Commit graph

13798 commits

Author SHA1 Message Date
Christoph Hellwig
f0ade90a8a mm/mmu_notifiers: remove the __mmu_notifier_invalidate_range_start/end exports
No modular code uses these, which makes a lot of sense given the wrappers
around them are only called by core mm code.

Link: https://lore.kernel.org/r/20190828142109.29012-1-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jason Gunthorpe <jgg@mellanox.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-08-28 11:52:35 -03:00
Ralph Campbell
c18ce674d5 mm/hmm: hmm_range_fault() infinite loop
Normally, callers to handle_mm_fault() are supposed to check the
vma->vm_flags first. hmm_range_fault() checks for VM_READ but doesn't
check for VM_WRITE if the caller requests a page to be faulted in with
write permission (via the hmm_range.pfns[] value).  If the vma is write
protected, this can result in an infinite loop:

  hmm_range_fault()
    walk_page_range()
      ...
      hmm_vma_walk_hole()
        hmm_vma_walk_hole_()
          hmm_vma_do_fault()
            handle_mm_fault(FAULT_FLAG_WRITE)
            /* returns VM_FAULT_WRITE */
          /* returns -EBUSY */
        /* returns -EBUSY */
      /* returns -EBUSY */
    /* loops on -EBUSY and range->valid */

Prevent this by checking for vma->vm_flags & VM_WRITE before calling
handle_mm_fault().

Link: https://lore.kernel.org/r/20190823221753.2514-3-rcampbell@nvidia.com
Signed-off-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jason Gunthorpe <jgg@mellanox.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-08-27 19:27:07 -03:00
Ralph Campbell
6c64f2bbe7 mm/hmm: hmm_range_fault() NULL pointer bug
Although hmm_range_fault() calls find_vma() to make sure that a vma exists
before calling walk_page_range(), hmm_vma_walk_hole() can still be called
with walk->vma == NULL if the start and end address are not contained
within the vma range.

 hmm_range_fault() /* calls find_vma() but no range check */
  walk_page_range() /* calls find_vma(), sets walk->vma = NULL */
   __walk_page_range()
    walk_pgd_range()
     walk_p4d_range()
      walk_pud_range()
       hmm_vma_walk_hole()
        hmm_vma_walk_hole_()
         hmm_vma_do_fault()
          handle_mm_fault(vma=0)

Link: https://lore.kernel.org/r/20190823221753.2514-2-rcampbell@nvidia.com
Signed-off-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-08-27 19:27:07 -03:00
Yang, Philip
e3fe8e555d mm/hmm: fix hmm_range_fault()'s handling of swapped out pages
hmm_range_fault() may return NULL pages because some of the pfns are equal
to HMM_PFN_NONE. This happens randomly under memory pressure. The reason
is during the swapped out page pte path, hmm_vma_handle_pte() doesn't
update the fault variable from cpu_flags, so it failed to call
hmm_vam_do_fault() to swap the page in.

The fix is to call hmm_pte_need_fault() to update fault variable.

Fixes: 74eee180b9 ("mm/hmm/mirror: device page fault handler")
Link: https://lore.kernel.org/r/20190815205227.7949-1-Philip.Yang@amd.com
Signed-off-by: Philip Yang <Philip.Yang@amd.com>
Reviewed-by: "Jérôme Glisse" <jglisse@redhat.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-08-23 10:22:20 -03:00
Jason Gunthorpe
c96245148c mm/mmu_notifiers: remove unregister_no_release
mmu_notifier_unregister_no_release() and mmu_notifier_call_srcu() no
longer have any users, they have all been converted to use
mmu_notifier_put().

So delete this difficult to use interface.

Link: https://lore.kernel.org/r/20190806231548.25242-12-jgg@ziepe.ca
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-08-21 20:58:19 -03:00
Jason Gunthorpe
daa138a58c Merge branch 'odp_fixes' into hmm.git
From rdma.git

Jason Gunthorpe says:

====================
This is a collection of general cleanups for ODP to clarify some of the
flows around umem creation and use of the interval tree.
====================

The branch is based on v5.3-rc5 due to dependencies, and is being taken
into hmm.git due to dependencies in the next patches.

* odp_fixes:
  RDMA/mlx5: Use odp instead of mr->umem in pagefault_mr
  RDMA/mlx5: Use ib_umem_start instead of umem.address
  RDMA/core: Make invalidate_range a device operation
  RDMA/odp: Use kvcalloc for the dma_list and page_list
  RDMA/odp: Check for overflow when computing the umem_odp end
  RDMA/odp: Provide ib_umem_odp_release() to undo the allocs
  RDMA/odp: Split creating a umem_odp from ib_umem_get
  RDMA/odp: Make the three ways to create a umem_odp clear
  RMDA/odp: Consolidate umem_odp initialization
  RDMA/odp: Make it clearer when a umem is an implicit ODP umem
  RDMA/odp: Iterate over the whole rbtree directly
  RDMA/odp: Use the common interval tree library instead of generic
  RDMA/mlx5: Fix MR npages calculation for IB_ACCESS_HUGETLB

Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-08-21 20:58:18 -03:00
Christoph Hellwig
fdc029b19d memremap: remove the dev field in struct dev_pagemap
The dev field in struct dev_pagemap is only used to print dev_name in two
places, which are at best nice to have.  Just remove the field and thus
the name in those two messages.

Link: https://lore.kernel.org/r/20190818090557.17853-3-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Tested-by: Bharata B Rao <bharata@linux.ibm.com>
Reviewed-by: Jason Gunthorpe <jgg@mellanox.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-08-20 09:41:35 -03:00
Daniel Vetter
8402ce61be mm/mmu_notifiers: check if mmu notifier callbacks are allowed to fail
Just a bit of paranoia, since if we start pushing this deep into
callchains it's hard to spot all places where an mmu notifier
implementation might fail when it's not allowed to.

Inspired by some confusion we had discussing i915 mmu notifiers and
whether we could use the newly-introduced return value to handle some
corner cases. Until we realized that these are only for when a task has
been killed by the oom reaper.

An alternative approach would be to split the callback into two versions,
one with the int return value, and the other with void return value like
in older kernels. But that's a lot more churn for fairly little gain I
think.

Summary from the m-l discussion on why we want something at warning level:
This allows automated tooling in CI to catch bugs without humans having to
look at everything. If we just upgrade the existing pr_info to a pr_warn,
then we'll have false positives. And as-is, no one will ever spot the
problem since it's lost in the massive amounts of overall dmesg noise.

Link: https://lore.kernel.org/r/20190814202027.18735-2-daniel.vetter@ffwll.ch
Signed-off-by: Daniel Vetter <daniel.vetter@intel.com>
Reviewed-by: Jason Gunthorpe <jgg@mellanox.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-08-20 09:35:03 -03:00
Christoph Hellwig
9b2ed9cb97 mm: remove CONFIG_MIGRATE_VMA_HELPER
CONFIG_MIGRATE_VMA_HELPER guards helpers that are required for proper
devic private memory support.  Remove the option and just check for
CONFIG_DEVICE_PRIVATE instead.

Link: https://lore.kernel.org/r/20190814075928.23766-11-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jason Gunthorpe <jgg@mellanox.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-08-20 09:35:03 -03:00
Christoph Hellwig
06d462beb4 mm: remove the unused MIGRATE_PFN_DEVICE flag
No one ever checks this flag, and we could easily get that information
from the page if needed.

Link: https://lore.kernel.org/r/20190814075928.23766-10-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: Jason Gunthorpe <jgg@mellanox.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-08-20 09:35:03 -03:00
Christoph Hellwig
a7d1f22bb7 mm: turn migrate_vma upside down
There isn't any good reason to pass callbacks to migrate_vma.  Instead
we can just export the three steps done by this function to drivers and
let them sequence the operation without callbacks.  This removes a lot
of boilerplate code as-is, and will allow the drivers to drastically
improve code flow and error handling further on.

Link: https://lore.kernel.org/r/20190814075928.23766-2-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-08-20 09:35:02 -03:00
Jason Gunthorpe
c7d8b7824f hmm: use mmu_notifier_get/put for 'struct hmm'
This is a significant simplification, it eliminates all the remaining
'hmm' stuff in mm_struct, eliminates krefing along the critical notifier
paths, and takes away all the ugly locking and abuse of page_table_lock.

mmu_notifier_get() provides the single struct hmm per struct mm which
eliminates mm->hmm.

It also directly guarantees that no mmu_notifier op callback is callable
while concurrent free is possible, this eliminates all the krefs inside
the mmu_notifier callbacks.

The remaining krefs in the range code were overly cautious, drivers are
already not permitted to free the mirror while a range exists.

Link: https://lore.kernel.org/r/20190806231548.25242-6-jgg@ziepe.ca
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-08-20 09:35:02 -03:00
Jason Gunthorpe
2c7933f53f mm/mmu_notifiers: add a get/put scheme for the registration
Many places in the kernel have a flow where userspace will create some
object and that object will need to connect to the subsystem's
mmu_notifier subscription for the duration of its lifetime.

In this case the subsystem is usually tracking multiple mm_structs and it
is difficult to keep track of what struct mmu_notifier's have been
allocated for what mm's.

Since this has been open coded in a variety of exciting ways, provide core
functionality to do this safely.

This approach uses the struct mmu_notifier_ops * as a key to determine if
the subsystem has a notifier registered on the mm or not. If there is a
registration then the existing notifier struct is returned, otherwise the
ops->alloc_notifiers() is used to create a new per-subsystem notifier for
the mm.

