Commit graph

24 commits

Author SHA1 Message Date
Arnd Bergmann
e63ba744a6 keys: __rcu annotations
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: David Howells <dhowells@redhat.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2010-08-19 17:18:00 -07:00
David Howells
8f92054e7c CRED: Fix __task_cred()'s lockdep check and banner comment
Fix __task_cred()'s lockdep check by removing the following validation
condition:

	lockdep_tasklist_lock_is_held()

as commit_creds() does not take the tasklist_lock, and nor do most of the
functions that call it, so this check is pointless and it can prevent
detection of the RCU lock not being held if the tasklist_lock is held.

Instead, add the following validation condition:

	task->exit_state >= 0

to permit the access if the target task is dead and therefore unable to change
its own credentials.

Fix __task_cred()'s comment to:

 (1) discard the bit that says that the caller must prevent the target task
     from being deleted.  That shouldn't need saying.

 (2) Add a comment indicating the result of __task_cred() should not be passed
     directly to get_cred(), but rather than get_task_cred() should be used
     instead.

Also put a note into the documentation to enforce this point there too.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Jiri Olsa <jolsa@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-07-29 15:16:18 -07:00
David Howells
de09a9771a CRED: Fix get_task_cred() and task_state() to not resurrect dead credentials
It's possible for get_task_cred() as it currently stands to 'corrupt' a set of
credentials by incrementing their usage count after their replacement by the
task being accessed.

What happens is that get_task_cred() can race with commit_creds():

	TASK_1			TASK_2			RCU_CLEANER
	-->get_task_cred(TASK_2)
	rcu_read_lock()
	__cred = __task_cred(TASK_2)
				-->commit_creds()
				old_cred = TASK_2->real_cred
				TASK_2->real_cred = ...
				put_cred(old_cred)
				  call_rcu(old_cred)
		[__cred->usage == 0]
	get_cred(__cred)
		[__cred->usage == 1]
	rcu_read_unlock()
							-->put_cred_rcu()
							[__cred->usage == 1]
							panic()

However, since a tasks credentials are generally not changed very often, we can
reasonably make use of a loop involving reading the creds pointer and using
atomic_inc_not_zero() to attempt to increment it if it hasn't already hit zero.

If successful, we can safely return the credentials in the knowledge that, even
if the task we're accessing has released them, they haven't gone to the RCU
cleanup code.

We then change task_state() in procfs to use get_task_cred() rather than
calling get_cred() on the result of __task_cred(), as that suffers from the
same problem.

Without this change, a BUG_ON in __put_cred() or in put_cred_rcu() can be
tripped when it is noticed that the usage count is not zero as it ought to be,
for example:

kernel BUG at kernel/cred.c:168!
invalid opcode: 0000 [#1] SMP
last sysfs file: /sys/kernel/mm/ksm/run
CPU 0
Pid: 2436, comm: master Not tainted 2.6.33.3-85.fc13.x86_64 #1 0HR330/OptiPlex
745
RIP: 0010:[<ffffffff81069881>]  [<ffffffff81069881>] __put_cred+0xc/0x45
RSP: 0018:ffff88019e7e9eb8  EFLAGS: 00010202
RAX: 0000000000000001 RBX: ffff880161514480 RCX: 00000000ffffffff
RDX: 00000000ffffffff RSI: ffff880140c690c0 RDI: ffff880140c690c0
RBP: ffff88019e7e9eb8 R08: 00000000000000d0 R09: 0000000000000000
R10: 0000000000000001 R11: 0000000000000040 R12: ffff880140c690c0
R13: ffff88019e77aea0 R14: 00007fff336b0a5c R15: 0000000000000001
FS:  00007f12f50d97c0(0000) GS:ffff880007400000(0000) knlGS:0000000000000000
CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f8f461bc000 CR3: 00000001b26ce000 CR4: 00000000000006f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400
Process master (pid: 2436, threadinfo ffff88019e7e8000, task ffff88019e77aea0)
Stack:
 ffff88019e7e9ec8 ffffffff810698cd ffff88019e7e9ef8 ffffffff81069b45
<0> ffff880161514180 ffff880161514480 ffff880161514180 0000000000000000
<0> ffff88019e7e9f28 ffffffff8106aace 0000000000000001 0000000000000246
Call Trace:
 [<ffffffff810698cd>] put_cred+0x13/0x15
 [<ffffffff81069b45>] commit_creds+0x16b/0x175
 [<ffffffff8106aace>] set_current_groups+0x47/0x4e
 [<ffffffff8106ac89>] sys_setgroups+0xf6/0x105
 [<ffffffff81009b02>] system_call_fastpath+0x16/0x1b
Code: 48 8d 71 ff e8 7e 4e 15 00 85 c0 78 0b 8b 75 ec 48 89 df e8 ef 4a 15 00
48 83 c4 18 5b c9 c3 55 8b 07 8b 07 48 89 e5 85 c0 74 04 <0f> 0b eb fe 65 48 8b
04 25 00 cc 00 00 48 3b b8 58 04 00 00 75
RIP  [<ffffffff81069881>] __put_cred+0xc/0x45
 RSP <ffff88019e7e9eb8>
---[ end trace df391256a100ebdd ]---

