Commit graph

583 commits

Author SHA1 Message Date
Linus Torvalds
0ef0fd3515 * ARM: support for SVE and Pointer Authentication in guests, PMU improvements
* POWER: support for direct access to the POWER9 XIVE interrupt controller,
 memory and performance optimizations.
 
 * x86: support for accessing memory not backed by struct page, fixes and refactoring
 
 * Generic: dirty page tracking improvements
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQEcBAABAgAGBQJc3qV/AAoJEL/70l94x66Dn3QH/jX1Bn0P/RZAIt4w0SySklSg
 PqxUKDyBQqB9vN9Qeb9jWXAKPH2CtM3+up/rz7oRnBWp7qA6vXcC/R/QJYAvzdXE
 nklsR/oYCsflR1KdlVYuDvvPCPP2fLBU5zfN83OsaBQ8fNRkm3gN+N5XQ2SbXbLy
 Mo9tybS4otY201UAC96e8N0ipwwyCRpDneQpLcl+F5nH3RBt63cVbs04O+70MXn7
 eT4I+8K3+Go7LATzT8hglD21D/7uvE31qQb6yr5L33IfhU4GB51RZzBXTNaAdY8n
 hT1rMrRkAMAFWYZPQDfoMadjWU3i5DIfstKjDxOr9oTfuOEp5Z+GvJwvVnUDg1I=
 =D0+p
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM updates from Paolo Bonzini:
 "ARM:
   - support for SVE and Pointer Authentication in guests
   - PMU improvements

  POWER:
   - support for direct access to the POWER9 XIVE interrupt controller
   - memory and performance optimizations

  x86:
   - support for accessing memory not backed by struct page
   - fixes and refactoring

  Generic:
   - dirty page tracking improvements"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (155 commits)
  kvm: fix compilation on aarch64
  Revert "KVM: nVMX: Expose RDPMC-exiting only when guest supports PMU"
  kvm: x86: Fix L1TF mitigation for shadow MMU
  KVM: nVMX: Disable intercept for FS/GS base MSRs in vmcs02 when possible
  KVM: PPC: Book3S: Remove useless checks in 'release' method of KVM device
  KVM: PPC: Book3S HV: XIVE: Fix spelling mistake "acessing" -> "accessing"
  KVM: PPC: Book3S HV: Make sure to load LPID for radix VCPUs
  kvm: nVMX: Set nested_run_pending in vmx_set_nested_state after checks complete
  tests: kvm: Add tests for KVM_SET_NESTED_STATE
  KVM: nVMX: KVM_SET_NESTED_STATE - Tear down old EVMCS state before setting new state
  tests: kvm: Add tests for KVM_CAP_MAX_VCPUS and KVM_CAP_MAX_CPU_ID
  tests: kvm: Add tests to .gitignore
  KVM: Introduce KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2
  KVM: Fix kvm_clear_dirty_log_protect off-by-(minus-)one
  KVM: Fix the bitmap range to copy during clear dirty
  KVM: arm64: Fix ptrauth ID register masking logic
  KVM: x86: use direct accessors for RIP and RSP
  KVM: VMX: Use accessors for GPRs outside of dedicated caching logic
  KVM: x86: Omit caching logic for always-available GPRs
  kvm, x86: Properly check whether a pfn is an MMIO or not
  ...
2019-05-17 10:33:30 -07:00
Paolo Bonzini
dd53f6102c KVM/arm updates for 5.2
- guest SVE support
 - guest Pointer Authentication support
 - Better discrimination of perf counters between host and guests
 -----BEGIN PGP SIGNATURE-----
 
 iQJJBAABCgAzFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAlzMM9kVHG1hcmMuenlu
 Z2llckBhcm0uY29tAAoJECPQ0LrRPXpDEp8P/iqZvvZlLdlnWQwluWh237c28kAo
 zELO0L7Wl+OJ66v2hzM+NPBi5kv/9pSv7AoKNLv3398YmKFt0n7yUB+MHi0BC9xi
 ZEp4etCOiVcqcWWeDiAXLdR9OQlb7IDBDc56s4V9HQgK3sEb4u8aEJIy/nDBVniv
 GVLMh1EOsrviIYso6UVxI1X7lPQevpCS0kv9/llhhzEj8QDxnQThjDuW3wrAyhQi
 F9XNVjAMW8rft7vvok9cxT4v+TR1HgUajquoSrjXuonWHgKnC9tSH/dHILNK8Zij
 5OApojGlZQrXIa5Sk3JOhGahVVY9Y+ewsw58J5bJxd0/xrKXnWk/Lann7NE+UcBf
 RJMHfanIO/+JJRzHhagejK7pqnYXD1PWBwF8z3Hefs1IVw4eBvPBGuhIULJ6+eSP
 +3JCwiOiwshG43gZlGmHcgvhPdeX4r/BlopWV9+0X/gAjcU1+3+ZG6J3jeAcC1Kx
 i481dSzlZ7Ar7VWDCk7WgcmDvUwHXtxq0HbqzQjPBO04kkakjdPZZrZIX3+Qhlem
 GpkPVb2z5h5KTk9Fx03ZXxPVdiOQh1UmNC8jlsYZPWcJVTLkySs7HWXZJe+WTs4Z
 NLuen/eA4/NCon+UA6XdIG5Ddn/J39UuF1lCApHPHn576rwz+HmqpcN59XiU6y4h
 XHIxzajFcXNpn802
 =fjph
 -----END PGP SIGNATURE-----

Merge tag 'kvmarm-for-v5.2' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD

KVM/arm updates for 5.2

- guest SVE support
- guest Pointer Authentication support
- Better discrimination of perf counters between host and guests

Conflicts:
	include/uapi/linux/kvm.h
2019-05-15 23:41:43 +02:00
Kristina Martsenko
9eecfc22e0 KVM: arm64: Fix ptrauth ID register masking logic
When a VCPU doesn't have pointer auth, we want to hide all four pointer
auth ID register fields from the guest, not just one of them.

Fixes: 384b40caa8 ("KVM: arm/arm64: Context-switch ptrauth registers")
Reported-by: Andrew Murray <andrew.murray@arm.com>
Fscked-up-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Tested-by: Andrew Murray <andrew.murray@arm.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-05-01 17:21:51 +01:00
Andrew Murray
21137301de arm64: KVM: Fix perf cycle counter support for VHE
The kvm_vcpu_pmu_{read,write}_evtype_direct functions do not handle
the cycle counter use-case, this leads to inaccurate counts and a
WARN message when using perf with the cycle counter (-e cycle).

Let's fix this by adding a use case for pmccfiltr_el0.

