Add check for the return value of memblock_alloc*() functions and call
panic() in case of error. The panic message repeats the one used by
panicing memblock allocators with adjustment of parameters to include
only relevant ones.
The replacement was mostly automated with semantic patches like the one
below with manual massaging of format strings.
@@
expression ptr, size, align;
@@
ptr = memblock_alloc(size, align);
+ if (!ptr)
+ panic("%s: Failed to allocate %lu bytes align=0x%lx\n", __func__, size, align);
[anders.roxell@linaro.org: use '%pa' with 'phys_addr_t' type]
Link: http://lkml.kernel.org/r/20190131161046.21886-1-anders.roxell@linaro.org
[rppt@linux.ibm.com: fix format strings for panics after memblock_alloc]
Link: http://lkml.kernel.org/r/1548950940-15145-1-git-send-email-rppt@linux.ibm.com
[rppt@linux.ibm.com: don't panic if the allocation in sparse_buffer_init fails]
Link: http://lkml.kernel.org/r/20190131074018.GD28876@rapoport-lnx
[akpm@linux-foundation.org: fix xtensa printk warning]
Link: http://lkml.kernel.org/r/1548057848-15136-20-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Anders Roxell <anders.roxell@linaro.org>
Reviewed-by: Guo Ren <ren_guo@c-sky.com> [c-sky]
Acked-by: Paul Burton <paul.burton@mips.com> [MIPS]
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com> [s390]
Reviewed-by: Juergen Gross <jgross@suse.com> [Xen]
Reviewed-by: Geert Uytterhoeven <geert@linux-m68k.org> [m68k]
Acked-by: Max Filippov <jcmvbkbc@gmail.com> [xtensa]
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Christoph Hellwig <hch@lst.de>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Mark Salter <msalter@redhat.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Replace all open encodings for NUMA_NO_NODE", v3.
All these places for replacement were found by running the following
grep patterns on the entire kernel code. Please let me know if this
might have missed some instances. This might also have replaced some
false positives. I will appreciate suggestions, inputs and review.
1. git grep "nid == -1"
2. git grep "node == -1"
3. git grep "nid = -1"
4. git grep "node = -1"
This patch (of 2):
At present there are multiple places where invalid node number is
encoded as -1. Even though implicitly understood it is always better to
have macros in there. Replace these open encodings for an invalid node
number with the global macro NUMA_NO_NODE. This helps remove NUMA
related assumptions like 'invalid node' from various places redirecting
them to a common definition.
Link: http://lkml.kernel.org/r/1545127933-10711-2-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com> [ixgbe]
Acked-by: Jens Axboe <axboe@kernel.dk> [mtip32xx]
Acked-by: Vinod Koul <vkoul@kernel.org> [dmaengine.c]
Acked-by: Michael Ellerman <mpe@ellerman.id.au> [powerpc]
Acked-by: Doug Ledford <dledford@redhat.com> [drivers/infiniband]
Cc: Joseph Qi <jiangqi903@gmail.com>
Cc: Hans Verkuil <hverkuil@xs4all.nl>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When a memblock allocation APIs are called with align = 0, the alignment
is implicitly set to SMP_CACHE_BYTES.
Implicit alignment is done deep in the memblock allocator and it can
come as a surprise. Not that such an alignment would be wrong even
when used incorrectly but it is better to be explicit for the sake of
clarity and the prinicple of the least surprise.
Replace all such uses of memblock APIs with the 'align' parameter
explicitly set to SMP_CACHE_BYTES and stop implicit alignment assignment
in the memblock internal allocation functions.
For the case when memblock APIs are used via helper functions, e.g. like
iommu_arena_new_node() in Alpha, the helper functions were detected with
Coccinelle's help and then manually examined and updated where
appropriate.