The destroy side incorporates an async call_srcu based destruction which
will avoid bugs in the callers such as commit 6d7c3cde93 ("mm/hmm: fix
use after free with struct hmm in the mmu notifiers").

Since we are inside the mmu notifier core locking is fairly simple, the
allocation uses the same approach as for mmu_notifier_mm, the write side
of the mmap_sem makes everything deterministic and we only need to do
hlist_add_head_rcu() under the mm_take_all_locks(). The new users count
and the discoverability in the hlist is fully serialized by the
mmu_notifier_mm->lock.

Link: https://lore.kernel.org/r/20190806231548.25242-4-jgg@ziepe.ca
Co-developed-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-08-16 12:02:52 -03:00
Jason Gunthorpe
70df291bf8 mm/mmu_notifiers: do not speculatively allocate a mmu_notifier_mm
A prior commit e0f3c3f78d ("mm/mmu_notifier: init notifier if necessary")
made an attempt at doing this, but had to be reverted as calling
the GFP_KERNEL allocator under the i_mmap_mutex causes deadlock, see
commit 35cfa2b0b4 ("mm/mmu_notifier: allocate mmu_notifier in advance").

However, we can avoid that problem by doing the allocation only under
the mmap_sem, which is already happening.

Since all writers to mm->mmu_notifier_mm hold the write side of the
mmap_sem reading it under that sem is deterministic and we can use that to
decide if the allocation path is required, without speculation.

The actual update to mmu_notifier_mm must still be done under the
mm_take_all_locks() to ensure read-side coherency.

Link: https://lore.kernel.org/r/20190806231548.25242-3-jgg@ziepe.ca
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-08-16 11:44:48 -03:00
Jason Gunthorpe
56c57103db mm/mmu_notifiers: hoist do_mmu_notifier_register down_write to the caller
This simplifies the code to not have so many one line functions and extra
logic. __mmu_notifier_register() simply becomes the entry point to
register the notifier, and the other one calls it under lock.

Also add a lockdep_assert to check that the callers are holding the lock
as expected.

Link: https://lore.kernel.org/r/20190806231548.25242-2-jgg@ziepe.ca
Suggested-by: Christoph Hellwig <hch@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-08-16 11:44:48 -03:00
Mike Kravetz
4643d67e8c hugetlbfs: fix hugetlb page migration/fault race causing SIGBUS
Li Wang discovered that LTP/move_page12 V2 sometimes triggers SIGBUS in
the kernel-v5.2.3 testing.  This is caused by a race between hugetlb
page migration and page fault.

If a hugetlb page can not be allocated to satisfy a page fault, the task
is sent SIGBUS.  This is normal hugetlbfs behavior.  A hugetlb fault
mutex exists to prevent two tasks from trying to instantiate the same
page.  This protects against the situation where there is only one
hugetlb page, and both tasks would try to allocate.  Without the mutex,
one would fail and SIGBUS even though the other fault would be
successful.

There is a similar race between hugetlb page migration and fault.
Migration code will allocate a page for the target of the migration.  It
will then unmap the original page from all page tables.  It does this
unmap by first clearing the pte and then writing a migration entry.  The
page table lock is held for the duration of this clear and write
operation.  However, the beginnings of the hugetlb page fault code
optimistically checks the pte without taking the page table lock.  If
clear (as it can be during the migration unmap operation), a hugetlb
page allocation is attempted to satisfy the fault.  Note that the page
which will eventually satisfy this fault was already allocated by the
migration code.  However, the allocation within the fault path could
fail which would result in the task incorrectly being sent SIGBUS.

Ideally, we could take the hugetlb fault mutex in the migration code
when modifying the page tables.  However, locks must be taken in the
order of hugetlb fault mutex, page lock, page table lock.  This would
require significant rework of the migration code.  Instead, the issue is
addressed in the hugetlb fault code.  After failing to allocate a huge
page, take the page table lock and check for huge_pte_none before
returning an error.  This is the same check that must be made further in
the code even if page allocation is successful.

Link: http://lkml.kernel.org/r/20190808000533.7701-1-mike.kravetz@oracle.com
Fixes: 290408d4a2 ("hugetlb: hugepage migration core")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reported-by: Li Wang <liwang@redhat.com>
Tested-by: Li Wang <liwang@redhat.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Cyril Hrubis <chrubis@suse.cz>
Cc: Xishi Qiu <xishi.qiuxishi@alibaba-inc.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-08-13 16:06:53 -07:00
Mel Gorman
28360f3987 mm, vmscan: do not special-case slab reclaim when watermarks are boosted
Dave Chinner reported a problem pointing a finger at commit 1c30844d2d
("mm: reclaim small amounts of memory when an external fragmentation
event occurs").

The report is extensive:

  https://lore.kernel.org/linux-mm/20190807091858.2857-1-david@fromorbit.com/

and it's worth recording the most relevant parts (colorful language and
typos included).

	When running a simple, steady state 4kB file creation test to
	simulate extracting tarballs larger than memory full of small
	files into the filesystem, I noticed that once memory fills up
	the cache balance goes to hell.

	The workload is creating one dirty cached inode for every dirty
	page, both of which should require a single IO each to clean and
	reclaim, and creation of inodes is throttled by the rate at which
	dirty writeback runs at (via balance dirty pages). Hence the ingest
	rate of new cached inodes and page cache pages is identical and
	steady. As a result, memory reclaim should quickly find a steady
	balance between page cache and inode caches.

	The moment memory fills, the page cache is reclaimed at a much
	faster rate than the inode cache, and evidence suggests that
	the inode cache shrinker is not being called when large batches
	of pages are being reclaimed. In roughly the same time period
	that it takes to fill memory with 50% pages and 50% slab caches,
	memory reclaim reduces the page cache down to just dirty pages
	and slab caches fill the entirety of memory.

	The LRU is largely full of dirty pages, and we're getting spikes
	of random writeback from memory reclaim so it's all going to shit.
	Behaviour never recovers, the page cache remains pinned at just
	dirty pages, and nothing I could tune would make any difference.
	vfs_cache_pressure makes no difference - I would set it so high
	it should trim the entire inode caches in a single pass, yet it
	didn't do anything. It was clear from tracing and live telemetry
	that the shrinkers were pretty much not running except when
	there was absolutely no memory free at all, and then they did
	the minimum necessary to free memory to make progress.

	So I went looking at the code, trying to find places where pages
	got reclaimed and the shrinkers weren't called. There's only one
	- kswapd doing boosted reclaim as per commit 1c30844d2d ("mm:
	reclaim small amounts of memory when an external fragmentation
	event occurs").

The watermark boosting introduced by the commit is triggered in response
to an allocation "fragmentation event".  The boosting was not intended
to target THP specifically and triggers even if THP is disabled.
However, with Dave's perfectly reasonable workload, fragmentation events
can be very common given the ratio of slab to page cache allocations so
boosting remains active for long periods of time.

As high-order allocations might use compaction and compaction cannot
move slab pages the decision was made in the commit to special-case
kswapd when watermarks are boosted -- kswapd avoids reclaiming slab as
reclaiming slab does not directly help compaction.

As Dave notes, this decision means that slab can be artificially
protected for long periods of time and messes up the balance with slab
and page caches.

Removing the special casing can still indirectly help avoid
fragmentation by avoiding fragmentation-causing events due to slab
allocation as pages from a slab pageblock will have some slab objects
freed.  Furthermore, with the special casing, reclaim behaviour is
unpredictable as kswapd sometimes examines slab and sometimes does not
in a manner that is tricky to tune or analyse.

This patch removes the special casing.  The downside is that this is not
a universal performance win.  Some benchmarks that depend on the
residency of data when rereading metadata may see a regression when slab
reclaim is restored to its original behaviour.  Similarly, some
benchmarks that only read-once or write-once may perform better when
page reclaim is too aggressive.  The primary upside is that slab
shrinker is less surprising (arguably more sane but that's a matter of
opinion), behaves consistently regardless of the fragmentation state of
the system and properly obeys VM sysctls.

A fsmark benchmark configuration was constructed similar to what Dave
reported and is codified by the mmtest configuration
config-io-fsmark-small-file-stream.  It was evaluated on a 1-socket
machine to avoid dealing with NUMA-related issues and the timing of
reclaim.  The storage was an SSD Samsung Evo and a fresh trimmed XFS
filesystem was used for the test data.