Fixes: 39e3406a09 ("arm64: KVM: Avoid isb's by using direct pmxevtyper sysreg")
Reported-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Andrew Murray <andrew.murray@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-04-30 10:11:49 +01:00
Andrew Murray
39e3406a09 arm64: KVM: Avoid isb's by using direct pmxevtyper sysreg
Upon entering or exiting a guest we may modify multiple PMU counters to
enable of disable EL0 filtering. We presently do this via the indirect
PMXEVTYPER_EL0 system register (where the counter we modify is selected
by PMSELR). With this approach it is necessary to order the writes via
isb instructions such that we select the correct counter before modifying
it.

Let's avoid potentially expensive instruction barriers by using the
direct PMEVTYPER<n>_EL0 registers instead.

As the change to counter type relates only to EL0 filtering we can rely
on the implicit instruction barrier which occurs when we transition from
EL2 to EL1 on entering the guest. On returning to userspace we can, at the
latest, rely on the implicit barrier between EL2 and EL0. We can also
depend on the explicit isb in armv8pmu_select_counter to order our write
against any other kernel changes by the PMU driver to the type register as
a result of preemption.

Signed-off-by: Andrew Murray <andrew.murray@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-04-24 15:46:26 +01:00
Andrew Murray
435e53fb5e arm64: KVM: Enable VHE support for :G/:H perf event modifiers
With VHE different exception levels are used between the host (EL2) and
guest (EL1) with a shared exception level for userpace (EL0). We can take
advantage of this and use the PMU's exception level filtering to avoid
enabling/disabling counters in the world-switch code. Instead we just
modify the counter type to include or exclude EL0 at vcpu_{load,put} time.

We also ensure that trapped PMU system register writes do not re-enable
EL0 when reconfiguring the backing perf events.

This approach completely avoids blackout windows seen with !VHE.

Suggested-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Andrew Murray <andrew.murray@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-04-24 15:46:26 +01:00
Andrew Murray
3d91befbb3 arm64: KVM: Enable !VHE support for :G/:H perf event modifiers
Enable/disable event counters as appropriate when entering and exiting
the guest to enable support for guest or host only event counting.

For both VHE and non-VHE we switch the counters between host/guest at
EL2.

The PMU may be on when we change which counters are enabled however
we avoid adding an isb as we instead rely on existing context
synchronisation events: the eret to enter the guest (__guest_enter)
and eret in kvm_call_hyp for __kvm_vcpu_run_nvhe on returning.

Signed-off-by: Andrew Murray <andrew.murray@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-04-24 15:36:22 +01:00
Andrew Murray
eb41238cf1 arm64: KVM: Add accessors to track guest/host only counters
In order to effeciently switch events_{guest,host} perf counters at
guest entry/exit we add bitfields to kvm_cpu_context for guest and host
events as well as accessors for updating them.

A function is also provided which allows the PMU driver to determine
if a counter should start counting when it is enabled. With exclude_host,
we may only start counting when entering the guest.

Signed-off-by: Andrew Murray <andrew.murray@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-04-24 15:35:30 +01:00
Amit Daniel Kachhap
a243c16d18 KVM: arm64: Add capability to advertise ptrauth for guest
This patch advertises the capability of two cpu feature called address
pointer authentication and generic pointer authentication. These
capabilities depend upon system support for pointer authentication and
VHE mode.

The current arm64 KVM partially implements pointer authentication and
support of address/generic authentication are tied together. However,
separate ABI requirements for both of them is added so that any future
isolated implementation will not require any ABI changes.

Signed-off-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Christoffer Dall <christoffer.dall@arm.com>
Cc: kvmarm@lists.cs.columbia.edu
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-04-24 15:30:40 +01:00
Amit Daniel Kachhap
a22fa321d1 KVM: arm64: Add userspace flag to enable pointer authentication
Now that the building blocks of pointer authentication are present, lets
add userspace flags KVM_ARM_VCPU_PTRAUTH_ADDRESS and
KVM_ARM_VCPU_PTRAUTH_GENERIC. These flags will enable pointer
authentication for the KVM guest on a per-vcpu basis through the ioctl
KVM_ARM_VCPU_INIT.

This features will allow the KVM guest to allow the handling of
pointer authentication instructions or to treat them as undefined
if not set.

Necessary documentations are added to reflect the changes done.

Reviewed-by: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Christoffer Dall <christoffer.dall@arm.com>
Cc: kvmarm@lists.cs.columbia.edu
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-04-24 15:30:40 +01:00
Mark Rutland
384b40caa8 KVM: arm/arm64: Context-switch ptrauth registers
When pointer authentication is supported, a guest may wish to use it.
This patch adds the necessary KVM infrastructure for this to work, with
a semi-lazy context switch of the pointer auth state.

Pointer authentication feature is only enabled when VHE is built
in the kernel and present in the CPU implementation so only VHE code
paths are modified.

When we schedule a vcpu, we disable guest usage of pointer
authentication instructions and accesses to the keys. While these are
disabled, we avoid context-switching the keys. When we trap the guest
trying to use pointer authentication functionality, we change to eagerly
context-switching the keys, and enable the feature. The next time the
vcpu is scheduled out/in, we start again. However the host key save is
optimized and implemented inside ptrauth instruction/register access
trap.

Pointer authentication consists of address authentication and generic
authentication, and CPUs in a system might have varied support for
either. Where support for either feature is not uniform, it is hidden
from guests via ID register emulation, as a result of the cpufeature
framework in the host.

Unfortunately, address authentication and generic authentication cannot
be trapped separately, as the architecture provides a single EL2 trap
covering both. If we wish to expose one without the other, we cannot
prevent a (badly-written) guest from intermittently using a feature
which is not uniformly supported (when scheduled on a physical CPU which
supports the relevant feature). Hence, this patch expects both type of
authentication to be present in a cpu.

This switch of key is done from guest enter/exit assembly as preparation
for the upcoming in-kernel pointer authentication support. Hence, these
key switching routines are not implemented in C code as they may cause
pointer authentication key signing error in some situations.

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
[Only VHE, key switch in full assembly, vcpu_has_ptrauth checks
, save host key in ptrauth exception trap]
Signed-off-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
Reviewed-by: Julien Thierry <julien.thierry@arm.com>
Cc: Christoffer Dall <christoffer.dall@arm.com>
Cc: kvmarm@lists.cs.columbia.edu
[maz: various fixups]
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-04-24 15:30:40 +01:00
David Howells
5dd50aaeb1
Make anon_inodes unconditional
Make the anon_inodes facility unconditional so that it can be used by core
VFS code and pidfd code.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
[christian@brauner.io: adapt commit message to mention pidfds]
Signed-off-by: Christian Brauner <christian@brauner.io>
2019-04-19 14:03:11 +02:00
Dave Martin
92e68b2b1b KVM: arm/arm64: Clean up vcpu finalization function parameter naming
Currently, the internal vcpu finalization functions use a different
name ("what") for the feature parameter than the name ("feature")
used in the documentation.

