The current logic first clones the extent array and sorts both copies, then
maps the lower IDs of the forward mapping into the lower namespace, but
doesn't map the lower IDs of the reverse mapping.
This means that code in a nested user namespace with >5 extents will see
incorrect IDs. It also breaks some access checks, like
inode_owner_or_capable() and privileged_wrt_inode_uidgid(), so a process
can incorrectly appear to be capable relative to an inode.
To fix it, we have to make sure that the "lower_first" members of extents
in both arrays are translated; and we have to make sure that the reverse
map is sorted *after* the translation (since otherwise the translation can
break the sorting).
This is CVE-2018-18955.
Fixes: 6397fac491 ("userns: bump idmap limits to 340")
Cc: stable@vger.kernel.org
Signed-off-by: Jann Horn <jannh@google.com>
Tested-by: Eric W. Biederman <ebiederm@xmission.com>
Reviewed-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
The old code would hold the userns_state_mutex indefinitely if
memdup_user_nul stalled due to e.g. a userfault region. Prevent that by
moving the memdup_user_nul in front of the mutex_lock().
Note: This changes the error precedence of invalid buf/count/*ppos vs
map already written / capabilities missing.
Fixes: 22d917d80e ("userns: Rework the user_namespace adding uid/gid...")
Cc: stable@vger.kernel.org
Signed-off-by: Jann Horn <jannh@google.com>
Acked-by: Christian Brauner <christian@brauner.io>
Acked-by: Serge Hallyn <serge@hallyn.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Unprivileged users are normally restricted from mounting with the
allow_other option by system policy, but this could be bypassed for a mount
done with user namespace root permissions. In such cases allow_other should
not allow users outside the userns to access the mount as doing so would
give the unprivileged user the ability to manipulate processes it would
otherwise be unable to manipulate. Restrict allow_other to apply to users
in the same userns used at mount or a descendant of that namespace. Also
export current_in_userns() for use by fuse when built as a module.
Reviewed-by: Serge Hallyn <serge@hallyn.com>
Signed-off-by: Seth Forshee <seth.forshee@canonical.com>
Signed-off-by: Dongsu Park <dongsu@kinvolk.io>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Pull user namespace update from Eric Biederman:
"The only change that is production ready this round is the work to
increase the number of uid and gid mappings a user namespace can
support from 5 to 340.
This code was carefully benchmarked and it was confirmed that in the
existing cases the performance remains the same. In the worst case
with 340 mappings an cache cold stat times go from 158ns to 248ns.
That is noticable but still quite small, and only the people who are
doing crazy things pay the cost.
This work uncovered some documentation and cleanup opportunities in
the mapping code, and patches to make those cleanups and improve the
documentation will be coming in the next merge window"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
userns: Simplify insert_extent
userns: Make map_id_down a wrapper for map_id_range_down
userns: Don't read extents twice in m_start
userns: Simplify the user and group mapping functions
userns: Don't special case a count of 0
userns: bump idmap limits to 340
userns: use union in {g,u}idmap struct
Consolidate the code to write to the new mapping at the end of the
function to remove the duplication. Move the increase in the number
of mappings into insert_extent, keeping the logic together.
Just a small increase in readability and maintainability.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
There is no good reason for this code duplication, the number of cache
line accesses not the number of instructions are the bottleneck in
this code.
Therefore simplify maintenance by removing unnecessary code.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
This is important so reading /proc/<pid>/{uid_map,gid_map,projid_map} while
the map is being written does not do strange things.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Consolidate reading the number of extents and computing the return
value in the map_id_down, map_id_range_down and map_id_range.
This removal of one read of extents makes one smp_rmb unnecessary
and makes the code safe it is executed during the map write. Reading
the number of extents twice and depending on the result being the same
is not safe, as it could be 0 the first time and > 5 the second time,
which would lead to misinterpreting the union fields.
The consolidation of the return value just removes a duplicate
caluculation which should make it easier to understand and maintain
the code.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
There are quite some use cases where users run into the current limit for
{g,u}id mappings. Consider a user requesting us to map everything but 999, and
1001 for a given range of 1000000000 with a sub{g,u}id layout of:
some-user:100000:1000000000
some-user:999:1
some-user:1000:1
some-user:1001:1
some-user:1002:1
This translates to:
MAPPING-TYPE | CONTAINER | HOST | RANGE |
-------------|-----------|---------|-----------|
uid | 999 | 999 | 1 |
uid | 1001 | 1001 | 1 |
uid | 0 | 1000000 | 999 |
uid | 1000 | 1001000 | 1 |
uid | 1002 | 1001002 | 999998998 |
------------------------------------------------
gid | 999 | 999 | 1 |
gid | 1001 | 1001 | 1 |
gid | 0 | 1000000 | 999 |
gid | 1000 | 1001000 | 1 |
gid | 1002 | 1001002 | 999998998 |
which is already the current limit.