This is not an exact replication of Dave's setup.  The configuration
scales its parameters depending on the memory size of the SUT to behave
similarly across machines.  The parameters mean the first sample
reported by fs_mark is using 50% of RAM which will barely be throttled
and look like a big outlier.  Dave used fake NUMA to have multiple
kswapd instances which I didn't replicate.  Finally, the number of
iterations differ from Dave's test as the target disk was not large
enough.  While not identical, it should be representative.

  fsmark
                                     5.3.0-rc3              5.3.0-rc3
                                       vanilla          shrinker-v1r1
  Min       1-files/sec     4444.80 (   0.00%)     4765.60 (   7.22%)
  1st-qrtle 1-files/sec     5005.10 (   0.00%)     5091.70 (   1.73%)
  2nd-qrtle 1-files/sec     4917.80 (   0.00%)     4855.60 (  -1.26%)
  3rd-qrtle 1-files/sec     4667.40 (   0.00%)     4831.20 (   3.51%)
  Max-1     1-files/sec    11421.50 (   0.00%)     9999.30 ( -12.45%)
  Max-5     1-files/sec    11421.50 (   0.00%)     9999.30 ( -12.45%)
  Max-10    1-files/sec    11421.50 (   0.00%)     9999.30 ( -12.45%)
  Max-90    1-files/sec     4649.60 (   0.00%)     4780.70 (   2.82%)
  Max-95    1-files/sec     4491.00 (   0.00%)     4768.20 (   6.17%)
  Max-99    1-files/sec     4491.00 (   0.00%)     4768.20 (   6.17%)
  Max       1-files/sec    11421.50 (   0.00%)     9999.30 ( -12.45%)
  Hmean     1-files/sec     5004.75 (   0.00%)     5075.96 (   1.42%)
  Stddev    1-files/sec     1778.70 (   0.00%)     1369.66 (  23.00%)
  CoeffVar  1-files/sec       33.70 (   0.00%)       26.05 (  22.71%)
  BHmean-99 1-files/sec     5053.72 (   0.00%)     5101.52 (   0.95%)
  BHmean-95 1-files/sec     5053.72 (   0.00%)     5101.52 (   0.95%)
  BHmean-90 1-files/sec     5107.05 (   0.00%)     5131.41 (   0.48%)
  BHmean-75 1-files/sec     5208.45 (   0.00%)     5206.68 (  -0.03%)
  BHmean-50 1-files/sec     5405.53 (   0.00%)     5381.62 (  -0.44%)
  BHmean-25 1-files/sec     6179.75 (   0.00%)     6095.14 (  -1.37%)

                     5.3.0-rc3   5.3.0-rc3
                       vanillashrinker-v1r1
  Duration User         501.82      497.29
  Duration System      4401.44     4424.08
  Duration Elapsed     8124.76     8358.05

This is showing a slight skew for the max result representing a large
outlier for the 1st, 2nd and 3rd quartile are similar indicating that
the bulk of the results show little difference.  Note that an earlier
version of the fsmark configuration showed a regression but that
included more samples taken while memory was still filling.

Note that the elapsed time is higher.  Part of this is that the
configuration included time to delete all the test files when the test
completes -- the test automation handles the possibility of testing
fsmark with multiple thread counts.  Without the patch, many of these
objects would be memory resident which is part of what the patch is
addressing.

There are other important observations that justify the patch.

1. With the vanilla kernel, the number of dirty pages in the system is
   very low for much of the test. With this patch, dirty pages is
   generally kept at 10% which matches vm.dirty_background_ratio which
   is normal expected historical behaviour.

2. With the vanilla kernel, the ratio of Slab/Pagecache is close to
   0.95 for much of the test i.e. Slab is being left alone and
   dominating memory consumption. With the patch applied, the ratio
   varies between 0.35 and 0.45 with the bulk of the measured ratios
   roughly half way between those values. This is a different balance to
   what Dave reported but it was at least consistent.

3. Slabs are scanned throughout the entire test with the patch applied.
   The vanille kernel has periods with no scan activity and then
   relatively massive spikes.

4. Without the patch, kswapd scan rates are very variable. With the
   patch, the scan rates remain quite steady.

4. Overall vmstats are closer to normal expectations

	                                5.3.0-rc3      5.3.0-rc3
	                                  vanilla  shrinker-v1r1
    Ops Direct pages scanned             99388.00      328410.00
    Ops Kswapd pages scanned          45382917.00    33451026.00
    Ops Kswapd pages reclaimed        30869570.00    25239655.00
    Ops Direct pages reclaimed           74131.00        5830.00
    Ops Kswapd efficiency %                 68.02          75.45
    Ops Kswapd velocity                   5585.75        4002.25
    Ops Page reclaim immediate         1179721.00      430927.00
    Ops Slabs scanned                 62367361.00    73581394.00
    Ops Direct inode steals               2103.00        1002.00
    Ops Kswapd inode steals             570180.00     5183206.00

	o Vanilla kernel is hitting direct reclaim more frequently,
	  not very much in absolute terms but the fact the patch
	  reduces it is interesting
	o "Page reclaim immediate" in the vanilla kernel indicates
	  dirty pages are being encountered at the tail of the LRU.
	  This is generally bad and means in this case that the LRU
	  is not long enough for dirty pages to be cleaned by the
	  background flush in time. This is much reduced by the
	  patch.
	o With the patch, kswapd is reclaiming 10 times more slab
	  pages than with the vanilla kernel. This is indicative
	  of the watermark boosting over-protecting slab

A more complete set of tests were run that were part of the basis for
introducing boosting and while there are some differences, they are well
within tolerances.

Bottom line, the special casing kswapd to avoid slab behaviour is
unpredictable and can lead to abnormal results for normal workloads.

This patch restores the expected behaviour that slab and page cache is
balanced consistently for a workload with a steady allocation ratio of
slab/pagecache pages.  It also means that if there are workloads that
favour the preservation of slab over pagecache that it can be tuned via
vm.vfs_cache_pressure where as the vanilla kernel effectively ignores
the parameter when boosting is active.

Link: http://lkml.kernel.org/r/20190808182946.GM2739@techsingularity.net
Fixes: 1c30844d2d ("mm: reclaim small amounts of memory when an external fragmentation event occurs")
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: <stable@vger.kernel.org>	[5.0+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-08-13 16:06:53 -07:00
Andrea Arcangeli
a8282608c8 Revert "mm, thp: restore node-local hugepage allocations"
This reverts commit 2f0799a0ff ("mm, thp: restore node-local
hugepage allocations").

commit 2f0799a0ff was rightfully applied to avoid the risk of a
severe regression that was reported by the kernel test robot at the end
of the merge window.  Now we understood the regression was a false
positive and was caused by a significant increase in fairness during a
swap trashing benchmark.  So it's safe to re-apply the fix and continue
improving the code from there.  The benchmark that reported the
regression is very useful, but it provides a meaningful result only when
there is no significant alteration in fairness during the workload.  The
removal of __GFP_THISNODE increased fairness.

__GFP_THISNODE cannot be used in the generic page faults path for new
memory allocations under the MPOL_DEFAULT mempolicy, or the allocation
behavior significantly deviates from what the MPOL_DEFAULT semantics are
supposed to be for THP and 4k allocations alike.

Setting THP defrag to "always" or using MADV_HUGEPAGE (with THP defrag
set to "madvise") has never meant to provide an implicit MPOL_BIND on
the "current" node the task is running on, causing swap storms and
providing a much more aggressive behavior than even zone_reclaim_node =
3.

Any workload who could have benefited from __GFP_THISNODE has now to
enable zone_reclaim_mode=1||2||3.  __GFP_THISNODE implicitly provided
the zone_reclaim_mode behavior, but it only did so if THP was enabled:
if THP was disabled, there would have been no chance to get any 4k page
from the current node if the current node was full of pagecache, which
further shows how this __GFP_THISNODE was misplaced in MADV_HUGEPAGE.
MADV_HUGEPAGE has never been intended to provide any zone_reclaim_mode
semantics, in fact the two are orthogonal, zone_reclaim_mode = 1|2|3
must work exactly the same with MADV_HUGEPAGE set or not.

The performance characteristic of memory depends on the hardware
details.  The numbers below are obtained on Naples/EPYC architecture and
the N/A projection extends them to show what we should aim for in the
future as a good THP NUMA locality default.  The benchmark used
exercises random memory seeks (note: the cost of the page faults is not
part of the measurement).

  D0 THP | D0 4k | D1 THP | D1 4k | D2 THP | D2 4k | D3 THP | D3 4k | ...
  0%     | +43%  | +45%   | +106% | +131%  | +224% | N/A    | N/A

D0 means distance zero (i.e.  local memory), D1 means distance one (i.e.
intra socket memory), D2 means distance two (i.e.  inter socket memory),
etc...

For the guest physical memory allocated by qemu and for guest mode
kernel the performance characteristic of RAM is more complex and an
ideal default could be:

  D0 THP | D1 THP | D0 4k | D2 THP | D1 4k | D3 THP | D2 4k | D3 4k | ...
  0%     | +58%   | +101% | N/A    | +222% | N/A    | N/A   | N/A

NOTE: the N/A are projections and haven't been measured yet, the
measurement in this case is done on a 1950x with only two NUMA nodes.
The THP case here means THP was used both in the host and in the guest.

After applying this commit the THP NUMA locality order that we'll get
out of MADV_HUGEPAGE is this:

  D0 THP | D1 THP | D2 THP | D3 THP | ... | D0 4k | D1 4k | D2 4k | D3 4k | ...

Before this commit it was:

  D0 THP | D0 4k | D1 4k | D2 4k | D3 4k | ...

Even if we ignore the breakage of large workloads that can't fit in a
single node that the __GFP_THISNODE implicit "current node" mbind
caused, the THP NUMA locality order provided by __GFP_THISNODE was still
not the one we shall aim for in the long term (i.e.  the first one at
the top).

After this commit is applied, we can introduce a new allocator multi
order API and to replace those two alloc_pages_vmas calls in the page
fault path, with a single multi order call:

        unsigned int order = (1 << HPAGE_PMD_ORDER) | (1 << 0);
        page = alloc_pages_multi_order(..., &order);
        if (!page)
        	goto out;
        if (!(order & (1 << 0))) {
        	VM_WARN_ON(order != 1 << HPAGE_PMD_ORDER);
        	/* THP fault */
        } else {
        	VM_WARN_ON(order != 1 << 0);
        	/* 4k fallback */
        }

The page allocator logic has to be altered so that when it fails on any
zone with order 9, it has to try again with a order 0 before falling
back to the next zone in the zonelist.

After that we need to do more measurements and evaluate if adding an
opt-in feature for guest mode is worth it, to swap "DN 4k | DN+1 THP"
with "DN+1 THP | DN 4k" at every NUMA distance crossing.