To avoid future confusion, this patch converts everything to use
the name "feature" consistently.

No functional change.

Suggested-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-04-18 17:14:02 +01:00
Dave Martin
ecfb6ed4f6 KVM: arm64/sve: Explain validity checks in set_sve_vls()
Correct virtualization of SVE relies for correctness on code in
set_sve_vls() that verifies consistency between the set of vector
lengths requested by userspace and the set of vector lengths
available on the host.

However, the purpose of this code is not obvious, and not likely to
be apparent at all to people who do not have detailed knowledge of
the SVE system-level architecture.

This patch adds a suitable comment to explain what these checks are
for.

No functional change.

Suggested-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-04-18 17:14:02 +01:00
Dave Martin
4bd774e57b KVM: arm64/sve: Simplify KVM_REG_ARM64_SVE_VLS array sizing
A complicated DIV_ROUND_UP() expression is currently written out
explicitly in multiple places in order to specify the size of the
bitmap exchanged with userspace to represent the value of the
KVM_REG_ARM64_SVE_VLS pseudo-register.

Userspace currently has no direct way to work this out either: for
documentation purposes, the size is just quoted as 8 u64s.

To make this more intuitive, this patch replaces these with a
single define, which is also exported to userspace as
KVM_ARM64_SVE_VLS_WORDS.

Since the number of words in a bitmap is just the index of the last
word used + 1, this patch expresses the bound that way instead.
This should make it clearer what is being expressed.

For userspace convenience, the minimum and maximum possible vector
lengths relevant to the KVM ABI are exposed to UAPI as
KVM_ARM64_SVE_VQ_MIN, KVM_ARM64_SVE_VQ_MAX.  Since the only direct
use for these at present is manipulation of KVM_REG_ARM64_SVE_VLS,
no corresponding _VL_ macros are defined.  They could be added
later if a need arises.

Since use of DIV_ROUND_UP() was the only reason for including
<linux/kernel.h> in guest.c, this patch also removes that #include.

Suggested-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-04-18 17:14:02 +01:00
Dave Martin
55ffad3b63 KVM: arm64/sve: WARN when avoiding divide-by-zero in sve_reg_to_region()
sve_reg_to_region() currently passes the result of
vcpu_sve_state_size() to array_index_nospec(), effectively
leading to a divide / modulo operation.

Currently the code bails out and returns -EINVAL if
vcpu_sve_state_size() turns out to be zero, in order to avoid going
ahead and attempting to divide by zero.  This is reasonable, but it
should only happen if the kernel contains some other bug that
allowed this code to be reached without the vcpu having been
properly initialised.

To make it clear that this is a defence against bugs rather than
something that the user should be able to trigger, this patch marks
the check with WARN_ON().

Suggested-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-04-18 17:14:01 +01:00
Dave Martin
52110aa959 KVM: arm64/sve: Make register ioctl access errors more consistent
Currently, the way error codes are generated when processing the
SVE register access ioctls in a bit haphazard.

This patch refactors the code so that the behaviour is more
consistent: now, -EINVAL should be returned only for unrecognised
register IDs or when some other runtime error occurs.  -ENOENT is
returned for register IDs that are recognised, but whose
corresponding register (or slice) does not exist for the vcpu.

To this end, in {get,set}_sve_reg() we now delegate the
vcpu_has_sve() check down into {get,set}_sve_vls() and
sve_reg_to_region().  The KVM_REG_ARM64_SVE_VLS special case is
picked off first, then sve_reg_to_region() plays the role of
exhaustively validating or rejecting the register ID and (where
accepted) computing the applicable register region as before.

sve_reg_to_region() is rearranged so that -ENOENT or -EPERM is not
returned prematurely, before checking whether reg->id is in a
recognised range.

-EPERM is now only returned when an attempt is made to access an
actually existing register slice on an unfinalized vcpu.

Fixes: e1c9c98345 ("KVM: arm64/sve: Add SVE support to register access ioctl interface")
Fixes: 9033bba4b5 ("KVM: arm64/sve: Add pseudo-register for the guest's vector lengths")
Suggested-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-04-18 17:14:01 +01:00
Dave Martin
f8d4635aff KVM: arm64/sve: Miscellaneous tidyups in guest.c
* Remove a few redundant blank lines that are stylistically
   inconsistent with code already in guest.c and are just taking up
   space.

 * Delete a couple of pointless empty default cases from switch
   statements whose behaviour is otherwise obvious anyway.

 * Fix some typos and consolidate some redundantly duplicated
   comments.

 * Respell the slice index check in sve_reg_to_region() as "> 0"
   to be more consistent with what is logically being checked here
   (i.e., "is the slice index too large"), even though we don't try
   to cope with multiple slices yet.

No functional change.

Suggested-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-04-18 17:14:01 +01:00
Dave Martin
8ae6efdde4 KVM: arm64/sve: Clean up UAPI register ID definitions
Currently, the SVE register ID macros are not all defined in the
same way, and advertise the fact that FFR maps onto the nonexistent
predicate register P16.  This is really just for kernel
convenience, and may lead userspace into bad habits.

Instead, this patch masks the ID macro arguments so that
architecturally invalid register numbers will not be passed through
any more, and uses a literal KVM_REG_ARM64_SVE_FFR_BASE macro to
define KVM_REG_ARM64_SVE_FFR(), similarly to the way the _ZREG()
and _PREG() macros are defined.

Rather than plugging in magic numbers for the number of Z- and P-
registers and the maximum possible number of register slices, this
patch provides definitions for those too.  Userspace is going to
need them in any case, and it makes sense for them to come from
<uapi/asm/kvm.h>.

sve_reg_to_region() uses convenience constants that are defined in
a different way, and also makes use of the fact that the FFR IDs
are really contiguous with the P15 IDs, so this patch retains the
existing convenience constants in guest.c, supplemented with a
couple of sanity checks to check for consistency with the UAPI
header.

Fixes: e1c9c98345 ("KVM: arm64/sve: Add SVE support to register access ioctl interface")
Suggested-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-04-18 17:14:01 +01:00
Dave Martin
700698a8a9 KVM: arm64/sve: sys_regs: Demote redundant vcpu_has_sve() checks to WARNs
Because of the logic in kvm_arm_sys_reg_{get,set}_reg() and
sve_id_visibility(), we should never call
{get,set}_id_aa64zfr0_el1() for a vcpu where !vcpu_has_sve(vcpu).