As discussed at LPC simply bumping the number of limits is not going to work
since this would mean that struct uid_gid_map won't fit into a single cache-line
anymore thereby regressing performance for the base-cases. The same problem
seems to arise when using a single pointer. So the idea is to use
struct uid_gid_extent {
u32 first;
u32 lower_first;
u32 count;
};
struct uid_gid_map { /* 64 bytes -- 1 cache line */
u32 nr_extents;
union {
struct uid_gid_extent extent[UID_GID_MAP_MAX_BASE_EXTENTS];
struct {
struct uid_gid_extent *forward;
struct uid_gid_extent *reverse;
};
};
};
For the base cases we will only use the struct uid_gid_extent extent member. If
we go over UID_GID_MAP_MAX_BASE_EXTENTS mappings we perform a single 4k
kmalloc() which means we can have a maximum of 340 mappings
(340 * size(struct uid_gid_extent) = 4080). For the latter case we use two
pointers "forward" and "reverse". The forward pointer points to an array sorted
by "first" and the reverse pointer points to an array sorted by "lower_first".
We can then perform binary search on those arrays.
Performance Testing:
When Eric introduced the extent-based struct uid_gid_map approach he measured
the performanc impact of his idmap changes:
> My benchmark consisted of going to single user mode where nothing else was
> running. On an ext4 filesystem opening 1,000,000 files and looping through all
> of the files 1000 times and calling fstat on the individuals files. This was
> to ensure I was benchmarking stat times where the inodes were in the kernels
> cache, but the inode values were not in the processors cache. My results:
> v3.4-rc1: ~= 156ns (unmodified v3.4-rc1 with user namespace support disabled)
> v3.4-rc1-userns-: ~= 155ns (v3.4-rc1 with my user namespace patches and user namespace support disabled)
> v3.4-rc1-userns+: ~= 164ns (v3.4-rc1 with my user namespace patches and user namespace support enabled)
I used an identical approach on my laptop. Here's a thorough description of what
I did. I built a 4.14.0-rc4 mainline kernel with my new idmap patches applied. I
booted into single user mode and used an ext4 filesystem to open/create
1,000,000 files. Then I looped through all of the files calling fstat() on each
of them 1000 times and calculated the mean fstat() time for a single file. (The
test program can be found below.)
Here are the results. For fun, I compared the first version of my patch which
scaled linearly with the new version of the patch:
| # MAPPINGS | PATCH-V1 | PATCH-NEW |
|--------------|------------|-----------|
| 0 mappings | 158 ns | 158 ns |
| 1 mappings | 164 ns | 157 ns |
| 2 mappings | 170 ns | 158 ns |
| 3 mappings | 175 ns | 161 ns |
| 5 mappings | 187 ns | 165 ns |
| 10 mappings | 218 ns | 199 ns |
| 50 mappings | 528 ns | 218 ns |
| 100 mappings | 980 ns | 229 ns |
| 200 mappings | 1880 ns | 239 ns |
| 300 mappings | 2760 ns | 240 ns |
| 340 mappings | not tested | 248 ns |
Here's the test program I used. I asked Eric what he did and this is a more
"advanced" implementation of the idea. It's pretty straight-forward:
#define __GNU_SOURCE
#define __STDC_FORMAT_MACROS
#include <errno.h>
#include <dirent.h>
#include <fcntl.h>
#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/types.h>
int main(int argc, char *argv[])
{
int ret;
size_t i, k;
int fd[1000000];
int times[1000];
char pathname[4096];
struct stat st;
struct timeval t1, t2;
uint64_t time_in_mcs;
uint64_t sum = 0;
if (argc != 2) {
fprintf(stderr, "Please specify a directory where to create "
"the test files\n");
exit(EXIT_FAILURE);
}
for (i = 0; i < sizeof(fd) / sizeof(fd[0]); i++) {
sprintf(pathname, "%s/idmap_test_%zu", argv[1], i);
fd[i]= open(pathname, O_RDWR | O_CREAT, S_IXUSR | S_IXGRP | S_IXOTH);
if (fd[i] < 0) {
ssize_t j;
for (j = i; j >= 0; j--)
close(fd[j]);
exit(EXIT_FAILURE);
}
}
for (k = 0; k < 1000; k++) {
ret = gettimeofday(&t1, NULL);
if (ret < 0)
goto close_all;
for (i = 0; i < sizeof(fd) / sizeof(fd[0]); i++) {
ret = fstat(fd[i], &st);
if (ret < 0)
goto close_all;
}
ret = gettimeofday(&t2, NULL);
if (ret < 0)
goto close_all;
time_in_mcs = (1000000 * t2.tv_sec + t2.tv_usec) -
(1000000 * t1.tv_sec + t1.tv_usec);
printf("Total time in micro seconds: %" PRIu64 "\n",
time_in_mcs);
printf("Total time in nanoseconds: %" PRIu64 "\n",
time_in_mcs * 1000);
printf("Time per file in nanoseconds: %" PRIu64 "\n",
(time_in_mcs * 1000) / 1000000);
times[k] = (time_in_mcs * 1000) / 1000000;
}
close_all:
for (i = 0; i < sizeof(fd) / sizeof(fd[0]); i++)
close(fd[i]);
if (ret < 0)
exit(EXIT_FAILURE);
for (k = 0; k < 1000; k++) {
sum += times[k];
}
printf("Mean time per file in nanoseconds: %" PRIu64 "\n", sum / 1000);
exit(EXIT_SUCCESS);;
}
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
CC: Serge Hallyn <serge@hallyn.com>
CC: Eric Biederman <ebiederm@xmission.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Please do not apply this to mainline directly, instead please re-run the
coccinelle script shown below and apply its output.