Link: http://lkml.kernel.org/r/20190503223146.2312-3-aarcange@redhat.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: Stefan Priebe - Profihost AG <s.priebe@profihost.ag>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-08-13 16:06:52 -07:00
Andrea Arcangeli
92717d429b Revert "Revert "mm, thp: consolidate THP gfp handling into alloc_hugepage_direct_gfpmask""
Patch series "reapply: relax __GFP_THISNODE for MADV_HUGEPAGE mappings".

The fixes for what was originally reported as "pathological THP
behavior" we rightfully reverted to be sure not to introduced
regressions at end of a merge window after a severe regression report
from the kernel bot.  We can safely re-apply them now that we had time
to analyze the problem.

The mm process worked fine, because the good fixes were eventually
committed upstream without excessive delay.

The regression reported by the kernel bot however forced us to revert
the good fixes to be sure not to introduce regressions and to give us
the time to analyze the issue further.  The silver lining is that this
extra time allowed to think more at this issue and also plan for a
future direction to improve things further in terms of THP NUMA
locality.

This patch (of 2):

This reverts commit 356ff8a9a7 ("Revert "mm, thp: consolidate THP
gfp handling into alloc_hugepage_direct_gfpmask").  So it reapplies
89c83fb539 ("mm, thp: consolidate THP gfp handling into
alloc_hugepage_direct_gfpmask").

Consolidation of the THP allocation flags at the same place was meant to
be a clean up to easier handle otherwise scattered code which is
imposing a maintenance burden.  There were no real problems observed
with the gfp mask consolidation but the reversion was rushed through
without a larger consensus regardless.

This patch brings the consolidation back because this should make the
long term maintainability easier as well as it should allow future
changes to be less error prone.

[mhocko@kernel.org: changelog additions]
Link: http://lkml.kernel.org/r/20190503223146.2312-2-aarcange@redhat.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: Stefan Priebe - Profihost AG <s.priebe@profihost.ag>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-08-13 16:06:52 -07:00
Roman Gushchin
ec9f02384f mm: workingset: fix vmstat counters for shadow nodes
Memcg counters for shadow nodes are broken because the memcg pointer is
obtained in a wrong way. The following approach is used:
        virt_to_page(xa_node)->mem_cgroup

Since commit 4d96ba3530 ("mm: memcg/slab: stop setting
page->mem_cgroup pointer for slab pages") page->mem_cgroup pointer isn't
set for slab pages, so memcg_from_slab_page() should be used instead.

Also I doubt that it ever worked correctly: virt_to_head_page() should
be used instead of virt_to_page().  Otherwise objects residing on tail
pages are not accounted, because only the head page contains a valid
mem_cgroup pointer.  That was a case since the introduction of these
counters by the commit 68d48e6a2d ("mm: workingset: add vmstat counter
for shadow nodes").

Link: http://lkml.kernel.org/r/20190801233532.138743-1-guro@fb.com
Fixes: 4d96ba3530 ("mm: memcg/slab: stop setting page->mem_cgroup pointer for slab pages")
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-08-13 16:06:52 -07:00
Isaac J. Manjarres
951531691c mm/usercopy: use memory range to be accessed for wraparound check
Currently, when checking to see if accessing n bytes starting at address
"ptr" will cause a wraparound in the memory addresses, the check in
check_bogus_address() adds an extra byte, which is incorrect, as the
range of addresses that will be accessed is [ptr, ptr + (n - 1)].

This can lead to incorrectly detecting a wraparound in the memory
address, when trying to read 4 KB from memory that is mapped to the the
last possible page in the virtual address space, when in fact, accessing
that range of memory would not cause a wraparound to occur.

Use the memory range that will actually be accessed when considering if
accessing a certain amount of bytes will cause the memory address to
wrap around.

Link: http://lkml.kernel.org/r/1564509253-23287-1-git-send-email-isaacm@codeaurora.org
Fixes: f5509cc18d ("mm: Hardened usercopy")
Signed-off-by: Prasad Sodagudi <psodagud@codeaurora.org>
Signed-off-by: Isaac J. Manjarres <isaacm@codeaurora.org>
Co-developed-by: Prasad Sodagudi <psodagud@codeaurora.org>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Acked-by: Kees Cook <keescook@chromium.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Trilok Soni <tsoni@codeaurora.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-08-13 16:06:52 -07:00
Catalin Marinas
fcf3a5b62f mm: kmemleak: disable early logging in case of error
If an error occurs during kmemleak_init() (e.g.  kmem cache cannot be
created), kmemleak is disabled but kmemleak_early_log remains enabled.
Subsequently, when the .init.text section is freed, the log_early()
function no longer exists.  To avoid a page fault in such scenario,
ensure that kmemleak_disable() also disables early logging.

Link: http://lkml.kernel.org/r/20190731152302.42073-1-catalin.marinas@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Reported-by: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-08-13 16:06:52 -07:00
Kuppuswamy Sathyanarayanan
5336e52c9e mm/vmalloc.c: fix percpu free VM area search criteria
Recent changes to the vmalloc code by commit 68ad4a3304
("mm/vmalloc.c: keep track of free blocks for vmap allocation") can
cause spurious percpu allocation failures.  These, in turn, can result
in panic()s in the slub code.  One such possible panic was reported by
Dave Hansen in following link https://lkml.org/lkml/2019/6/19/939.
Another related panic observed is,

 RIP: 0033:0x7f46f7441b9b
 Call Trace:
  dump_stack+0x61/0x80
  pcpu_alloc.cold.30+0x22/0x4f
  mem_cgroup_css_alloc+0x110/0x650
  cgroup_apply_control_enable+0x133/0x330
  cgroup_mkdir+0x41b/0x500
  kernfs_iop_mkdir+0x5a/0x90
  vfs_mkdir+0x102/0x1b0
  do_mkdirat+0x7d/0xf0
  do_syscall_64+0x5b/0x180
  entry_SYSCALL_64_after_hwframe+0x44/0xa9

VMALLOC memory manager divides the entire VMALLOC space (VMALLOC_START
to VMALLOC_END) into multiple VM areas (struct vm_areas), and it mainly
uses two lists (vmap_area_list & free_vmap_area_list) to track the used
and free VM areas in VMALLOC space.  And pcpu_get_vm_areas(offsets[],
sizes[], nr_vms, align) function is used for allocating congruent VM
areas for percpu memory allocator.  In order to not conflict with
VMALLOC users, pcpu_get_vm_areas allocates VM areas near the end of the
VMALLOC space.  So the search for free vm_area for the given requirement
starts near VMALLOC_END and moves upwards towards VMALLOC_START.

Prior to commit 68ad4a3304, the search for free vm_area in
pcpu_get_vm_areas() involves following two main steps.

Step 1:
    Find a aligned "base" adress near VMALLOC_END.
    va = free vm area near VMALLOC_END
Step 2:
    Loop through number of requested vm_areas and check,
        Step 2.1:
           if (base < VMALLOC_START)
              1. fail with error
        Step 2.2:
           // end is offsets[area] + sizes[area]
           if (base + end > va->vm_end)
               1. Move the base downwards and repeat Step 2
        Step 2.3:
           if (base + start < va->vm_start)
              1. Move to previous free vm_area node, find aligned
                 base address and repeat Step 2

But Commit 68ad4a3304 removed Step 2.2 and modified Step 2.3 as below:

        Step 2.3:
           if (base + start < va->vm_start || base + end > va->vm_end)
              1. Move to previous free vm_area node, find aligned
                 base address and repeat Step 2

Above change is the root cause of spurious percpu memory allocation
failures.  For example, consider a case where a relatively large vm_area
(~ 30 TB) was ignored in free vm_area search because it did not pass the
base + end < vm->vm_end boundary check.  Ignoring such large free
vm_area's would lead to not finding free vm_area within boundary of
VMALLOC_start to VMALLOC_END which in turn leads to allocation failures.

So modify the search algorithm to include Step 2.2.

Link: http://lkml.kernel.org/r/20190729232139.91131-1-sathyanarayanan.kuppuswamy@linux.intel.com
Fixes: 68ad4a3304 ("mm/vmalloc.c: keep track of free blocks for vmap allocation")
Signed-off-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com>
Reported-by: Dave Hansen <dave.hansen@intel.com>
Acked-by: Dennis Zhou <dennis@kernel.org>
Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: sathyanarayanan kuppuswamy <sathyanarayanan.kuppuswamy@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-08-13 16:06:52 -07:00
Miles Chen
54a83d6bcb mm/memcontrol.c: fix use after free in mem_cgroup_iter()
This patch is sent to report an use after free in mem_cgroup_iter()
after merging commit be2657752e ("mm: memcg: fix use after free in
mem_cgroup_iter()").

I work with android kernel tree (4.9 & 4.14), and commit be2657752e
("mm: memcg: fix use after free in mem_cgroup_iter()") has been merged
to the trees.  However, I can still observe use after free issues
addressed in the commit be2657752e.  (on low-end devices, a few times
this month)

backtrace:
        css_tryget <- crash here
        mem_cgroup_iter
        shrink_node
        shrink_zones
        do_try_to_free_pages
        try_to_free_pages
        __perform_reclaim
        __alloc_pages_direct_reclaim
        __alloc_pages_slowpath
        __alloc_pages_nodemask

To debug, I poisoned mem_cgroup before freeing it:

  static void __mem_cgroup_free(struct mem_cgroup *memcg)
        for_each_node(node)
        free_mem_cgroup_per_node_info(memcg, node);
        free_percpu(memcg->stat);
  +     /* poison memcg before freeing it */
  +     memset(memcg, 0x78, sizeof(struct mem_cgroup));
        kfree(memcg);
  }

The coredump shows the position=0xdbbc2a00 is freed.