To avoid the code giving the impression that it is valid for these
functions to be called in this situation, and to help the compiler
make the right optimisation decisions, this patch adds WARN_ON()
for these cases.

Given the way the logic is spread out, this seems preferable to
dropping the checks altogether.

Suggested-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-04-18 17:14:01 +01:00
Dave Martin
a3be836df7 KVM: arm/arm64: Demote kvm_arm_init_arch_resources() to just set up SVE
The introduction of kvm_arm_init_arch_resources() looks like
premature factoring, since nothing else uses this hook yet and it
is not clear what will use it in the future.

For now, let's not pretend that this is a general thing:

This patch simply renames the function to kvm_arm_init_sve(),
retaining the arm stub version under the new name.

Suggested-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-04-18 17:14:01 +01:00
Marc Zyngier
5d8d4af244 arm64: KVM: Fix system register enumeration
The introduction of the SVE registers to userspace started with a
refactoring of the way we expose any register via the ONE_REG
interface.

Unfortunately, this change doesn't exactly behave as expected
if the number of registers is non-zero and consider everything
to be an error. The visible result is that QEMU barfs very early
when creating vcpus.

Make sure we only exit early in case there is an actual error, rather
than a positive number of registers...

Fixes: be25bbb392 ("KVM: arm64: Factor out core register ID enumeration")
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-04-02 05:13:40 +01:00
Dave Martin
555f3d03e7 KVM: arm64: Add a capability to advertise SVE support
To provide a uniform way to check for KVM SVE support amongst other
features, this patch adds a suitable capability KVM_CAP_ARM_SVE,
and reports it as present when SVE is available.

Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Julien Thierry <julien.thierry@arm.com>
Tested-by: zhang.lei <zhang.lei@jp.fujitsu.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-03-29 14:41:54 +00:00
Dave Martin
9a3cdf26e3 KVM: arm64/sve: Allow userspace to enable SVE for vcpus
Now that all the pieces are in place, this patch offers a new flag
KVM_ARM_VCPU_SVE that userspace can pass to KVM_ARM_VCPU_INIT to
turn on SVE for the guest, on a per-vcpu basis.

As part of this, support for initialisation and reset of the SVE
vector length set and registers is added in the appropriate places,
as well as finally setting the KVM_ARM64_GUEST_HAS_SVE vcpu flag,
to turn on the SVE support code.

Allocation of the SVE register storage in vcpu->arch.sve_state is
deferred until the SVE configuration is finalized, by which time
the size of the registers is known.

Setting the vector lengths supported by the vcpu is considered
configuration of the emulated hardware rather than runtime
configuration, so no support is offered for changing the vector
lengths available to an existing vcpu across reset.

Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Julien Thierry <julien.thierry@arm.com>
Tested-by: zhang.lei <zhang.lei@jp.fujitsu.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-03-29 14:41:54 +00:00
Dave Martin
9033bba4b5 KVM: arm64/sve: Add pseudo-register for the guest's vector lengths
This patch adds a new pseudo-register KVM_REG_ARM64_SVE_VLS to
allow userspace to set and query the set of vector lengths visible
to the guest.

In the future, multiple register slices per SVE register may be
visible through the ioctl interface.  Once the set of slices has
been determined we would not be able to allow the vector length set
to be changed any more, in order to avoid userspace seeing
inconsistent sets of registers.  For this reason, this patch adds
support for explicit finalization of the SVE configuration via the
KVM_ARM_VCPU_FINALIZE ioctl.

Finalization is the proper place to allocate the SVE register state
storage in vcpu->arch.sve_state, so this patch adds that as
appropriate.  The data is freed via kvm_arch_vcpu_uninit(), which
was previously a no-op on arm64.

To simplify the logic for determining what vector lengths can be
supported, some code is added to KVM init to work this out, in the
kvm_arm_init_arch_resources() hook.

The KVM_REG_ARM64_SVE_VLS pseudo-register is not exposed yet.
Subsequent patches will allow SVE to be turned on for guest vcpus,
making it visible.

Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Julien Thierry <julien.thierry@arm.com>
Tested-by: zhang.lei <zhang.lei@jp.fujitsu.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-03-29 14:41:54 +00:00
Dave Martin
8e3c54c8b6 KVM: arm64: Enumerate SVE register indices for KVM_GET_REG_LIST
This patch includes the SVE register IDs in the list returned by
KVM_GET_REG_LIST, as appropriate.

On a non-SVE-enabled vcpu, no new IDs are added.

On an SVE-enabled vcpu, IDs for the FPSIMD V-registers are removed
from the list, since userspace is required to access the Z-
registers instead in order to access the V-register content.  For
the variably-sized SVE registers, the appropriate set of slice IDs
are enumerated, depending on the maximum vector length for the
vcpu.

As it currently stands, the SVE architecture never requires more
than one slice to exist per register, so this patch adds no
explicit support for enumerating multiple slices.  The code can be
extended straightforwardly to support this in the future, if
needed.

Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Julien Thierry <julien.thierry@arm.com>
Tested-by: zhang.lei <zhang.lei@jp.fujitsu.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-03-29 14:41:54 +00:00
Dave Martin
e1c9c98345 KVM: arm64/sve: Add SVE support to register access ioctl interface
This patch adds the following registers for access via the
KVM_{GET,SET}_ONE_REG interface:

 * KVM_REG_ARM64_SVE_ZREG(n, i) (n = 0..31) (in 2048-bit slices)
 * KVM_REG_ARM64_SVE_PREG(n, i) (n = 0..15) (in 256-bit slices)
 * KVM_REG_ARM64_SVE_FFR(i) (in 256-bit slices)

In order to adapt gracefully to future architectural extensions,
the registers are logically divided up into slices as noted above:
the i parameter denotes the slice index.

This allows us to reserve space in the ABI for future expansion of
these registers.  However, as of today the architecture does not
permit registers to be larger than a single slice, so no code is
needed in the kernel to expose additional slices, for now.  The
code can be extended later as needed to expose them up to a maximum
of 32 slices (as carved out in the architecture itself) if they
really exist someday.

The registers are only visible for vcpus that have SVE enabled.
They are not enumerated by KVM_GET_REG_LIST on vcpus that do not
have SVE.

Accesses to the FPSIMD registers via KVM_REG_ARM_CORE is not
allowed for SVE-enabled vcpus: SVE-aware userspace can use the
KVM_REG_ARM64_SVE_ZREG() interface instead to access the same
register state.  This avoids some complex and pointless emulation
in the kernel to convert between the two views of these aliased
registers.

Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Julien Thierry <julien.thierry@arm.com>
Tested-by: zhang.lei <zhang.lei@jp.fujitsu.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-03-29 14:41:54 +00:00
Dave Martin
8c86dfe39d KVM: arm64: Reject ioctl access to FPSIMD V-regs on SVE vcpus
In order to avoid the pointless complexity of maintaining two ioctl
register access views of the same data, this patch blocks ioctl
access to the FPSIMD V-registers on vcpus that support SVE.

This will make it more straightforward to add SVE register access
support.

Since SVE is an opt-in feature for userspace, this will not affect
existing users.

Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Julien Thierry <julien.thierry@arm.com>
Tested-by: zhang.lei <zhang.lei@jp.fujitsu.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-03-29 14:41:53 +00:00
Dave Martin
be25bbb392 KVM: arm64: Factor out core register ID enumeration
In preparation for adding logic to filter out some KVM_REG_ARM_CORE
registers from the KVM_GET_REG_LIST output, this patch factors out
the core register enumeration into a separate function and rebuilds
num_core_regs() on top of it.

This may be a little more expensive (depending on how good a job
the compiler does of specialising the code), but KVM_GET_REG_LIST
is not a hot path.

This will make it easier to consolidate ID filtering code in one
place.

No functional change.

Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Julien Thierry <julien.thierry@arm.com>
Tested-by: zhang.lei <zhang.lei@jp.fujitsu.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-03-29 14:41:53 +00:00
Dave Martin
dc52f31a92 KVM: arm64: Add missing #include of <linux/string.h> in guest.c
arch/arm64/kvm/guest.c uses the string functions, but the
corresponding header is not included.

We seem to get away with this for now, but for completeness this
patch adds the #include, in preparation for adding yet more
memset() calls.

Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Tested-by: zhang.lei <zhang.lei@jp.fujitsu.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-03-29 14:41:53 +00:00
Dave Martin
b43b5dd990 KVM: arm64/sve: Context switch the SVE registers
In order to give each vcpu its own view of the SVE registers, this
patch adds context storage via a new sve_state pointer in struct
vcpu_arch.  An additional member sve_max_vl is also added for each
vcpu, to determine the maximum vector length visible to the guest
and thus the value to be configured in ZCR_EL2.LEN while the vcpu
is active.  This also determines the layout and size of the storage
in sve_state, which is read and written by the same backend
functions that are used for context-switching the SVE state for
host tasks.

On SVE-enabled vcpus, SVE access traps are now handled by switching
in the vcpu's SVE context and disabling the trap before returning
to the guest.  On other vcpus, the trap is not handled and an exit
back to the host occurs, where the handle_sve() fallback path
reflects an undefined instruction exception back to the guest,
consistently with the behaviour of non-SVE-capable hardware (as was
done unconditionally prior to this patch).

No SVE handling is added on non-VHE-only paths, since VHE is an
architectural and Kconfig prerequisite of SVE.

Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Julien Thierry <julien.thierry@arm.com>
Tested-by: zhang.lei <zhang.lei@jp.fujitsu.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-03-29 14:41:53 +00:00
Dave Martin
73433762fc KVM: arm64/sve: System register context switch and access support
This patch adds the necessary support for context switching ZCR_EL1
for each vcpu.

ZCR_EL1 is trapped alongside the FPSIMD/SVE registers, so it makes
sense for it to be handled as part of the guest FPSIMD/SVE context
for context switch purposes instead of handling it as a general
system register.  This means that it can be switched in lazily at
the appropriate time.  No effort is made to track host context for
this register, since SVE requires VHE: thus the hosts's value for
this register lives permanently in ZCR_EL2 and does not alias the
guest's value at any time.

The Hyp switch and fpsimd context handling code is extended
appropriately.

Accessors are added in sys_regs.c to expose the SVE system
registers and ID register fields.  Because these need to be
conditionally visible based on the guest configuration, they are
implemented separately for now rather than by use of the generic
system register helpers.  This may be abstracted better later on
when/if there are more features requiring this model.

ID_AA64ZFR0_EL1 is RO-RAZ for MRS/MSR when SVE is disabled for the
guest, but for compatibility with non-SVE aware KVM implementations
the register should not be enumerated at all for KVM_GET_REG_LIST
in this case.  For consistency we also reject ioctl access to the
register.  This ensures that a non-SVE-enabled guest looks the same
to userspace, irrespective of whether the kernel KVM implementation
supports SVE.

Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Julien Thierry <julien.thierry@arm.com>
Tested-by: zhang.lei <zhang.lei@jp.fujitsu.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-03-29 14:41:53 +00:00
Dave Martin
7f34e40903 KVM: arm64: Support runtime sysreg visibility filtering
Some optional features of the Arm architecture add new system
registers that are not present in the base architecture.

Where these features are optional for the guest, the visibility of
these registers may need to depend on some runtime configuration,
such as a flag passed to KVM_ARM_VCPU_INIT.

For example, ZCR_EL1 and ID_AA64ZFR0_EL1 need to be hidden if SVE
is not enabled for the guest, even though these registers may be
present in the hardware and visible to the host at EL2.

Adding special-case checks all over the place for individual
registers is going to get messy as the number of conditionally-
visible registers grows.

In order to help solve this problem, this patch adds a new sysreg
method visibility() that can be used to hook in any needed runtime
visibility checks.  This method can currently return
REG_HIDDEN_USER to inhibit enumeration and ioctl access to the
register for userspace, and REG_HIDDEN_GUEST to inhibit runtime
access by the guest using MSR/MRS.  Wrappers are added to allow
these flags to be conveniently queried.

This approach allows a conditionally modified view of individual
system registers such as the CPU ID registers, in addition to
completely hiding register where appropriate.

Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Tested-by: zhang.lei <zhang.lei@jp.fujitsu.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-03-29 14:41:53 +00:00
Dave Martin
1c19991390 KVM: arm64: Propagate vcpu into read_id_reg()
Architecture features that are conditionally visible to the guest
will require run-time checks in the ID register accessor functions.
In particular, read_id_reg() will need to perform checks in order
to generate the correct emulated value for certain ID register
fields such as ID_AA64PFR0_EL1.SVE for example.

This patch propagates vcpu into read_id_reg() so that future
patches can add run-time checks on the guest configuration here.

For now, there is no functional change.

Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Tested-by: zhang.lei <zhang.lei@jp.fujitsu.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-03-29 14:41:53 +00:00
Dave Martin
0495067420 arm64/sve: Enable SVE state tracking for non-task contexts
The current FPSIMD/SVE context handling support for non-task (i.e.,
KVM vcpu) contexts does not take SVE into account.  This means that
only task contexts can safely use SVE at present.

In preparation for enabling KVM guests to use SVE, it is necessary
to keep track of SVE state for non-task contexts too.