For several reasons, it is desirable to use {READ,WRITE}_ONCE() in
preference to ACCESS_ONCE(), and new code is expected to use one of the
former. So far, there's been no reason to change most existing uses of
ACCESS_ONCE(), as these aren't harmful, and changing them results in
churn.
However, for some features, the read/write distinction is critical to
correct operation. To distinguish these cases, separate read/write
accessors must be used. This patch migrates (most) remaining
ACCESS_ONCE() instances to {READ,WRITE}_ONCE(), using the following
coccinelle script:
----
// Convert trivial ACCESS_ONCE() uses to equivalent READ_ONCE() and
// WRITE_ONCE()
// $ make coccicheck COCCI=/home/mark/once.cocci SPFLAGS="--include-headers" MODE=patch
virtual patch
@ depends on patch @
expression E1, E2;
@@
- ACCESS_ONCE(E1) = E2
+ WRITE_ONCE(E1, E2)
@ depends on patch @
expression E;
@@
- ACCESS_ONCE(E)
+ READ_ONCE(E)
----
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: davem@davemloft.net
Cc: linux-arch@vger.kernel.org
Cc: mpe@ellerman.id.au
Cc: shuah@kernel.org
Cc: snitzer@redhat.com
Cc: thor.thayer@linux.intel.com
Cc: tj@kernel.org
Cc: viro@zeniv.linux.org.uk
Cc: will.deacon@arm.com
Link: http://lkml.kernel.org/r/1508792849-3115-19-git-send-email-paulmck@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It is pointless and confusing to allow a pid namespace hierarchy and
the user namespace hierarchy to get out of sync. The owner of a child
pid namespace should be the owner of the parent pid namespace or
a descendant of the owner of the parent pid namespace.
Otherwise it is possible to construct scenarios where a process has a
capability over a parent pid namespace but does not have the
capability over a child pid namespace. Which confusingly makes
permission checks non-transitive.
It requires use of setns into a pid namespace (but not into a user
namespace) to create such a scenario.
Add the function in_userns to help in making this determination.
v2: Optimized in_userns by using level as suggested
by: Kirill Tkhai <ktkhai@virtuozzo.com>
Ref: 49f4d8b93c ("pidns: Capture the user namespace and filter ns_last_pid")
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
We are going to split <linux/sched/signal.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.
Create a trivial placeholder <linux/sched/signal.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
From: Andrey Vagin <avagin@openvz.org>
Each namespace has an owning user namespace and now there is not way
to discover these relationships.
Pid and user namepaces are hierarchical. There is no way to discover
parent-child relationships too.
Why we may want to know relationships between namespaces?
One use would be visualization, in order to understand the running
system. Another would be to answer the question: what capability does
process X have to perform operations on a resource governed by namespace
Y?
One more use-case (which usually called abnormal) is checkpoint/restart.
In CRIU we are going to dump and restore nested namespaces.
There [1] was a discussion about which interface to choose to determing
relationships between namespaces.
Eric suggested to add two ioctl-s [2]:
> Grumble, Grumble. I think this may actually a case for creating ioctls
> for these two cases. Now that random nsfs file descriptors are bind
> mountable the original reason for using proc files is not as pressing.
>
> One ioctl for the user namespace that owns a file descriptor.
> One ioctl for the parent namespace of a namespace file descriptor.
Here is an implementaions of these ioctl-s.
$ man man7/namespaces.7
...
Since Linux 4.X, the following ioctl(2) calls are supported for
namespace file descriptors. The correct syntax is:
fd = ioctl(ns_fd, ioctl_type);
where ioctl_type is one of the following:
NS_GET_USERNS
Returns a file descriptor that refers to an owning user names‐
pace.
NS_GET_PARENT
Returns a file descriptor that refers to a parent namespace.
This ioctl(2) can be used for pid and user namespaces. For
user namespaces, NS_GET_PARENT and NS_GET_USERNS have the same
meaning.
In addition to generic ioctl(2) errors, the following specific ones
can occur:
EINVAL NS_GET_PARENT was called for a nonhierarchical namespace.
EPERM The requested namespace is outside of the current namespace
scope.
[1] https://lkml.org/lkml/2016/7/6/158
[2] https://lkml.org/lkml/2016/7/9/101
Changes for v2:
* don't return ENOENT for init_user_ns and init_pid_ns. There is nothing
outside of the init namespace, so we can return EPERM in this case too.
> The fewer special cases the easier the code is to get
> correct, and the easier it is to read. // Eric
Changes for v3:
* rename ns->get_owner() to ns->owner(). get_* usually means that it
grabs a reference.
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: "Michael Kerrisk (man-pages)" <mtk.manpages@gmail.com>
Cc: "W. Trevor King" <wking@tremily.us>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Serge Hallyn <serge.hallyn@canonical.com>
Pid and user namepaces are hierarchical. There is no way to discover
parent-child relationships.
In a future we will use this interface to dump and restore nested
namespaces.
Acked-by: Serge Hallyn <serge@hallyn.com>
Signed-off-by: Andrei Vagin <avagin@openvz.org>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Return -EPERM if an owning user namespace is outside of a process
current user namespace.
v2: In a first version ns_get_owner returned ENOENT for init_user_ns.
This special cases was removed from this version. There is nothing
outside of init_user_ns, so we can return EPERM.
v3: rename ns->get_owner() to ns->owner(). get_* usually means that it
grabs a reference.