  (gdb) p/x ((struct mem_cgroup_per_node *)0xe5009e00)->iter[8]
  $13 = {position = 0xdbbc2a00, generation = 0x2efd}

  0xdbbc2a00:     0xdbbc2e00      0x00000000      0xdbbc2800      0x00000100
  0xdbbc2a10:     0x00000200      0x78787878      0x00026218      0x00000000
  0xdbbc2a20:     0xdcad6000      0x00000001      0x78787800      0x00000000
  0xdbbc2a30:     0x78780000      0x00000000      0x0068fb84      0x78787878
  0xdbbc2a40:     0x78787878      0x78787878      0x78787878      0xe3fa5cc0
  0xdbbc2a50:     0x78787878      0x78787878      0x00000000      0x00000000
  0xdbbc2a60:     0x00000000      0x00000000      0x00000000      0x00000000
  0xdbbc2a70:     0x00000000      0x00000000      0x00000000      0x00000000
  0xdbbc2a80:     0x00000000      0x00000000      0x00000000      0x00000000
  0xdbbc2a90:     0x00000001      0x00000000      0x00000000      0x00100000
  0xdbbc2aa0:     0x00000001      0xdbbc2ac8      0x00000000      0x00000000
  0xdbbc2ab0:     0x00000000      0x00000000      0x00000000      0x00000000
  0xdbbc2ac0:     0x00000000      0x00000000      0xe5b02618      0x00001000
  0xdbbc2ad0:     0x00000000      0x78787878      0x78787878      0x78787878
  0xdbbc2ae0:     0x78787878      0x78787878      0x78787878      0x78787878
  0xdbbc2af0:     0x78787878      0x78787878      0x78787878      0x78787878
  0xdbbc2b00:     0x78787878      0x78787878      0x78787878      0x78787878
  0xdbbc2b10:     0x78787878      0x78787878      0x78787878      0x78787878
  0xdbbc2b20:     0x78787878      0x78787878      0x78787878      0x78787878
  0xdbbc2b30:     0x78787878      0x78787878      0x78787878      0x78787878
  0xdbbc2b40:     0x78787878      0x78787878      0x78787878      0x78787878
  0xdbbc2b50:     0x78787878      0x78787878      0x78787878      0x78787878
  0xdbbc2b60:     0x78787878      0x78787878      0x78787878      0x78787878
  0xdbbc2b70:     0x78787878      0x78787878      0x78787878      0x78787878
  0xdbbc2b80:     0x78787878      0x78787878      0x00000000      0x78787878
  0xdbbc2b90:     0x78787878      0x78787878      0x78787878      0x78787878
  0xdbbc2ba0:     0x78787878      0x78787878      0x78787878      0x78787878

In the reclaim path, try_to_free_pages() does not setup
sc.target_mem_cgroup and sc is passed to do_try_to_free_pages(), ...,
shrink_node().

In mem_cgroup_iter(), root is set to root_mem_cgroup because
sc->target_mem_cgroup is NULL.  It is possible to assign a memcg to
root_mem_cgroup.nodeinfo.iter in mem_cgroup_iter().

        try_to_free_pages
        	struct scan_control sc = {...}, target_mem_cgroup is 0x0;
        do_try_to_free_pages
        shrink_zones
        shrink_node
        	 mem_cgroup *root = sc->target_mem_cgroup;
        	 memcg = mem_cgroup_iter(root, NULL, &reclaim);
        mem_cgroup_iter()
        	if (!root)
        		root = root_mem_cgroup;
        	...

        	css = css_next_descendant_pre(css, &root->css);
        	memcg = mem_cgroup_from_css(css);
        	cmpxchg(&iter->position, pos, memcg);

My device uses memcg non-hierarchical mode.  When we release a memcg:
invalidate_reclaim_iterators() reaches only dead_memcg and its parents.
If non-hierarchical mode is used, invalidate_reclaim_iterators() never
reaches root_mem_cgroup.

  static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
  {
        struct mem_cgroup *memcg = dead_memcg;

        for (; memcg; memcg = parent_mem_cgroup(memcg)
        ...
  }

So the use after free scenario looks like:

  CPU1						CPU2

  try_to_free_pages
  do_try_to_free_pages
  shrink_zones
  shrink_node
  mem_cgroup_iter()
      if (!root)
      	root = root_mem_cgroup;
      ...
      css = css_next_descendant_pre(css, &root->css);
      memcg = mem_cgroup_from_css(css);
      cmpxchg(&iter->position, pos, memcg);

        				invalidate_reclaim_iterators(memcg);
        				...
        				__mem_cgroup_free()
        					kfree(memcg);

  try_to_free_pages
  do_try_to_free_pages
  shrink_zones
  shrink_node
  mem_cgroup_iter()
      if (!root)
      	root = root_mem_cgroup;
      ...
      mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
      iter = &mz->iter[reclaim->priority];
      pos = READ_ONCE(iter->position);
      css_tryget(&pos->css) <- use after free

To avoid this, we should also invalidate root_mem_cgroup.nodeinfo.iter
in invalidate_reclaim_iterators().

[cai@lca.pw: fix -Wparentheses compilation warning]
  Link: http://lkml.kernel.org/r/1564580753-17531-1-git-send-email-cai@lca.pw
Link: http://lkml.kernel.org/r/20190730015729.4406-1-miles.chen@mediatek.com
Fixes: 5ac8fb31ad ("mm: memcontrol: convert reclaim iterator to simple css refcounting")
Signed-off-by: Miles Chen <miles.chen@mediatek.com>
Signed-off-by: Qian Cai <cai@lca.pw>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-08-13 16:06:52 -07:00
Henry Burns
b997052bc3 mm/z3fold.c: fix z3fold_destroy_pool() race condition
The constraint from the zpool use of z3fold_destroy_pool() is there are
no outstanding handles to memory (so no active allocations), but it is
possible for there to be outstanding work on either of the two wqs in
the pool.

Calling z3fold_deregister_migration() before the workqueues are drained
means that there can be allocated pages referencing a freed inode,
causing any thread in compaction to be able to trip over the bad pointer
in PageMovable().

Link: http://lkml.kernel.org/r/20190726224810.79660-2-henryburns@google.com
Fixes: 1f862989b0 ("mm/z3fold.c: support page migration")
Signed-off-by: Henry Burns <henryburns@google.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Jonathan Adams <jwadams@google.com>
Cc: Vitaly Vul <vitaly.vul@sony.com>
Cc: Vitaly Wool <vitalywool@gmail.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Henry Burns <henrywolfeburns@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-08-13 16:06:52 -07:00
Henry Burns
6051d3bd3b mm/z3fold.c: fix z3fold_destroy_pool() ordering
The constraint from the zpool use of z3fold_destroy_pool() is there are
no outstanding handles to memory (so no active allocations), but it is
possible for there to be outstanding work on either of the two wqs in
the pool.

If there is work queued on pool->compact_workqueue when it is called,
z3fold_destroy_pool() will do:

   z3fold_destroy_pool()
     destroy_workqueue(pool->release_wq)
     destroy_workqueue(pool->compact_wq)
       drain_workqueue(pool->compact_wq)
         do_compact_page(zhdr)
           kref_put(&zhdr->refcount)
             __release_z3fold_page(zhdr, ...)
               queue_work_on(pool->release_wq, &pool->work) *BOOM*

So compact_wq needs to be destroyed before release_wq.

Link: http://lkml.kernel.org/r/20190726224810.79660-1-henryburns@google.com
Fixes: 5d03a66139 ("mm/z3fold.c: use kref to prevent page free/compact race")
Signed-off-by: Henry Burns <henryburns@google.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Jonathan Adams <jwadams@google.com>
Cc: Vitaly Vul <vitaly.vul@sony.com>
Cc: Vitaly Wool <vitalywool@gmail.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Al Viro <viro@zeniv.linux.org.uk
Cc: Henry Burns <henrywolfeburns@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-08-13 16:06:52 -07:00
Yang Shi
a53190a4aa mm: mempolicy: handle vma with unmovable pages mapped correctly in mbind
When running syzkaller internally, we ran into the below bug on 4.9.x
kernel:

  kernel BUG at mm/huge_memory.c:2124!
  invalid opcode: 0000 [#1] SMP KASAN
  CPU: 0 PID: 1518 Comm: syz-executor107 Not tainted 4.9.168+ #2
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 0.5.1 01/01/2011
  task: ffff880067b34900 task.stack: ffff880068998000
  RIP: split_huge_page_to_list+0x8fb/0x1030 mm/huge_memory.c:2124
  Call Trace:
    split_huge_page include/linux/huge_mm.h:100 [inline]
    queue_pages_pte_range+0x7e1/0x1480 mm/mempolicy.c:538
    walk_pmd_range mm/pagewalk.c:50 [inline]
    walk_pud_range mm/pagewalk.c:90 [inline]
    walk_pgd_range mm/pagewalk.c:116 [inline]
    __walk_page_range+0x44a/0xdb0 mm/pagewalk.c:208
    walk_page_range+0x154/0x370 mm/pagewalk.c:285
    queue_pages_range+0x115/0x150 mm/mempolicy.c:694
    do_mbind mm/mempolicy.c:1241 [inline]
    SYSC_mbind+0x3c3/0x1030 mm/mempolicy.c:1370
    SyS_mbind+0x46/0x60 mm/mempolicy.c:1352
    do_syscall_64+0x1d2/0x600 arch/x86/entry/common.c:282
    entry_SYSCALL_64_after_swapgs+0x5d/0xdb
  Code: c7 80 1c 02 00 e8 26 0a 76 01 <0f> 0b 48 c7 c7 40 46 45 84 e8 4c
  RIP  [<ffffffff81895d6b>] split_huge_page_to_list+0x8fb/0x1030 mm/huge_memory.c:2124
   RSP <ffff88006899f980>

with the below test:

  uint64_t r[1] = {0xffffffffffffffff};

  int main(void)
  {
        syscall(__NR_mmap, 0x20000000, 0x1000000, 3, 0x32, -1, 0);
                                intptr_t res = 0;
        res = syscall(__NR_socket, 0x11, 3, 0x300);
        if (res != -1)
                r[0] = res;
        *(uint32_t*)0x20000040 = 0x10000;
        *(uint32_t*)0x20000044 = 1;
        *(uint32_t*)0x20000048 = 0xc520;
        *(uint32_t*)0x2000004c = 1;
        syscall(__NR_setsockopt, r[0], 0x107, 0xd, 0x20000040, 0x10);
        syscall(__NR_mmap, 0x20fed000, 0x10000, 0, 0x8811, r[0], 0);
        *(uint64_t*)0x20000340 = 2;
        syscall(__NR_mbind, 0x20ff9000, 0x4000, 0x4002, 0x20000340, 0x45d4, 3);
        return 0;
  }