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Jiri Olsa <jolsa@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-07-29 15:16:17 -07:00
Oleg Nesterov
c70a626d3e umh: creds: kill subprocess_info->cred logic
Now that nobody ever changes subprocess_info->cred we can kill this member
and related code.  ____call_usermodehelper() always runs in the context of
freshly forked kernel thread, it has the proper ->cred copied from its
parent kthread, keventd.

Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Acked-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-05-27 09:12:45 -07:00
Paul E. McKenney
db1466b3e1 rcu: Use wrapper function instead of exporting tasklist_lock
Lockdep-RCU commit d11c563d exported tasklist_lock, which is not
a good thing.  This patch instead exports a function that uses
lockdep to check whether tasklist_lock is held.

Suggested-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
Cc: Christoph Hellwig <hch@lst.de>
LKML-Reference: <1267631219-8713-1-git-send-email-paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-03-04 11:46:14 +01:00
Paul E. McKenney
d11c563dd2 sched: Use lockdep-based checking on rcu_dereference()
Update the rcu_dereference() usages to take advantage of the new
lockdep-based checking.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
LKML-Reference: <1266887105-1528-6-git-send-email-paulmck@linux.vnet.ibm.com>
[ -v2: fix allmodconfig missing symbol export build failure on x86 ]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-02-25 10:34:26 +01:00
Andrew Morton
74908a0009 include/linux/cred.h: fix build
mips allmodconfig:

include/linux/cred.h: In function `creds_are_invalid':
include/linux/cred.h:187: error: `PAGE_SIZE' undeclared (first use in this function)
include/linux/cred.h:187: error: (Each undeclared identifier is reported only once
include/linux/cred.h:187: error: for each function it appears in.)

Fixes

commit b6dff3ec5e
Author:     David Howells <dhowells@redhat.com>
AuthorDate: Fri Nov 14 10:39:16 2008 +1100
Commit:     James Morris <jmorris@namei.org>
CommitDate: Fri Nov 14 10:39:16 2008 +1100

    CRED: Separate task security context from task_struct

I think.

It's way too large to be inlined anyway.

Dunno if this needs an EXPORT_SYMBOL() yet.

Cc: David Howells <dhowells@redhat.com>
Cc: James Morris <jmorris@namei.org>
Cc: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2009-09-23 11:01:25 -07:00
Eric Paris
ed868a5698 Creds: creds->security can be NULL is selinux is disabled
__validate_process_creds should check if selinux is actually enabled before
running tests on the selinux portion of the credentials struct.

Signed-off-by: Eric Paris <eparis@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2009-09-14 12:34:07 +10:00
David Howells
ee18d64c1f KEYS: Add a keyctl to install a process's session keyring on its parent [try #6]
Add a keyctl to install a process's session keyring onto its parent.  This
replaces the parent's session keyring.  Because the COW credential code does
not permit one process to change another process's credentials directly, the
change is deferred until userspace next starts executing again.  Normally this
will be after a wait*() syscall.

To support this, three new security hooks have been provided:
cred_alloc_blank() to allocate unset security creds, cred_transfer() to fill in
the blank security creds and key_session_to_parent() - which asks the LSM if
the process may replace its parent's session keyring.

