Commit graph

4 commits

Author SHA1 Message Date
Greg Kroah-Hartman
e2be04c7f9 License cleanup: add SPDX license identifier to uapi header files with a license
Many user space API headers have licensing information, which is either
incomplete, badly formatted or just a shorthand for referring to the
license under which the file is supposed to be.  This makes it hard for
compliance tools to determine the correct license.

Update these files with an SPDX license identifier.  The identifier was
chosen based on the license information in the file.

GPL/LGPL licensed headers get the matching GPL/LGPL SPDX license
identifier with the added 'WITH Linux-syscall-note' exception, which is
the officially assigned exception identifier for the kernel syscall
exception:

   NOTE! This copyright does *not* cover user programs that use kernel
   services by normal system calls - this is merely considered normal use
   of the kernel, and does *not* fall under the heading of "derived work".

This exception makes it possible to include GPL headers into non GPL
code, without confusing license compliance tools.

Headers which have either explicit dual licensing or are just licensed
under a non GPL license are updated with the corresponding SPDX
identifier and the GPLv2 with syscall exception identifier.  The format
is:
        ((GPL-2.0 WITH Linux-syscall-note) OR SPDX-ID-OF-OTHER-LICENSE)

SPDX license identifiers are a legally binding shorthand, which can be
used instead of the full boiler plate text.  The update does not remove
existing license information as this has to be done on a case by case
basis and the copyright holders might have to be consulted. This will
happen in a separate step.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.  See the previous patch in this series for the
methodology of how this patch was researched.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:20:11 +01:00
Andy King
c031e234ee VSOCK: Split vm_sockets.h into kernel/uapi
Split the vSockets header into kernel and UAPI parts.  The former gets the bits
that used to be in __KERNEL__ guards, while the latter gets everything that is
user-visible.  Tested by compiling vsock (+transport) and a simple user-mode
vSockets application.

Reported-by: David Howells <dhowells@redhat.com>
Acked-by: Dmitry Torokhov <dtor@vmware.com>
Signed-off-by: Andy King <acking@vmware.com>
Acked-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-03-08 12:24:48 -05:00
Andy King
5b8ca5344f VSOCK: Remove hypervisor-only socket option
Remove hypervisor-only socket option.

Reported-by: Gerd Hoffmann <kraxel@redhat.com>
Acked-by: Dmitry Torokhov <dtor@vmware.com>
Signed-off-by: Andy King <acking@vmware.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-02-18 15:02:51 -05:00
Andy King
d021c34405 VSOCK: Introduce VM Sockets
VM Sockets allows communication between virtual machines and the hypervisor.
User level applications both in a virtual machine and on the host can use the
VM Sockets API, which facilitates fast and efficient communication between
guest virtual machines and their host.  A socket address family, designed to be
compatible with UDP and TCP at the interface level, is provided.

Today, VM Sockets is used by various VMware Tools components inside the guest
for zero-config, network-less access to VMware host services.  In addition to
this, VMware's users are using VM Sockets for various applications, where
network access of the virtual machine is restricted or non-existent.  Examples
of this are VMs communicating with device proxies for proprietary hardware
running as host applications and automated testing of applications running
within virtual machines.

The VMware VM Sockets are similar to other socket types, like Berkeley UNIX
socket interface.  The VM Sockets module supports both connection-oriented
stream sockets like TCP, and connectionless datagram sockets like UDP. The VM
Sockets protocol family is defined as "AF_VSOCK" and the socket operations
split for SOCK_DGRAM and SOCK_STREAM.

For additional information about the use of VM Sockets, please refer to the
VM Sockets Programming Guide available at:

https://www.vmware.com/support/developer/vmci-sdk/

Signed-off-by: George Zhang <georgezhang@vmware.com>
Signed-off-by: Dmitry Torokhov <dtor@vmware.com>
Signed-off-by: Andy king <acking@vmware.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2013-02-10 19:41:08 -05:00