This patch adds the necessary support, removing assumptions from
the context switch code about the location of the SVE context
storage.

When binding a vcpu context, its vector length is arbitrarily
specified as SVE_VL_MIN for now.  In any case, because TIF_SVE is
presently cleared at vcpu context bind time, the specified vector
length will not be used for anything yet.  In later patches TIF_SVE
will be set here as appropriate, and the appropriate maximum vector
length for the vcpu will be passed when binding.

Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Julien Grall <julien.grall@arm.com>
Tested-by: zhang.lei <zhang.lei@jp.fujitsu.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-03-29 14:41:52 +00:00
Dave Martin
7aa92cf318 KVM: arm64: Refactor kvm_arm_num_regs() for easier maintenance
kvm_arm_num_regs() adds together various partial register counts in
a freeform sum expression, which makes it harder than necessary to
read diffs that add, modify or remove a single term in the sum
(which is expected to the common case under maintenance).

This patch refactors the code to add the term one per line, for
maximum readability.

Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Tested-by: zhang.lei <zhang.lei@jp.fujitsu.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-03-29 14:41:52 +00:00
Marc Zyngier
ebff0b0e3d KVM: arm64: Reset the PMU in preemptible context
We've become very cautious to now always reset the vcpu when nothing
is loaded on the physical CPU. To do so, we now disable preemption
and do a kvm_arch_vcpu_put() to make sure we have all the state
in memory (and that it won't be loaded behind out back).

This now causes issues with resetting the PMU, which calls into perf.
Perf itself uses mutexes, which clashes with the lack of preemption.
It is worth realizing that the PMU is fully emulated, and that
no PMU state is ever loaded on the physical CPU. This means we can
perfectly reset the PMU outside of the non-preemptible section.

Fixes: e761a927bc ("KVM: arm/arm64: Reset the VCPU without preemption and vcpu state loaded")
Reported-by: Julien Grall <julien.grall@arm.com>
Tested-by: Julien Grall <julien.grall@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-03-19 17:56:24 +00:00
Linus Torvalds
636deed6c0 ARM: some cleanups, direct physical timer assignment, cache sanitization
for 32-bit guests
 
 s390: interrupt cleanup, introduction of the Guest Information Block,
 preparation for processor subfunctions in cpu models
 
 PPC: bug fixes and improvements, especially related to machine checks
 and protection keys
 
 x86: many, many cleanups, including removing a bunch of MMU code for
 unnecessary optimizations; plus AVIC fixes.
 
 Generic: memcg accounting
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQEcBAABAgAGBQJci+7XAAoJEL/70l94x66DUMkIAKvEefhceySHYiTpfefjLjIC
 16RewgHa+9CO4Oo5iXiWd90fKxtXLXmxDQOS4VGzN0rxvLGRw/fyXIxL1MDOkaAO
 l8SLSNuewY4XBUgISL3PMz123r18DAGOuy9mEcYU/IMesYD2F+wy5lJ17HIGq6X2
 RpoF1p3qO1jfkPTKOob6Ixd4H5beJNPKpdth7LY3PJaVhDxgouj32fxnLnATVSnN
 gENQ10fnt8BCjshRYW6Z2/9bF15JCkUFR1xdBW2/xh1oj+kvPqqqk2bEN1eVQzUy
 2hT/XkwtpthqjSbX8NNavWRSFnOnbMLTRKQyIXmFVsM5VoSrwtiGsCFzBgcT++I=
 =XIzU
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM updates from Paolo Bonzini:
 "ARM:
   - some cleanups
   - direct physical timer assignment
   - cache sanitization for 32-bit guests

  s390:
   - interrupt cleanup
   - introduction of the Guest Information Block
   - preparation for processor subfunctions in cpu models

  PPC:
   - bug fixes and improvements, especially related to machine checks
     and protection keys

  x86:
   - many, many cleanups, including removing a bunch of MMU code for
     unnecessary optimizations
   - AVIC fixes

  Generic:
   - memcg accounting"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (147 commits)
  kvm: vmx: fix formatting of a comment
  KVM: doc: Document the life cycle of a VM and its resources
  MAINTAINERS: Add KVM selftests to existing KVM entry
  Revert "KVM/MMU: Flush tlb directly in the kvm_zap_gfn_range()"
  KVM: PPC: Book3S: Add count cache flush parameters to kvmppc_get_cpu_char()
  KVM: PPC: Fix compilation when KVM is not enabled
  KVM: Minor cleanups for kvm_main.c
  KVM: s390: add debug logging for cpu model subfunctions
  KVM: s390: implement subfunction processor calls
  arm64: KVM: Fix architecturally invalid reset value for FPEXC32_EL2
  KVM: arm/arm64: Remove unused timer variable
  KVM: PPC: Book3S: Improve KVM reference counting
  KVM: PPC: Book3S HV: Fix build failure without IOMMU support
  Revert "KVM: Eliminate extra function calls in kvm_get_dirty_log_protect()"
  x86: kvmguest: use TSC clocksource if invariant TSC is exposed
  KVM: Never start grow vCPU halt_poll_ns from value below halt_poll_ns_grow_start
  KVM: Expose the initial start value in grow_halt_poll_ns() as a module parameter
  KVM: grow_halt_poll_ns() should never shrink vCPU halt_poll_ns
  KVM: x86/mmu: Consolidate kvm_mmu_zap_all() and kvm_mmu_zap_mmio_sptes()
  KVM: x86/mmu: WARN if zapping a MMIO spte results in zapping children
  ...
2019-03-15 15:00:28 -07:00
Linus Torvalds
3d8dfe75ef arm64 updates for 5.1:
- Pseudo NMI support for arm64 using GICv3 interrupt priorities
 
 - uaccess macros clean-up (unsafe user accessors also merged but
   reverted, waiting for objtool support on arm64)
 
 - ptrace regsets for Pointer Authentication (ARMv8.3) key management
 
 - inX() ordering w.r.t. delay() on arm64 and riscv (acks in place by the
   riscv maintainers)
 
 - arm64/perf updates: PMU bindings converted to json-schema, unused
   variable and misleading comment removed
 
 - arm64/debug fixes to ensure checking of the triggering exception level
   and to avoid the propagation of the UNKNOWN FAR value into the si_code
   for debug signals
 
 - Workaround for Fujitsu A64FX erratum 010001
 
 - lib/raid6 ARM NEON optimisations
 
 - NR_CPUS now defaults to 256 on arm64
 
 - Minor clean-ups (documentation/comments, Kconfig warning, unused
   asm-offsets, clang warnings)
 