The replacement may only happen if the process has the same ownership details
as its parent, and the process has LINK permission on the session keyring, and
the session keyring is owned by the process, and the LSM permits it.

Note that this requires alteration to each architecture's notify_resume path.
This has been done for all arches barring blackfin, m68k* and xtensa, all of
which need assembly alteration to support TIF_NOTIFY_RESUME.  This allows the
replacement to be performed at the point the parent process resumes userspace
execution.

This allows the userspace AFS pioctl emulation to fully emulate newpag() and
the VIOCSETTOK and VIOCSETTOK2 pioctls, all of which require the ability to
alter the parent process's PAG membership.  However, since kAFS doesn't use
PAGs per se, but rather dumps the keys into the session keyring, the session
keyring of the parent must be replaced if, for example, VIOCSETTOK is passed
the newpag flag.

This can be tested with the following program:

	#include <stdio.h>
	#include <stdlib.h>
	#include <keyutils.h>

	#define KEYCTL_SESSION_TO_PARENT	18

	#define OSERROR(X, S) do { if ((long)(X) == -1) { perror(S); exit(1); } } while(0)

	int main(int argc, char **argv)
	{
		key_serial_t keyring, key;
		long ret;

		keyring = keyctl_join_session_keyring(argv[1]);
		OSERROR(keyring, "keyctl_join_session_keyring");

		key = add_key("user", "a", "b", 1, keyring);
		OSERROR(key, "add_key");

		ret = keyctl(KEYCTL_SESSION_TO_PARENT);
		OSERROR(ret, "KEYCTL_SESSION_TO_PARENT");

		return 0;
	}

Compiled and linked with -lkeyutils, you should see something like:

	[dhowells@andromeda ~]$ keyctl show
	Session Keyring
	       -3 --alswrv   4043  4043  keyring: _ses
	355907932 --alswrv   4043    -1   \_ keyring: _uid.4043
	[dhowells@andromeda ~]$ /tmp/newpag
	[dhowells@andromeda ~]$ keyctl show
	Session Keyring
	       -3 --alswrv   4043  4043  keyring: _ses
	1055658746 --alswrv   4043  4043   \_ user: a
	[dhowells@andromeda ~]$ /tmp/newpag hello
	[dhowells@andromeda ~]$ keyctl show
	Session Keyring
	       -3 --alswrv   4043  4043  keyring: hello
	340417692 --alswrv   4043  4043   \_ user: a

Where the test program creates a new session keyring, sticks a user key named
'a' into it and then installs it on its parent.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2009-09-02 21:29:22 +10:00
David Howells
e0e817392b CRED: Add some configurable debugging [try #6]
Add a config option (CONFIG_DEBUG_CREDENTIALS) to turn on some debug checking
for credential management.  The additional code keeps track of the number of
pointers from task_structs to any given cred struct, and checks to see that
this number never exceeds the usage count of the cred struct (which includes
all references, not just those from task_structs).

Furthermore, if SELinux is enabled, the code also checks that the security
pointer in the cred struct is never seen to be invalid.

This attempts to catch the bug whereby inode_has_perm() faults in an nfsd
kernel thread on seeing cred->security be a NULL pointer (it appears that the
credential struct has been previously released):

	http://www.kerneloops.org/oops.php?number=252883

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2009-09-02 21:29:01 +10:00
Paul Menage
1c388ad054 include/linux/cred.h: work around gcc-4.2.4 warning in get_cred()
With gcc 4.2.4 (building UML) I get the warning

include/linux/cred.h: In function 'get_cred':
include/linux/cred.h:189: warning: passing argument 1 of
'get_new_cred' discards qualifiers from pointer target type

Inserting an additional local variable appears to keep the compiler happy,
although it's not clear to me why this should be needed.

Signed-off-by: Paul Menage <menage@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2009-07-20 08:45:25 +10:00
Alexey Dobriyan
b2e1feaf0a cred: #include init.h in cred.h
linux/cred.h can't be included as first header (alphabetical order)
because it uses __init which is enough to break compilation on some archs.

Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: James Morris <jmorris@namei.org>
Acked-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-05-29 08:40:01 -07:00
Serge Hallyn
18b6e0414e User namespaces: set of cleanups (v2)
The user_ns is moved from nsproxy to user_struct, so that a struct
cred by itself is sufficient to determine access (which it otherwise
would not be).  Corresponding ecryptfs fixes (by David Howells) are
here as well.

Fix refcounting.  The following rules now apply:
        1. The task pins the user struct.
        2. The user struct pins its user namespace.
        3. The user namespace pins the struct user which created it.

User namespaces are cloned during copy_creds().  Unsharing a new user_ns
is no longer possible.  (We could re-add that, but it'll cause code
duplication and doesn't seem useful if PAM doesn't need to clone user
namespaces).

When a user namespace is created, its first user (uid 0) gets empty
keyrings and a clean group_info.

This incorporates a previous patch by David Howells.  Here
is his original patch description:

>I suggest adding the attached incremental patch.  It makes the following
>changes:
>
> (1) Provides a current_user_ns() macro to wrap accesses to current's user
>     namespace.
>
> (2) Fixes eCryptFS.
>
> (3) Renames create_new_userns() to create_user_ns() to be more consistent
>     with the other associated functions and because the 'new' in the name is
>     superfluous.
>
> (4) Moves the argument and permission checks made for CLONE_NEWUSER to the
>     beginning of do_fork() so that they're done prior to making any attempts
>     at allocation.
>
> (5) Calls create_user_ns() after prepare_creds(), and gives it the new creds
>     to fill in rather than have it return the new root user.  I don't imagine
>     the new root user being used for anything other than filling in a cred
>     struct.
>
>     This also permits me to get rid of a get_uid() and a free_uid(), as the
>     reference the creds were holding on the old user_struct can just be
>     transferred to the new namespace's creator pointer.
>
> (6) Makes create_user_ns() reset the UIDs and GIDs of the creds under
>     preparation rather than doing it in copy_creds().
>
>David

>Signed-off-by: David Howells <dhowells@redhat.com>

Changelog:
	Oct 20: integrate dhowells comments
		1. leave thread_keyring alone
		2. use current_user_ns() in set_user()

Signed-off-by: Serge Hallyn <serue@us.ibm.com>
2008-11-24 18:57:41 -05:00
David Howells
3a3b7ce933 CRED: Allow kernel services to override LSM settings for task actions
Allow kernel services to override LSM settings appropriate to the actions
performed by a task by duplicating a set of credentials, modifying it and then
using task_struct::cred to point to it when performing operations on behalf of
a task.

This is used, for example, by CacheFiles which has to transparently access the
cache on behalf of a process that thinks it is doing, say, NFS accesses with a
potentially inappropriate (with respect to accessing the cache) set of
credentials.

This patch provides two LSM hooks for modifying a task security record:

 (*) security_kernel_act_as() which allows modification of the security datum
     with which a task acts on other objects (most notably files).

 (*) security_kernel_create_files_as() which allows modification of the
     security datum that is used to initialise the security data on a file that
     a task creates.

The patch also provides four new credentials handling functions, which wrap the
LSM functions:

 (1) prepare_kernel_cred()

     Prepare a set of credentials for a kernel service to use, based either on
     a daemon's credentials or on init_cred.  All the keyrings are cleared.

 (2) set_security_override()

     Set the LSM security ID in a set of credentials to a specific security
     context, assuming permission from the LSM policy.

 (3) set_security_override_from_ctx()

     As (2), but takes the security context as a string.

 (4) set_create_files_as()

     Set the file creation LSM security ID in a set of credentials to be the
     same as that on a particular inode.

Signed-off-by: Casey Schaufler <casey@schaufler-ca.com> [Smack changes]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 10:39:28 +11:00
David Howells
3b11a1dece CRED: Differentiate objective and effective subjective credentials on a task
Differentiate the objective and real subjective credentials from the effective
subjective credentials on a task by introducing a second credentials pointer
into the task_struct.

task_struct::real_cred then refers to the objective and apparent real
subjective credentials of a task, as perceived by the other tasks in the
system.

task_struct::cred then refers to the effective subjective credentials of a
task, as used by that task when it's actually running.  These are not visible
to the other tasks in the system.