Acked-by: Serge Hallyn <serge@hallyn.com>
Signed-off-by: Andrei Vagin <avagin@openvz.org>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
The current error codes returned when a the per user per user
namespace limit are hit (EINVAL, EUSERS, and ENFILE) are wrong. I
asked for advice on linux-api and it we made clear that those were
the wrong error code, but a correct effor code was not suggested.
The best general error code I have found for hitting a resource limit
is ENOSPC. It is not perfect but as it is unambiguous it will serve
until someone comes up with a better error code.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
The same kind of recursive sane default limit and policy
countrol that has been implemented for the user namespace
is desirable for the other namespaces, so generalize
the user namespace refernce count into a ucount.
Acked-by: Kees Cook <keescook@chromium.org>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Add a structure that is per user and per user ns and use it to hold
the count of user namespaces. This makes prevents one user from
creating denying service to another user by creating the maximum
number of user namespaces.
Rename the sysctl export of the maximum count from
/proc/sys/userns/max_user_namespaces to /proc/sys/user/max_user_namespaces
to reflect that the count is now per user.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Export the export the maximum number of user namespaces as
/proc/sys/userns/max_user_namespaces.
Acked-by: Kees Cook <keescook@chromium.org>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Limit per userns sysctls to only be opened for write by a holder
of CAP_SYS_RESOURCE.
Add all of the necessary boilerplate for having per user namespace
sysctls.
Acked-by: Kees Cook <keescook@chromium.org>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Add the necessary boiler plate to move freeing of user namespaces into
work queue and thus into process context where things can sleep.
This is a necessary precursor to per user namespace sysctls.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Capability sets attached to files must be ignored except in the
user namespaces where the mounter is privileged, i.e. s_user_ns
and its descendants. Otherwise a vector exists for gaining
privileges in namespaces where a user is not already privileged.
Add a new helper function, current_in_user_ns(), to test whether a user
namespace is the same as or a descendant of another namespace.
Use this helper to determine whether a file's capability set
should be applied to the caps constructed during exec.
--EWB Replaced in_userns with the simpler current_in_userns.
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: Seth Forshee <seth.forshee@canonical.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Credit where credit is due: this idea comes from Christoph Lameter with
a lot of valuable input from Serge Hallyn. This patch is heavily based
on Christoph's patch.
===== The status quo =====
On Linux, there are a number of capabilities defined by the kernel. To
perform various privileged tasks, processes can wield capabilities that
they hold.
Each task has four capability masks: effective (pE), permitted (pP),
inheritable (pI), and a bounding set (X). When the kernel checks for a
capability, it checks pE. The other capability masks serve to modify
what capabilities can be in pE.
Any task can remove capabilities from pE, pP, or pI at any time. If a
task has a capability in pP, it can add that capability to pE and/or pI.
If a task has CAP_SETPCAP, then it can add any capability to pI, and it
can remove capabilities from X.
Tasks are not the only things that can have capabilities; files can also
have capabilities. A file can have no capabilty information at all [1].
If a file has capability information, then it has a permitted mask (fP)
and an inheritable mask (fI) as well as a single effective bit (fE) [2].
File capabilities modify the capabilities of tasks that execve(2) them.
A task that successfully calls execve has its capabilities modified for
the file ultimately being excecuted (i.e. the binary itself if that
binary is ELF or for the interpreter if the binary is a script.) [3] In
the capability evolution rules, for each mask Z, pZ represents the old
value and pZ' represents the new value. The rules are:
pP' = (X & fP) | (pI & fI)
pI' = pI
pE' = (fE ? pP' : 0)
X is unchanged
For setuid binaries, fP, fI, and fE are modified by a moderately
complicated set of rules that emulate POSIX behavior. Similarly, if
euid == 0 or ruid == 0, then fP, fI, and fE are modified differently
(primary, fP and fI usually end up being the full set). For nonroot
users executing binaries with neither setuid nor file caps, fI and fP
are empty and fE is false.
As an extra complication, if you execute a process as nonroot and fE is
set, then the "secure exec" rules are in effect: AT_SECURE gets set,
LD_PRELOAD doesn't work, etc.
This is rather messy. We've learned that making any changes is
dangerous, though: if a new kernel version allows an unprivileged
program to change its security state in a way that persists cross
execution of a setuid program or a program with file caps, this
persistent state is surprisingly likely to allow setuid or file-capped
programs to be exploited for privilege escalation.
===== The problem =====
Capability inheritance is basically useless.
If you aren't root and you execute an ordinary binary, fI is zero, so
your capabilities have no effect whatsoever on pP'. This means that you
can't usefully execute a helper process or a shell command with elevated
capabilities if you aren't root.
On current kernels, you can sort of work around this by setting fI to
the full set for most or all non-setuid executable files. This causes
pP' = pI for nonroot, and inheritance works. No one does this because
it's a PITA and it isn't even supported on most filesystems.
If you try this, you'll discover that every nonroot program ends up with
secure exec rules, breaking many things.
This is a problem that has bitten many people who have tried to use
capabilities for anything useful.
