Commit graph

19334 commits

Author SHA1 Message Date
Vlastimil Babka
e1275a6b2d Revert "mm/compaction: fix set skip in fast_find_migrateblock"
commit 95e7a450b8 upstream.

This reverts commit 7efc3b7261.

We have got openSUSE reports (Link 1) for 6.1 kernel with khugepaged
stalling CPU for long periods of time.  Investigation of tracepoint data
shows that compaction is stuck in repeating fast_find_migrateblock()
based migrate page isolation, and then fails to migrate all isolated
pages.

Commit 7efc3b7261 ("mm/compaction: fix set skip in fast_find_migrateblock")
was suspected as it was merged in 6.1 and in theory can indeed remove a
termination condition for fast_find_migrateblock() under certain
conditions, as it removes a place that always marks a scanned pageblock
from being re-scanned.  There are other such places, but those can be
skipped under certain conditions, which seems to match the tracepoint
data.

Testing of revert also appears to have resolved the issue, thus revert
the commit until a more robust solution for the original problem is
developed.

It's also likely this will fix qemu stalls with 6.1 kernel reported in
Link 2, but that is not yet confirmed.

Link: https://bugzilla.suse.com/show_bug.cgi?id=1206848
Link: https://lore.kernel.org/kvm/b8017e09-f336-3035-8344-c549086c2340@kernel.org/
Link: https://lore.kernel.org/lkml/20230125134434.18017-1-mgorman@techsingularity.net/
Fixes: 7efc3b7261 ("mm/compaction: fix set skip in fast_find_migrateblock")
Cc: <stable@vger.kernel.org>
Tested-by: Pedro Falcato <pedro.falcato@gmail.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-02-01 08:34:49 +01:00
Kees Cook
13aa82f007 panic: Consolidate open-coded panic_on_warn checks
commit 79cc1ba7ba upstream.

Several run-time checkers (KASAN, UBSAN, KFENCE, KCSAN, sched) roll
their own warnings, and each check "panic_on_warn". Consolidate this
into a single function so that future instrumentation can be added in
a single location.

Cc: Marco Elver <elver@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: Valentin Schneider <vschneid@redhat.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: David Gow <davidgow@google.com>
Cc: tangmeng <tangmeng@uniontech.com>
Cc: Jann Horn <jannh@google.com>
Cc: Shuah Khan <skhan@linuxfoundation.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: "Guilherme G. Piccoli" <gpiccoli@igalia.com>
Cc: Tiezhu Yang <yangtiezhu@loongson.cn>
Cc: kasan-dev@googlegroups.com
Cc: linux-mm@kvack.org
Reviewed-by: Luis Chamberlain <mcgrof@kernel.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Marco Elver <elver@google.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Link: https://lore.kernel.org/r/20221117234328.594699-4-keescook@chromium.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-24 07:24:41 +01:00
Zach O'Keefe
f2f52dd4f5 mm/MADV_COLLAPSE: don't expand collapse when vm_end is past requested end
commit 52dc031088 upstream.

MADV_COLLAPSE acts on one hugepage-aligned/sized region at a time, until
it has collapsed all eligible memory contained within the bounds supplied
by the user.

At the top of each hugepage iteration we (re)lock mmap_lock and
(re)validate the VMA for eligibility and update variables that might have
changed while mmap_lock was dropped.  One thing that might occur is that
the VMA could be resized, and as such, we refetch vma->vm_end to make sure
we don't collapse past the end of the VMA's new end.

However, it's possible that when refetching vma->vm_end that we expand the
region acted on by MADV_COLLAPSE if vma->vm_end is greater than size+len
supplied by the user.

The consequence here is that we may attempt to collapse more memory than
requested, possibly yielding either "too much success" or "false failure"
user-visible results.  An example of the former is if we MADV_COLLAPSE the
first 4MiB of a 2TiB mmap()'d file, the incorrect refetch would cause the
operation to block for much longer than anticipated as we attempt to
collapse the entire TiB region.  An example of the latter is that applying
MADV_COLLPSE to a 4MiB file mapped to the start of a 6MiB VMA will
successfully collapse the first 4MiB, then incorrectly attempt to collapse
the last hugepage-aligned/sized region -- fail (since readahead/page cache
lookup will fail) -- and report a failure to the user.

I don't believe there is a kernel stability concern here as we always
(re)validate the VMA / region accordingly.  Also as Hugh mentions, the
user-visible effects are: we try to collapse more memory than requested
by the user, and/or failing an operation that should have otherwise
succeeded.  An example is trying to collapse a 4MiB file contained
within a 12MiB VMA.

Don't expand the acted-on region when refetching vma->vm_end.

Link: https://lkml.kernel.org/r/20221224082035.3197140-1-zokeefe@google.com
Fixes: 4d24de9425 ("mm: MADV_COLLAPSE: refetch vm_end after reacquiring mmap_lock")
Signed-off-by: Zach O'Keefe <zokeefe@google.com>
Reported-by: Hugh Dickins <hughd@google.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-24 07:24:36 +01:00
David Hildenbrand
bcde505af1 mm/userfaultfd: enable writenotify while userfaultfd-wp is enabled for a VMA
commit 51d3d5eb74 upstream.

Currently, we don't enable writenotify when enabling userfaultfd-wp on a
shared writable mapping (for now only shmem and hugetlb).  The consequence
is that vma->vm_page_prot will still include write permissions, to be set
as default for all PTEs that get remapped (e.g., mprotect(), NUMA hinting,
page migration, ...).

So far, vma->vm_page_prot is assumed to be a safe default, meaning that we
only add permissions (e.g., mkwrite) but not remove permissions (e.g.,
wrprotect).  For example, when enabling softdirty tracking, we enable
writenotify.  With uffd-wp on shared mappings, that changed.  More details
on vma->vm_page_prot semantics were summarized in [1].

This is problematic for uffd-wp: we'd have to manually check for a uffd-wp
PTEs/PMDs and manually write-protect PTEs/PMDs, which is error prone.
Prone to such issues is any code that uses vma->vm_page_prot to set PTE
permissions: primarily pte_modify() and mk_pte().

Instead, let's enable writenotify such that PTEs/PMDs/...  will be mapped
write-protected as default and we will only allow selected PTEs that are
definitely safe to be mapped without write-protection (see
can_change_pte_writable()) to be writable.  In the future, we might want
to enable write-bit recovery -- e.g., can_change_pte_writable() -- at more
locations, for example, also when removing uffd-wp protection.

This fixes two known cases:

(a) remove_migration_pte() mapping uffd-wp'ed PTEs writable, resulting
    in uffd-wp not triggering on write access.
(b) do_numa_page() / do_huge_pmd_numa_page() mapping uffd-wp'ed PTEs/PMDs
    writable, resulting in uffd-wp not triggering on write access.

Note that do_numa_page() / do_huge_pmd_numa_page() can be reached even
without NUMA hinting (which currently doesn't seem to be applicable to
shmem), for example, by using uffd-wp with a PROT_WRITE shmem VMA.  On
such a VMA, userfaultfd-wp is currently non-functional.

Note that when enabling userfaultfd-wp, there is no need to walk page
tables to enforce the new default protection for the PTEs: we know that
they cannot be uffd-wp'ed yet, because that can only happen after enabling
uffd-wp for the VMA in general.

Also note that this makes mprotect() on ranges with uffd-wp'ed PTEs not
accidentally set the write bit -- which would result in uffd-wp not
triggering on later write access.  This commit makes uffd-wp on shmem
behave just like uffd-wp on anonymous memory in that regard, even though,
mixing mprotect with uffd-wp is controversial.

[1] https://lkml.kernel.org/r/92173bad-caa3-6b43-9d1e-9a471fdbc184@redhat.com

Link: https://lkml.kernel.org/r/20221209080912.7968-1-david@redhat.com
Fixes: b1f9e87686 ("mm/uffd: enable write protection for shmem & hugetlbfs")
Signed-off-by: David Hildenbrand <david@redhat.com>
Reported-by: Ives van Hoorne <ives@codesandbox.io>
Debugged-by: Peter Xu <peterx@redhat.com>
Acked-by: Peter Xu <peterx@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-24 07:24:36 +01:00
Peter Xu
3b8ede6665 mm/hugetlb: pre-allocate pgtable pages for uffd wr-protects
commit fed15f1345 upstream.

Userfaultfd-wp uses pte markers to mark wr-protected pages for both shmem
and hugetlb.  Shmem has pre-allocation ready for markers, but hugetlb path
was overlooked.

Doing so by calling huge_pte_alloc() if the initial pgtable walk fails to
find the huge ptep.  It's possible that huge_pte_alloc() can fail with
high memory pressure, in that case stop the loop immediately and fail
silently.  This is not the most ideal solution but it matches with what we
do with shmem meanwhile it avoids the splat in dmesg.

Link: https://lkml.kernel.org/r/20230104225207.1066932-2-peterx@redhat.com
Fixes: 60dfaad65a ("mm/hugetlb: allow uffd wr-protect none ptes")
Signed-off-by: Peter Xu <peterx@redhat.com>
Reported-by: James Houghton <jthoughton@google.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: James Houghton <jthoughton@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: <stable@vger.kernel.org>	[5.19+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-24 07:24:36 +01:00
David Hildenbrand
8d6a675cd7 mm/hugetlb: fix uffd-wp handling for migration entries in hugetlb_change_protection()
commit 44f86392bd upstream.

We have to update the uffd-wp SWP PTE bit independent of the type of
migration entry.  Currently, if we're unlucky and we want to install/clear
the uffd-wp bit just while we're migrating a read-only mapped hugetlb
page, we would miss to set/clear the uffd-wp bit.

Further, if we're processing a readable-exclusive migration entry and
neither want to set or clear the uffd-wp bit, we could currently end up
losing the uffd-wp bit.  Note that the same would hold for writable
migrating entries, however, having a writable migration entry with the
uffd-wp bit set would already mean that something went wrong.

Note that the change from !is_readable_migration_entry ->
writable_migration_entry is harmless and actually cleaner, as raised by
Miaohe Lin and discussed in [1].