__task_cred(task) then refers to the objective/real credentials of the task in
question.

current_cred() refers to the effective subjective credentials of the current
task.

prepare_creds() uses the objective creds as a base and commit_creds() changes
both pointers in the task_struct (indeed commit_creds() requires them to be the
same).

override_creds() and revert_creds() change the subjective creds pointer only,
and the former returns the old subjective creds.  These are used by NFSD,
faccessat() and do_coredump(), and will by used by CacheFiles.

In SELinux, current_has_perm() is provided as an alternative to
task_has_perm().  This uses the effective subjective context of current,
whereas task_has_perm() uses the objective/real context of the subject.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 10:39:26 +11:00
David Howells
98870ab0a5 CRED: Documentation
Document credentials and the new credentials API.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 10:39:26 +11:00
David Howells
a6f76f23d2 CRED: Make execve() take advantage of copy-on-write credentials
Make execve() take advantage of copy-on-write credentials, allowing it to set
up the credentials in advance, and then commit the whole lot after the point
of no return.

This patch and the preceding patches have been tested with the LTP SELinux
testsuite.

This patch makes several logical sets of alteration:

 (1) execve().

     The credential bits from struct linux_binprm are, for the most part,
     replaced with a single credentials pointer (bprm->cred).  This means that
     all the creds can be calculated in advance and then applied at the point
     of no return with no possibility of failure.

     I would like to replace bprm->cap_effective with:

	cap_isclear(bprm->cap_effective)

     but this seems impossible due to special behaviour for processes of pid 1
     (they always retain their parent's capability masks where normally they'd
     be changed - see cap_bprm_set_creds()).

     The following sequence of events now happens:

     (a) At the start of do_execve, the current task's cred_exec_mutex is
     	 locked to prevent PTRACE_ATTACH from obsoleting the calculation of
     	 creds that we make.

     (a) prepare_exec_creds() is then called to make a copy of the current
     	 task's credentials and prepare it.  This copy is then assigned to
     	 bprm->cred.

  	 This renders security_bprm_alloc() and security_bprm_free()
     	 unnecessary, and so they've been removed.

     (b) The determination of unsafe execution is now performed immediately
     	 after (a) rather than later on in the code.  The result is stored in
     	 bprm->unsafe for future reference.

     (c) prepare_binprm() is called, possibly multiple times.

     	 (i) This applies the result of set[ug]id binaries to the new creds
     	     attached to bprm->cred.  Personality bit clearance is recorded,
     	     but now deferred on the basis that the exec procedure may yet
     	     fail.

         (ii) This then calls the new security_bprm_set_creds().  This should
	     calculate the new LSM and capability credentials into *bprm->cred.

	     This folds together security_bprm_set() and parts of
	     security_bprm_apply_creds() (these two have been removed).
	     Anything that might fail must be done at this point.

         (iii) bprm->cred_prepared is set to 1.

	     bprm->cred_prepared is 0 on the first pass of the security
	     calculations, and 1 on all subsequent passes.  This allows SELinux
	     in (ii) to base its calculations only on the initial script and
	     not on the interpreter.

     (d) flush_old_exec() is called to commit the task to execution.  This
     	 performs the following steps with regard to credentials:

	 (i) Clear pdeath_signal and set dumpable on certain circumstances that
	     may not be covered by commit_creds().

         (ii) Clear any bits in current->personality that were deferred from
             (c.i).

     (e) install_exec_creds() [compute_creds() as was] is called to install the
     	 new credentials.  This performs the following steps with regard to
     	 credentials:

         (i) Calls security_bprm_committing_creds() to apply any security
             requirements, such as flushing unauthorised files in SELinux, that
             must be done before the credentials are changed.

	     This is made up of bits of security_bprm_apply_creds() and
	     security_bprm_post_apply_creds(), both of which have been removed.
	     This function is not allowed to fail; anything that might fail
	     must have been done in (c.ii).

         (ii) Calls commit_creds() to apply the new credentials in a single
             assignment (more or less).  Possibly pdeath_signal and dumpable
             should be part of struct creds.

	 (iii) Unlocks the task's cred_replace_mutex, thus allowing
	     PTRACE_ATTACH to take place.