===== The proposed change =====
This patch adds a fifth capability mask called the ambient mask (pA).
pA does what most people expect pI to do.
pA obeys the invariant that no bit can ever be set in pA if it is not
set in both pP and pI. Dropping a bit from pP or pI drops that bit from
pA. This ensures that existing programs that try to drop capabilities
still do so, with a complication. Because capability inheritance is so
broken, setting KEEPCAPS, using setresuid to switch to nonroot uids, and
then calling execve effectively drops capabilities. Therefore,
setresuid from root to nonroot conditionally clears pA unless
SECBIT_NO_SETUID_FIXUP is set. Processes that don't like this can
re-add bits to pA afterwards.
The capability evolution rules are changed:
pA' = (file caps or setuid or setgid ? 0 : pA)
pP' = (X & fP) | (pI & fI) | pA'
pI' = pI
pE' = (fE ? pP' : pA')
X is unchanged
If you are nonroot but you have a capability, you can add it to pA. If
you do so, your children get that capability in pA, pP, and pE. For
example, you can set pA = CAP_NET_BIND_SERVICE, and your children can
automatically bind low-numbered ports. Hallelujah!
Unprivileged users can create user namespaces, map themselves to a
nonzero uid, and create both privileged (relative to their namespace)
and unprivileged process trees. This is currently more or less
impossible. Hallelujah!
You cannot use pA to try to subvert a setuid, setgid, or file-capped
program: if you execute any such program, pA gets cleared and the
resulting evolution rules are unchanged by this patch.
Users with nonzero pA are unlikely to unintentionally leak that
capability. If they run programs that try to drop privileges, dropping
privileges will still work.
It's worth noting that the degree of paranoia in this patch could
possibly be reduced without causing serious problems. Specifically, if
we allowed pA to persist across executing non-pA-aware setuid binaries
and across setresuid, then, naively, the only capabilities that could
leak as a result would be the capabilities in pA, and any attacker
*already* has those capabilities. This would make me nervous, though --
setuid binaries that tried to privilege-separate might fail to do so,
and putting CAP_DAC_READ_SEARCH or CAP_DAC_OVERRIDE into pA could have
unexpected side effects. (Whether these unexpected side effects would
be exploitable is an open question.) I've therefore taken the more
paranoid route. We can revisit this later.
An alternative would be to require PR_SET_NO_NEW_PRIVS before setting
ambient capabilities. I think that this would be annoying and would
make granting otherwise unprivileged users minor ambient capabilities
(CAP_NET_BIND_SERVICE or CAP_NET_RAW for example) much less useful than
it is with this patch.
===== Footnotes =====
[1] Files that are missing the "security.capability" xattr or that have
unrecognized values for that xattr end up with has_cap set to false.
The code that does that appears to be complicated for no good reason.
[2] The libcap capability mask parsers and formatters are dangerously
misleading and the documentation is flat-out wrong. fE is *not* a mask;
it's a single bit. This has probably confused every single person who
has tried to use file capabilities.
[3] Linux very confusingly processes both the script and the interpreter
if applicable, for reasons that elude me. The results from thinking
about a script's file capabilities and/or setuid bits are mostly
discarded.
Preliminary userspace code is here, but it needs updating:
https://git.kernel.org/cgit/linux/kernel/git/luto/util-linux-playground.git/commit/?h=cap_ambient&id=7f5afbd175d2
Here is a test program that can be used to verify the functionality
(from Christoph):
/*
* Test program for the ambient capabilities. This program spawns a shell
* that allows running processes with a defined set of capabilities.
*
* (C) 2015 Christoph Lameter <cl@linux.com>
* Released under: GPL v3 or later.
*
*
* Compile using:
*
* gcc -o ambient_test ambient_test.o -lcap-ng
*
* This program must have the following capabilities to run properly:
* Permissions for CAP_NET_RAW, CAP_NET_ADMIN, CAP_SYS_NICE
*
* A command to equip the binary with the right caps is:
*
* setcap cap_net_raw,cap_net_admin,cap_sys_nice+p ambient_test
*
*
* To get a shell with additional caps that can be inherited by other processes:
*
* ./ambient_test /bin/bash
*
*
* Verifying that it works:
*
* From the bash spawed by ambient_test run
*
* cat /proc/$$/status
*
* and have a look at the capabilities.
*/
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <cap-ng.h>
#include <sys/prctl.h>
#include <linux/capability.h>
/*
* Definitions from the kernel header files. These are going to be removed
* when the /usr/include files have these defined.
*/
#define PR_CAP_AMBIENT 47
#define PR_CAP_AMBIENT_IS_SET 1
#define PR_CAP_AMBIENT_RAISE 2
#define PR_CAP_AMBIENT_LOWER 3
#define PR_CAP_AMBIENT_CLEAR_ALL 4
static void set_ambient_cap(int cap)
{
int rc;
capng_get_caps_process();
rc = capng_update(CAPNG_ADD, CAPNG_INHERITABLE, cap);
if (rc) {
printf("Cannot add inheritable cap\n");
exit(2);
}
capng_apply(CAPNG_SELECT_CAPS);
/* Note the two 0s at the end. Kernel checks for these */
if (prctl(PR_CAP_AMBIENT, PR_CAP_AMBIENT_RAISE, cap, 0, 0)) {
perror("Cannot set cap");
exit(1);
}
}
int main(int argc, char **argv)
{
int rc;
set_ambient_cap(CAP_NET_RAW);
set_ambient_cap(CAP_NET_ADMIN);
set_ambient_cap(CAP_SYS_NICE);
printf("Ambient_test forking shell\n");
if (execv(argv[1], argv + 1))
perror("Cannot exec");
return 0;
}
Signed-off-by: Christoph Lameter <cl@linux.com> # Original author
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Acked-by: Serge E. Hallyn <serge.hallyn@ubuntu.com>
Acked-by: Kees Cook <keescook@chromium.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Aaron Jones <aaronmdjones@gmail.com>
Cc: Ted Ts'o <tytso@mit.edu>
Cc: Andrew G. Morgan <morgan@kernel.org>
Cc: Mimi Zohar <zohar@linux.vnet.ibm.com>
Cc: Austin S Hemmelgarn <ahferroin7@gmail.com>
Cc: Markku Savela <msa@moth.iki.fi>
Cc: Jarkko Sakkinen <jarkko.sakkinen@linux.intel.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: James Morris <james.l.morris@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The code that places signals in signal queues computes the uids, gids,
and pids at the time the signals are enqueued. Which means that tasks
that share signal queues must be in the same pid and user namespaces.