[1] https://lkml.kernel.org/r/90dd6a93-4500-e0de-2bf0-bf522c311b0c@huawei.com

Link: https://lkml.kernel.org/r/20221222205511.675832-3-david@redhat.com
Fixes: 60dfaad65a ("mm/hugetlb: allow uffd wr-protect none ptes")
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Peter Xu <peterx@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-24 07:24:35 +01:00
David Hildenbrand
6062c992e9 mm/hugetlb: fix PTE marker handling in hugetlb_change_protection()
commit 0e678153f5 upstream.

Patch series "mm/hugetlb: uffd-wp fixes for hugetlb_change_protection()".

Playing with virtio-mem and background snapshots (using uffd-wp) on
hugetlb in QEMU, I managed to trigger a VM_BUG_ON().  Looking into the
details, hugetlb_change_protection() seems to not handle uffd-wp correctly
in all cases.

Patch #1 fixes my test case.  I don't have reproducers for patch #2, as it
requires running into migration entries.

I did not yet check in detail yet if !hugetlb code requires similar care.


This patch (of 2):

There are two problematic cases when stumbling over a PTE marker in
hugetlb_change_protection():

(1) We protect an uffd-wp PTE marker a second time using uffd-wp: we will
    end up in the "!huge_pte_none(pte)" case and mess up the PTE marker.

(2) We unprotect a uffd-wp PTE marker: we will similarly end up in the
    "!huge_pte_none(pte)" case even though we cleared the PTE, because
    the "pte" variable is stale. We'll mess up the PTE marker.

For example, if we later stumble over such a "wrongly modified" PTE marker,
we'll treat it like a present PTE that maps some garbage page.

This can, for example, be triggered by mapping a memfd backed by huge
pages, registering uffd-wp, uffd-wp'ing an unmapped page and (a)
uffd-wp'ing it a second time; or (b) uffd-unprotecting it; or (c)
unregistering uffd-wp. Then, ff we trigger fallocate(FALLOC_FL_PUNCH_HOLE)
on that file range, we will run into a VM_BUG_ON:

[  195.039560] page:00000000ba1f2987 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x0
[  195.039565] flags: 0x7ffffc0001000(reserved|node=0|zone=0|lastcpupid=0x1fffff)
[  195.039568] raw: 0007ffffc0001000 ffffe742c0000008 ffffe742c0000008 0000000000000000
[  195.039569] raw: 0000000000000000 0000000000000000 00000001ffffffff 0000000000000000
[  195.039569] page dumped because: VM_BUG_ON_PAGE(compound && !PageHead(page))
[  195.039573] ------------[ cut here ]------------
[  195.039574] kernel BUG at mm/rmap.c:1346!
[  195.039579] invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
[  195.039581] CPU: 7 PID: 4777 Comm: qemu-system-x86 Not tainted 6.0.12-200.fc36.x86_64 #1
[  195.039583] Hardware name: LENOVO 20WNS1F81N/20WNS1F81N, BIOS N35ET50W (1.50 ) 09/15/2022
[  195.039584] RIP: 0010:page_remove_rmap+0x45b/0x550
[  195.039588] Code: [...]
[  195.039589] RSP: 0018:ffffbc03c3633ba8 EFLAGS: 00010292
[  195.039591] RAX: 0000000000000040 RBX: ffffe742c0000000 RCX: 0000000000000000
[  195.039592] RDX: 0000000000000002 RSI: ffffffff8e7aac1a RDI: 00000000ffffffff
[  195.039592] RBP: 0000000000000001 R08: 0000000000000000 R09: ffffbc03c3633a08
[  195.039593] R10: 0000000000000003 R11: ffffffff8f146328 R12: ffff9b04c42754b0
[  195.039594] R13: ffffffff8fcc6328 R14: ffffbc03c3633c80 R15: ffff9b0484ab9100
[  195.039595] FS:  00007fc7aaf68640(0000) GS:ffff9b0bbf7c0000(0000) knlGS:0000000000000000
[  195.039596] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[  195.039597] CR2: 000055d402c49110 CR3: 0000000159392003 CR4: 0000000000772ee0
[  195.039598] PKRU: 55555554
[  195.039599] Call Trace:
[  195.039600]  <TASK>
[  195.039602]  __unmap_hugepage_range+0x33b/0x7d0
[  195.039605]  unmap_hugepage_range+0x55/0x70
[  195.039608]  hugetlb_vmdelete_list+0x77/0xa0
[  195.039611]  hugetlbfs_fallocate+0x410/0x550
[  195.039612]  ? _raw_spin_unlock_irqrestore+0x23/0x40
[  195.039616]  vfs_fallocate+0x12e/0x360
[  195.039618]  __x64_sys_fallocate+0x40/0x70
[  195.039620]  do_syscall_64+0x58/0x80
[  195.039623]  ? syscall_exit_to_user_mode+0x17/0x40
[  195.039624]  ? do_syscall_64+0x67/0x80
[  195.039626]  entry_SYSCALL_64_after_hwframe+0x63/0xcd
[  195.039628] RIP: 0033:0x7fc7b590651f
[  195.039653] Code: [...]
[  195.039654] RSP: 002b:00007fc7aaf66e70 EFLAGS: 00000293 ORIG_RAX: 000000000000011d
[  195.039655] RAX: ffffffffffffffda RBX: 0000558ef4b7f370 RCX: 00007fc7b590651f
[  195.039656] RDX: 0000000018000000 RSI: 0000000000000003 RDI: 000000000000000c
[  195.039657] RBP: 0000000008000000 R08: 0000000000000000 R09: 0000000000000073
[  195.039658] R10: 0000000008000000 R11: 0000000000000293 R12: 0000000018000000
[  195.039658] R13: 00007fb8bbe00000 R14: 000000000000000c R15: 0000000000001000
[  195.039661]  </TASK>

Fix it by not going into the "!huge_pte_none(pte)" case if we stumble over
an exclusive marker.  spin_unlock() + continue would get the job done.

However, instead, make it clearer that there are no fall-through
statements: we process each case (hwpoison, migration, marker, !none,
none) and then unlock the page table to continue with the next PTE.  Let's
avoid "continue" statements and use a single spin_unlock() at the end.

Link: https://lkml.kernel.org/r/20221222205511.675832-1-david@redhat.com
Link: https://lkml.kernel.org/r/20221222205511.675832-2-david@redhat.com
Fixes: 60dfaad65a ("mm/hugetlb: allow uffd wr-protect none ptes")
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-24 07:24:35 +01:00
Hugh Dickins
48b94e4998 mm/khugepaged: fix collapse_pte_mapped_thp() to allow anon_vma
commit ab0c3f1251 upstream.

uprobe_write_opcode() uses collapse_pte_mapped_thp() to restore huge pmd,
when removing a breakpoint from hugepage text: vma->anon_vma is always set
in that case, so undo the prohibition.  And MADV_COLLAPSE ought to be able
to collapse some page tables in a vma which happens to have anon_vma set
from CoWing elsewhere.

Is anon_vma lock required?  Almost not: if any page other than expected
subpage of the non-anon huge page is found in the page table, collapse is
aborted without making any change.  However, it is possible that an anon
page was CoWed from this extent in another mm or vma, in which case a
concurrent lookup might look here: so keep it away while clearing pmd (but
perhaps we shall go back to using pmd_lock() there in future).

Note that collapse_pte_mapped_thp() is exceptional in freeing a page table
without having cleared its ptes: I'm uneasy about that, and had thought
pte_clear()ing appropriate; but exclusive i_mmap lock does fix the
problem, and we would have to move the mmu_notification if clearing those
ptes.

What this fixes is not a dangerous instability.  But I suggest Cc stable
because uprobes "healing" has regressed in that way, so this should follow
8d3c106e19 into those stable releases where it was backported (and may
want adjustment there - I'll supply backports as needed).

Link: https://lkml.kernel.org/r/b740c9fb-edba-92ba-59fb-7a5592e5dfc@google.com
Fixes: 8d3c106e19 ("mm/khugepaged: take the right locks for page table retraction")
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zach O'Keefe <zokeefe@google.com>
Cc: Song Liu <songliubraving@fb.com>
Cc: <stable@vger.kernel.org>    [5.4+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-24 07:24:33 +01:00
James Houghton
63f71b8609 hugetlb: unshare some PMDs when splitting VMAs
commit b30c14cd61 upstream.

PMD sharing can only be done in PUD_SIZE-aligned pieces of VMAs; however,
it is possible that HugeTLB VMAs are split without unsharing the PMDs
first.

Without this fix, it is possible to hit the uffd-wp-related WARN_ON_ONCE
in hugetlb_change_protection [1].  The key there is that
hugetlb_unshare_all_pmds will not attempt to unshare PMDs in
non-PUD_SIZE-aligned sections of the VMA.

It might seem ideal to unshare in hugetlb_vm_op_open, but we need to
unshare in both the new and old VMAs, so unsharing in hugetlb_vm_op_split
seems natural.

[1]: https://lore.kernel.org/linux-mm/CADrL8HVeOkj0QH5VZZbRzybNE8CG-tEGFshnA+bG9nMgcWtBSg@mail.gmail.com/

Link: https://lkml.kernel.org/r/20230104231910.1464197-1-jthoughton@google.com
Fixes: 6dfeaff93b ("hugetlb/userfaultfd: unshare all pmds for hugetlbfs when register wp")
Signed-off-by: James Houghton <jthoughton@google.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Peter Xu <peterx@redhat.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-24 07:24:33 +01:00
Zach O'Keefe
1cb76f5669 mm/shmem: restore SHMEM_HUGE_DENY precedence over MADV_COLLAPSE
commit 3de0c269ad upstream.

SHMEM_HUGE_DENY is for emergency use by the admin, to disable allocation
of shmem huge pages if, for example, a dangerous bug is found in their
usage: see "deny" in Documentation/mm/transhuge.rst.  An app using
madvise(,,MADV_COLLAPSE) should not be allowed to override it: restore its
precedence over shmem_huge_force.

Restore SHMEM_HUGE_DENY precedence over MADV_COLLAPSE.

