Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This patch makes no changes to the logic of the code but simply addresses
coding style issues as detected by checkpatch.
Both objdump and diff -w show no differences.
A number of items are addressed in this patch:
* Multiple spaces converted to tabs
* Spaces before tabs removed.
* Spaces in pointer typing cleansed (char *)foo etc.
* Remove space after sizeof
* Ensure spacing around comparators such as if statements.
Signed-off-by: Ian Morris <ipm@chirality.org.uk>
Signed-off-by: David S. Miller <davem@davemloft.net>
In xfrm4 and xfrm6 we need to take care about sockets of the other
address family. This could happen because a 6in4 or 4in6 tunnel could
get protected by ipsec.
Because we don't want to have a run-time dependency on ipv6 when only
using ipv4 xfrm we have to embed a pointer to the correct local_error
function in xfrm_state_afinet and look it up when returning an error
depending on the socket address family.
Thanks to vi0ss for the great bug report:
<https://bugzilla.kernel.org/show_bug.cgi?id=58691>
v2:
a) fix two more unsafe interpretations of skb->sk as ipv6 socket
(xfrm6_local_dontfrag and __xfrm6_output)
v3:
a) add an EXPORT_SYMBOL_GPL(xfrm_local_error) to fix a link error when
building ipv6 as a module (thanks to Steffen Klassert)
Reported-by: <vi0oss@gmail.com>
Cc: Steffen Klassert <steffen.klassert@secunet.com>
Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
#if defined(CONFIG_FOO) || defined(CONFIG_FOO_MODULE)
can be replaced by
#if IS_ENABLED(CONFIG_FOO)
Cc: David S. Miller <davem@davemloft.net>
Signed-off-by: Cong Wang <amwang@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
C assignment can handle struct in6_addr copying.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
These files are non modular, but need to export symbols using
the macros now living in export.h -- call out the include so
that things won't break when we remove the implicit presence
of module.h from everywhere.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
As it is, we assign the outer modes output function to the dst entry
when we create the xfrm bundle. This leads to two problems on interfamily
scenarios. We might insert ipv4 packets into ip6_fragment when called
from xfrm6_output. The system crashes if we try to fragment an ipv4
packet with ip6_fragment. This issue was introduced with git commit
ad0081e4 (ipv6: Fragment locally generated tunnel-mode IPSec6 packets
as needed). The second issue is, that we might insert ipv4 packets in
netfilter6 and vice versa on interfamily scenarios.
With this patch we assign the inner mode output function to the dst entry
when we create the xfrm bundle. So xfrm4_output/xfrm6_output from the inner
mode is used and the right fragmentation and netfilter functions are called.
We switch then to outer mode with the output_finish functions.
Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Now we have struct flowi4, flowi6, and flowidn for each address
family. And struct flowi is just a union of them all.
It might have been troublesome to convert flow_cache_uli_match() but
as it turns out this function is completely unused and therefore can
be simply removed.
Signed-off-by: David S. Miller <davem@davemloft.net>
Create two sets of port member accessors, one set prefixed by fl4_*
and the other prefixed by fl6_*
This will let us to create AF optimal flow instances.
It will work because every context in which we access the ports,
we have to be fully aware of which AF the flowi is anyways.
Signed-off-by: David S. Miller <davem@davemloft.net>
I intend to turn struct flowi into a union of AF specific flowi
structs. There will be a common structure that each variant includes
first, much like struct sock_common.
This is the first step to move in that direction.
Signed-off-by: David S. Miller <davem@davemloft.net>
The family parameter xfrm_state_find is used to find a state matching a
certain policy. This value is set to the template's family
(encap_family) right before xfrm_state_find is called.
The family parameter is however also used to construct a temporary state
in xfrm_state_find itself which is wrong for inter-family scenarios
because it produces a selector for the wrong family. Since this selector
is included in the xfrm_user_acquire structure, user space programs
misinterpret IPv6 addresses as IPv4 and vice versa.
This patch splits up the original init_tempsel function into a part that
initializes the selector respectively the props and id of the temporary
state, to allow for differing ip address families whithin the state.
Signed-off-by: Thomas Egerer <thomas.egerer@secunet.com>
Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Fix this sparse warning:
net/ipv6/xfrm6_state.c:72:26: warning: Using plain integer as NULL pointer
Signed-off-by: Hannes Eder <hannes@hanneseder.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
While adding MIGRATE support to strongSwan, Andreas Steffen noticed that
the selectors provided in XFRM_MSG_ACQUIRE have their family field
uninitialized (those in MIGRATE do have their family set).