Sharing signal handlers is fine, but bizarre.
So make the code in fork and userns_install clearer by only testing
for what is functionally necessary.
Also update the comment in unshare about unsharing a user namespace to
be a little more explicit and make a little more sense.
Acked-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Pull user namespace related fixes from Eric Biederman:
"As these are bug fixes almost all of thes changes are marked for
backporting to stable.
The first change (implicitly adding MNT_NODEV on remount) addresses a
regression that was created when security issues with unprivileged
remount were closed. I go on to update the remount test to make it
easy to detect if this issue reoccurs.
Then there are a handful of mount and umount related fixes.
Then half of the changes deal with the a recently discovered design
bug in the permission checks of gid_map. Unix since the beginning has
allowed setting group permissions on files to less than the user and
other permissions (aka ---rwx---rwx). As the unix permission checks
stop as soon as a group matches, and setgroups allows setting groups
that can not later be dropped, results in a situtation where it is
possible to legitimately use a group to assign fewer privileges to a
process. Which means dropping a group can increase a processes
privileges.
The fix I have adopted is that gid_map is now no longer writable
without privilege unless the new file /proc/self/setgroups has been
set to permanently disable setgroups.
The bulk of user namespace using applications even the applications
using applications using user namespaces without privilege remain
unaffected by this change. Unfortunately this ix breaks a couple user
space applications, that were relying on the problematic behavior (one
of which was tools/selftests/mount/unprivileged-remount-test.c).
To hopefully prevent needing a regression fix on top of my security
fix I rounded folks who work with the container implementations mostly
like to be affected and encouraged them to test the changes.
> So far nothing broke on my libvirt-lxc test bed. :-)
> Tested with openSUSE 13.2 and libvirt 1.2.9.
> Tested-by: Richard Weinberger <richard@nod.at>
> Tested on Fedora20 with libvirt 1.2.11, works fine.
> Tested-by: Chen Hanxiao <chenhanxiao@cn.fujitsu.com>
> Ok, thanks - yes, unprivileged lxc is working fine with your kernels.
> Just to be sure I was testing the right thing I also tested using
> my unprivileged nsexec testcases, and they failed on setgroup/setgid
> as now expected, and succeeded there without your patches.
> Tested-by: Serge Hallyn <serge.hallyn@ubuntu.com>
> I tested this with Sandstorm. It breaks as is and it works if I add
> the setgroups thing.
> Tested-by: Andy Lutomirski <luto@amacapital.net> # breaks things as designed :("
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
userns: Unbreak the unprivileged remount tests
userns; Correct the comment in map_write
userns: Allow setting gid_maps without privilege when setgroups is disabled
userns: Add a knob to disable setgroups on a per user namespace basis
userns: Rename id_map_mutex to userns_state_mutex
userns: Only allow the creator of the userns unprivileged mappings
userns: Check euid no fsuid when establishing an unprivileged uid mapping
userns: Don't allow unprivileged creation of gid mappings
userns: Don't allow setgroups until a gid mapping has been setablished
userns: Document what the invariant required for safe unprivileged mappings.
groups: Consolidate the setgroups permission checks
mnt: Clear mnt_expire during pivot_root
mnt: Carefully set CL_UNPRIVILEGED in clone_mnt
mnt: Move the clear of MNT_LOCKED from copy_tree to it's callers.
umount: Do not allow unmounting rootfs.
umount: Disallow unprivileged mount force
mnt: Update unprivileged remount test
mnt: Implicitly add MNT_NODEV on remount when it was implicitly added by mount
It is important that all maps are less than PAGE_SIZE
or else setting the last byte of the buffer to '0'
could write off the end of the allocated storage.
Correct the misleading comment.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Now that setgroups can be disabled and not reenabled, setting gid_map
without privielge can now be enabled when setgroups is disabled.
This restores most of the functionality that was lost when unprivileged
setting of gid_map was removed. Applications that use this functionality
will need to check to see if they use setgroups or init_groups, and if they
don't they can be fixed by simply disabling setgroups before writing to
gid_map.
Cc: stable@vger.kernel.org
Reviewed-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
- Expose the knob to user space through a proc file /proc/<pid>/setgroups
A value of "deny" means the setgroups system call is disabled in the
current processes user namespace and can not be enabled in the
future in this user namespace.
A value of "allow" means the segtoups system call is enabled.
- Descendant user namespaces inherit the value of setgroups from
their parents.