Link: https://lkml.kernel.org/r/20221224082035.3197140-2-zokeefe@google.com
Fixes: 7c6c6cc4d3 ("mm/shmem: add flag to enforce shmem THP in hugepage_vma_check()")
Signed-off-by: Zach O'Keefe <zokeefe@google.com>
Suggested-by: Hugh Dickins <hughd@google.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-24 07:24:33 +01:00
Liam Howlett
e733121383 nommu: fix split_vma() map_count error
commit fd9edbdbdc upstream.

During the maple tree conversion of nommu, an error in counting the VMAs
was introduced by counting the existing VMA again.  The counting used to
be decremented by one and incremented by two, but now it only increments
by two.  Fix the counting error by moving the increment outside the
setup_vma_to_mm() function to the callers.

Link: https://lkml.kernel.org/r/20230109205809.956325-1-Liam.Howlett@oracle.com
Fixes: 8220543df1 ("nommu: remove uses of VMA linked list")
Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yu Zhao <yuzhao@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-24 07:24:33 +01:00
Liam Howlett
6447569f4f nommu: fix do_munmap() error path
commit 80be727ec8 upstream.

When removing a VMA from the tree fails due to no memory, do not free the
VMA since a reference still exists.

Link: https://lkml.kernel.org/r/20230109205708.956103-1-Liam.Howlett@oracle.com
Fixes: 8220543df1 ("nommu: remove uses of VMA linked list")
Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yu Zhao <yuzhao@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-24 07:24:33 +01:00
Liam Howlett
1442d51026 nommu: fix memory leak in do_mmap() error path
commit 7f31cced57 upstream.

The preallocation of the maple tree nodes may leak if the error path to
"error_just_free" is taken.  Fix this by moving the freeing of the maple
tree nodes to a shared location for all error paths.

Link: https://lkml.kernel.org/r/20230109205507.955577-1-Liam.Howlett@oracle.com
Fixes: 8220543df1 ("nommu: remove uses of VMA linked list")
Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yu Zhao <yuzhao@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-24 07:24:33 +01:00
Aaron Thompson
68a6f7dbf8 mm: Always release pages to the buddy allocator in memblock_free_late().
commit 115d9d77bb upstream.

If CONFIG_DEFERRED_STRUCT_PAGE_INIT is enabled, memblock_free_pages()
only releases pages to the buddy allocator if they are not in the
deferred range. This is correct for free pages (as defined by
for_each_free_mem_pfn_range_in_zone()) because free pages in the
deferred range will be initialized and released as part of the deferred
init process. memblock_free_pages() is called by memblock_free_late(),
which is used to free reserved ranges after memblock_free_all() has
run. All pages in reserved ranges have been initialized at that point,
and accordingly, those pages are not touched by the deferred init
process. This means that currently, if the pages that
memblock_free_late() intends to release are in the deferred range, they
will never be released to the buddy allocator. They will forever be
reserved.

In addition, memblock_free_pages() calls kmsan_memblock_free_pages(),
which is also correct for free pages but is not correct for reserved
pages. KMSAN metadata for reserved pages is initialized by
kmsan_init_shadow(), which runs shortly before memblock_free_all().

For both of these reasons, memblock_free_pages() should only be called
for free pages, and memblock_free_late() should call __free_pages_core()
directly instead.

One case where this issue can occur in the wild is EFI boot on
x86_64. The x86 EFI code reserves all EFI boot services memory ranges
via memblock_reserve() and frees them later via memblock_free_late()
(efi_reserve_boot_services() and efi_free_boot_services(),
respectively). If any of those ranges happens to fall within the
deferred init range, the pages will not be released and that memory will
be unavailable.

For example, on an Amazon EC2 t3.micro VM (1 GB) booting via EFI:

v6.2-rc2:
  # grep -E 'Node|spanned|present|managed' /proc/zoneinfo
  Node 0, zone      DMA
          spanned  4095
          present  3999
          managed  3840
  Node 0, zone    DMA32
          spanned  246652
          present  245868
          managed  178867

v6.2-rc2 + patch:
  # grep -E 'Node|spanned|present|managed' /proc/zoneinfo
  Node 0, zone      DMA
          spanned  4095
          present  3999
          managed  3840
  Node 0, zone    DMA32
          spanned  246652
          present  245868
          managed  222816   # +43,949 pages

Fixes: 3a80a7fa79 ("mm: meminit: initialise a subset of struct pages if CONFIG_DEFERRED_STRUCT_PAGE_INIT is set")
Signed-off-by: Aaron Thompson <dev@aaront.org>
Link: https://lore.kernel.org/r/01010185892de53e-e379acfb-7044-4b24-b30a-e2657c1ba989-000000@us-west-2.amazonses.com
Signed-off-by: Mike Rapoport (IBM) <rppt@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-18 11:58:20 +01:00
Mike Kravetz
17183187dc hugetlb: really allocate vma lock for all sharable vmas
commit e700898fa0 upstream.

Commit bbff39cc6c ("hugetlb: allocate vma lock for all sharable vmas")
removed the pmd sharable checks in the vma lock helper routines.  However,
it left the functional version of helper routines behind #ifdef
CONFIG_ARCH_WANT_HUGE_PMD_SHARE.  Therefore, the vma lock is not being
used for sharable vmas on architectures that do not support pmd sharing.
On these architectures, a potential fault/truncation race is exposed that
could leave pages in a hugetlb file past i_size until the file is removed.

Move the functional vma lock helpers outside the ifdef, and remove the
non-functional stubs.  Since the vma lock is not just for pmd sharing,
rename the routine __vma_shareable_flags_pmd.

Link: https://lkml.kernel.org/r/20221212235042.178355-1-mike.kravetz@oracle.com
Fixes: bbff39cc6c ("hugetlb: allocate vma lock for all sharable vmas")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: James Houghton <jthoughton@google.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Cc: Peter Xu <peterx@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-07 11:11:55 +01:00
NARIBAYASHI Akira
b3b3212725 mm, compaction: fix fast_isolate_around() to stay within boundaries
commit be21b32afe upstream.

Depending on the memory configuration, isolate_freepages_block() may scan
pages out of the target range and causes panic.

Panic can occur on systems with multiple zones in a single pageblock.

The reason it is rare is that it only happens in special
configurations.  Depending on how many similar systems there are, it
may be a good idea to fix this problem for older kernels as well.

The problem is that pfn as argument of fast_isolate_around() could be out
of the target range.  Therefore we should consider the case where pfn <
start_pfn, and also the case where end_pfn < pfn.

This problem should have been addressd by the commit 6e2b7044c1 ("mm,
compaction: make fast_isolate_freepages() stay within zone") but there was
an oversight.

 Case1: pfn < start_pfn

  <at memory compaction for node Y>
  |  node X's zone  | node Y's zone
  +-----------------+------------------------------...
   pageblock    ^   ^     ^
  +-----------+-----------+-----------+-----------+...
                ^   ^     ^
                ^   ^      end_pfn
                ^    start_pfn = cc->zone->zone_start_pfn
                 pfn
                <---------> scanned range by "Scan After"

 Case2: end_pfn < pfn

  <at memory compaction for node X>
  |  node X's zone  | node Y's zone
  +-----------------+------------------------------...
   pageblock  ^     ^   ^
  +-----------+-----------+-----------+-----------+...
              ^     ^   ^
              ^     ^    pfn
              ^      end_pfn
               start_pfn
              <---------> scanned range by "Scan Before"

It seems that there is no good reason to skip nr_isolated pages just after
given pfn.  So let perform simple scan from start to end instead of
dividing the scan into "Before" and "After".

Link: https://lkml.kernel.org/r/20221026112438.236336-1-a.naribayashi@fujitsu.com
Fixes: 6e2b7044c1 ("mm, compaction: make fast_isolate_freepages() stay within zone").
Signed-off-by: NARIBAYASHI Akira <a.naribayashi@fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-04 11:29:01 +01:00
Arnd Bergmann
2cec280c49 kmsan: include linux/vmalloc.h
commit aaa746ad8b upstream.

This is needed for the vmap/vunmap declarations:

mm/kmsan/kmsan_test.c:316:9: error: implicit declaration of function 'vmap' is invalid in C99 [-Werror,-Wimplicit-function-declaration]
        vbuf = vmap(pages, npages, VM_MAP, PAGE_KERNEL);
               ^
mm/kmsan/kmsan_test.c:316:29: error: use of undeclared identifier 'VM_MAP'
        vbuf = vmap(pages, npages, VM_MAP, PAGE_KERNEL);
                                   ^
mm/kmsan/kmsan_test.c:322:3: error: implicit declaration of function 'vunmap' is invalid in C99 [-Werror,-Wimplicit-function-declaration]
                vunmap(vbuf);
                ^

Link: https://lkml.kernel.org/r/20221215163046.4079767-1-arnd@kernel.org
Fixes: 8ed691b02a ("kmsan: add tests for KMSAN")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Marco Elver <elver@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-04 11:28:59 +01:00
Arnd Bergmann
dace33a189 kmsan: export kmsan_handle_urb
commit 7ba594d700 upstream.

USB support can be in a loadable module, and this causes a link failure
with KMSAN:

ERROR: modpost: "kmsan_handle_urb" [drivers/usb/core/usbcore.ko] undefined!

Export the symbol so it can be used by this module.

Link: https://lkml.kernel.org/r/20221215162710.3802378-1-arnd@kernel.org
Fixes: 553a80188a ("kmsan: handle memory sent to/from USB")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Marco Elver <elver@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-04 11:28:59 +01:00
Mathieu Desnoyers
0ce4cc6d26 mm/mempolicy: fix memory leak in set_mempolicy_home_node system call
commit 38ce7c9bdf upstream.

When encountering any vma in the range with policy other than MPOL_BIND or
MPOL_PREFERRED_MANY, an error is returned without issuing a mpol_put on
the policy just allocated with mpol_dup().

This allows arbitrary users to leak kernel memory.

Link: https://lkml.kernel.org/r/20221215194621.202816-1-mathieu.desnoyers@efficios.com
Fixes: c6018b4b25 ("mm/mempolicy: add set_mempolicy_home_node syscall")
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Reviewed-by: Randy Dunlap <rdunlap@infradead.org>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Feng Tang <feng.tang@intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: <stable@vger.kernel.org>	[5.17+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-04 11:28:59 +01:00
Vlastimil Babka
4d528dab40 mm, mremap: fix mremap() expanding vma with addr inside vma
commit 6f12be792f upstream.