The direct memblock APIs users were updated using the semantic patch below:
@@
expression size, min_addr, max_addr, nid;
@@
(
|
- memblock_alloc_try_nid_raw(size, 0, min_addr, max_addr, nid)
+ memblock_alloc_try_nid_raw(size, SMP_CACHE_BYTES, min_addr, max_addr,
nid)
|
- memblock_alloc_try_nid_nopanic(size, 0, min_addr, max_addr, nid)
+ memblock_alloc_try_nid_nopanic(size, SMP_CACHE_BYTES, min_addr, max_addr,
nid)
|
- memblock_alloc_try_nid(size, 0, min_addr, max_addr, nid)
+ memblock_alloc_try_nid(size, SMP_CACHE_BYTES, min_addr, max_addr, nid)
|
- memblock_alloc(size, 0)
+ memblock_alloc(size, SMP_CACHE_BYTES)
|
- memblock_alloc_raw(size, 0)
+ memblock_alloc_raw(size, SMP_CACHE_BYTES)
|
- memblock_alloc_from(size, 0, min_addr)
+ memblock_alloc_from(size, SMP_CACHE_BYTES, min_addr)
|
- memblock_alloc_nopanic(size, 0)
+ memblock_alloc_nopanic(size, SMP_CACHE_BYTES)
|
- memblock_alloc_low(size, 0)
+ memblock_alloc_low(size, SMP_CACHE_BYTES)
|
- memblock_alloc_low_nopanic(size, 0)
+ memblock_alloc_low_nopanic(size, SMP_CACHE_BYTES)
|
- memblock_alloc_from_nopanic(size, 0, min_addr)
+ memblock_alloc_from_nopanic(size, SMP_CACHE_BYTES, min_addr)
|
- memblock_alloc_node(size, 0, nid)
+ memblock_alloc_node(size, SMP_CACHE_BYTES, nid)
)
[mhocko@suse.com: changelog update]
[akpm@linux-foundation.org: coding-style fixes]
[rppt@linux.ibm.com: fix missed uses of implicit alignment]
Link: http://lkml.kernel.org/r/20181016133656.GA10925@rapoport-lnx
Link: http://lkml.kernel.org/r/1538687224-17535-1-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Suggested-by: Michal Hocko <mhocko@suse.com>
Acked-by: Paul Burton <paul.burton@mips.com> [MIPS]
Acked-by: Michael Ellerman <mpe@ellerman.id.au> [powerpc]
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Richard Weinberger <richard@nod.at>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Move remaining definitions and declarations from include/linux/bootmem.h
into include/linux/memblock.h and remove the redundant header.
The includes were replaced with the semantic patch below and then
semi-automated removal of duplicated '#include <linux/memblock.h>
@@
@@
- #include <linux/bootmem.h>
+ #include <linux/memblock.h>
[sfr@canb.auug.org.au: dma-direct: fix up for the removal of linux/bootmem.h]
Link: http://lkml.kernel.org/r/20181002185342.133d1680@canb.auug.org.au
[sfr@canb.auug.org.au: powerpc: fix up for removal of linux/bootmem.h]
Link: http://lkml.kernel.org/r/20181005161406.73ef8727@canb.auug.org.au
[sfr@canb.auug.org.au: x86/kaslr, ACPI/NUMA: fix for linux/bootmem.h removal]
Link: http://lkml.kernel.org/r/20181008190341.5e396491@canb.auug.org.au
Link: http://lkml.kernel.org/r/1536927045-23536-30-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Palmer Dabbelt <palmer@sifive.com>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Serge Semin <fancer.lancer@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Every for_each_XXX_cpu() invocation calls cpumask_next() which is an
inline function:
static inline unsigned int cpumask_next(int n, const struct cpumask *srcp)
{
/* -1 is a legal arg here. */
if (n != -1)
cpumask_check(n);
return find_next_bit(cpumask_bits(srcp), nr_cpumask_bits, n + 1);
}
However!
find_next_bit() is regular out-of-line function which means "nr_cpu_ids"
load and increment happen at the caller resulting in a lot of bloat
x86_64 defconfig:
add/remove: 3/0 grow/shrink: 8/373 up/down: 155/-5668 (-5513)
x86_64 allyesconfig-ish:
add/remove: 3/1 grow/shrink: 57/634 up/down: 3515/-28177 (-24662) !!!
Some archs redefine find_next_bit() but it is OK:
m68k inline but SMP is not supported
arm out-of-line
unicore32 out-of-line
Function call will happen anyway, so move load and increment into callee.
Link: http://lkml.kernel.org/r/20170824230010.GA1593@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
More users for for_each_cpu_wrap() have appeared. Promote the construct
to generic cpumask interface.
The implementation is slightly modified to reduce arguments.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Lauro Ramos Venancio <lvenanci@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: lwang@redhat.com
Link: http://lkml.kernel.org/r/20170414122005.o35me2h5nowqkxbv@hirez.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Almost every cpumask function is exported, just not the one I need to make the
Intel uncore driver modular.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andi Kleen <andi.kleen@intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: David S. Miller <davem@davemloft.net>
Cc: Harish Chegondi <harish.chegondi@intel.com>
Cc: Jacob Pan <jacob.jun.pan@linux.intel.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kan Liang <kan.liang@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Stephane Eranian <eranian@google.com>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/20160222221011.878299859@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Revert commit 534b483a86 ("cpumask: don't perform while loop in
cpumask_next_and()").