Actually the test does:

  mmap(0x20000000, 16777216, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x20000000
  socket(AF_PACKET, SOCK_RAW, 768)        = 3
  setsockopt(3, SOL_PACKET, PACKET_TX_RING, {block_size=65536, block_nr=1, frame_size=50464, frame_nr=1}, 16) = 0
  mmap(0x20fed000, 65536, PROT_NONE, MAP_SHARED|MAP_FIXED|MAP_POPULATE|MAP_DENYWRITE, 3, 0) = 0x20fed000
  mbind(..., MPOL_MF_STRICT|MPOL_MF_MOVE) = 0

The setsockopt() would allocate compound pages (16 pages in this test)
for packet tx ring, then the mmap() would call packet_mmap() to map the
pages into the user address space specified by the mmap() call.

When calling mbind(), it would scan the vma to queue the pages for
migration to the new node.  It would split any huge page since 4.9
doesn't support THP migration, however, the packet tx ring compound
pages are not THP and even not movable.  So, the above bug is triggered.

However, the later kernel is not hit by this issue due to commit
d44d363f65 ("mm: don't assume anonymous pages have SwapBacked flag"),
which just removes the PageSwapBacked check for a different reason.

But, there is a deeper issue.  According to the semantic of mbind(), it
should return -EIO if MPOL_MF_MOVE or MPOL_MF_MOVE_ALL was specified and
MPOL_MF_STRICT was also specified, but the kernel was unable to move all
existing pages in the range.  The tx ring of the packet socket is
definitely not movable, however, mbind() returns success for this case.

Although the most socket file associates with non-movable pages, but XDP
may have movable pages from gup.  So, it sounds not fine to just check
the underlying file type of vma in vma_migratable().

Change migrate_page_add() to check if the page is movable or not, if it
is unmovable, just return -EIO.  But do not abort pte walk immediately,
since there may be pages off LRU temporarily.  We should migrate other
pages if MPOL_MF_MOVE* is specified.  Set has_unmovable flag if some
paged could not be not moved, then return -EIO for mbind() eventually.

With this change the above test would return -EIO as expected.

[yang.shi@linux.alibaba.com: fix review comments from Vlastimil]
  Link: http://lkml.kernel.org/r/1563556862-54056-3-git-send-email-yang.shi@linux.alibaba.com
Link: http://lkml.kernel.org/r/1561162809-59140-3-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-08-13 16:06:52 -07:00
Yang Shi
d883544515 mm: mempolicy: make the behavior consistent when MPOL_MF_MOVE* and MPOL_MF_STRICT were specified
When both MPOL_MF_MOVE* and MPOL_MF_STRICT was specified, mbind() should
try best to migrate misplaced pages, if some of the pages could not be
migrated, then return -EIO.

There are three different sub-cases:
 1. vma is not migratable
 2. vma is migratable, but there are unmovable pages
 3. vma is migratable, pages are movable, but migrate_pages() fails

If #1 happens, kernel would just abort immediately, then return -EIO,
after a7f40cfe3b ("mm: mempolicy: make mbind() return -EIO when
MPOL_MF_STRICT is specified").

If #3 happens, kernel would set policy and migrate pages with
best-effort, but won't rollback the migrated pages and reset the policy
back.

Before that commit, they behaves in the same way.  It'd better to keep
their behavior consistent.  But, rolling back the migrated pages and
resetting the policy back sounds not feasible, so just make #1 behave as
same as #3.

Userspace will know that not everything was successfully migrated (via
-EIO), and can take whatever steps it deems necessary - attempt
rollback, determine which exact page(s) are violating the policy, etc.

Make queue_pages_range() return 1 to indicate there are unmovable pages
or vma is not migratable.

The #2 is not handled correctly in the current kernel, the following
patch will fix it.

[yang.shi@linux.alibaba.com: fix review comments from Vlastimil]
  Link: http://lkml.kernel.org/r/1563556862-54056-2-git-send-email-yang.shi@linux.alibaba.com
Link: http://lkml.kernel.org/r/1561162809-59140-2-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-08-13 16:06:52 -07:00
Ralph Campbell
1de13ee592 mm/hmm: fix bad subpage pointer in try_to_unmap_one
When migrating an anonymous private page to a ZONE_DEVICE private page,
the source page->mapping and page->index fields are copied to the
destination ZONE_DEVICE struct page and the page_mapcount() is
increased.  This is so rmap_walk() can be used to unmap and migrate the
page back to system memory.

However, try_to_unmap_one() computes the subpage pointer from a swap pte
which computes an invalid page pointer and a kernel panic results such
as:

  BUG: unable to handle page fault for address: ffffea1fffffffc8

Currently, only single pages can be migrated to device private memory so
no subpage computation is needed and it can be set to "page".

[rcampbell@nvidia.com: add comment]
  Link: http://lkml.kernel.org/r/20190724232700.23327-4-rcampbell@nvidia.com
Link: http://lkml.kernel.org/r/20190719192955.30462-4-rcampbell@nvidia.com
Fixes: a5430dda8a ("mm/migrate: support un-addressable ZONE_DEVICE page in migration")
Signed-off-by: Ralph Campbell <rcampbell@nvidia.com>
Cc: "Jérôme Glisse" <jglisse@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-08-13 16:06:52 -07:00
Ralph Campbell
7ab0ad0e74 mm/hmm: fix ZONE_DEVICE anon page mapping reuse
When a ZONE_DEVICE private page is freed, the page->mapping field can be
set.  If this page is reused as an anonymous page, the previous value
can prevent the page from being inserted into the CPU's anon rmap table.
For example, when migrating a pte_none() page to device memory:

  migrate_vma(ops, vma, start, end, src, dst, private)
    migrate_vma_collect()
      src[] = MIGRATE_PFN_MIGRATE
    migrate_vma_prepare()
      /* no page to lock or isolate so OK */
    migrate_vma_unmap()
      /* no page to unmap so OK */
    ops->alloc_and_copy()
      /* driver allocates ZONE_DEVICE page for dst[] */
    migrate_vma_pages()
      migrate_vma_insert_page()
        page_add_new_anon_rmap()
          __page_set_anon_rmap()
            /* This check sees the page's stale mapping field */
            if (PageAnon(page))
              return
            /* page->mapping is not updated */

The result is that the migration appears to succeed but a subsequent CPU
fault will be unable to migrate the page back to system memory or worse.

Clear the page->mapping field when freeing the ZONE_DEVICE page so stale
pointer data doesn't affect future page use.

Link: http://lkml.kernel.org/r/20190719192955.30462-3-rcampbell@nvidia.com
Fixes: b7a523109f ("mm: don't clear ->mapping in hmm_devmem_free")
Signed-off-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Jan Kara <jack@suse.cz>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: "Jérôme Glisse" <jglisse@redhat.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-08-13 16:06:52 -07:00
Dan Williams
06282373ff mm/memremap: Fix reuse of pgmap instances with internal references
Currently, attempts to shutdown and re-enable a device-dax instance
trigger:

    Missing reference count teardown definition
    WARNING: CPU: 37 PID: 1608 at mm/memremap.c:211 devm_memremap_pages+0x234/0x850
    [..]
    RIP: 0010:devm_memremap_pages+0x234/0x850
    [..]
    Call Trace:
     dev_dax_probe+0x66/0x190 [device_dax]
     really_probe+0xef/0x390
     driver_probe_device+0xb4/0x100
     device_driver_attach+0x4f/0x60

Given that the setup path initializes pgmap->ref, arrange for it to be
also torn down so devm_memremap_pages() is ready to be called again and
not be mistaken for the 3rd-party per-cpu-ref case.

Fixes: 24917f6b10 ("memremap: provide an optional internal refcount in struct dev_pagemap")
Reported-by: Fan Du <fan.du@intel.com>
Tested-by: Vishal Verma <vishal.l.verma@intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Link: https://lore.kernel.org/r/156530042781.2068700.8733813683117819799.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2019-08-09 14:16:15 -07:00
Christoph Hellwig
9c240a7bb3 mm/hmm: make HMM_MIRROR an implicit option
Make HMM_MIRROR an option that is selected by drivers wanting to use it
instead of a user visible option as it is just a low-level implementation
detail.