Since 6.1 we have noticed random rpm install failures that were tracked to
mremap() returning -ENOMEM and to commit ca3d76b0aa ("mm: add merging
after mremap resize").

The problem occurs when mremap() expands a VMA in place, but using an
starting address that's not vma->vm_start, but somewhere in the middle.
The extension_pgoff calculation introduced by the commit is wrong in that
case, so vma_merge() fails due to pgoffs not being compatible.  Fix the
calculation.

By the way it seems that the situations, where rpm now expands a vma from
the middle, were made possible also due to that commit, thanks to the
improved vma merging.  Yet it should work just fine, except for the buggy
calculation.

Link: https://lkml.kernel.org/r/20221216163227.24648-1-vbabka@suse.cz
Reported-by: Jiri Slaby <jirislaby@kernel.org>
  Link: https://bugzilla.suse.com/show_bug.cgi?id=1206359
Fixes: ca3d76b0aa ("mm: add merging after mremap resize")
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jakub Matěna <matenajakub@gmail.com>
Cc: "Kirill A . Shutemov" <kirill@shutemov.name>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-04 11:28:59 +01:00
David Hildenbrand
5cfb9a60ed mm/gup: disallow FOLL_FORCE|FOLL_WRITE on hugetlb mappings
commit f347454d03 upstream.

hugetlb does not support fake write-faults (write faults without write
permissions).  However, we are currently able to trigger a
FAULT_FLAG_WRITE fault on a VMA without VM_WRITE.

If we'd ever want to support FOLL_FORCE|FOLL_WRITE, we'd have to teach
hugetlb to:

(1) Leave the page mapped R/O after the fake write-fault, like
    maybe_mkwrite() does.
(2) Allow writing to an exclusive anon page that's mapped R/O when
    FOLL_FORCE is set, like can_follow_write_pte(). E.g.,
    __follow_hugetlb_must_fault() needs adjustment.

For now, it's not clear if that added complexity is really required.
History tolds us that FOLL_FORCE is dangerous and that we better limit its
use to a bare minimum.

--------------------------------------------------------------------------
  #include <stdio.h>
  #include <stdlib.h>
  #include <fcntl.h>
  #include <unistd.h>
  #include <errno.h>
  #include <stdint.h>
  #include <sys/mman.h>
  #include <linux/mman.h>

  int main(int argc, char **argv)
  {
          char *map;
          int mem_fd;

          map = mmap(NULL, 2 * 1024 * 1024u, PROT_READ,
                     MAP_PRIVATE|MAP_ANON|MAP_HUGETLB|MAP_HUGE_2MB, -1, 0);
          if (map == MAP_FAILED) {
                  fprintf(stderr, "mmap() failed: %d\n", errno);
                  return 1;
          }

          mem_fd = open("/proc/self/mem", O_RDWR);
          if (mem_fd < 0) {
                  fprintf(stderr, "open(/proc/self/mem) failed: %d\n", errno);
                  return 1;
          }

          if (pwrite(mem_fd, "0", 1, (uintptr_t) map) == 1) {
                  fprintf(stderr, "write() succeeded, which is unexpected\n");
                  return 1;
          }

          printf("write() failed as expected: %d\n", errno);
          return 0;
  }
--------------------------------------------------------------------------

Fortunately, we have a sanity check in hugetlb_wp() in place ever since
commit 1d8d14641f ("mm/hugetlb: support write-faults in shared
mappings"), that bails out instead of silently mapping a page writable in
a !PROT_WRITE VMA.

Consequently, above reproducer triggers a warning, similar to the one
reported by szsbot:

------------[ cut here ]------------
WARNING: CPU: 1 PID: 3612 at mm/hugetlb.c:5313 hugetlb_wp+0x20a/0x1af0 mm/hugetlb.c:5313
Modules linked in:
CPU: 1 PID: 3612 Comm: syz-executor250 Not tainted 6.1.0-rc2-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/11/2022
RIP: 0010:hugetlb_wp+0x20a/0x1af0 mm/hugetlb.c:5313
Code: ea 03 80 3c 02 00 0f 85 31 14 00 00 49 8b 5f 20 31 ff 48 89 dd 83 e5 02 48 89 ee e8 70 ab b7 ff 48 85 ed 75 5b e8 76 ae b7 ff <0f> 0b 41 bd 40 00 00 00 e8 69 ae b7 ff 48 b8 00 00 00 00 00 fc ff
RSP: 0018:ffffc90003caf620 EFLAGS: 00010293
RAX: 0000000000000000 RBX: 0000000008640070 RCX: 0000000000000000
RDX: ffff88807b963a80 RSI: ffffffff81c4ed2a RDI: 0000000000000007
RBP: 0000000000000000 R08: 0000000000000007 R09: 0000000000000000
R10: 0000000000000000 R11: 000000000008c07e R12: ffff888023805800
R13: 0000000000000000 R14: ffffffff91217f38 R15: ffff88801d4b0360
FS:  0000555555bba300(0000) GS:ffff8880b9b00000(0000) knlGS:0000000000000000
CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fff7a47a1b8 CR3: 000000002378d000 CR4: 00000000003506e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
 <TASK>
 hugetlb_no_page mm/hugetlb.c:5755 [inline]
 hugetlb_fault+0x19cc/0x2060 mm/hugetlb.c:5874
 follow_hugetlb_page+0x3f3/0x1850 mm/hugetlb.c:6301
 __get_user_pages+0x2cb/0xf10 mm/gup.c:1202
 __get_user_pages_locked mm/gup.c:1434 [inline]
 __get_user_pages_remote+0x18f/0x830 mm/gup.c:2187
 get_user_pages_remote+0x84/0xc0 mm/gup.c:2260
 __access_remote_vm+0x287/0x6b0 mm/memory.c:5517
 ptrace_access_vm+0x181/0x1d0 kernel/ptrace.c:61
 generic_ptrace_pokedata kernel/ptrace.c:1323 [inline]
 ptrace_request+0xb46/0x10c0 kernel/ptrace.c:1046
 arch_ptrace+0x36/0x510 arch/x86/kernel/ptrace.c:828
 __do_sys_ptrace kernel/ptrace.c:1296 [inline]
 __se_sys_ptrace kernel/ptrace.c:1269 [inline]
 __x64_sys_ptrace+0x178/0x2a0 kernel/ptrace.c:1269
 do_syscall_x64 arch/x86/entry/common.c:50 [inline]
 do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
 entry_SYSCALL_64_after_hwframe+0x63/0xcd
[...]

So let's silence that warning by teaching GUP code that FOLL_FORCE -- so
far -- does not apply to hugetlb.

Note that FOLL_FORCE for read-access seems to be working as expected.  The
assumption is that this has been broken forever, only ever since above
commit, we actually detect the wrong handling and WARN_ON_ONCE().

I assume this has been broken at least since 2014, when mm/gup.c came to
life.  I failed to come up with a suitable Fixes tag quickly.

Link: https://lkml.kernel.org/r/20221031152524.173644-1-david@redhat.com
Fixes: 1d8d14641f ("mm/hugetlb: support write-faults in shared mappings")
Signed-off-by: David Hildenbrand <david@redhat.com>
Reported-by: <syzbot+f0b97304ef90f0d0b1dc@syzkaller.appspotmail.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-12-31 13:33:11 +01:00
Linus Torvalds
4cee37b3a4 9 hotfixes. 6 for MM, 3 for other areas. Four of these patches address
post-6.0 issues.
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCY5Ur2AAKCRDdBJ7gKXxA
 jsGmAQDWSq6z9fVgk30XpMr/X7t5c6NTPw5GocVpdwG8iqch3gEAjEs5/Kcd/mx4
 d1dLaJFu1u3syessp8nJrNr1HANIog8=
 =L8zu
 -----END PGP SIGNATURE-----

Merge tag 'mm-hotfixes-stable-2022-12-10-1' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

Pull misc fixes from Andrew Morton:
 "Nine hotfixes.

  Six for MM, three for other areas. Four of these patches address
  post-6.0 issues"

* tag 'mm-hotfixes-stable-2022-12-10-1' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm:
  memcg: fix possible use-after-free in memcg_write_event_control()
  MAINTAINERS: update Muchun Song's email
  mm/gup: fix gup_pud_range() for dax
  mmap: fix do_brk_flags() modifying obviously incorrect VMAs
  mm/swap: fix SWP_PFN_BITS with CONFIG_PHYS_ADDR_T_64BIT on 32bit
  tmpfs: fix data loss from failed fallocate
  kselftests: cgroup: update kmem test precision tolerance
  mm: do not BUG_ON missing brk mapping, because userspace can unmap it
  mailmap: update Matti Vaittinen's email address
2022-12-10 17:10:52 -08:00
Tejun Heo
4a7ba45b1a memcg: fix possible use-after-free in memcg_write_event_control()
memcg_write_event_control() accesses the dentry->d_name of the specified
control fd to route the write call.  As a cgroup interface file can't be
renamed, it's safe to access d_name as long as the specified file is a
regular cgroup file.  Also, as these cgroup interface files can't be
removed before the directory, it's safe to access the parent too.

Prior to 347c4a8747 ("memcg: remove cgroup_event->cft"), there was a
call to __file_cft() which verified that the specified file is a regular
cgroupfs file before further accesses.  The cftype pointer returned from
__file_cft() was no longer necessary and the commit inadvertently dropped
the file type check with it allowing any file to slip through.  With the
invarients broken, the d_name and parent accesses can now race against
renames and removals of arbitrary files and cause use-after-free's.

Fix the bug by resurrecting the file type check in __file_cft().  Now that
cgroupfs is implemented through kernfs, checking the file operations needs
to go through a layer of indirection.  Instead, let's check the superblock
and dentry type.

Link: https://lkml.kernel.org/r/Y5FRm/cfcKPGzWwl@slm.duckdns.org
Fixes: 347c4a8747 ("memcg: remove cgroup_event->cft")
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Jann Horn <jannh@google.com>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: <stable@vger.kernel.org>	[3.14+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-12-09 18:41:17 -08:00
John Starks
fcd0ccd836 mm/gup: fix gup_pud_range() for dax
For dax pud, pud_huge() returns true on x86. So the function works as long
as hugetlb is configured. However, dax doesn't depend on hugetlb.
Commit 414fd080d1 ("mm/gup: fix gup_pmd_range() for dax") fixed
devmap-backed huge PMDs, but missed devmap-backed huge PUDs. Fix this as
well.