This was a minor optimization, but it puts a `struct cpumask' on the
stack, which consumes too much stack space.
Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Reported-by: Peter Zijlstra <peterz@infradead.org>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Amir Vadai <amirv@mellanox.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
da91309e0a (cpumask: Utility function to set n'th cpu...) created a
genuinely weird function. I never saw it before, it went through DaveM.
(He only does this to make us other maintainers feel better about our own
mistakes.)
cpumask_set_cpu_local_first's purpose is say "I need to spread things
across N online cpus, choose the ones on this numa node first"; you call
it in a loop.
It can fail. One of the two callers ignores this, the other aborts and
fails the device open.
It can fail in two ways: allocating the off-stack cpumask, or through a
convoluted codepath which AFAICT can only occur if cpu_online_mask
changes. Which shouldn't happen, because if cpu_online_mask can change
while you call this, it could return a now-offline cpu anyway.
It contains a nonsensical test "!cpumask_of_node(numa_node)". This was
drawn to my attention by Geert, who said this causes a warning on Sparc.
It sets a single bit in a cpumask instead of returning a cpu number,
because that's what the callers want.
It could be made more efficient by passing the previous cpu rather than
an index, but that would be more invasive to the callers.
Fixes: da91309e0a
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> (then rebased)
Tested-by: Amir Vadai <amirv@mellanox.com>
Acked-by: Amir Vadai <amirv@mellanox.com>
Acked-by: David S. Miller <davem@davemloft.net>
functions, prompted by their mis-use in staging.
With these function removed, all cpu functions should only iterate to
nr_cpu_ids, so we finally only allocate that many bits when cpumasks
are allocated offstack.
Thanks,
Rusty.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJVNPMuAAoJENkgDmzRrbjx7ZIP/j65e6xs1jEyXR3WOYSdTU1x
bMo6JcII6O1oEZLgyKXgx9KiBg6uIIDta1NG/H/XIe354dwfHVsHvj5HHHQR5Xof
iRrjLOaHj4XglI3hvsk0eEEl3/OBBLgyo9bUwDvMF1fmr/9tW4caMs3Op6n7Evzm
YIvoAyeJ0A8BfEtOU5lXhcVIGmnHtSw0x6mdGXpXIBmWYQPCtdQP868s4lnl44w0
bSNpAYdzEqg64Ph3SK0prgWPrn5+5EiaAhV7HZzENZ5+o0DAdIXWq/W7uHyCWPKH
536cJDojec+nSUQkPYngngGprxrKO02aBcMw/3JGJ0tdCDj8yw3XAyVAFzz4hmMb
Lkmyv4QHHIILLvJ4ZRH5KHWCjjVBg41LNCs2H3HnoxFACdm0lZYKHsUAh2ucBVtU
Wb/eHmLxOG43UIkpX4yrhy3SfE1ZdnOVzEzOzPXtr51t8ojqk+bLFe/hJ6EkzrQX
X+90qHfBq+PMJlAnc3zdXHjxoJrL6KPWVwVvFrNeibgEKtVvy/BiwZkS6QceC1Ea
TatOYA5r6awFVHHQCooN1DGAxN5Juvu2SmdnTUA9ymsCNDghj1YUoAKRNP81u8Sa
pe3hco/63iCuPna+vlwNDU6SgsaMk9m0p+1n1BiDIfVJIkWYCNeG+u2gQkzbDKlQ
AJuKKQv1QuZiF0ylZ0wq
=VAgA
-----END PGP SIGNATURE-----
Merge tag 'cpumask-next-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux
Pull final removal of deprecated cpus_* cpumask functions from Rusty Russell:
"This is the final removal (after several years!) of the obsolete
cpus_* functions, prompted by their mis-use in staging.
With these function removed, all cpu functions should only iterate to
nr_cpu_ids, so we finally only allocate that many bits when cpumasks
are allocated offstack"
* tag 'cpumask-next-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux: (25 commits)
cpumask: remove __first_cpu / __next_cpu
cpumask: resurrect CPU_MASK_CPU0
linux/cpumask.h: add typechecking to cpumask_test_cpu
cpumask: only allocate nr_cpumask_bits.