         (iv) Clears The bprm->cred pointer as the credentials it was holding
             are now immutable.

         (v) Calls security_bprm_committed_creds() to apply any security
             alterations that must be done after the creds have been changed.
             SELinux uses this to flush signals and signal handlers.

     (f) If an error occurs before (d.i), bprm_free() will call abort_creds()
     	 to destroy the proposed new credentials and will then unlock
     	 cred_replace_mutex.  No changes to the credentials will have been
     	 made.

 (2) LSM interface.

     A number of functions have been changed, added or removed:

     (*) security_bprm_alloc(), ->bprm_alloc_security()
     (*) security_bprm_free(), ->bprm_free_security()

     	 Removed in favour of preparing new credentials and modifying those.

     (*) security_bprm_apply_creds(), ->bprm_apply_creds()
     (*) security_bprm_post_apply_creds(), ->bprm_post_apply_creds()

     	 Removed; split between security_bprm_set_creds(),
     	 security_bprm_committing_creds() and security_bprm_committed_creds().

     (*) security_bprm_set(), ->bprm_set_security()

     	 Removed; folded into security_bprm_set_creds().

     (*) security_bprm_set_creds(), ->bprm_set_creds()

     	 New.  The new credentials in bprm->creds should be checked and set up
     	 as appropriate.  bprm->cred_prepared is 0 on the first call, 1 on the
     	 second and subsequent calls.

     (*) security_bprm_committing_creds(), ->bprm_committing_creds()
     (*) security_bprm_committed_creds(), ->bprm_committed_creds()

     	 New.  Apply the security effects of the new credentials.  This
     	 includes closing unauthorised files in SELinux.  This function may not
     	 fail.  When the former is called, the creds haven't yet been applied
     	 to the process; when the latter is called, they have.

 	 The former may access bprm->cred, the latter may not.

 (3) SELinux.

     SELinux has a number of changes, in addition to those to support the LSM
     interface changes mentioned above:

     (a) The bprm_security_struct struct has been removed in favour of using
     	 the credentials-under-construction approach.

     (c) flush_unauthorized_files() now takes a cred pointer and passes it on
     	 to inode_has_perm(), file_has_perm() and dentry_open().

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 10:39:24 +11:00
David Howells
d84f4f992c CRED: Inaugurate COW credentials
Inaugurate copy-on-write credentials management.  This uses RCU to manage the
credentials pointer in the task_struct with respect to accesses by other tasks.
A process may only modify its own credentials, and so does not need locking to
access or modify its own credentials.

A mutex (cred_replace_mutex) is added to the task_struct to control the effect
of PTRACE_ATTACHED on credential calculations, particularly with respect to
execve().

With this patch, the contents of an active credentials struct may not be
changed directly; rather a new set of credentials must be prepared, modified
and committed using something like the following sequence of events:

	struct cred *new = prepare_creds();
	int ret = blah(new);
	if (ret < 0) {
		abort_creds(new);
		return ret;
	}
	return commit_creds(new);

There are some exceptions to this rule: the keyrings pointed to by the active
credentials may be instantiated - keyrings violate the COW rule as managing
COW keyrings is tricky, given that it is possible for a task to directly alter
the keys in a keyring in use by another task.

To help enforce this, various pointers to sets of credentials, such as those in
the task_struct, are declared const.  The purpose of this is compile-time
discouragement of altering credentials through those pointers.  Once a set of
credentials has been made public through one of these pointers, it may not be
modified, except under special circumstances:

  (1) Its reference count may incremented and decremented.

  (2) The keyrings to which it points may be modified, but not replaced.

The only safe way to modify anything else is to create a replacement and commit
using the functions described in Documentation/credentials.txt (which will be
added by a later patch).

This patch and the preceding patches have been tested with the LTP SELinux
testsuite.

This patch makes several logical sets of alteration:

 (1) execve().

     This now prepares and commits credentials in various places in the
     security code rather than altering the current creds directly.

 (2) Temporary credential overrides.

     do_coredump() and sys_faccessat() now prepare their own credentials and
     temporarily override the ones currently on the acting thread, whilst
     preventing interference from other threads by holding cred_replace_mutex
     on the thread being dumped.