This fixes the below kernel panic:

general protection fault, probably for non-canonical address 0x69e7c000cc478: 0000 [#1] SMP
	< snip >
Call Trace:
<TASK>
get_user_pages_fast+0x1f/0x40
iov_iter_get_pages+0xc6/0x3b0
? mempool_alloc+0x5d/0x170
bio_iov_iter_get_pages+0x82/0x4e0
? bvec_alloc+0x91/0xc0
? bio_alloc_bioset+0x19a/0x2a0
blkdev_direct_IO+0x282/0x480
? __io_complete_rw_common+0xc0/0xc0
? filemap_range_has_page+0x82/0xc0
generic_file_direct_write+0x9d/0x1a0
? inode_update_time+0x24/0x30
__generic_file_write_iter+0xbd/0x1e0
blkdev_write_iter+0xb4/0x150
? io_import_iovec+0x8d/0x340
io_write+0xf9/0x300
io_issue_sqe+0x3c3/0x1d30
? sysvec_reschedule_ipi+0x6c/0x80
__io_queue_sqe+0x33/0x240
? fget+0x76/0xa0
io_submit_sqes+0xe6a/0x18d0
? __fget_light+0xd1/0x100
__x64_sys_io_uring_enter+0x199/0x880
? __context_tracking_enter+0x1f/0x70
? irqentry_exit_to_user_mode+0x24/0x30
? irqentry_exit+0x1d/0x30
? __context_tracking_exit+0xe/0x70
do_syscall_64+0x3b/0x90
entry_SYSCALL_64_after_hwframe+0x61/0xcb
RIP: 0033:0x7fc97c11a7be
	< snip >
</TASK>
---[ end trace 48b2e0e67debcaeb ]---
RIP: 0010:internal_get_user_pages_fast+0x340/0x990
	< snip >
Kernel panic - not syncing: Fatal exception
Kernel Offset: disabled

Link: https://lkml.kernel.org/r/1670392853-28252-1-git-send-email-ssengar@linux.microsoft.com
Fixes: 414fd080d1 ("mm/gup: fix gup_pmd_range() for dax")
Signed-off-by: John Starks <jostarks@microsoft.com>
Signed-off-by: Saurabh Sengar <ssengar@linux.microsoft.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-12-09 18:41:17 -08:00
Liam Howlett
6c28ca6485 mmap: fix do_brk_flags() modifying obviously incorrect VMAs
Add more sanity checks to the VMA that do_brk_flags() will expand.  Ensure
the VMA matches basic merge requirements within the function before
calling can_vma_merge_after().

Drop the duplicate checks from vm_brk_flags() since they will be enforced
later.

The old code would expand file VMAs on brk(), which is functionally
wrong and also dangerous in terms of locking because the brk() path
isn't designed for file VMAs and therefore doesn't lock the file
mapping.  Checking can_vma_merge_after() ensures that new anonymous
VMAs can't be merged into file VMAs.

See https://lore.kernel.org/linux-mm/CAG48ez1tJZTOjS_FjRZhvtDA-STFmdw8PEizPDwMGFd_ui0Nrw@mail.gmail.com/

Link: https://lkml.kernel.org/r/20221205192304.1957418-1-Liam.Howlett@oracle.com
Fixes: 2e7ce7d354 ("mm/mmap: change do_brk_flags() to expand existing VMA and add do_brk_munmap()")
Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Suggested-by: Jann Horn <jannh@google.com>
Cc: Jason A. Donenfeld <Jason@zx2c4.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: SeongJae Park <sj@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-12-09 18:41:16 -08:00
Hugh Dickins
44bcabd70c tmpfs: fix data loss from failed fallocate
Fix tmpfs data loss when the fallocate system call is interrupted by a
signal, or fails for some other reason.  The partial folio handling in
shmem_undo_range() forgot to consider this unfalloc case, and was liable
to erase or truncate out data which had already been committed earlier.

It turns out that none of the partial folio handling there is appropriate
for the unfalloc case, which just wants to proceed to removal of whole
folios: which find_get_entries() provides, even when partially covered.

Original patch by Rui Wang.

Link: https://lore.kernel.org/linux-mm/33b85d82.7764.1842e9ab207.Coremail.chenguoqic@163.com/
Link: https://lkml.kernel.org/r/a5dac112-cf4b-7af-a33-f386e347fd38@google.com
Fixes: b9a8a4195c ("truncate,shmem: Handle truncates that split large folios")
Signed-off-by: Hugh Dickins <hughd@google.com>
Reported-by: Guoqi Chen <chenguoqic@163.com>
  Link: https://lore.kernel.org/all/20221101032248.819360-1-kernel@hev.cc/
Cc: Rui Wang <kernel@hev.cc>
Cc: Huacai Chen <chenhuacai@loongson.cn>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Cc: <stable@vger.kernel.org>	[5.17+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-12-09 18:41:16 -08:00
Jason A. Donenfeld
f5ad508340 mm: do not BUG_ON missing brk mapping, because userspace can unmap it
The following program will trigger the BUG_ON that this patch removes,
because the user can munmap() mm->brk:

  #include <sys/syscall.h>
  #include <sys/mman.h>
  #include <assert.h>
  #include <unistd.h>

  static void *brk_now(void)
  {
    return (void *)syscall(SYS_brk, 0);
  }

  static void brk_set(void *b)
  {
    assert(syscall(SYS_brk, b) != -1);
  }

  int main(int argc, char *argv[])
  {
    void *b = brk_now();
    brk_set(b + 4096);
    assert(munmap(b - 4096, 4096 * 2) == 0);
    brk_set(b);
    return 0;
  }

Compile that with musl, since glibc actually uses brk(), and then
execute it, and it'll hit this splat:

  kernel BUG at mm/mmap.c:229!
  invalid opcode: 0000 [#1] PREEMPT SMP
  CPU: 12 PID: 1379 Comm: a.out Tainted: G S   U             6.1.0-rc7+ #419
  RIP: 0010:__do_sys_brk+0x2fc/0x340
  Code: 00 00 4c 89 ef e8 04 d3 fe ff eb 9a be 01 00 00 00 4c 89 ff e8 35 e0 fe ff e9 6e ff ff ff 4d 89 a7 20>
  RSP: 0018:ffff888140bc7eb0 EFLAGS: 00010246
  RAX: 0000000000000000 RBX: 00000000007e7000 RCX: ffff8881020fe000
  RDX: ffff8881020fe001 RSI: ffff8881955c9b00 RDI: ffff8881955c9b08
  RBP: 0000000000000000 R08: ffff8881955c9b00 R09: 00007ffc77844000
  R10: 0000000000000000 R11: 0000000000000001 R12: 00000000007e8000
  R13: 00000000007e8000 R14: 00000000007e7000 R15: ffff8881020fe000
  FS:  0000000000604298(0000) GS:ffff88901f700000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 0000000000603fe0 CR3: 000000015ba9a005 CR4: 0000000000770ee0
  PKRU: 55555554
  Call Trace:
   <TASK>
   do_syscall_64+0x2b/0x50
   entry_SYSCALL_64_after_hwframe+0x46/0xb0
  RIP: 0033:0x400678
  Code: 10 4c 8d 41 08 4c 89 44 24 10 4c 8b 01 8b 4c 24 08 83 f9 2f 77 0a 4c 8d 4c 24 20 4c 01 c9 eb 05 48 8b>
  RSP: 002b:00007ffc77863890 EFLAGS: 00000212 ORIG_RAX: 000000000000000c
  RAX: ffffffffffffffda RBX: 000000000040031b RCX: 0000000000400678
  RDX: 00000000004006a1 RSI: 00000000007e6000 RDI: 00000000007e7000
  RBP: 00007ffc77863900 R08: 0000000000000000 R09: 00000000007e6000
  R10: 00007ffc77863930 R11: 0000000000000212 R12: 00007ffc77863978
  R13: 00007ffc77863988 R14: 0000000000000000 R15: 0000000000000000
   </TASK>

Instead, just return the old brk value if the original mapping has been
removed.

[akpm@linux-foundation.org: fix changelog, per Liam]
Link: https://lkml.kernel.org/r/20221202162724.2009-1-Jason@zx2c4.com
Fixes: 2e7ce7d354 ("mm/mmap: change do_brk_flags() to expand existing VMA and add do_brk_munmap()")
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Jann Horn <jannh@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-12-09 18:41:16 -08:00
Tejun Heo
fbf8321238 memcg: Fix possible use-after-free in memcg_write_event_control()
memcg_write_event_control() accesses the dentry->d_name of the specified
control fd to route the write call.  As a cgroup interface file can't be
renamed, it's safe to access d_name as long as the specified file is a
regular cgroup file.  Also, as these cgroup interface files can't be
removed before the directory, it's safe to access the parent too.

Prior to 347c4a8747 ("memcg: remove cgroup_event->cft"), there was a
call to __file_cft() which verified that the specified file is a regular
cgroupfs file before further accesses.  The cftype pointer returned from
__file_cft() was no longer necessary and the commit inadvertently
dropped the file type check with it allowing any file to slip through.
With the invarients broken, the d_name and parent accesses can now race
against renames and removals of arbitrary files and cause
use-after-free's.

Fix the bug by resurrecting the file type check in __file_cft().  Now
that cgroupfs is implemented through kernfs, checking the file
operations needs to go through a layer of indirection.  Instead, let's
check the superblock and dentry type.

Signed-off-by: Tejun Heo <tj@kernel.org>
Fixes: 347c4a8747 ("memcg: remove cgroup_event->cft")
Cc: stable@kernel.org # v3.14+
Reported-by: Jann Horn <jannh@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-12-08 10:40:58 -08:00
Linus Torvalds
0ba09b1733 Revert "mm: align larger anonymous mappings on THP boundaries"
This reverts commit f35b5d7d67.

It has been reported to cause huge performance regressions on some loads
(will-it-scale.per_process_ops, but also building the kernel with
clang).