Fix weird uses of num_online_cpus().
cpumask: remove deprecated functions.
mips: fix obsolete cpumask_of_cpu usage.
x86: fix more deprecated cpu function usage.
ia64: remove deprecated cpus_ usage.
powerpc: fix deprecated CPU_MASK_CPU0 usage.
CPU_MASK_ALL/CPU_MASK_NONE: remove from deprecated region.
staging/lustre/o2iblnd: Don't use cpus_weight
staging/lustre/libcfs: replace deprecated cpus_ calls with cpumask_
staging/lustre/ptlrpc: Do not use deprecated cpus_* functions
blackfin: fix up obsolete cpu function usage.
parisc: fix up obsolete cpu function usage.
tile: fix up obsolete cpu function usage.
arm64: fix up obsolete cpu function usage.
mips: fix up obsolete cpu function usage.
x86: fix up obsolete cpu function usage.
...
They were for use by the deprecated first_cpu() and next_cpu() wrappers,
but sparc used them directly.
They're now replaced by cpumask_first / cpumask_next. And __next_cpu_nr
is completely obsolete.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Acked-by: David S. Miller <davem@davemloft.net>
cpumask_next_and() is looking for cpumask_next() in src1 in a loop and
tests if found cpu is also present in src2. remove that loop, perform
cpumask_and() of src1 and src2 first and use that new mask to find
cpumask_next().
Apart from removing while loop, ./bloat-o-meter on x86_64 shows
add/remove: 0/0 grow/shrink: 0/1 up/down: 0/-8 (-8)
function old new delta
cpumask_next_and 62 54 -8
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Amir Vadai <amirv@mellanox.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now we'll find out the hard way if anyone has CPUMASK_OFFSTACK and is
returning these or assigning them.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
When device is non numa aware (numa_node == -1), use all online cpu's.
Signed-off-by: Amir Vadai <amirv@mellanox.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This function sets the n'th cpu - local cpu's first.
For example: in a 16 cores server with even cpu's local, will get the
following values:
cpumask_set_cpu_local_first(0, numa, cpumask) => cpu 0 is set
cpumask_set_cpu_local_first(1, numa, cpumask) => cpu 2 is set
...
cpumask_set_cpu_local_first(7, numa, cpumask) => cpu 14 is set
cpumask_set_cpu_local_first(8, numa, cpumask) => cpu 1 is set
cpumask_set_cpu_local_first(9, numa, cpumask) => cpu 3 is set
...
cpumask_set_cpu_local_first(15, numa, cpumask) => cpu 15 is set
Curently this function will be used by multi queue networking devices to
calculate the irq affinity mask, such that as many local cpu's as
possible will be utilized to handle the mq device irq's.
Signed-off-by: Amir Vadai <amirv@mellanox.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This reverts commit 70a640d0da
("net/mlx4_en: Use affinity hint") and commit
c8865b64b0 ("cpumask: Utility function
to set n'th cpu - local cpu first") because these changes break
the build when SMP is disabled amongst other things.
Reported-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This function sets the n'th cpu - local cpu's first.
For example: in a 16 cores server with even cpu's local, will get the
following values:
cpumask_set_cpu_local_first(0, numa, cpumask) => cpu 0 is set
cpumask_set_cpu_local_first(1, numa, cpumask) => cpu 2 is set
...
cpumask_set_cpu_local_first(7, numa, cpumask) => cpu 14 is set
cpumask_set_cpu_local_first(8, numa, cpumask) => cpu 1 is set
cpumask_set_cpu_local_first(9, numa, cpumask) => cpu 3 is set
...
cpumask_set_cpu_local_first(15, numa, cpumask) => cpu 15 is set
Curently this function will be used by multi queue networking devices to
calculate the irq affinity mask, such that as many local cpu's as
possible will be utilized to handle the mq device irq's.
Signed-off-by: Amir Vadai <amirv@mellanox.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Switch to memblock interfaces for early memory allocator instead of
bootmem allocator. No functional change in beahvior than what it is in
current code from bootmem users points of view.
Archs already converted to NO_BOOTMEM now directly use memblock
interfaces instead of bootmem wrappers build on top of memblock. And
the archs which still uses bootmem, these new apis just fallback to
exiting bootmem APIs.
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Grygorii Strashko <grygorii.strashko@ti.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Paul Walmsley <paul@pwsan.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Tejun Heo <tj@kernel.org>
Cc: Tony Lindgren <tony@atomide.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It is strange that alloc_bootmem() returns a virtual address and
free_bootmem() requires a physical address. Anyway, free_bootmem()'s
first parameter should be physical address.