 - MAINTAINERS update for list information to the ARM64 ACPI entry
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAlyCl0cACgkQa9axLQDI
 XvEyKxAAiogBZLbyhcy8bTUHVzVoJE0FyAkdO2wWnnaff2Ohkhy1Y/npv33IeK2q
 RknxqDIx2DUUVPJNRZGoI/WwBtTZdKaAnW4rIKG84yC1eAkFcd96WQasaZzcp1qY
 HmvbJiYXM0bh+0J7i3Wgry/QzOkrltJFJW2kp6Wd5aFE+R1WyWyxT6d+Fp0J3vlA
 bT70jlpBK6LXEOmmBS+04Ml02+8MvaGxIl8EInBHSfDLRLErj5E8n41rRHKUiSWz
 maWI+kVoLYwOE68xiZlDftUBEeQpUSWgg2nxeK+640QSl1wJmVcRcY9nm6TZeMG2
 AiZTR9a7cP5rrdSN5suUmb7d4AMMVlVMisGDlwb+9oCxeTRDzg0uwACaVgHfPqQr
 UeBdHbL9nStN7uBH23H8L9mKk+tqpFmk0sgzdrKejOwysAiqWV8aazb/Na3qnVRl
 J1B5opxMnGOsjXmHvtG/tiZl281Uwz5ZmzfLmIY3gUZgUgdA3511Egp0ry5y1dzJ
 SkYC4Hmzb2ybQvXGIDDa3OzCwXXiqyqKsO+O8Egg1k4OIwbp3w+NHE7gKeA+dMgD
 gjN7zEalCUi46Q28xiCPEb+88BpQ18czIWGQLb9mAnmYeZPjqqenXKXuRHr4lgVe
 jPURJ/vqvFEglZJN1RDuQHKzHEcm5f2XE566sMZYdSoeiUCb0QM=
 =2U56
 -----END PGP SIGNATURE-----

Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux

Pull arm64 updates from Catalin Marinas:

 - Pseudo NMI support for arm64 using GICv3 interrupt priorities

 - uaccess macros clean-up (unsafe user accessors also merged but
   reverted, waiting for objtool support on arm64)

 - ptrace regsets for Pointer Authentication (ARMv8.3) key management

 - inX() ordering w.r.t. delay() on arm64 and riscv (acks in place by
   the riscv maintainers)

 - arm64/perf updates: PMU bindings converted to json-schema, unused
   variable and misleading comment removed

 - arm64/debug fixes to ensure checking of the triggering exception
   level and to avoid the propagation of the UNKNOWN FAR value into the
   si_code for debug signals

 - Workaround for Fujitsu A64FX erratum 010001

 - lib/raid6 ARM NEON optimisations

 - NR_CPUS now defaults to 256 on arm64

 - Minor clean-ups (documentation/comments, Kconfig warning, unused
   asm-offsets, clang warnings)

 - MAINTAINERS update for list information to the ARM64 ACPI entry

* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (54 commits)
  arm64: mmu: drop paging_init comments
  arm64: debug: Ensure debug handlers check triggering exception level
  arm64: debug: Don't propagate UNKNOWN FAR into si_code for debug signals
  Revert "arm64: uaccess: Implement unsafe accessors"
  arm64: avoid clang warning about self-assignment
  arm64: Kconfig.platforms: fix warning unmet direct dependencies
  lib/raid6: arm: optimize away a mask operation in NEON recovery routine
  lib/raid6: use vdupq_n_u8 to avoid endianness warnings
  arm64: io: Hook up __io_par() for inX() ordering
  riscv: io: Update __io_[p]ar() macros to take an argument
  asm-generic/io: Pass result of I/O accessor to __io_[p]ar()
  arm64: Add workaround for Fujitsu A64FX erratum 010001
  arm64: Rename get_thread_info()
  arm64: Remove documentation about TIF_USEDFPU
  arm64: irqflags: Fix clang build warnings
  arm64: Enable the support of pseudo-NMIs
  arm64: Skip irqflags tracing for NMI in IRQs disabled context
  arm64: Skip preemption when exiting an NMI
  arm64: Handle serror in NMI context
  irqchip/gic-v3: Allow interrupts to be set as pseudo-NMI
  ...
2019-03-10 10:17:23 -07:00
Dave Martin
c88b093693 arm64: KVM: Fix architecturally invalid reset value for FPEXC32_EL2
Due to what looks like a typo dating back to the original addition
of FPEXC32_EL2 handling, KVM currently initialises this register to
an architecturally invalid value.

As a result, the VECITR field (RES1) in bits [10:8] is initialised
with 0, and the two reserved (RES0) bits [6:5] are initialised with
1.  (In the Common VFP Subarchitecture as specified by ARMv7-A,
these two bits were IMP DEF.  ARMv8-A removes them.)

This patch changes the reset value from 0x70 to 0x700, which
reflects the architectural constraints and is presumably what was
originally intended.

Cc: <stable@vger.kernel.org> # 4.12.x-
Cc: Christoffer Dall <christoffer.dall@arm.com>
Fixes: 62a89c4495 ("arm64: KVM: 32bit handling of coprocessor traps")
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-02-22 09:59:20 +00:00
Masahiro Yamada
05277f368c KVM: arm/arm64: Prefix header search paths with $(srctree)/
Currently, the Kbuild core manipulates header search paths in a crazy
way [1].

To fix this mess, I want all Makefiles to add explicit $(srctree)/ to
the search paths in the srctree. Some Makefiles are already written in
that way, but not all. The goal of this work is to make the notation
consistent, and finally get rid of the gross hacks.

Having whitespaces after -I does not matter since commit 48f6e3cf5b
("kbuild: do not drop -I without parameter").

[1]: https://patchwork.kernel.org/patch/9632347/

Acked-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-02-19 21:05:53 +00:00
Masahiro Yamada
3644a35b02 KVM: arm/arm64: Remove -I. header search paths
The header search path -I. in kernel Makefiles is very suspicious;
it allows the compiler to search for headers in the top of $(srctree),
where obviously no header file exists.

I was able to build without these extra header search paths.

Acked-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-02-19 21:05:52 +00:00
Ard Biesheuvel
793acf870e arm64: KVM: Describe data or unified caches as having 1 set and 1 way
On SMP ARM systems, cache maintenance by set/way should only ever be
done in the context of onlining or offlining CPUs, which is typically
done by bare metal firmware and never in a virtual machine. For this
reason, we trap set/way cache maintenance operations and replace them
with conditional flushing of the entire guest address space.

Due to this trapping, the set/way arguments passed into the set/way
ops are completely ignored, and thus irrelevant. This also means that
the set/way geometry is equally irrelevant, and we can simply report
it as 1 set and 1 way, so that legacy 32-bit ARM system software (i.e.,
the kind that only receives odd fixes) doesn't take a performance hit
due to the trapping when iterating over the cachelines.