- A proc file is used (instead of a sysctl) as sysctls currently do
not allow checking the permissions at open time.
- Writing to the proc file is restricted to before the gid_map
for the user namespace is set.
This ensures that disabling setgroups at a user namespace
level will never remove the ability to call setgroups
from a process that already has that ability.
A process may opt in to the setgroups disable for itself by
creating, entering and configuring a user namespace or by calling
setns on an existing user namespace with setgroups disabled.
Processes without privileges already can not call setgroups so this
is a noop. Prodcess with privilege become processes without
privilege when entering a user namespace and as with any other path
to dropping privilege they would not have the ability to call
setgroups. So this remains within the bounds of what is possible
without a knob to disable setgroups permanently in a user namespace.
Cc: stable@vger.kernel.org
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Generalize id_map_mutex so it can be used for more state of a user namespace.
Cc: stable@vger.kernel.org
Reviewed-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
If you did not create the user namespace and are allowed
to write to uid_map or gid_map you should already have the necessary
privilege in the parent user namespace to establish any mapping
you want so this will not affect userspace in practice.
Limiting unprivileged uid mapping establishment to the creator of the
user namespace makes it easier to verify all credentials obtained with
the uid mapping can be obtained without the uid mapping without
privilege.
Limiting unprivileged gid mapping establishment (which is temporarily
absent) to the creator of the user namespace also ensures that the
combination of uid and gid can already be obtained without privilege.
This is part of the fix for CVE-2014-8989.
Cc: stable@vger.kernel.org
Reviewed-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
setresuid allows the euid to be set to any of uid, euid, suid, and
fsuid. Therefor it is safe to allow an unprivileged user to map
their euid and use CAP_SETUID privileged with exactly that uid,
as no new credentials can be obtained.
I can not find a combination of existing system calls that allows setting
uid, euid, suid, and fsuid from the fsuid making the previous use
of fsuid for allowing unprivileged mappings a bug.
This is part of a fix for CVE-2014-8989.
Cc: stable@vger.kernel.org
Reviewed-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
As any gid mapping will allow and must allow for backwards
compatibility dropping groups don't allow any gid mappings to be
established without CAP_SETGID in the parent user namespace.
For a small class of applications this change breaks userspace
and removes useful functionality. This small class of applications
includes tools/testing/selftests/mount/unprivilged-remount-test.c
Most of the removed functionality will be added back with the addition
of a one way knob to disable setgroups. Once setgroups is disabled
setting the gid_map becomes as safe as setting the uid_map.
For more common applications that set the uid_map and the gid_map
with privilege this change will have no affect.
This is part of a fix for CVE-2014-8989.
Cc: stable@vger.kernel.org
Reviewed-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
setgroups is unique in not needing a valid mapping before it can be called,
in the case of setgroups(0, NULL) which drops all supplemental groups.
The design of the user namespace assumes that CAP_SETGID can not actually
be used until a gid mapping is established. Therefore add a helper function
to see if the user namespace gid mapping has been established and call
that function in the setgroups permission check.
This is part of the fix for CVE-2014-8989, being able to drop groups
without privilege using user namespaces.
Cc: stable@vger.kernel.org
Reviewed-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
The rule is simple. Don't allow anything that wouldn't be allowed
without unprivileged mappings.
It was previously overlooked that establishing gid mappings would
allow dropping groups and potentially gaining permission to files and
directories that had lesser permissions for a specific group than for
all other users.
This is the rule needed to fix CVE-2014-8989 and prevent any other
security issues with new_idmap_permitted.
The reason for this rule is that the unix permission model is old and
there are programs out there somewhere that take advantage of every
little corner of it. So allowing a uid or gid mapping to be
established without privielge that would allow anything that would not
be allowed without that mapping will result in expectations from some
code somewhere being violated. Violated expectations about the
behavior of the OS is a long way to say a security issue.
Cc: stable@vger.kernel.org
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
for now - just move corresponding ->proc_inum instances over there
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
proc_uid_seq_operations, proc_gid_seq_operations and
proc_projid_seq_operations are only called in proc_id_map_open with
seq_open as const struct seq_operations so we can constify the 3
structures and update proc_id_map_open prototype.
text data bss dec hex filename
6817 404 1984 9205 23f5 kernel/user_namespace.o-before
6913 308 1984 9205 23f5 kernel/user_namespace.o-after
Signed-off-by: Fabian Frederick <fabf@skynet.be>
Cc: Joe Perches <joe@perches.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
smp_read_barrier_depends() can be used if there is data dependency between
the readers - i.e. if the read operation after the barrier uses address
that was obtained from the read operation before the barrier.
In this file, there is only control dependency, no data dependecy, so the
use of smp_read_barrier_depends() is incorrect. The code could fail in the
following way:
* the cpu predicts that idx < entries is true and starts executing the
body of the for loop
* the cpu fetches map->extent[0].first and map->extent[0].count
* the cpu fetches map->nr_extents
* the cpu verifies that idx < extents is true, so it commits the
instructions in the body of the for loop
The problem is that in this scenario, the cpu read map->extent[0].first
and map->nr_extents in the wrong order. We need a full read memory barrier
to prevent it.
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Code that is obj-y (always built-in) or dependent on a bool Kconfig
(built-in or absent) can never be modular. So using module_init as an
alias for __initcall can be somewhat misleading.
