Commit graph

23 commits

Author SHA1 Message Date
Ingo Molnar
c43426334b x86: Fix leftover comment typos
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2021-05-12 20:00:51 +02:00
Andy Lutomirski
3fb0fdb3bb x86/stackprotector/32: Make the canary into a regular percpu variable
On 32-bit kernels, the stackprotector canary is quite nasty -- it is
stored at %gs:(20), which is nasty because 32-bit kernels use %fs for
percpu storage.  It's even nastier because it means that whether %gs
contains userspace state or kernel state while running kernel code
depends on whether stackprotector is enabled (this is
CONFIG_X86_32_LAZY_GS), and this setting radically changes the way
that segment selectors work.  Supporting both variants is a
maintenance and testing mess.

Merely rearranging so that percpu and the stack canary
share the same segment would be messy as the 32-bit percpu address
layout isn't currently compatible with putting a variable at a fixed
offset.

Fortunately, GCC 8.1 added options that allow the stack canary to be
accessed as %fs:__stack_chk_guard, effectively turning it into an ordinary
percpu variable.  This lets us get rid of all of the code to manage the
stack canary GDT descriptor and the CONFIG_X86_32_LAZY_GS mess.

(That name is special.  We could use any symbol we want for the
 %fs-relative mode, but for CONFIG_SMP=n, gcc refuses to let us use any
 name other than __stack_chk_guard.)

Forcibly disable stackprotector on older compilers that don't support
the new options and turn the stack canary into a percpu variable. The
"lazy GS" approach is now used for all 32-bit configurations.

Also makes load_gs_index() work on 32-bit kernels. On 64-bit kernels,
it loads the GS selector and updates the user GSBASE accordingly. (This
is unchanged.) On 32-bit kernels, it loads the GS selector and updates
GSBASE, which is now always the user base. This means that the overall
effect is the same on 32-bit and 64-bit, which avoids some ifdeffery.

 [ bp: Massage commit message. ]

Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/c0ff7dba14041c7e5d1cae5d4df052f03759bef3.1613243844.git.luto@kernel.org
2021-03-08 13:19:05 +01:00
Brian Gerst
c9a1ff316b x86/stackprotector: Pre-initialize canary for secondary CPUs
The idle tasks created for each secondary CPU already have a random stack
canary generated by fork().  Copy the canary to the percpu variable before
starting the secondary CPU which removes the need to call
boot_init_stack_canary().

Signed-off-by: Brian Gerst <brgerst@gmail.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200617225624.799335-1-brgerst@gmail.com
2020-06-18 13:09:17 +02:00
Borislav Petkov
a9a3ed1eff x86: Fix early boot crash on gcc-10, third try
... or the odyssey of trying to disable the stack protector for the
function which generates the stack canary value.

The whole story started with Sergei reporting a boot crash with a kernel
built with gcc-10:

  Kernel panic — not syncing: stack-protector: Kernel stack is corrupted in: start_secondary
  CPU: 1 PID: 0 Comm: swapper/1 Not tainted 5.6.0-rc5—00235—gfffb08b37df9 #139
  Hardware name: Gigabyte Technology Co., Ltd. To be filled by O.E.M./H77M—D3H, BIOS F12 11/14/2013
  Call Trace:
    dump_stack
    panic
    ? start_secondary
    __stack_chk_fail
    start_secondary
    secondary_startup_64
  -—-[ end Kernel panic — not syncing: stack—protector: Kernel stack is corrupted in: start_secondary

This happens because gcc-10 tail-call optimizes the last function call
in start_secondary() - cpu_startup_entry() - and thus emits a stack
canary check which fails because the canary value changes after the
boot_init_stack_canary() call.

To fix that, the initial attempt was to mark the one function which
generates the stack canary with:

  __attribute__((optimize("-fno-stack-protector"))) ... start_secondary(void *unused)

however, using the optimize attribute doesn't work cumulatively
as the attribute does not add to but rather replaces previously
supplied optimization options - roughly all -fxxx options.

The key one among them being -fno-omit-frame-pointer and thus leading to
not present frame pointer - frame pointer which the kernel needs.

The next attempt to prevent compilers from tail-call optimizing
the last function call cpu_startup_entry(), shy of carving out
start_secondary() into a separate compilation unit and building it with
-fno-stack-protector, was to add an empty asm("").

This current solution was short and sweet, and reportedly, is supported
by both compilers but we didn't get very far this time: future (LTO?)
optimization passes could potentially eliminate this, which leads us
to the third attempt: having an actual memory barrier there which the
compiler cannot ignore or move around etc.

That should hold for a long time, but hey we said that about the other
two solutions too so...