Acked-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-02-19 21:05:49 +00:00
Ard Biesheuvel
f7f2b15c3d arm64: KVM: Expose sanitised cache type register to guest
We currently permit CPUs in the same system to deviate in the exact
topology of the caches, and we subsequently hide this fact from user
space by exposing a sanitised value of the cache type register CTR_EL0.

However, guests running under KVM see the bare value of CTR_EL0, which
could potentially result in issues with, e.g., JITs or other pieces of
code that are sensitive to misreported cache line sizes.

So let's start trapping cache ID instructions if there is a mismatch,
and expose the sanitised version of CTR_EL0 to guests. Note that CTR_EL0
is treated as an invariant to KVM user space, so update that part as well.

Acked-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-02-19 21:05:48 +00:00
Andre Przywara
84135d3d18 KVM: arm/arm64: consolidate arch timer trap handlers
At the moment we have separate system register emulation handlers for
each timer register. Actually they are quite similar, and we rely on
kvm_arm_timer_[gs]et_reg() for the actual emulation anyways, so let's
just merge all of those handlers into one function, which just marshalls
the arguments and then hands off to a set of common accessors.
This makes extending the emulation to include EL2 timers much easier.

Signed-off-by: Andre Przywara <andre.przywara@arm.com>
[Fixed 32-bit VM breakage and reduced to reworking existing code]
Signed-off-by: Christoffer Dall <christoffer.dall@arm.com>
[Fixed 32bit host, general cleanup]
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-02-19 21:05:40 +00:00
Marc Zyngier
09838de943 KVM: arm64: Reuse sys_reg() macro when searching the trap table
Instead of having an open-coded macro, reuse the sys_reg() macro
that does the exact same thing (the encoding is slightly different,
but the ordering property is the same).

Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@arm.com>
2019-02-19 21:05:39 +00:00
Marc Zyngier
32f1395519 arm/arm64: KVM: Statically configure the host's view of MPIDR
We currently eagerly save/restore MPIDR. It turns out to be
slightly pointless:
- On the host, this value is known as soon as we're scheduled on a
  physical CPU
- In the guest, this value cannot change, as it is set by KVM
  (and this is a read-only register)

The result of the above is that we can perfectly avoid the eager
saving of MPIDR_EL1, and only keep the restore. We just have
to setup the host contexts appropriately at boot time.

Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@arm.com>
2019-02-19 21:05:35 +00:00
Marc Zyngier
7cba8a8d0d arm64: KVM: Drop VHE-specific HYP call stub
We now call VHE code directly, without going through any central
dispatching function. Let's drop that code.

Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@arm.com>
2019-02-19 21:05:28 +00:00
Marc Zyngier
7aa8d14641 arm/arm64: KVM: Introduce kvm_call_hyp_ret()
Until now, we haven't differentiated between HYP calls that
have a return value and those who don't. As we're about to
change this, introduce kvm_call_hyp_ret(), and change all
call sites that actually make use of a return value.

Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@arm.com>
2019-02-19 21:05:24 +00:00
James Morse
7d82602909 KVM: arm64: Forbid kprobing of the VHE world-switch code
On systems with VHE the kernel and KVM's world-switch code run at the
same exception level. Code that is only used on a VHE system does not
need to be annotated as __hyp_text as it can reside anywhere in the
kernel text.

__hyp_text was also used to prevent kprobes from patching breakpoint
instructions into this region, as this code runs at a different
exception level. While this is no longer true with VHE, KVM still
switches VBAR_EL1, meaning a kprobe's breakpoint executed in the
world-switch code will cause a hyp-panic.

echo "p:weasel sysreg_save_guest_state_vhe" > /sys/kernel/debug/tracing/kprobe_events
echo 1 > /sys/kernel/debug/tracing/events/kprobes/weasel/enable
lkvm run -k /boot/Image --console serial -p "console=ttyS0 earlycon=uart,mmio,0x3f8"

  # lkvm run -k /boot/Image -m 384 -c 3 --name guest-1474
  Info: Placing fdt at 0x8fe00000 - 0x8fffffff
  Info: virtio-mmio.devices=0x200@0x10000:36

  Info: virtio-mmio.devices=0x200@0x10200:37

  Info: virtio-mmio.devices=0x200@0x10400:38

[  614.178186] Kernel panic - not syncing: HYP panic:
[  614.178186] PS:404003c9 PC:ffff0000100d70e0 ESR:f2000004
[  614.178186] FAR:0000000080080000 HPFAR:0000000000800800 PAR:1d00007edbadc0de
[  614.178186] VCPU:00000000f8de32f1
[  614.178383] CPU: 2 PID: 1482 Comm: kvm-vcpu-0 Not tainted 5.0.0-rc2 #10799
[  614.178446] Call trace:
[  614.178480]  dump_backtrace+0x0/0x148
[  614.178567]  show_stack+0x24/0x30
[  614.178658]  dump_stack+0x90/0xb4
[  614.178710]  panic+0x13c/0x2d8
[  614.178793]  hyp_panic+0xac/0xd8
[  614.178880]  kvm_vcpu_run_vhe+0x9c/0xe0
[  614.178958]  kvm_arch_vcpu_ioctl_run+0x454/0x798
[  614.179038]  kvm_vcpu_ioctl+0x360/0x898
[  614.179087]  do_vfs_ioctl+0xc4/0x858
[  614.179174]  ksys_ioctl+0x84/0xb8
[  614.179261]  __arm64_sys_ioctl+0x28/0x38
[  614.179348]  el0_svc_common+0x94/0x108
[  614.179401]  el0_svc_handler+0x38/0x78
[  614.179487]  el0_svc+0x8/0xc
[  614.179558] SMP: stopping secondary CPUs
[  614.179661] Kernel Offset: disabled
[  614.179695] CPU features: 0x003,2a80aa38
[  614.179758] Memory Limit: none
[  614.179858] ---[ end Kernel panic - not syncing: HYP panic:
[  614.179858] PS:404003c9 PC:ffff0000100d70e0 ESR:f2000004
[  614.179858] FAR:0000000080080000 HPFAR:0000000000800800 PAR:1d00007edbadc0de
[  614.179858] VCPU:00000000f8de32f1 ]---

Annotate the VHE world-switch functions that aren't marked
__hyp_text using NOKPROBE_SYMBOL().

Signed-off-by: James Morse <james.morse@arm.com>
Fixes: 3f5c90b890 ("KVM: arm64: Introduce VHE-specific kvm_vcpu_run")
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2019-02-07 11:44:47 +00:00