The commit did speed up gcc builds by a small amount, so it's not an
unambiguous regression, but until the big regressions are understood,
let's revert it.

Reported-by: kernel test robot <yujie.liu@intel.com>
Link: https://lore.kernel.org/r/202210181535.7144dd15-yujie.liu@intel.com
Reported-by: Nathan Chancellor <nathan@kernel.org>
Link: https://lore.kernel.org/lkml/Y1DNQaoPWxE%2BrGce@dev-arch.thelio-3990X/
Cc: Huang, Ying <ying.huang@intel.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-12-04 12:51:59 -08:00
Linus Torvalds
bdaa78c6aa 15 hotfixes. 11 marked cc:stable. Only three or four of the latter
address post-6.0 issues, which is hopefully a sign that things are
 converging.
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCY4pQpQAKCRDdBJ7gKXxA
 jquxAP9Lqif7CGDgdq8uWY2hHS/Ujc3k7Ohgyzs37olnCuU8KwEA6/J7SpjsBgtY
 OfzvnwxpCTh8Kfzu/oNckIHo/EEiIA8=
 =o6qT
 -----END PGP SIGNATURE-----

Merge tag 'mm-hotfixes-stable-2022-12-02' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

Pull misc hotfixes from Andrew Morton:
 "15 hotfixes,  11 marked cc:stable.

  Only three or four of the latter address post-6.0 issues, which is
  hopefully a sign that things are converging"

* tag 'mm-hotfixes-stable-2022-12-02' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm:
  revert "kbuild: fix -Wimplicit-function-declaration in license_is_gpl_compatible"
  Kconfig.debug: provide a little extra FRAME_WARN leeway when KASAN is enabled
  drm/amdgpu: temporarily disable broken Clang builds due to blown stack-frame
  mm/khugepaged: invoke MMU notifiers in shmem/file collapse paths
  mm/khugepaged: fix GUP-fast interaction by sending IPI
  mm/khugepaged: take the right locks for page table retraction
  mm: migrate: fix THP's mapcount on isolation
  mm: introduce arch_has_hw_nonleaf_pmd_young()
  mm: add dummy pmd_young() for architectures not having it
  mm/damon/sysfs: fix wrong empty schemes assumption under online tuning in damon_sysfs_set_schemes()
  tools/vm/slabinfo-gnuplot: use "grep -E" instead of "egrep"
  nilfs2: fix NULL pointer dereference in nilfs_palloc_commit_free_entry()
  hugetlb: don't delete vma_lock in hugetlb MADV_DONTNEED processing
  madvise: use zap_page_range_single for madvise dontneed
  mm: replace VM_WARN_ON to pr_warn if the node is offline with __GFP_THISNODE
2022-12-02 13:39:38 -08:00
Jann Horn
f268f6cf87 mm/khugepaged: invoke MMU notifiers in shmem/file collapse paths
Any codepath that zaps page table entries must invoke MMU notifiers to
ensure that secondary MMUs (like KVM) don't keep accessing pages which
aren't mapped anymore.  Secondary MMUs don't hold their own references to
pages that are mirrored over, so failing to notify them can lead to page
use-after-free.

I'm marking this as addressing an issue introduced in commit f3f0e1d215
("khugepaged: add support of collapse for tmpfs/shmem pages"), but most of
the security impact of this only came in commit 27e1f82731 ("khugepaged:
enable collapse pmd for pte-mapped THP"), which actually omitted flushes
for the removal of present PTEs, not just for the removal of empty page
tables.

Link: https://lkml.kernel.org/r/20221129154730.2274278-3-jannh@google.com
Link: https://lkml.kernel.org/r/20221128180252.1684965-3-jannh@google.com
Link: https://lkml.kernel.org/r/20221125213714.4115729-3-jannh@google.com
Fixes: f3f0e1d215 ("khugepaged: add support of collapse for tmpfs/shmem pages")
Signed-off-by: Jann Horn <jannh@google.com>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 14:49:42 -08:00
Jann Horn
2ba99c5e08 mm/khugepaged: fix GUP-fast interaction by sending IPI
Since commit 70cbc3cc78 ("mm: gup: fix the fast GUP race against THP
collapse"), the lockless_pages_from_mm() fastpath rechecks the pmd_t to
ensure that the page table was not removed by khugepaged in between.

However, lockless_pages_from_mm() still requires that the page table is
not concurrently freed.  Fix it by sending IPIs (if the architecture uses
semi-RCU-style page table freeing) before freeing/reusing page tables.

Link: https://lkml.kernel.org/r/20221129154730.2274278-2-jannh@google.com
Link: https://lkml.kernel.org/r/20221128180252.1684965-2-jannh@google.com
Link: https://lkml.kernel.org/r/20221125213714.4115729-2-jannh@google.com
Fixes: ba76149f47 ("thp: khugepaged")
Signed-off-by: Jann Horn <jannh@google.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 14:49:42 -08:00
Jann Horn
8d3c106e19 mm/khugepaged: take the right locks for page table retraction
pagetable walks on address ranges mapped by VMAs can be done under the
mmap lock, the lock of an anon_vma attached to the VMA, or the lock of the
VMA's address_space.  Only one of these needs to be held, and it does not
need to be held in exclusive mode.

Under those circumstances, the rules for concurrent access to page table
entries are:

 - Terminal page table entries (entries that don't point to another page
   table) can be arbitrarily changed under the page table lock, with the
   exception that they always need to be consistent for
   hardware page table walks and lockless_pages_from_mm().
   This includes that they can be changed into non-terminal entries.
 - Non-terminal page table entries (which point to another page table)
   can not be modified; readers are allowed to READ_ONCE() an entry, verify
   that it is non-terminal, and then assume that its value will stay as-is.

Retracting a page table involves modifying a non-terminal entry, so
page-table-level locks are insufficient to protect against concurrent page
table traversal; it requires taking all the higher-level locks under which
it is possible to start a page walk in the relevant range in exclusive
mode.

The collapse_huge_page() path for anonymous THP already follows this rule,
but the shmem/file THP path was getting it wrong, making it possible for
concurrent rmap-based operations to cause corruption.

Link: https://lkml.kernel.org/r/20221129154730.2274278-1-jannh@google.com
Link: https://lkml.kernel.org/r/20221128180252.1684965-1-jannh@google.com
Link: https://lkml.kernel.org/r/20221125213714.4115729-1-jannh@google.com
Fixes: 27e1f82731 ("khugepaged: enable collapse pmd for pte-mapped THP")
Signed-off-by: Jann Horn <jannh@google.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 14:49:42 -08:00
Gavin Shan
829ae0f81c mm: migrate: fix THP's mapcount on isolation
The issue is reported when removing memory through virtio_mem device.  The
transparent huge page, experienced copy-on-write fault, is wrongly
regarded as pinned.  The transparent huge page is escaped from being
isolated in isolate_migratepages_block().  The transparent huge page can't
be migrated and the corresponding memory block can't be put into offline
state.

Fix it by replacing page_mapcount() with total_mapcount().  With this, the
transparent huge page can be isolated and migrated, and the memory block
can be put into offline state.  Besides, The page's refcount is increased
a bit earlier to avoid the page is released when the check is executed.

Link: https://lkml.kernel.org/r/20221124095523.31061-1-gshan@redhat.com
Fixes: 1da2f328fa ("mm,thp,compaction,cma: allow THP migration for CMA allocations")
Signed-off-by: Gavin Shan <gshan@redhat.com>
Reported-by: Zhenyu Zhang <zhenyzha@redhat.com>
Tested-by: Zhenyu Zhang <zhenyzha@redhat.com>
Suggested-by: David Hildenbrand <david@redhat.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: William Kucharski <william.kucharski@oracle.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: <stable@vger.kernel.org>	[5.7+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 14:49:41 -08:00
Juergen Gross
4aaf269c76 mm: introduce arch_has_hw_nonleaf_pmd_young()
When running as a Xen PV guests commit eed9a328aa ("mm: x86: add
CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG") can cause a protection violation in
pmdp_test_and_clear_young():

 BUG: unable to handle page fault for address: ffff8880083374d0
 #PF: supervisor write access in kernel mode
 #PF: error_code(0x0003) - permissions violation
 PGD 3026067 P4D 3026067 PUD 3027067 PMD 7fee5067 PTE 8010000008337065
 Oops: 0003 [#1] PREEMPT SMP NOPTI
 CPU: 7 PID: 158 Comm: kswapd0 Not tainted 6.1.0-rc5-20221118-doflr+ #1
 RIP: e030:pmdp_test_and_clear_young+0x25/0x40

This happens because the Xen hypervisor can't emulate direct writes to
page table entries other than PTEs.

This can easily be fixed by introducing arch_has_hw_nonleaf_pmd_young()
similar to arch_has_hw_pte_young() and test that instead of
CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG.

Link: https://lkml.kernel.org/r/20221123064510.16225-1-jgross@suse.com
Fixes: eed9a328aa ("mm: x86: add CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG")
Signed-off-by: Juergen Gross <jgross@suse.com>
Reported-by: Sander Eikelenboom <linux@eikelenboom.it>
Acked-by: Yu Zhao <yuzhao@google.com>
Tested-by: Sander Eikelenboom <linux@eikelenboom.it>
Acked-by: David Hildenbrand <david@redhat.com>	[core changes]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 14:49:41 -08:00
SeongJae Park
95bc35f9be mm/damon/sysfs: fix wrong empty schemes assumption under online tuning in damon_sysfs_set_schemes()
Commit da87878010 ("mm/damon/sysfs: support online inputs update") made
'damon_sysfs_set_schemes()' to be called for running DAMON context, which
could have schemes.  In the case, DAMON sysfs interface is supposed to
update, remove, or add schemes to reflect the sysfs files.  However, the
code is assuming the DAMON context wouldn't have schemes at all, and
therefore creates and adds new schemes.  As a result, the code doesn't
work as intended for online schemes tuning and could have more than
expected memory footprint.  The schemes are all in the DAMON context, so
it doesn't leak the memory, though.

Remove the wrong asssumption (the DAMON context wouldn't have schemes) in
'damon_sysfs_set_schemes()' to fix the bug.