Fix these up now, so that we can relocate module_init from init.h into
module.h in the future. If we don't do this, we'd have to add module.h
to obviously non-modular code, and that would be a worse thing.
The audit targets the following module_init users for change:
kernel/user.c obj-y
kernel/kexec.c bool KEXEC (one instance per arch)
kernel/profile.c bool PROFILING
kernel/hung_task.c bool DETECT_HUNG_TASK
kernel/sched/stats.c bool SCHEDSTATS
kernel/user_namespace.c bool USER_NS
Note that direct use of __initcall is discouraged, vs. one of the
priority categorized subgroups. As __initcall gets mapped onto
device_initcall, our use of subsys_initcall (which makes sense for these
files) will thus change this registration from level 6-device to level
4-subsys (i.e. slightly earlier). However no observable impact of that
difference has been observed during testing.
Also, two instances of missing ";" at EOL are fixed in kexec.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add support for per-user_namespace registers of persistent per-UID kerberos
caches held within the kernel.
This allows the kerberos cache to be retained beyond the life of all a user's
processes so that the user's cron jobs can work.
The kerberos cache is envisioned as a keyring/key tree looking something like:
struct user_namespace
\___ .krb_cache keyring - The register
\___ _krb.0 keyring - Root's Kerberos cache
\___ _krb.5000 keyring - User 5000's Kerberos cache
\___ _krb.5001 keyring - User 5001's Kerberos cache
\___ tkt785 big_key - A ccache blob
\___ tkt12345 big_key - Another ccache blob
Or possibly:
struct user_namespace
\___ .krb_cache keyring - The register
\___ _krb.0 keyring - Root's Kerberos cache
\___ _krb.5000 keyring - User 5000's Kerberos cache
\___ _krb.5001 keyring - User 5001's Kerberos cache
\___ tkt785 keyring - A ccache
\___ krbtgt/REDHAT.COM@REDHAT.COM big_key
\___ http/REDHAT.COM@REDHAT.COM user
\___ afs/REDHAT.COM@REDHAT.COM user
\___ nfs/REDHAT.COM@REDHAT.COM user
\___ krbtgt/KERNEL.ORG@KERNEL.ORG big_key
\___ http/KERNEL.ORG@KERNEL.ORG big_key
What goes into a particular Kerberos cache is entirely up to userspace. Kernel
support is limited to giving you the Kerberos cache keyring that you want.
The user asks for their Kerberos cache by:
krb_cache = keyctl_get_krbcache(uid, dest_keyring);
The uid is -1 or the user's own UID for the user's own cache or the uid of some
other user's cache (requires CAP_SETUID). This permits rpc.gssd or whatever to
mess with the cache.
The cache returned is a keyring named "_krb.<uid>" that the possessor can read,
search, clear, invalidate, unlink from and add links to. Active LSMs get a
chance to rule on whether the caller is permitted to make a link.
Each uid's cache keyring is created when it first accessed and is given a
timeout that is extended each time this function is called so that the keyring
goes away after a while. The timeout is configurable by sysctl but defaults to
three days.
Each user_namespace struct gets a lazily-created keyring that serves as the
register. The cache keyrings are added to it. This means that standard key
search and garbage collection facilities are available.
The user_namespace struct's register goes away when it does and anything left
in it is then automatically gc'd.
Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Simo Sorce <simo@redhat.com>
cc: Serge E. Hallyn <serge.hallyn@ubuntu.com>
cc: Eric W. Biederman <ebiederm@xmission.com>
Pull namespace changes from Eric Biederman:
"This is an assorted mishmash of small cleanups, enhancements and bug
fixes.
The major theme is user namespace mount restrictions. nsown_capable
is killed as it encourages not thinking about details that need to be
considered. A very hard to hit pid namespace exiting bug was finally
tracked and fixed. A couple of cleanups to the basic namespace
infrastructure.
Finally there is an enhancement that makes per user namespace
capabilities usable as capabilities, and an enhancement that allows
the per userns root to nice other processes in the user namespace"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
userns: Kill nsown_capable it makes the wrong thing easy
capabilities: allow nice if we are privileged
pidns: Don't have unshare(CLONE_NEWPID) imply CLONE_THREAD
userns: Allow PR_CAPBSET_DROP in a user namespace.
namespaces: Simplify copy_namespaces so it is clear what is going on.
pidns: Fix hang in zap_pid_ns_processes by sending a potentially extra wakeup
sysfs: Restrict mounting sysfs
userns: Better restrictions on when proc and sysfs can be mounted
vfs: Don't copy mount bind mounts of /proc/<pid>/ns/mnt between namespaces
kernel/nsproxy.c: Improving a snippet of code.
proc: Restrict mounting the proc filesystem
vfs: Lock in place mounts from more privileged users
Rely on the fact that another flavor of the filesystem is already
mounted and do not rely on state in the user namespace.
Verify that the mounted filesystem is not covered in any significant
way. I would love to verify that the previously mounted filesystem
has no mounts on top but there are at least the directories
/proc/sys/fs/binfmt_misc and /sys/fs/cgroup/ that exist explicitly
for other filesystems to mount on top of.
Refactor the test into a function named fs_fully_visible and call that
function from the mount routines of proc and sysfs. This makes this
test local to the filesystems involved and the results current of when
the mounts take place, removing a weird threading of the user
namespace, the mount namespace and the filesystems themselves.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>