Looking at the code, this is because the af-specific init_tempsel()
(called via afinfo->init_tempsel() in xfrm_init_tempsel()) do not set
the value.
Reported-by: Andreas Steffen <andreas.steffen@strongswan.org>
Acked-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Arnaud Ebalard <arno@natisbad.org>
The IPv6 BEET output function is incorrectly including the inner
header in the payload to be protected. This causes a crash as
the packet doesn't actually have that many bytes for a second
header.
The IPv4 BEET output on the other hand is broken when it comes
to handling an inner IPv6 header since it always assumes an
inner IPv4 header.
This patch fixes both by making sure that neither BEET output
function touches the inner header at all. All access is now
done through the protocol-independent cb structure. Two new
attributes are added to make this work, the IP header length
and the IPv4 option length. They're filled in by the inner
mode's output function.
Thanks to Joakim Koskela for finding this problem.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
The xfrm initialization function does not return any error code, so if
there is an error, the caller can not be advise of that. This patch
checks the return code of the different called functions in order to
return a successful or failed initialization.
Signed-off-by: Daniel Lezcano <dlezcano@fr.ibm.com>
Acked-by: Benjamin Thery <benjamin.thery@bull.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
After changeset:
[NETFILTER]: Introduce NF_INET_ hook values
It always evaluates to NF_INET_POST_ROUTING.
Signed-off-by: David S. Miller <davem@davemloft.net>
The IPv4 and IPv6 hook values are identical, yet some code tries to figure
out the "correct" value by looking at the address family. Introduce NF_INET_*
values for both IPv4 and IPv6. The old values are kept in a #ifndef __KERNEL__
section for userspace compatibility.
Signed-off-by: Patrick McHardy <kaber@trash.net>
Acked-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
The nhoff field isn't actually necessary in xfrm_input. For tunnel
mode transforms we now throw away the output IP header so it makes no
sense to fill in the nexthdr field. For transport mode we can now let
the function transport_finish do the setting and it knows where the
nexthdr field is.
The only other thing that needs the nexthdr field to be set is the
header extraction code. However, we can simply move the protocol
extraction out of the generic header extraction.
We want to minimise the amount of info we have to carry around between
transforms as this simplifies the resumption process for async crypto.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
As part of the work on asynchronous cryptographic operations, we need
to be able to resume from the spot where they occur. As such, it
helps if we isolate them to one spot.
This patch moves most of the remaining family-specific processing into
the common input code.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
As part of the work on asynchrnous cryptographic operations, we need
to be able to resume from the spot where they occur. As such, it
helps if we isolate them to one spot.
This patch moves most of the remaining family-specific processing into
the common output code.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
With inter-family transforms the inner mode differs from the outer
mode. Attempting to handle both sides from the same function means
that it needs to handle both IPv4 and IPv6 which creates duplication
and confusion.
This patch separates the two parts on the input path so that each
function deals with one family only.
In particular, the functions xfrm4_extract_inut/xfrm6_extract_inut
moves the pertinent fields from the IPv4/IPv6 IP headers into a
neutral format stored in skb->cb. This is then used by the inner mode
input functions to modify the inner IP header. In this way the input
function no longer has to know about the outer address family.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
With inter-family transforms the inner mode differs from the outer
mode. Attempting to handle both sides from the same function means
that it needs to handle both IPv4 and IPv6 which creates duplication
and confusion.
This patch separates the two parts on the output path so that each
function deals with one family only.
In particular, the functions xfrm4_extract_output/xfrm6_extract_output
moves the pertinent fields from the IPv4/IPv6 IP headers into a
neutral format stored in skb->cb. This is then used by the outer mode
output functions to write the outer IP header. In this way the output
function no longer has to know about the inner address family.
Since the extract functions are only called by tunnel modes (the only
modes that can support inter-family transforms), I've also moved the
xfrm*_tunnel_check_size calls into them. This allows the correct ICMP
message to be sent as opposed to now where you might call icmp_send
with an IPv6 packet and vice versa.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
It is convenient to have a pointer from xfrm_state to address-specific
functions such as the output function for a family. Currently the
address-specific policy code calls out to the xfrm state code to get
those pointers when we could get it in an easier way via the state
itself.
This patch adds an xfrm_state_afinfo to xfrm_mode (since they're
address-specific) and changes the policy code to use it. I've also
added an owner field to do reference counting on the module providing
the afinfo even though it isn't strictly necessary today since IPv6
can't be unloaded yet.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
Currently BEET mode does not reinject the packet back into the stack
like tunnel mode does. Since BEET should behave just like tunnel mode
this is incorrect.