Link: https://lkml.kernel.org/r/20221122194831.3472-1-sj@kernel.org
Fixes: da87878010 ("mm/damon/sysfs: support online inputs update")
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: <stable@vger.kernel.org>	[5.19+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 14:49:41 -08:00
Mike Kravetz
04ada095dc hugetlb: don't delete vma_lock in hugetlb MADV_DONTNEED processing
madvise(MADV_DONTNEED) ends up calling zap_page_range() to clear page
tables associated with the address range.  For hugetlb vmas,
zap_page_range will call __unmap_hugepage_range_final.  However,
__unmap_hugepage_range_final assumes the passed vma is about to be removed
and deletes the vma_lock to prevent pmd sharing as the vma is on the way
out.  In the case of madvise(MADV_DONTNEED) the vma remains, but the
missing vma_lock prevents pmd sharing and could potentially lead to issues
with truncation/fault races.

This issue was originally reported here [1] as a BUG triggered in
page_try_dup_anon_rmap.  Prior to the introduction of the hugetlb
vma_lock, __unmap_hugepage_range_final cleared the VM_MAYSHARE flag to
prevent pmd sharing.  Subsequent faults on this vma were confused as
VM_MAYSHARE indicates a sharable vma, but was not set so page_mapping was
not set in new pages added to the page table.  This resulted in pages that
appeared anonymous in a VM_SHARED vma and triggered the BUG.

Address issue by adding a new zap flag ZAP_FLAG_UNMAP to indicate an unmap
call from unmap_vmas().  This is used to indicate the 'final' unmapping of
a hugetlb vma.  When called via MADV_DONTNEED, this flag is not set and
the vm_lock is not deleted.

[1] https://lore.kernel.org/lkml/CAO4mrfdLMXsao9RF4fUE8-Wfde8xmjsKrTNMNC9wjUb6JudD0g@mail.gmail.com/

Link: https://lkml.kernel.org/r/20221114235507.294320-3-mike.kravetz@oracle.com
Fixes: 90e7e7f5ef ("mm: enable MADV_DONTNEED for hugetlb mappings")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reported-by: Wei Chen <harperchen1110@gmail.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Cc: Peter Xu <peterx@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 14:49:40 -08:00
Mike Kravetz
21b85b0952 madvise: use zap_page_range_single for madvise dontneed
This series addresses the issue first reported in [1], and fully described
in patch 2.  Patches 1 and 2 address the user visible issue and are tagged
for stable backports.

While exploring solutions to this issue, related problems with mmu
notification calls were discovered.  This is addressed in the patch
"hugetlb: remove duplicate mmu notifications:".  Since there are no user
visible effects, this third is not tagged for stable backports.

Previous discussions suggested further cleanup by removing the
routine zap_page_range.  This is possible because zap_page_range_single
is now exported, and all callers of zap_page_range pass ranges entirely
within a single vma.  This work will be done in a later patch so as not
to distract from this bug fix.

[1] https://lore.kernel.org/lkml/CAO4mrfdLMXsao9RF4fUE8-Wfde8xmjsKrTNMNC9wjUb6JudD0g@mail.gmail.com/


This patch (of 2):

Expose the routine zap_page_range_single to zap a range within a single
vma.  The madvise routine madvise_dontneed_single_vma can use this routine
as it explicitly operates on a single vma.  Also, update the mmu
notification range in zap_page_range_single to take hugetlb pmd sharing
into account.  This is required as MADV_DONTNEED supports hugetlb vmas.

Link: https://lkml.kernel.org/r/20221114235507.294320-1-mike.kravetz@oracle.com
Link: https://lkml.kernel.org/r/20221114235507.294320-2-mike.kravetz@oracle.com
Fixes: 90e7e7f5ef ("mm: enable MADV_DONTNEED for hugetlb mappings")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reported-by: Wei Chen <harperchen1110@gmail.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Cc: Peter Xu <peterx@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 14:49:40 -08:00
Linus Torvalds
0b1dcc2cf5 24 hotfixes. 8 marked cc:stable and 16 for post-6.0 issues.
There have been a lot of hotfixes this cycle, and this is quite a large
 batch given how far we are into the -rc cycle.  Presumably a reflection of
 the unusually large amount of MM material which went into 6.1-rc1.
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCY4Bd6gAKCRDdBJ7gKXxA
 jvX6AQCsG1ld24kMpdD+70XXUyC29g/6/jribgtZApHyDYjxSwD/WmLNpPlUPRax
 WB071Y5w65vjSTUKvwU0OLGbHwyxgAw=
 =swD5
 -----END PGP SIGNATURE-----

Merge tag 'mm-hotfixes-stable-2022-11-24' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

Pull hotfixes from Andrew Morton:
 "24 MM and non-MM hotfixes. 8 marked cc:stable and 16 for post-6.0
  issues.

  There have been a lot of hotfixes this cycle, and this is quite a
  large batch given how far we are into the -rc cycle. Presumably a
  reflection of the unusually large amount of MM material which went
  into 6.1-rc1"

* tag 'mm-hotfixes-stable-2022-11-24' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (24 commits)
  test_kprobes: fix implicit declaration error of test_kprobes
  nilfs2: fix nilfs_sufile_mark_dirty() not set segment usage as dirty
  mm/cgroup/reclaim: fix dirty pages throttling on cgroup v1
  mm: fix unexpected changes to {failslab|fail_page_alloc}.attr
  swapfile: fix soft lockup in scan_swap_map_slots
  hugetlb: fix __prep_compound_gigantic_page page flag setting
  kfence: fix stack trace pruning
  proc/meminfo: fix spacing in SecPageTables
  mm: multi-gen LRU: retry folios written back while isolated
  mailmap: update email address for Satya Priya
  mm/migrate_device: return number of migrating pages in args->cpages
  kbuild: fix -Wimplicit-function-declaration in license_is_gpl_compatible
  MAINTAINERS: update Alex Hung's email address
  mailmap: update Alex Hung's email address
  mm: mmap: fix documentation for vma_mas_szero
  mm/damon/sysfs-schemes: skip stats update if the scheme directory is removed
  mm/memory: return vm_fault_t result from migrate_to_ram() callback
  mm: correctly charge compressed memory to its memcg
  ipc/shm: call underlying open/close vm_ops
  gcov: clang: fix the buffer overflow issue
  ...
2022-11-25 10:18:25 -08:00
Aneesh Kumar K.V
81a70c21d9 mm/cgroup/reclaim: fix dirty pages throttling on cgroup v1
balance_dirty_pages doesn't do the required dirty throttling on cgroupv1. 
See commit 9badce000e ("cgroup, writeback: don't enable cgroup writeback
on traditional hierarchies").  Instead, the kernel depends on writeback
throttling in shrink_folio_list to achieve the same goal.  With large
memory systems, the flusher may not be able to writeback quickly enough
such that we will start finding pages in the shrink_folio_list already in
writeback.  Hence for cgroupv1 let's do a reclaim throttle after waking up
the flusher.

The below test which used to fail on a 256GB system completes till the the
file system is full with this change.

root@lp2:/sys/fs/cgroup/memory# mkdir test
root@lp2:/sys/fs/cgroup/memory# cd test/
root@lp2:/sys/fs/cgroup/memory/test# echo 120M > memory.limit_in_bytes
root@lp2:/sys/fs/cgroup/memory/test# echo $$ > tasks
root@lp2:/sys/fs/cgroup/memory/test# dd if=/dev/zero of=/home/kvaneesh/test bs=1M
Killed

Link: https://lkml.kernel.org/r/20221118070603.84081-1-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: zefan li <lizefan.x@bytedance.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-22 18:50:45 -08:00
Qi Zheng
ea4452de2a mm: fix unexpected changes to {failslab|fail_page_alloc}.attr
When we specify __GFP_NOWARN, we only expect that no warnings will be
issued for current caller.  But in the __should_failslab() and
__should_fail_alloc_page(), the local GFP flags alter the global
{failslab|fail_page_alloc}.attr, which is persistent and shared by all
tasks.  This is not what we expected, let's fix it.

[akpm@linux-foundation.org: unexport should_fail_ex()]
Link: https://lkml.kernel.org/r/20221118100011.2634-1-zhengqi.arch@bytedance.com
Fixes: 3f913fc5f9 ("mm: fix missing handler for __GFP_NOWARN")
Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com>
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Akinobu Mita <akinobu.mita@gmail.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Cc: Akinobu Mita <akinobu.mita@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-22 18:50:44 -08:00
Chen Wandun
de1ccfb648 swapfile: fix soft lockup in scan_swap_map_slots
A softlockup occurs in scan free swap slot under huge memory pressure. 
The test scenario is: 64 CPU cores, 64GB memory, and 28 zram devices, the
disksize of each zram device is 50MB.

LATENCY_LIMIT is used to prevent softlockups in scan_swap_map_slots(), but
the real loop number would more than LATENCY_LIMIT because of "goto checks
and goto scan" repeatly without decreasing latency limit.

In order to fix it, decrease latency_ration in advance.

There is also a suspicious place that will cause softlockups in
get_swap_pages().  In this function, the "goto start_over" may result in
continuous scanning of the swap partition.  If there is no cond_sched in
scan_swap_map_slots(), it would cause a softlockup (I am not sure about
this).