Reported-by: Sergei Trofimovich <slyfox@gentoo.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Kalle Valo <kvalo@codeaurora.org>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20200314164451.346497-1-slyfox@gentoo.org
2020-05-15 11:48:01 +02:00
Andy Lutomirski
e6401c1309 x86/irq/64: Split the IRQ stack into its own pages
Currently, the IRQ stack is hardcoded as the first page of the percpu
area, and the stack canary lives on the IRQ stack. The former gets in
the way of adding an IRQ stack guard page, and the latter is a potential
weakness in the stack canary mechanism.

Split the IRQ stack into its own private percpu pages.

[ tglx: Make 64 and 32 bit share struct irq_stack ]

Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: "Chang S. Bae" <chang.seok.bae@intel.com>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Feng Tang <feng.tang@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jan Beulich <JBeulich@suse.com>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Jordan Borgner <mail@jordan-borgner.de>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Maran Wilson <maran.wilson@oracle.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Pu Wen <puwen@hygon.cn>
Cc: "Rafael Ávila de Espíndola" <rafael@espindo.la>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: x86-ml <x86@kernel.org>
Cc: xen-devel@lists.xenproject.org
Link: https://lkml.kernel.org/r/20190414160146.267376656@linutronix.de
2019-04-17 15:37:02 +02:00
Linus Torvalds
050e9baa9d Kbuild: rename CC_STACKPROTECTOR[_STRONG] config variables
The changes to automatically test for working stack protector compiler
support in the Kconfig files removed the special STACKPROTECTOR_AUTO
option that picked the strongest stack protector that the compiler
supported.

That was all a nice cleanup - it makes no sense to have the AUTO case
now that the Kconfig phase can just determine the compiler support
directly.

HOWEVER.

It also meant that doing "make oldconfig" would now _disable_ the strong
stackprotector if you had AUTO enabled, because in a legacy config file,
the sane stack protector configuration would look like

  CONFIG_HAVE_CC_STACKPROTECTOR=y
  # CONFIG_CC_STACKPROTECTOR_NONE is not set
  # CONFIG_CC_STACKPROTECTOR_REGULAR is not set
  # CONFIG_CC_STACKPROTECTOR_STRONG is not set
  CONFIG_CC_STACKPROTECTOR_AUTO=y

and when you ran this through "make oldconfig" with the Kbuild changes,
it would ask you about the regular CONFIG_CC_STACKPROTECTOR (that had
been renamed from CONFIG_CC_STACKPROTECTOR_REGULAR to just
CONFIG_CC_STACKPROTECTOR), but it would think that the STRONG version
used to be disabled (because it was really enabled by AUTO), and would
disable it in the new config, resulting in:

  CONFIG_HAVE_CC_STACKPROTECTOR=y
  CONFIG_CC_HAS_STACKPROTECTOR_NONE=y
  CONFIG_CC_STACKPROTECTOR=y
  # CONFIG_CC_STACKPROTECTOR_STRONG is not set
  CONFIG_CC_HAS_SANE_STACKPROTECTOR=y

That's dangerously subtle - people could suddenly find themselves with
the weaker stack protector setup without even realizing.

The solution here is to just rename not just the old RECULAR stack
protector option, but also the strong one.  This does that by just
removing the CC_ prefix entirely for the user choices, because it really
is not about the compiler support (the compiler support now instead
automatially impacts _visibility_ of the options to users).

This results in "make oldconfig" actually asking the user for their
choice, so that we don't have any silent subtle security model changes.
The end result would generally look like this:

  CONFIG_HAVE_CC_STACKPROTECTOR=y
  CONFIG_CC_HAS_STACKPROTECTOR_NONE=y
  CONFIG_STACKPROTECTOR=y
  CONFIG_STACKPROTECTOR_STRONG=y
  CONFIG_CC_HAS_SANE_STACKPROTECTOR=y

where the "CC_" versions really are about internal compiler
infrastructure, not the user selections.

Acked-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-14 12:21:18 +09:00
Greg Kroah-Hartman
b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00
Rik van Riel
bf9eb54438 x86: ascii armor the x86_64 boot init stack canary
Use the ascii-armor canary to prevent unterminated C string overflows
from being able to successfully overwrite the canary, even if they
somehow obtain the canary value.

Inspired by execshield ascii-armor and Daniel Micay's linux-hardened
tree.

Link: http://lkml.kernel.org/r/20170524155751.424-4-riel@redhat.com
Signed-off-by: Rik van Riel <riel@redhat.com>
Acked-by: Kees Cook <keescook@chromium.org>
Cc: Daniel Micay <danielmicay@gmail.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-12 16:26:03 -07:00
Thomas Garnier
69218e4799 x86: Remap GDT tables in the fixmap section
Each processor holds a GDT in its per-cpu structure. The sgdt
instruction gives the base address of the current GDT. This address can
be used to bypass KASLR memory randomization. With another bug, an
attacker could target other per-cpu structures or deduce the base of
the main memory section (PAGE_OFFSET).

