thread
	kthread
	ret_from_fork+0x35/0x40

To fix this race, on root kmem cache destruction, mark the cache as
dying and flush the workqueue used for memcg kmem cache creation and
deactivation.  SLUB's memcg kmem cache deactivation also includes RCU
callback and thus make sure all previous registered RCU callbacks have
completed as well.

[shakeelb@google.com: handle the RCU callbacks for SLUB deactivation]
  Link: http://lkml.kernel.org/r/20180611192951.195727-1-shakeelb@google.com
[shakeelb@google.com: add more documentation, rename fields for readability]
  Link: http://lkml.kernel.org/r/20180522201336.196994-1-shakeelb@google.com
[akpm@linux-foundation.org: fix build, per Shakeel]
[shakeelb@google.com: v3.  Instead of refcount, flush the workqueue]
  Link: http://lkml.kernel.org/r/20180530001204.183758-1-shakeelb@google.com
Link: http://lkml.kernel.org/r/20180521174116.171846-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-15 07:55:23 +09:00
Kees Cook
49b7f8983a mm: Use overflow helpers in kmalloc_array*()
Instead of open-coded multiplication and bounds checking, use the new
overflow helper.

Suggested-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-05 12:16:51 -07:00
Randy Dunlap
514c603249 headers: untangle kmemleak.h from mm.h
Currently <linux/slab.h> #includes <linux/kmemleak.h> for no obvious
reason.  It looks like it's only a convenience, so remove kmemleak.h
from slab.h and add <linux/kmemleak.h> to any users of kmemleak_* that
don't already #include it.  Also remove <linux/kmemleak.h> from source
files that do not use it.

This is tested on i386 allmodconfig and x86_64 allmodconfig.  It would
be good to run it through the 0day bot for other $ARCHes.  I have
neither the horsepower nor the storage space for the other $ARCHes.

Update: This patch has been extensively build-tested by both the 0day
bot & kisskb/ozlabs build farms.  Both of them reported 2 build failures
for which patches are included here (in v2).

[ slab.h is the second most used header file after module.h; kernel.h is
  right there with slab.h. There could be some minor error in the
  counting due to some #includes having comments after them and I didn't
  combine all of those. ]

[akpm@linux-foundation.org: security/keys/big_key.c needs vmalloc.h, per sfr]
Link: http://lkml.kernel.org/r/e4309f98-3749-93e1-4bb7-d9501a39d015@infradead.org
Link: http://kisskb.ellerman.id.au/kisskb/head/13396/
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Reported-by: Michael Ellerman <mpe@ellerman.id.au>	[2 build failures]
Reported-by: Fengguang Wu <fengguang.wu@intel.com>	[2 build failures]
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Wei Yongjun <weiyongjun1@huawei.com>
Cc: Luis R. Rodriguez <mcgrof@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Mimi Zohar <zohar@linux.vnet.ibm.com>
Cc: John Johansen <john.johansen@canonical.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 21:36:27 -07:00