WARN: soft lockup - CPU#11 stuck for 11s! [kswapd0:466]
CPU: 11 PID: 466 Comm: kswapd@ Kdump: loaded Tainted: G
dump backtrace+0x0/0x1le4
show stack+0x20/@x2c
dump_stack+0xd8/0x140
watchdog print_info+0x48/0x54
watchdog_process_before_softlockup+0x98/0xa0
watchdog_timer_fn+0xlac/0x2d0
hrtimer_rum_queues+0xb0/0x130
hrtimer_interrupt+0x13c/0x3c0
arch_timer_handler_virt+0x3c/0x50
handLe_percpu_devid_irq+0x90/0x1f4
handle domain irq+0x84/0x100
gic_handle_irq+0x88/0x2b0
e11 ira+0xhB/Bx140
scan_swap_map_slots+0x678/0x890
get_swap_pages+0x29c/0x440
get_swap_page+0x120/0x2e0
add_to_swap+UX2U/0XyC
shrink_page_list+0x5d0/0x152c
shrink_inactive_list+0xl6c/Bx500
shrink_lruvec+0x270/0x304

WARN: soft lockup - CPU#32 stuck for 11s! [stress-ng:309915]
watchdog_timer_fn+0x1ac/0x2d0
__run_hrtimer+0x98/0x2a0
__hrtimer_run_queues+0xb0/0x130
hrtimer_interrupt+0x13c/0x3c0
arch_timer_handler_virt+0x3c/0x50
handle_percpu_devid_irq+0x90/0x1f4
__handle_domain_irq+0x84/0x100
gic_handle_irq+0x88/0x2b0
el1_irq+0xb8/0x140
get_swap_pages+0x1e8/0x440
get_swap_page+0x1c8/0x2e0
add_to_swap+0x20/0x9c
shrink_page_list+0x5d0/0x152c
reclaim_pages+0x160/0x310
madvise_cold_or_pageout_pte_range+0x7bc/0xe3c
walk_pmd_range.isra.0+0xac/0x22c
walk_pud_range+0xfc/0x1c0
walk_pgd_range+0x158/0x1b0
__walk_page_range+0x64/0x100
walk_page_range+0x104/0x150

Link: https://lkml.kernel.org/r/20221118133850.3360369-1-chenwandun@huawei.com
Fixes: 048c27fd72 ("[PATCH] swap: scan_swap_map latency breaks")
Signed-off-by: Chen Wandun <chenwandun@huawei.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Nanyong Sun <sunnanyong@huawei.com>
Cc: <xialonglong1@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-22 18:50:44 -08:00
Mike Kravetz
7fb0728a9b hugetlb: fix __prep_compound_gigantic_page page flag setting
Commit 2b21624fc2 ("hugetlb: freeze allocated pages before creating
hugetlb pages") changed the order page flags were cleared and set in the
head page.  It moved the __ClearPageReserved after __SetPageHead. 
However, there is a check to make sure __ClearPageReserved is never done
on a head page.  If CONFIG_DEBUG_VM_PGFLAGS is enabled, the following BUG
will be hit when creating a hugetlb gigantic page:

    page dumped because: VM_BUG_ON_PAGE(1 && PageCompound(page))
    ------------[ cut here ]------------
    kernel BUG at include/linux/page-flags.h:500!
    Call Trace will differ depending on whether hugetlb page is created
    at boot time or run time.

Make sure to __ClearPageReserved BEFORE __SetPageHead.

Link: https://lkml.kernel.org/r/20221118195249.178319-1-mike.kravetz@oracle.com
Fixes: 2b21624fc2 ("hugetlb: freeze allocated pages before creating hugetlb pages")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reported-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Acked-by: Muchun Song <songmuchun@bytedance.com>
Tested-by: Tarun Sahu <tsahu@linux.ibm.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Xu <peterx@redhat.com>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-22 18:50:44 -08:00
Marco Elver
747c0f35f2 kfence: fix stack trace pruning
Commit b140513524 ("mm/sl[au]b: generalize kmalloc subsystem")
refactored large parts of the kmalloc subsystem, resulting in the stack
trace pruning logic done by KFENCE to no longer work.

While b140513524 attempted to fix the situation by including
'__kmem_cache_free' in the list of functions KFENCE should skip through,
this only works when the compiler actually optimized the tail call from
kfree() to __kmem_cache_free() into a jump (and thus kfree() _not_
appearing in the full stack trace to begin with).

In some configurations, the compiler no longer optimizes the tail call
into a jump, and __kmem_cache_free() appears in the stack trace.  This
means that the pruned stack trace shown by KFENCE would include kfree()
which is not intended - for example:

 | BUG: KFENCE: invalid free in kfree+0x7c/0x120
 |
 | Invalid free of 0xffff8883ed8fefe0 (in kfence-#126):
 |  kfree+0x7c/0x120
 |  test_double_free+0x116/0x1a9
 |  kunit_try_run_case+0x90/0xd0
 | [...]

Fix it by moving __kmem_cache_free() to the list of functions that may be
tail called by an allocator entry function, making the pruning logic work
in both the optimized and unoptimized tail call cases.

Link: https://lkml.kernel.org/r/20221118152216.3914899-1-elver@google.com
Fixes: b140513524 ("mm/sl[au]b: generalize kmalloc subsystem")
Signed-off-by: Marco Elver <elver@google.com>
Reviewed-by: Alexander Potapenko <glider@google.com>
Cc: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Cc: Feng Tang <feng.tang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-22 18:50:44 -08:00
Yu Zhao
359a5e1416 mm: multi-gen LRU: retry folios written back while isolated
The page reclaim isolates a batch of folios from the tail of one of the
LRU lists and works on those folios one by one.  For a suitable
swap-backed folio, if the swap device is async, it queues that folio for
writeback.  After the page reclaim finishes an entire batch, it puts back
the folios it queued for writeback to the head of the original LRU list.

In the meantime, the page writeback flushes the queued folios also by
batches.  Its batching logic is independent from that of the page reclaim.
For each of the folios it writes back, the page writeback calls
folio_rotate_reclaimable() which tries to rotate a folio to the tail.

folio_rotate_reclaimable() only works for a folio after the page reclaim
has put it back.  If an async swap device is fast enough, the page
writeback can finish with that folio while the page reclaim is still
working on the rest of the batch containing it.  In this case, that folio
will remain at the head and the page reclaim will not retry it before
reaching there.

This patch adds a retry to evict_folios().  After evict_folios() has
finished an entire batch and before it puts back folios it cannot free
immediately, it retries those that may have missed the rotation.

Before this patch, ~60% of folios swapped to an Intel Optane missed
folio_rotate_reclaimable().  After this patch, ~99% of missed folios were
reclaimed upon retry.

This problem affects relatively slow async swap devices like Samsung 980
Pro much less and does not affect sync swap devices like zram or zswap at
all.

Link: https://lkml.kernel.org/r/20221116013808.3995280-1-yuzhao@google.com
Fixes: ac35a49023 ("mm: multi-gen LRU: minimal implementation")
Signed-off-by: Yu Zhao <yuzhao@google.com>
Cc: "Yin, Fengwei" <fengwei.yin@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-22 18:50:43 -08:00
Alistair Popple
44af0b45d5 mm/migrate_device: return number of migrating pages in args->cpages
migrate_vma->cpages originally contained a count of the number of pages
migrating including non-present pages which can be populated directly on
the target.

Commit 241f688596 ("mm/migrate_device.c: refactor migrate_vma and
migrate_device_coherent_page()") inadvertantly changed this to contain
just the number of pages that were unmapped.  Usage of migrate_vma->cpages
isn't documented, but most drivers use it to see if all the requested
addresses can be migrated so restore the original behaviour.

Link: https://lkml.kernel.org/r/20221111005135.1344004-1-apopple@nvidia.com
Fixes: 241f688596 ("mm/migrate_device.c: refactor migrate_vma and migrate_deivce_coherent_page()")
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Reported-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Alex Sierra <alex.sierra@amd.com>
Cc: Ben Skeggs <bskeggs@redhat.com>
Cc: Felix Kuehling <Felix.Kuehling@amd.com>
Cc: Lyude Paul <lyude@redhat.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-22 18:50:43 -08:00
Ian Cowan
4a42344081 mm: mmap: fix documentation for vma_mas_szero
When the struct_mm input, mm, was changed to a struct ma_state, mas, the
documentation for the function was never updated.  This updates that
documentation reference.

Link: https://lkml.kernel.org/r/20221114003349.41235-1-ian@linux.cowan.aero
Signed-off-by: Ian Cowan <ian@linux.cowan.aero>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Liam Howlett <liam.howlett@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-22 18:50:42 -08:00
SeongJae Park
8468b48661 mm/damon/sysfs-schemes: skip stats update if the scheme directory is removed
A DAMON sysfs interface user can start DAMON with a scheme, remove the
sysfs directory for the scheme, and then ask update of the scheme's stats.
Because the schemes stats update logic isn't aware of the situation, it
results in an invalid memory access.  Fix the bug by checking if the
scheme sysfs directory exists.

Link: https://lkml.kernel.org/r/20221114175552.1951-1-sj@kernel.org
Fixes: 0ac32b8aff ("mm/damon/sysfs: support DAMOS stats")
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: <stable@vger.kernel.org>	[v5.18]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-22 18:50:42 -08:00
Alistair Popple
4a955bed88 mm/memory: return vm_fault_t result from migrate_to_ram() callback
The migrate_to_ram() callback should always succeed, but in rare cases can
fail usually returning VM_FAULT_SIGBUS.  Commit 16ce101db8
("mm/memory.c: fix race when faulting a device private page") incorrectly
stopped passing the return code up the stack.  Fix this by setting the ret
variable, restoring the previous behaviour on migrate_to_ram() failure.

Link: https://lkml.kernel.org/r/20221114115537.727371-1-apopple@nvidia.com
Fixes: 16ce101db8 ("mm/memory.c: fix race when faulting a device private page")
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Felix Kuehling <Felix.Kuehling@amd.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Alex Sierra <alex.sierra@amd.com>
Cc: Ben Skeggs <bskeggs@redhat.com>
Cc: Lyude Paul <lyude@redhat.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-22 18:50:42 -08:00
Li Liguang
cd08d80ecd mm: correctly charge compressed memory to its memcg
Kswapd will reclaim memory when memory pressure is high, the annonymous
memory will be compressed and stored in the zpool if zswap is enabled. 
The memcg_kmem_bypass() in get_obj_cgroup_from_page() will bypass the
kernel thread and cause the compressed memory not be charged to its memory
cgroup.

Remove the memcg_kmem_bypass() call and properly charge compressed memory
to its corresponding memory cgroup.

Link: https://lore.kernel.org/linux-mm/CALvZod4nnn8BHYqAM4xtcR0Ddo2-Wr8uKm9h_CHWUaXw7g_DCg@mail.gmail.com/
Link: https://lkml.kernel.org/r/20221114194828.100822-1-hannes@cmpxchg.org
Fixes: f4840ccfca ("zswap: memcg accounting")
Signed-off-by: Li Liguang <liliguang@baidu.com>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: <stable@vger.kernel.org>	[5.19+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-22 18:50:42 -08:00