Link: https://lore.kernel.org/r/20190806160554.14046-15-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jason Gunthorpe <jgg@mellanox.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-08-07 14:58:06 -03:00
Christoph Hellwig
f442c283ef mm/hmm: allow HMM_MIRROR on all architectures with MMU
There isn't really any architecture specific code in this page table walk
implementation, so drop the dependencies.

Link: https://lore.kernel.org/r/20190806160554.14046-14-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jason Gunthorpe <jgg@mellanox.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-08-07 14:58:06 -03:00
Christoph Hellwig
251bbe59b7 mm/hmm: cleanup the hmm_vma_walk_hugetlb_entry stub
Stub out the whole function and assign NULL to the .hugetlb_entry method
if CONFIG_HUGETLB_PAGE is not set, as the method won't ever be called in
that case.

Link: https://lore.kernel.org/r/20190806160554.14046-13-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jason Gunthorpe <jgg@mellanox.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-08-07 14:58:06 -03:00
Christoph Hellwig
9d3973d60f mm/hmm: cleanup the hmm_vma_handle_pmd stub
Stub out the whole function when CONFIG_TRANSPARENT_HUGEPAGE is not set to
make the function easier to read.

Link: https://lore.kernel.org/r/20190806160554.14046-12-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jason Gunthorpe <jgg@mellanox.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-08-07 14:58:06 -03:00
Christoph Hellwig
f0b3c45c89 mm/hmm: only define hmm_vma_walk_pud if needed
We only need the special pud_entry walker if PUD-sized hugepages and pte
mappings are supported, else the common pagewalk code will take care of
the iteration.  Not implementing this callback reduced the amount of code
compiled for non-x86 platforms, and also fixes compile failures with other
architectures when helpers like pud_pfn are not implemented.

Link: https://lore.kernel.org/r/20190806160554.14046-11-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jason Gunthorpe <jgg@mellanox.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-08-07 14:58:06 -03:00
Christoph Hellwig
309f9a4f5e mm/hmm: don't abuse pte_index() in hmm_vma_handle_pmd
pte_index is an internal arch helper in various architectures, without
consistent semantics.  Open code that calculation of a PMD index based on
the virtual address instead.

Link: https://lore.kernel.org/r/20190806160554.14046-10-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jason Gunthorpe <jgg@mellanox.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-08-07 14:58:06 -03:00
Christoph Hellwig
05c23af4a1 mm/hmm: remove the mask variable in hmm_vma_walk_hugetlb_entry
The pagewalk code already passes the value as the hmask parameter.

Link: https://lore.kernel.org/r/20190806160554.14046-9-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jason Gunthorpe <jgg@mellanox.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-08-07 14:58:06 -03:00
Christoph Hellwig
7f08263d9b mm/hmm: remove the page_shift member from struct hmm_range
All users pass PAGE_SIZE here, and if we wanted to support single entries
for huge pages we should really just add a HMM_FAULT_HUGEPAGE flag instead
that uses the huge page size instead of having the caller calculate that
size once, just for the hmm code to verify it.

Link: https://lore.kernel.org/r/20190806160554.14046-8-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Felix Kuehling <Felix.Kuehling@amd.com>
Reviewed-by: Jason Gunthorpe <jgg@mellanox.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-08-07 14:58:06 -03:00
Christoph Hellwig
fac555ac93 mm/hmm: remove superfluous arguments from hmm_range_register
The start, end and page_shift values are all saved in the range structure,
so we might as well use that for argument passing.

Link: https://lore.kernel.org/r/20190806160554.14046-7-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jason Gunthorpe <jgg@mellanox.com>
Reviewed-by: Felix Kuehling <Felix.Kuehling@amd.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-08-07 14:58:05 -03:00
Christoph Hellwig
2cbeb41913 mm/hmm: remove the unused vma argument to hmm_range_dma_unmap
Link: https://lore.kernel.org/r/20190806160554.14046-6-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jason Gunthorpe <jgg@mellanox.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-08-07 14:58:05 -03:00
Christoph Hellwig
14c5cebad5 memremap: move from kernel/ to mm/
memremap.c implements MM functionality for ZONE_DEVICE, so it really
should be in the mm/ directory, not the kernel/ one.

Link: http://lkml.kernel.org/r/20190722094143.18387-1-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Acked-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-08-03 07:02:01 -07:00
Weitao Hou
aa4996b3af mm/memory_hotplug.c: remove unneeded return for void function
return is unneeded in void function

Link: http://lkml.kernel.org/r/20190723130814.21826-1-houweitaoo@gmail.com
Signed-off-by: Weitao Hou <houweitaoo@gmail.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-08-03 07:02:01 -07:00
Ralph Campbell
7b358c6f12 mm/migrate.c: initialize pud_entry in migrate_vma()
When CONFIG_MIGRATE_VMA_HELPER is enabled, migrate_vma() calls
migrate_vma_collect() which initializes a struct mm_walk but didn't
initialize mm_walk.pud_entry.  (Found by code inspection) Use a C
structure initialization to make sure it is set to NULL.

Link: http://lkml.kernel.org/r/20190719233225.12243-1-rcampbell@nvidia.com
Fixes: 8763cb45ab ("mm/migrate: new memory migration helper for use with device memory")
Signed-off-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: "Jérôme Glisse" <jglisse@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-08-03 07:02:01 -07:00
Mel Gorman
670105a256 mm: compaction: avoid 100% CPU usage during compaction when a task is killed
"howaboutsynergy" reported via kernel buzilla number 204165 that
compact_zone_order was consuming 100% CPU during a stress test for
prolonged periods of time.  Specifically the following command, which
should exit in 10 seconds, was taking an excessive time to finish while
the CPU was pegged at 100%.

  stress -m 220 --vm-bytes 1000000000 --timeout 10

Tracing indicated a pattern as follows

          stress-3923  [007]   519.106208: mm_compaction_isolate_migratepages: range=(0x70bb80 ~ 0x70bb80) nr_scanned=0 nr_taken=0
          stress-3923  [007]   519.106212: mm_compaction_isolate_migratepages: range=(0x70bb80 ~ 0x70bb80) nr_scanned=0 nr_taken=0
          stress-3923  [007]   519.106216: mm_compaction_isolate_migratepages: range=(0x70bb80 ~ 0x70bb80) nr_scanned=0 nr_taken=0
          stress-3923  [007]   519.106219: mm_compaction_isolate_migratepages: range=(0x70bb80 ~ 0x70bb80) nr_scanned=0 nr_taken=0
          stress-3923  [007]   519.106223: mm_compaction_isolate_migratepages: range=(0x70bb80 ~ 0x70bb80) nr_scanned=0 nr_taken=0
          stress-3923  [007]   519.106227: mm_compaction_isolate_migratepages: range=(0x70bb80 ~ 0x70bb80) nr_scanned=0 nr_taken=0
          stress-3923  [007]   519.106231: mm_compaction_isolate_migratepages: range=(0x70bb80 ~ 0x70bb80) nr_scanned=0 nr_taken=0
          stress-3923  [007]   519.106235: mm_compaction_isolate_migratepages: range=(0x70bb80 ~ 0x70bb80) nr_scanned=0 nr_taken=0
          stress-3923  [007]   519.106238: mm_compaction_isolate_migratepages: range=(0x70bb80 ~ 0x70bb80) nr_scanned=0 nr_taken=0
          stress-3923  [007]   519.106242: mm_compaction_isolate_migratepages: range=(0x70bb80 ~ 0x70bb80) nr_scanned=0 nr_taken=0

Note that compaction is entered in rapid succession while scanning and
isolating nothing.  The problem is that when a task that is compacting
receives a fatal signal, it retries indefinitely instead of exiting
while making no progress as a fatal signal is pending.

It's not easy to trigger this condition although enabling zswap helps on
the basis that the timing is altered.  A very small window has to be hit
for the problem to occur (signal delivered while compacting and
isolating a PFN for migration that is not aligned to SWAP_CLUSTER_MAX).

This was reproduced locally -- 16G single socket system, 8G swap, 30%
zswap configured, vm-bytes 22000000000 using Colin Kings stress-ng
implementation from github running in a loop until the problem hits).
Tracing recorded the problem occurring almost 200K times in a short
window.  With this patch, the problem hit 4 times but the task existed
normally instead of consuming CPU.

This problem has existed for some time but it was made worse by commit
cf66f0700c ("mm, compaction: do not consider a need to reschedule as
contention").  Before that commit, if the same condition was hit then
locks would be quickly contended and compaction would exit that way.

Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=204165
Link: http://lkml.kernel.org/r/20190718085708.GE24383@techsingularity.net
Fixes: cf66f0700c ("mm, compaction: do not consider a need to reschedule as contention")
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>	[5.1+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-08-03 07:02:00 -07:00
Jan Kara
ebdf4de564 mm: migrate: fix reference check race between __find_get_block() and migration
buffer_migrate_page_norefs() can race with bh users in the following
way:

CPU1                                    CPU2
buffer_migrate_page_norefs()
  buffer_migrate_lock_buffers()
  checks bh refs
  spin_unlock(&mapping->private_lock)
                                        __find_get_block()
                                          spin_lock(&mapping->private_lock)
                                          grab bh ref
                                          spin_unlock(&mapping->private_lock)
  move page                               do bh work

This can result in various issues like lost updates to buffers (i.e.
metadata corruption) or use after free issues for the old page.