There are some call sites for free_bootmem() with virtual address. So fix
them.
[akpm@linux-foundation.org: improve free_bootmem() and free_bootmem_pate() documentation]
Signed-off-by: Joonsoo Kim <js1304@gmail.com>
Cc: Haavard Skinnemoen <hskinnemoen@gmail.com>
Cc: Hans-Christian Egtvedt <egtvedt@samfundet.no>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__any_online_cpu() is not optimal and also unnecessary. So, replace its
use by faster cpumask_* operations.
Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Venkatesh Pallipadi <venki@google.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For files only using THIS_MODULE and/or EXPORT_SYMBOL, map
them onto including export.h -- or if the file isn't even
using those, then just delete the include. Fix up any implicit
include dependencies that were being masked by module.h along
the way.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
NUMA_NO_NODE and numa_node_id() have different meanings. NUMA_NO_NODE is
obviously the recommended fallback.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Now that we set up the slab allocator earlier, we can get rid of some
alloc_bootmem_cpumask_var() calls in boot code.
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Fix slab corruption caused by alloc_cpumask_var_node() overwriting the
tail end of an off-stack cpumask.
The function zeros out cpumask bits beyond the last possible cpu. The
starting point for zeroing should be the beginning of the mask offset by a
byte count derived from the number of possible cpus. The offset was
calculated in bits instead of bytes. This resulted in overwriting the end
of the cpumask.
Signed-off-by: Jack Steiner <steiner@sgi.com>
Acked-by: Mike Travis <travis.sgi.com>
Acked-by: Ingo Molnar <mingo@elte.hu>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: <stable@kernel.org> [2.6.29.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Impact: extra safety checks during transition
When CONFIG_CPUMASKS_OFFSTACK is set, the new cpumask_ operators only
use bits up to nr_cpu_ids, not NR_CPUS. Using the old cpus_ operators
on these masks can mean accessing undefined bits.
After some discussion, Mike and I decided to err on the side of caution;
we zero the "undefined" bits in alloc_cpumask_var_node() until all the
old cpumask functions are removed.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Impact: New kerneldoc comments
Additional documentation added to all the alloc_cpumask and free_cpumask
functions.
Signed-off-by: Mike Travis <travis@sgi.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> (minor additions)
Impact: New API
This will be needed in x86 code to allocate the domain and old_domain
cpumasks on the same node as where the containing irq_cfg struct is
allocated.
(Also fixes double-dump_stack on rare CONFIG_DEBUG_PER_CPU_MAPS case)
Signed-off-by: Mike Travis <travis@sgi.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> (re-impl alloc_cpumask_var)
Impact: cleanup
Clean up based on feedback from Andrew Morton and others:
- change to inline functions instead of macros
- add __init to bootmem method
- add a missing debug check
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Impact: introduce new APIs
We want to deprecate cpumasks on the stack, as we are headed for
gynormous numbers of CPUs. Eventually, we want to head towards an
undefined 'struct cpumask' so they can never be declared on stack.
1) New cpumask functions which take pointers instead of copies.
(cpus_* -> cpumask_*)
2) Several new helpers to reduce requirements for temporary cpumasks
(cpumask_first_and, cpumask_next_and, cpumask_any_and)
3) Helpers for declaring cpumasks on or offstack for large NR_CPUS
(cpumask_var_t, alloc_cpumask_var and free_cpumask_var)
4) 'struct cpumask' for explicitness and to mark new-style code.
5) Make iterator functions stop at nr_cpu_ids (a runtime constant),
not NR_CPUS for time efficiency and for smaller dynamic allocations
in future.
6) cpumask_copy() so we can allocate less than a full cpumask eventually
(for alloc_cpumask_var), and so we can eliminate the 'struct cpumask'
definition eventually.
7) work_on_cpu() helper for doing task on a CPU, rather than saving old
cpumask for current thread and manipulating it.
8) smp_call_function_many() which is smp_call_function_mask() except
taking a cpumask pointer.
Note that this patch simply introduces the new functions and leaves
the obsolescent ones in place. This is to simplify the transition
patches.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* Increase performance for systems with large count NR_CPUS by limiting
the range of the cpumask operators that loop over the bits in a cpumask_t
variable. This removes a large amount of wasted cpu cycles.