This patch relocates the GDT table for each processor inside the
fixmap section. The space is reserved based on number of supported
processors.

For consistency, the remapping is done by default on 32 and 64-bit.

Each processor switches to its remapped GDT at the end of
initialization. For hibernation, the main processor returns with the
original GDT and switches back to the remapping at completion.

This patch was tested on both architectures. Hibernation and KVM were
both tested specially for their usage of the GDT.

Thanks to Boris Ostrovsky <boris.ostrovsky@oracle.com> for testing and
recommending changes for Xen support.

Signed-off-by: Thomas Garnier <thgarnie@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Len Brown <len.brown@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Luis R . Rodriguez <mcgrof@kernel.org>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rafael J . Wysocki <rjw@rjwysocki.net>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Stanislaw Gruszka <sgruszka@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: kasan-dev@googlegroups.com
Cc: kernel-hardening@lists.openwall.com
Cc: kvm@vger.kernel.org
Cc: lguest@lists.ozlabs.org
Cc: linux-doc@vger.kernel.org
Cc: linux-efi@vger.kernel.org
Cc: linux-mm@kvack.org
Cc: linux-pm@vger.kernel.org
Cc: xen-devel@lists.xenproject.org
Cc: zijun_hu <zijun_hu@htc.com>
Link: http://lkml.kernel.org/r/20170314170508.100882-2-thgarnie@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-16 09:06:35 +01:00
Andy Lutomirski
4ea1636b04 x86/asm/tsc: Rename native_read_tsc() to rdtsc()
Now that there is no paravirt TSC, the "native" is
inappropriate. The function does RDTSC, so give it the obvious
name: rdtsc().

Suggested-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Huang Rui <ray.huang@amd.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Len Brown <lenb@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kvm ML <kvm@vger.kernel.org>
Link: http://lkml.kernel.org/r/fd43e16281991f096c1e4d21574d9e1402c62d39.1434501121.git.luto@kernel.org
[ Ported it to v4.2-rc1. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-07-06 15:23:28 +02:00
Andy Lutomirski
c6e5ca35c4 x86/asm/tsc: Inline native_read_tsc() and remove __native_read_tsc()
In the following commit:

  cdc7957d19 ("x86: move native_read_tsc() offline")

... native_read_tsc() was moved out of line, presumably for some
now-obsolete vDSO-related reason. Undo it.

The entire rdtsc, shl, or sequence is only 11 bytes, and calls
via rdtscl() and similar helpers were already inlined.

Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Huang Rui <ray.huang@amd.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Len Brown <lenb@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kvm ML <kvm@vger.kernel.org>
Link: http://lkml.kernel.org/r/d05ffe2aaf8468ca475ebc00efad7b2fa174af19.1434501121.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-07-06 15:23:25 +02:00
Ingo Molnar
952f07ecbd x86/fpu: Move various internal function prototypes to fpu/internal.h
There are a number of FPU internal function prototypes and an inline function
in fpu/api.h, mostly placed so historically as the code grew over the years.

Move them over into fpu/internal.h where they belong. (Add sched.h include
to stackprotector.h which incorrectly relied on getting it from fpu/api.h.)

fpu/api.h is now a pure file that only contains FPU APIs intended for driver
use.

Reviewed-by: Borislav Petkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-19 15:47:48 +02:00
Alex Shi
c6ae41e7d4 x86: replace percpu_xxx funcs with this_cpu_xxx
Since percpu_xxx() serial functions are duplicated with this_cpu_xxx().
Removing percpu_xxx() definition and replacing them by this_cpu_xxx()
in code. There is no function change in this patch, just preparation for
later percpu_xxx serial function removing.

On x86 machine the this_cpu_xxx() serial functions are same as
__this_cpu_xxx() without no unnecessary premmpt enable/disable.

Thanks for Stephen Rothwell, he found and fixed a i386 build error in
the patch.

Also thanks for Andrew Morton, he kept updating the patchset in Linus'
tree.

Signed-off-by: Alex Shi <alex.shi@intel.com>
Acked-by: Christoph Lameter <cl@gentwo.org>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
2012-05-14 14:15:31 -07:00
David Howells
f05e798ad4 Disintegrate asm/system.h for X86
Disintegrate asm/system.h for X86.

Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: H. Peter Anvin <hpa@zytor.com>
cc: x86@kernel.org
2012-03-28 18:11:12 +01:00
Jeremy Fitzhardinge
1ea0d14e48 x86/i386: Make sure stack-protector segment base is cache aligned
The Intel Optimization Reference Guide says:

	In Intel Atom microarchitecture, the address generation unit
	assumes that the segment base will be 0 by default. Non-zero
	segment base will cause load and store operations to experience
	a delay.
		- If the segment base isn't aligned to a cache line
		  boundary, the max throughput of memory operations is
		  reduced to one [e]very 9 cycles.
	[...]
	Assembly/Compiler Coding Rule 15. (H impact, ML generality)
	For Intel Atom processors, use segments with base set to 0
	whenever possible; avoid non-zero segment base address that is
	not aligned to cache line boundary at all cost.

We can't avoid having a non-zero base for the stack-protector
segment, but we can make it cache-aligned.

Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Cc: <stable@kernel.org>
LKML-Reference: <4AA01893.6000507@goop.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-09-03 21:30:51 +02:00
Akinobu Mita
1e5de18278 x86: Introduce GDT_ENTRY_INIT()
GDT_ENTRY_INIT is static initializer of desc_struct.

We already have similar macro GDT_ENTRY() but it's static
initializer for u64 and it cannot be used for desc_struct.

Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
LKML-Reference: <20090718151219.GD11294@localhost.localdomain>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-08-08 17:44:11 +02:00
Akinobu Mita
57594742a2 x86: Introduce set_desc_base() and set_desc_limit()
Rename set_base()/set_limit to set_desc_base()/set_desc_limit()
and rewrite them in C. These are naturally introduced by the
idea of get_desc_base()/get_desc_limit().

The conversion actually found the bug in apm_32.c:
bad_bios_desc is written at run-time, but it is defined const
variable.

Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
LKML-Reference: <20090718151105.GC11294@localhost.localdomain>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-07-19 18:27:52 +02:00
Tejun Heo
5c79d2a517 x86: fix x86_32 stack protector bugs
Impact: fix x86_32 stack protector

Brian Gerst found out that %gs was being initialized to stack_canary
instead of stack_canary - 20, which basically gave the same canary
value for all threads.  Fixing this also exposed the following bugs.

* cpu_idle() didn't call boot_init_stack_canary()

* stack canary switching in switch_to() was being done too late making
  the initial run of a new thread use the old stack canary value.

Fix all of them and while at it update comment in cpu_idle() about
calling boot_init_stack_canary().

Reported-by: Brian Gerst <brgerst@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-02-11 11:33:49 +01:00
Tejun Heo
60a5317ff0 x86: implement x86_32 stack protector
Impact: stack protector for x86_32

Implement stack protector for x86_32.  GDT entry 28 is used for it.
It's set to point to stack_canary-20 and have the length of 24 bytes.
CONFIG_CC_STACKPROTECTOR turns off CONFIG_X86_32_LAZY_GS and sets %gs
to the stack canary segment on entry.  As %gs is otherwise unused by
the kernel, the canary can be anywhere.  It's defined as a percpu
variable.

x86_32 exception handlers take register frame on stack directly as
struct pt_regs.  With -fstack-protector turned on, gcc copies the
whole structure after the stack canary and (of course) doesn't copy
back on return thus losing all changed.  For now, -fno-stack-protector
is added to all files which contain those functions.  We definitely
need something better.

Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-02-10 00:42:01 +01:00
Tejun Heo
76397f72fb x86: stackprotector.h misc update
Impact: misc udpate

* wrap content with CONFIG_CC_STACK_PROTECTOR so that other arch files
  can include it directly

* add missing includes

This will help future changes.

Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-02-10 00:41:29 +01:00
Brian Gerst
947e76cdc3 x86: move stack_canary into irq_stack
Impact: x86_64 percpu area layout change, irq_stack now at the beginning

Now that the PDA is empty except for the stack canary, it can be removed.
The irqstack is moved to the start of the per-cpu section.  If the stack
protector is enabled, the canary overlaps the bottom 48 bytes of the irqstack.

tj: * updated subject
    * dropped asm relocation of irq_stack_ptr
    * updated comments a bit
    * rebased on top of stack canary changes

Signed-off-by: Brian Gerst <brgerst@gmail.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2009-01-20 12:29:20 +09:00
Tejun Heo
c6e50f93db x86: cleanup stack protector
Impact: cleanup

Make the following cleanups.

* remove duplicate comment from boot_init_stack_canary() which fits
  better in the other place - cpu_idle().

* move stack_canary offset check from __switch_to() to
  boot_init_stack_canary().

Signed-off-by: Tejun Heo <tj@kernel.org>
2009-01-20 12:29:19 +09:00
Ingo Molnar
b2b062b816 Merge branch 'core/percpu' into stackprotector
Conflicts:
	arch/x86/include/asm/pda.h
	arch/x86/include/asm/system.h

Also, moved include/asm-x86/stackprotector.h to arch/x86/include/asm.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-01-18 18:37:14 +01:00