This patch fixes this by introducing a flags field to xfrm_mode that
tells the IPsec code whether it should terminate and reinject the packet
back into the stack.
It then sets the flag for BEET and tunnel mode.
I've also added a number of missing BEET checks elsewhere where we check
whether a given mode is a tunnel or not.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch makes MIPv6 loadable module named "mip6".
Here is a modprobe.conf(5) example to load it automatically
when user application uses XFRM state for MIPv6:
alias xfrm-type-10-43 mip6
alias xfrm-type-10-60 mip6
Some MIPv6 feature is not included by this modular, however,
it should not be affected to other features like either IPsec
or IPv6 with and without the patch.
We may discuss XFRM, MH (RAW socket) and ancillary data/sockopt
separately for future work.
Loadable features:
* MH receiving check (to send ICMP error back)
* RO header parsing and building (i.e. RH2 and HAO in DSTOPTS)
* XFRM policy/state database handling for RO
These are NOT covered as loadable:
* Home Address flags and its rule on source address selection
* XFRM sub policy (depends on its own kernel option)
* XFRM functions to receive RO as IPv6 extension header
* MH sending/receiving through raw socket if user application
opens it (since raw socket allows to do so)
* RH2 sending as ancillary data
* RH2 operation with setsockopt(2)
Signed-off-by: Masahide NAKAMURA <nakam@linux-ipv6.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch exports xfrm_state_afinfo.
Signed-off-by: Miika Komu <miika@iki.fi>
Signed-off-by: Diego Beltrami <Diego.Beltrami@hiit.fi>
Signed-off-by: Kazunori Miyazawa <miyazawa@linux-ipv6.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Hashing SAs by source address breaks templates with wildcards as tunnel
source since the source address used for hashing/lookup is still 0/0.
Move source address lookup to xfrm_tmpl_resolve_one() so we can use the
real address in the lookup.
Signed-off-by: Patrick McHardy <kaber@trash.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
Support Mobile IPv6 extension headers sorting for two transformation policies.
Mobile IPv6 extension headers should be placed after IPsec
transport mode, but before transport AH when outbound.
Signed-off-by: Masahide NAKAMURA <nakam@linux-ipv6.org>
Signed-off-by: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add sort functions to combine templates/states for IPsec.
Think of outbound transformation order we should be careful with transport AH
which must be the last of all transport ones.
Signed-off-by: Masahide NAKAMURA <nakam@linux-ipv6.org>
Signed-off-by: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
This is a support to search transformation states by its addresses
by using source address list for Mobile IPv6 usage.
To use it from user-space, it is also added a message type for
source address as a xfrm state option.
Based on MIPL2 kernel patch.
Signed-off-by: Masahide NAKAMURA <nakam@linux-ipv6.org>
Signed-off-by: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Support source address based searching.
Mobile IPv6 will use it.
Based on MIPL2 kernel patch.
Signed-off-by: Masahide NAKAMURA <nakam@linux-ipv6.org>
Signed-off-by: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Transformation mode is used as either IPsec transport or tunnel.
It is required to add two more items, route optimization and inbound trigger
for Mobile IPv6.
Based on MIPL2 kernel patch.
This patch was also written by: Ville Nuorvala <vnuorval@tcs.hut.fi>
Signed-off-by: Masahide NAKAMURA <nakam@linux-ipv6.org>
Signed-off-by: YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
The number of locks used to manage afinfo structures can easily be reduced
down to one each for policy and state respectively. This is based on the
observation that the write locks are only held by module insertion/removal
which are very rare events so there is no need to further differentiate
between the insertion of modules like ipv6 versus esp6.
The removal of the read locks in xfrm4_policy.c/xfrm6_policy.c might look
suspicious at first. However, after you realise that nobody ever takes
the corresponding write lock you'll feel better :)
As far as I can gather it's an attempt to guard against the removal of
the corresponding modules. Since neither module can be unloaded at all
we can leave it to whoever fixes up IPv6 unloading :)
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
When the source address of a tunnel is given as 0.0.0.0 do a routing lookup
to get the real source address for the destination and fill that into the
acquire message. This allows to specify policies like this:
spdadd 172.16.128.13/32 172.16.0.0/20 any -P out ipsec
esp/tunnel/0.0.0.0-x.x.x.x/require;
spdadd 172.16.0.0/20 172.16.128.13/32 any -P in ipsec
esp/tunnel/x.x.x.x-0.0.0.0/require;
Signed-off-by: Patrick McHardy <kaber@trash.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!