* Add performance variants of the cpumask operators:
int cpus_weight_nr(mask) Same using nr_cpu_ids instead of NR_CPUS
int first_cpu_nr(mask) Number lowest set bit, or nr_cpu_ids
int next_cpu_nr(cpu, mask) Next cpu past 'cpu', or nr_cpu_ids
for_each_cpu_mask_nr(cpu, mask) for-loop cpu over mask using nr_cpu_ids
* Modify following to use performance variants:
#define num_online_cpus() cpus_weight_nr(cpu_online_map)
#define num_possible_cpus() cpus_weight_nr(cpu_possible_map)
#define num_present_cpus() cpus_weight_nr(cpu_present_map)
#define for_each_possible_cpu(cpu) for_each_cpu_mask_nr((cpu), ...)
#define for_each_online_cpu(cpu) for_each_cpu_mask_nr((cpu), ...)
#define for_each_present_cpu(cpu) for_each_cpu_mask_nr((cpu), ...)
* Comment added to include/linux/cpumask.h:
Note: The alternate operations with the suffix "_nr" are used
to limit the range of the loop to nr_cpu_ids instead of
NR_CPUS when NR_CPUS > 64 for performance reasons.
If NR_CPUS is <= 64 then most assembler bitmask
operators execute faster with a constant range, so
the operator will continue to use NR_CPUS.
Another consideration is that nr_cpu_ids is initialized
to NR_CPUS and isn't lowered until the possible cpus are
discovered (including any disabled cpus). So early uses
will span the entire range of NR_CPUS.
(The net effect is that for systems with 64 or less CPU's there are no
functional changes.)
For inclusion into sched-devel/latest tree.
Based on:
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6.git
+ sched-devel/latest .../mingo/linux-2.6-sched-devel.git
Cc: Paul Jackson <pj@sgi.com>
Cc: Christoph Lameter <clameter@sgi.com>
Reviewed-by: Paul Jackson <pj@sgi.com>
Reviewed-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Mike Travis <travis@sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The nr_cpu_ids value is currently only calculated in smp_init. However, it
may be needed before (SLUB needs it on kmem_cache_init!) and other kernel
components may also want to allocate dynamically sized per cpu array before
smp_init. So move the determination of possible cpus into sched_init()
where we already loop over all possible cpus early in boot.
Also initialize both nr_node_ids and nr_cpu_ids with the highest value they
could take. If we have accidental users before these values are determined
then the current valud of 0 may cause too small per cpu and per node arrays
to be allocated. If it is set to the maximum possible then we only waste
some memory for early boot users.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We frequently need the maximum number of possible processors in order to
allocate arrays for all processors. So far this was done using
highest_possible_processor_id(). However, we do need the number of
processors not the highest id. Moreover the number was so far dynamically
calculated on each invokation. The number of possible processors does not
change when the system is running. We can therefore calculate that number
once.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: Frederik Deweerdt <frederik.deweerdt@gmail.com>
Cc: Neil Brown <neilb@suse.de>
Cc: Trond Myklebust <trond.myklebust@fys.uio.no>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Qooting Adrian:
- net/sunrpc/svc.c uses highest_possible_node_id()
- include/linux/nodemask.h says highest_possible_node_id() is
out-of-line #if MAX_NUMNODES > 1
- the out-of-line highest_possible_node_id() is in lib/cpumask.c
- lib/Makefile: lib-$(CONFIG_SMP) += cpumask.o
CONFIG_ARCH_DISCONTIGMEM_ENABLE=y, CONFIG_SMP=n, CONFIG_SUNRPC=y
-> highest_possible_node_id() is used in net/sunrpc/svc.c
CONFIG_NODES_SHIFT defined and > 0
-> include/linux/numa.h: MAX_NUMNODES > 1
-> compile error
The bug is not present on architectures where ARCH_DISCONTIGMEM_ENABLE
depends on NUMA (but m32r isn't the only affected architecture).
So move the function into page_alloc.c
Cc: Adrian Bunk <bunk@stusta.de>
Cc: Paul Jackson <pj@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
text data bss dec hex filename
before: 3605597 1363528 363328 5332453 515de5 vmlinux
after: 3605295 1363612 363200 5332107 515c8b vmlinux
218 bytes saved.
Also, optimise any_online_cpu() out of existence on CONFIG_SMP=n.
This function seems inefficient. Can't we simply AND the two masks, then use
find_first_bit()?
Cc: Paul Jackson <pj@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Shrinks the only caller (net/bridge/netfilter/ebtables.c) by 174 bytes.
Also, optimise highest_possible_processor_id() out of existence on
CONFIG_SMP=n.
Cc: Paul Jackson <pj@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>