This patch closes the race by holding mapping->private_lock while the
mapping is being moved to a new page.  Ordinarily, a reference can be
taken outside of the private_lock using the per-cpu BH LRU but the
references are checked and the LRU invalidated if necessary.  The
private_lock is held once the references are known so the buffer lookup
slow path will spin on the private_lock.  Between the page lock and
private_lock, it should be impossible for other references to be
acquired and updates to happen during the migration.

A user had reported data corruption issues on a distribution kernel with
a similar page migration implementation as mainline.  The data
corruption could not be reproduced with this patch applied.  A small
number of migration-intensive tests were run and no performance problems
were noted.

[mgorman@techsingularity.net: Changelog, removed tracing]
Link: http://lkml.kernel.org/r/20190718090238.GF24383@techsingularity.net
Fixes: 89cb0888ca "mm: migrate: provide buffer_migrate_page_norefs()"
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Cc: <stable@vger.kernel.org>	[5.0+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-08-03 07:02:00 -07:00
Yang Shi
fa1e512fac mm: vmscan: check if mem cgroup is disabled or not before calling memcg slab shrinker
Shakeel Butt reported premature oom on kernel with
"cgroup_disable=memory" since mem_cgroup_is_root() returns false even
though memcg is actually NULL.  The drop_caches is also broken.

It is because commit aeed1d325d ("mm/vmscan.c: generalize
shrink_slab() calls in shrink_node()") removed the !memcg check before
!mem_cgroup_is_root().  And, surprisingly root memcg is allocated even
though memory cgroup is disabled by kernel boot parameter.

Add mem_cgroup_disabled() check to make reclaimer work as expected.

Link: http://lkml.kernel.org/r/1563385526-20805-1-git-send-email-yang.shi@linux.alibaba.com
Fixes: aeed1d325d ("mm/vmscan.c: generalize shrink_slab() calls in shrink_node()")
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Reported-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Jan Hadrava <had@kam.mff.cuni.cz>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: <stable@vger.kernel.org>	[4.19+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-08-03 07:02:00 -07:00
Yang Shi
df9576def0 Revert "kmemleak: allow to coexist with fault injection"
When running ltp's oom test with kmemleak enabled, the below warning was
triggerred since kernel detects __GFP_NOFAIL & ~__GFP_DIRECT_RECLAIM is
passed in:

  WARNING: CPU: 105 PID: 2138 at mm/page_alloc.c:4608 __alloc_pages_nodemask+0x1c31/0x1d50
  Modules linked in: loop dax_pmem dax_pmem_core ip_tables x_tables xfs virtio_net net_failover virtio_blk failover ata_generic virtio_pci virtio_ring virtio libata
  CPU: 105 PID: 2138 Comm: oom01 Not tainted 5.2.0-next-20190710+ #7
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.10.2-0-g5f4c7b1-prebuilt.qemu-project.org 04/01/2014
  RIP: 0010:__alloc_pages_nodemask+0x1c31/0x1d50
  ...
   kmemleak_alloc+0x4e/0xb0
   kmem_cache_alloc+0x2a7/0x3e0
   mempool_alloc_slab+0x2d/0x40
   mempool_alloc+0x118/0x2b0
   bio_alloc_bioset+0x19d/0x350
   get_swap_bio+0x80/0x230
   __swap_writepage+0x5ff/0xb20

The mempool_alloc_slab() clears __GFP_DIRECT_RECLAIM, however kmemleak
has __GFP_NOFAIL set all the time due to d9570ee3bd ("kmemleak:
allow to coexist with fault injection").  But, it doesn't make any sense
to have __GFP_NOFAIL and ~__GFP_DIRECT_RECLAIM specified at the same
time.

According to the discussion on the mailing list, the commit should be
reverted for short term solution.  Catalin Marinas would follow up with
a better solution for longer term.

The failure rate of kmemleak metadata allocation may increase in some
circumstances, but this should be expected side effect.

Link: http://lkml.kernel.org/r/1563299431-111710-1-git-send-email-yang.shi@linux.alibaba.com
Fixes: d9570ee3bd ("kmemleak: allow to coexist with fault injection")
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Suggested-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-08-03 07:02:00 -07:00
Laura Abbott
1b7e816fc8 mm: slub: Fix slab walking for init_on_free
To properly clear the slab on free with slab_want_init_on_free, we walk
the list of free objects using get_freepointer/set_freepointer.

The value we get from get_freepointer may not be valid.  This isn't an
issue since an actual value will get written later but this means
there's a chance of triggering a bug if we use this value with
set_freepointer:

  kernel BUG at mm/slub.c:306!
  invalid opcode: 0000 [#1] PREEMPT PTI
  CPU: 0 PID: 0 Comm: swapper Not tainted 5.2.0-05754-g6471384a #4
  RIP: 0010:kfree+0x58a/0x5c0
  Code: 48 83 05 78 37 51 02 01 0f 0b 48 83 05 7e 37 51 02 01 48 83 05 7e 37 51 02 01 48 83 05 7e 37 51 02 01 48 83 05 d6 37 51 02 01 <0f> 0b 48 83 05 d4 37 51 02 01 48 83 05 d4 37 51 02 01 48 83 05 d4
  RSP: 0000:ffffffff82603d90 EFLAGS: 00010002
  RAX: ffff8c3976c04320 RBX: ffff8c3976c04300 RCX: 0000000000000000
  RDX: ffff8c3976c04300 RSI: 0000000000000000 RDI: ffff8c3976c04320
  RBP: ffffffff82603db8 R08: 0000000000000000 R09: 0000000000000000
  R10: ffff8c3976c04320 R11: ffffffff8289e1e0 R12: ffffd52cc8db0100
  R13: ffff8c3976c01a00 R14: ffffffff810f10d4 R15: ffff8c3976c04300
  FS:  0000000000000000(0000) GS:ffffffff8266b000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: ffff8c397ffff000 CR3: 0000000125020000 CR4: 00000000000406b0
  Call Trace:
   apply_wqattrs_prepare+0x154/0x280
   apply_workqueue_attrs_locked+0x4e/0xe0
   apply_workqueue_attrs+0x36/0x60
   alloc_workqueue+0x25a/0x6d0
   workqueue_init_early+0x246/0x348
   start_kernel+0x3c7/0x7ec
   x86_64_start_reservations+0x40/0x49
   x86_64_start_kernel+0xda/0xe4
   secondary_startup_64+0xb6/0xc0
  Modules linked in:
  ---[ end trace f67eb9af4d8d492b ]---

Fix this by ensuring the value we set with set_freepointer is either NULL
or another value in the chain.

Reported-by: kernel test robot <rong.a.chen@intel.com>
Signed-off-by: Laura Abbott <labbott@redhat.com>
Fixes: 6471384af2 ("mm: security: introduce init_on_alloc=1 and init_on_free=1 boot options")
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-31 13:16:06 -07:00
Linus Torvalds
515f12b9ee HMM patches for 5.3-rc
Fix the locking around nouveau's use of the hmm_range_* APIs. It works
 correctly in the success case, but many of the the edge cases have missing
 unlocks or double unlocks.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEfB7FMLh+8QxL+6i3OG33FX4gmxoFAl07BG0ACgkQOG33FX4g
 mxr/RA//b1t3rTjyYlzEGpCFouDAJrV8mRrmPZtywzSxhiyKgylWiQ9D5HyAZ8ZG
 evEF1xFe0PcTKiieqnZCJBPh864t+yt9Mm45MpWamBNoHx7WPSdeOMbSDUNvQR+H
 8aWTGBZvdKlqpwD63yvk7C6jkZ6vXDNYROnM395gzlfmaVGBeLygXqcKUkiW1x+D
 1CK+KsBldacxH/gE2X966mXxG46/5VL8KDVoo4VVnpLMDRdRs6zbIBRj7l9+hWbh
 2HABQyvDJW4tYmUW5iHAoLV2fAIE/nJMprEabXvd6rFAPwbryBroguXffGqkIaa0
 Ce1LIhiakCUniK2XgP2W/+KwJQBNp3hQjJr+ip7hgQCtzcD8zRYSxDt5gUtbjpGd
 4JfXrRVrfa08/hBe4adPfE5W5mW3oyEyRHldToT0SrywIY8sTLjN7RdCMwOqrxoR
 QkgqDISLqJab1OQEPHr7QgsgO2c2k19yPpckSZJ+IIldpNtLa9V+eif85NZ/esOd
 2GTWph3UQiACp9fLgEIAvJUnZ0blZpYq9TYshWWYkO34M+KgBdqOn1cQhZH+4rWb
 0Ed/jGdIaPZZ7XaLDgz5e7jl+t+kmSBdqSQtunF4bbu7AwR/zt3es0jq2vFoD451
 syF2vSVKyoBZMESX8X0O2cv+HHpN5oqH1XLI1ABOO09X9lxAPl4=
 =ZdrW
 -----END PGP SIGNATURE-----

Merge tag 'for-linus-hmm' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma

Pull HMM fixes from Jason Gunthorpe:
 "Fix the locking around nouveau's use of the hmm_range_* APIs. It works
  correctly in the success case, but many of the the edge cases have
  missing unlocks or double unlocks.

  The diffstat is a bit big as Christoph did a comprehensive job to move
  the obsolete API from the core header and into the driver before
  fixing its flow, but the risk of regression from this code motion is
  low"

* tag 'for-linus-hmm' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma:
  nouveau: unlock mmap_sem on all errors from nouveau_range_fault
  nouveau: remove the block parameter to nouveau_range_fault
  mm/hmm: move hmm_vma_range_done and hmm_vma_fault to nouveau
  mm/hmm: always return EBUSY for invalid ranges in hmm_range_{fault,snapshot}
2019-07-30 12:54:44 -07:00