     This will be replaced in a future patch by something that hands down the
     credentials directly to the functions being called, rather than altering
     the task's objective credentials.

 (3) LSM interface.

     A number of functions have been changed, added or removed:

     (*) security_capset_check(), ->capset_check()
     (*) security_capset_set(), ->capset_set()

     	 Removed in favour of security_capset().

     (*) security_capset(), ->capset()

     	 New.  This is passed a pointer to the new creds, a pointer to the old
     	 creds and the proposed capability sets.  It should fill in the new
     	 creds or return an error.  All pointers, barring the pointer to the
     	 new creds, are now const.

     (*) security_bprm_apply_creds(), ->bprm_apply_creds()

     	 Changed; now returns a value, which will cause the process to be
     	 killed if it's an error.

     (*) security_task_alloc(), ->task_alloc_security()

     	 Removed in favour of security_prepare_creds().

     (*) security_cred_free(), ->cred_free()

     	 New.  Free security data attached to cred->security.

     (*) security_prepare_creds(), ->cred_prepare()

     	 New. Duplicate any security data attached to cred->security.

     (*) security_commit_creds(), ->cred_commit()

     	 New. Apply any security effects for the upcoming installation of new
     	 security by commit_creds().

     (*) security_task_post_setuid(), ->task_post_setuid()

     	 Removed in favour of security_task_fix_setuid().

     (*) security_task_fix_setuid(), ->task_fix_setuid()

     	 Fix up the proposed new credentials for setuid().  This is used by
     	 cap_set_fix_setuid() to implicitly adjust capabilities in line with
     	 setuid() changes.  Changes are made to the new credentials, rather
     	 than the task itself as in security_task_post_setuid().

     (*) security_task_reparent_to_init(), ->task_reparent_to_init()

     	 Removed.  Instead the task being reparented to init is referred
     	 directly to init's credentials.

	 NOTE!  This results in the loss of some state: SELinux's osid no
	 longer records the sid of the thread that forked it.

     (*) security_key_alloc(), ->key_alloc()
     (*) security_key_permission(), ->key_permission()

     	 Changed.  These now take cred pointers rather than task pointers to
     	 refer to the security context.

 (4) sys_capset().

     This has been simplified and uses less locking.  The LSM functions it
     calls have been merged.

 (5) reparent_to_kthreadd().

     This gives the current thread the same credentials as init by simply using
     commit_thread() to point that way.

 (6) __sigqueue_alloc() and switch_uid()

     __sigqueue_alloc() can't stop the target task from changing its creds
     beneath it, so this function gets a reference to the currently applicable
     user_struct which it then passes into the sigqueue struct it returns if
     successful.

     switch_uid() is now called from commit_creds(), and possibly should be
     folded into that.  commit_creds() should take care of protecting
     __sigqueue_alloc().

 (7) [sg]et[ug]id() and co and [sg]et_current_groups.

     The set functions now all use prepare_creds(), commit_creds() and
     abort_creds() to build and check a new set of credentials before applying
     it.

     security_task_set[ug]id() is called inside the prepared section.  This
     guarantees that nothing else will affect the creds until we've finished.

     The calling of set_dumpable() has been moved into commit_creds().

     Much of the functionality of set_user() has been moved into
     commit_creds().

     The get functions all simply access the data directly.

 (8) security_task_prctl() and cap_task_prctl().

     security_task_prctl() has been modified to return -ENOSYS if it doesn't
     want to handle a function, or otherwise return the return value directly
     rather than through an argument.

     Additionally, cap_task_prctl() now prepares a new set of credentials, even
     if it doesn't end up using it.

 (9) Keyrings.

     A number of changes have been made to the keyrings code:

     (a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have
     	 all been dropped and built in to the credentials functions directly.
     	 They may want separating out again later.

     (b) key_alloc() and search_process_keyrings() now take a cred pointer
     	 rather than a task pointer to specify the security context.

     (c) copy_creds() gives a new thread within the same thread group a new
     	 thread keyring if its parent had one, otherwise it discards the thread
     	 keyring.

     (d) The authorisation key now points directly to the credentials to extend
     	 the search into rather pointing to the task that carries them.

