Clang warns:
fs/notify/fanotify/fanotify.c:28:23: warning: self-comparison always
evaluates to true [-Wtautological-compare]
return fsid1->val[0] == fsid1->val[0] && fsid2->val[1] == fsid2->val[1];
^
fs/notify/fanotify/fanotify.c:28:57: warning: self-comparison always
evaluates to true [-Wtautological-compare]
return fsid1->val[0] == fsid1->val[0] && fsid2->val[1] == fsid2->val[1];
^
2 warnings generated.
The intention was clearly to compare val[0] and val[1] in the two
different fsid structs. Fix it otherwise this function always returns
true.
Fixes: afc894c784 ("fanotify: Store fanotify handles differently")
Link: https://github.com/ClangBuiltLinux/linux/issues/952
Link: https://lore.kernel.org/r/20200327171030.30625-1-natechancellor@gmail.com
Signed-off-by: Nathan Chancellor <natechancellor@gmail.com>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Jan Kara <jack@suse.cz>
When encryption is used, smb2_transform_hdr is defined on the stack and is
passed to the transport. This doesn't work with RDMA as the buffer needs to
be DMA'ed.
Fix it by using kmalloc.
Signed-off-by: Long Li <longli@microsoft.com>
Signed-off-by: Steve French <stfrench@microsoft.com>
When a RDMA packet is received and server is extending send credits, we should
check and unblock senders immediately in IRQ context. Doing it in a worker
queue causes unnecessary delay and doesn't save much CPU on the receive path.
Signed-off-by: Long Li <longli@microsoft.com>
Signed-off-by: Steve French <stfrench@microsoft.com>
The packet size needs to take account of SMB2 header size and possible
encryption header size. This is only done when signing is used and it is for
RDMA send/receive, not read/write.
Also remove the dead SMBD code in smb2_negotiate_r(w)size.
Signed-off-by: Long Li <longli@microsoft.com>
Signed-off-by: Steve French <stfrench@microsoft.com>
Improve readability and maintainability by replacing a hardcoded string
allocation and formatting by the use of the kasprintf() helper.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Richard Weinberger <richard@nod.at>
ext4_fill_super doublechecks the number of groups before mounting; if
that check fails, the resulting error message prints the group count
from the ext4_sb_info sbi, which hasn't been set yet. Print the freshly
computed group count instead (which at that point has just been computed
in "blocks_count").
Signed-off-by: Josh Triplett <josh@joshtriplett.org>
Fixes: 4ec1102813 ("ext4: Add sanity checks for the superblock before mounting the filesystem")
Link: https://lore.kernel.org/r/8b957cd1513fcc4550fe675c10bcce2175c33a49.1585431964.git.josh@joshtriplett.org
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
If ext4_fill_super detects an invalid number of inodes per group, the
resulting error message printed the number of blocks per group, rather
than the number of inodes per group. Fix it to print the correct value.
Fixes: cd6bb35bf7 ("ext4: use more strict checks for inodes_per_block on mount")
Link: https://lore.kernel.org/r/8be03355983a08e5d4eed480944613454d7e2550.1585434649.git.josh@joshtriplett.org
Reviewed-by: Andreas Dilger <adilger@dilger.ca>
Signed-off-by: Josh Triplett <josh@joshtriplett.org>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Currently on calling echo 3 > drop_caches on host machine, we see
FS corruption in the guest. This happens on Power machine where
blocksize < pagesize.
So as a temporary workaound don't enable dioread_nolock by default
for blocksize < pagesize until we identify the root cause.
Also emit a warning msg in case if this mount option is manually
enabled for blocksize < pagesize.
Reported-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Ritesh Harjani <riteshh@linux.ibm.com>
Link: https://lore.kernel.org/r/20200327200744.12473-1-riteshh@linux.ibm.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
If the inode buffer backing a particular inode is locked,
xfs_iflush() returns -EAGAIN and xfs_inode_item_push() skips the
inode. It still returns success to xfsaild, however, which bypasses
the xfsaild backoff heuristic. Update xfs_inode_item_push() to
return locked status if the inode buffer couldn't be locked.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
A dquot flush currently blocks on the buffer lock for the underlying
dquot buffer. In turn, this causes xfsaild to block rather than
continue processing other items in the meantime. Update
xfs_qm_dqflush() to trylock the buffer, similar to how inode buffers
are handled, and return -EAGAIN if the lock fails. Fix up any
callers that don't currently handle the error properly.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Since the "no-allocation" reservations for file creations has
been removed, the resblks value should be larger than zero, so
remove unnecessary ternary conditional.
Signed-off-by: Kaixu Xia <kaixuxia@tencent.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
[darrick: s/judgment/ternary/]
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
If the FLUSH_SYNC flag is set, nfs_initiate_pgio() will currently
wait for completion, and then return the status of the I/O operation.