     (e) Installing thread, process or session keyrings causes a new set of
     	 credentials to be created, even though it's not strictly necessary for
     	 process or session keyrings (they're shared).

(10) Usermode helper.

     The usermode helper code now carries a cred struct pointer in its
     subprocess_info struct instead of a new session keyring pointer.  This set
     of credentials is derived from init_cred and installed on the new process
     after it has been cloned.

     call_usermodehelper_setup() allocates the new credentials and
     call_usermodehelper_freeinfo() discards them if they haven't been used.  A
     special cred function (prepare_usermodeinfo_creds()) is provided
     specifically for call_usermodehelper_setup() to call.

     call_usermodehelper_setkeys() adjusts the credentials to sport the
     supplied keyring as the new session keyring.

(11) SELinux.

     SELinux has a number of changes, in addition to those to support the LSM
     interface changes mentioned above:

     (a) selinux_setprocattr() no longer does its check for whether the
     	 current ptracer can access processes with the new SID inside the lock
     	 that covers getting the ptracer's SID.  Whilst this lock ensures that
     	 the check is done with the ptracer pinned, the result is only valid
     	 until the lock is released, so there's no point doing it inside the
     	 lock.

(12) is_single_threaded().

     This function has been extracted from selinux_setprocattr() and put into
     a file of its own in the lib/ directory as join_session_keyring() now
     wants to use it too.

     The code in SELinux just checked to see whether a task shared mm_structs
     with other tasks (CLONE_VM), but that isn't good enough.  We really want
     to know if they're part of the same thread group (CLONE_THREAD).

(13) nfsd.

     The NFS server daemon now has to use the COW credentials to set the
     credentials it is going to use.  It really needs to pass the credentials
     down to the functions it calls, but it can't do that until other patches
     in this series have been applied.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 10:39:23 +11:00
David Howells
bb952bb98a CRED: Separate per-task-group keyrings from signal_struct
Separate per-task-group keyrings from signal_struct and dangle their anchor
from the cred struct rather than the signal_struct.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: James Morris <jmorris@namei.org>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 10:39:20 +11:00
David Howells
c69e8d9c01 CRED: Use RCU to access another task's creds and to release a task's own creds
Use RCU to access another task's creds and to release a task's own creds.
This means that it will be possible for the credentials of a task to be
replaced without another task (a) requiring a full lock to read them, and (b)
seeing deallocated memory.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 10:39:19 +11:00
David Howells
86a264abe5 CRED: Wrap current->cred and a few other accessors
Wrap current->cred and a few other accessors to hide their actual
implementation.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 10:39:18 +11:00
David Howells
f1752eec61 CRED: Detach the credentials from task_struct
Detach the credentials from task_struct, duplicating them in copy_process()
and releasing them in __put_task_struct().

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 10:39:17 +11:00
David Howells
b6dff3ec5e CRED: Separate task security context from task_struct
Separate the task security context from task_struct.  At this point, the
security data is temporarily embedded in the task_struct with two pointers
pointing to it.

Note that the Alpha arch is altered as it refers to (E)UID and (E)GID in
entry.S via asm-offsets.

With comment fixes Signed-off-by: Marc Dionne <marc.c.dionne@gmail.com>

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
2008-11-14 10:39:16 +11:00
David Howells
9e2b2dc413 CRED: Introduce credential access wrappers
The patches that are intended to introduce copy-on-write credentials for 2.6.28
require abstraction of access to some fields of the task structure,
particularly for the case of one task accessing another's credentials where RCU
will have to be observed.

Introduced here are trivial no-op versions of the desired accessors for current
and other tasks so that other subsystems can start to be converted over more
easily.

Wrappers are introduced into a new header (linux/cred.h) for UID/GID,
EUID/EGID, SUID/SGID, FSUID/FSGID, cap_effective and current's subscribed
user_struct.  These wrappers are macros because the ordering between header
files mitigates against making them inline functions.

linux/cred.h is #included from linux/sched.h.

Further, XFS is modified such that it no longer defines and uses parameterised
versions of current_fs[ug]id(), thus getting rid of the namespace collision
otherwise incurred.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
2008-08-14 09:35:23 +10:00