What we actually want to report in nfs_pageio_doio() is whether or
not the RPC call was launched successfully, whereas actual I/O
status is intended handled in the reply callbacks.
Since FLUSH_SYNC is never set by any of the callers anyway, let's
just remove that code altogether.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Bit spinlocks are problematic if PREEMPT_RT is enabled, because they
disable preemption, which is undesired for latency reasons and breaks when
regular spinlocks are taken within the bit_spinlock locked region because
regular spinlocks are converted to 'sleeping spinlocks' on RT.
PREEMPT_RT replaced the bit spinlocks with regular spinlocks to avoid this
problem. The replacement was done conditionaly at compile time, but
Christoph requested to do an unconditional conversion.
Jan suggested to move the spinlock into a existing padding hole which
avoids a size increase of struct buffer_head on production kernels.
As a benefit the lock gains lockdep coverage.
[ bigeasy: Remove the wrapper and use always spinlock_t and move it into
the padding hole ]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Christoph Hellwig <hch@infradead.org>
Link: https://lkml.kernel.org/r/20191118132824.rclhrbujqh4b4g4d@linutronix.de
Move from requesting only full file layout segments, to requesting
layout segments that match our I/O size. This means the server is
still free to return a full file layout, but we will no longer
error out if it does not.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
When starting to read or write with a layout segment, check that the
range matches our request.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Check that the number of mirrors, and the mirror information matches
before deciding to merge layout segments in pNFS/flexfiles.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Fix up pnfs_layout_mark_request_commit() to alway reschedule the write
if the layout segment is invalid. Also minor cleanup.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Move the pNFS commit related operations into a separate structure
that can be carried by the pnfs_ds_commit_info.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Lift filelayout_search_commit_reqs() into the generic pnfs/nfs code,
and add support for commit arrays.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Enable adding and lookup of per-layout segment commits in filelayout
and flexfilelayout.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Ensure that both the file and flexfiles layout types clean up when
freeing the layout segments.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Add support for scanning the full list of per-layout segment commit
arrays to nfs_clear_pnfs_ds_commit_verifiers().
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Instead of trying to save the commit verifiers and checking them against
previous writes, adopt the same strategy as for buffered writes, of
just checking the verifiers at commit time.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Add a pNFS callback to allow the O_DIRECT code to release the DS
commitinfo when freeing the dreq.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Add support for scanning the full list of per-layout segment commit
arrays to pnfs_generic_commit_pagelist().
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Add support for scanning the full list of per-layout segment commit
arrays to pnfs_generic_recover_commit_reqs().
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Add support for scanning the full list of per-layout segment commit
arrays to pnfs_generic_scan_commit_lists()
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
When we have multiple layout segments with different lists of mirrored
data, we need to track the commits on a per layout segment basis.
This patch adds a list to support this tracking in struct
pnfs_ds_commit_info.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Function gfs2_recover_func grabs the sd_log_flush_lock rw_semaphore in
write mode. This is unnecessary because we only need to prevent log flush
from using sd_log_bio bio while it does. Therefore, a read lock will be
enough. This is a small step in cleaning up log flush.
Signed-off-by: Bob Peterson <rpeterso@redhat.com>
Before this patch, if the ail1 flush got stuck for some reason, there
were no clues as to why. This patch introduces a check for getting
stuck for more than a minute, and if it happens, it dumps the items
still remaining on the ail1 list.
Signed-off-by: Bob Peterson <rpeterso@redhat.com>
In function try_rgrp_unlink, we added a temporary lock of the
sd_log_flush_lock while searching the bitmaps. This protected us from
problems in which dinodes being freed were still in a state of flux
because the rgrp was in an active transaction. It was a kludge.
Now that we've straightened out the code for inode eviction, deletes,
and all the recovery mess, we no longer need this kludge.
This patch removes it, and should improve performance.
Signed-off-by: Bob Peterson <rpeterso@redhat.com>
We now get the quota data structure when opening a file writable and put it
when closing that writable file descriptor, so there no longer is a need for
gfs2_qa_{get,put} while we're holding a writable file descriptor.
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Signed-off-by: Bob Peterson <rpeterso@redhat.com>
Keeping reservations and quotas separate helps reviewing the code.
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Signed-off-by: Bob Peterson <rpeterso@redhat.com>
Before this patch, multiple users called gfs2_qa_alloc which allocated
a qadata structure to the inode, if quotas are turned on. Later, in
file close or evict, the structure was deleted with gfs2_qa_delete.
But there can be several competing processes who need access to the
structure. There were races between file close (release) and the others.
Thus, a release could delete the structure out from under a process
that relied upon its existence. For example, chown.
This patch changes the management of the qadata structures to be
a get/put scheme. Function gfs2_qa_alloc has been changed to gfs2_qa_get
and if the structure is allocated, the count essentially starts out at
1. Function gfs2_qa_delete has been renamed to gfs2_qa_put, and the
last guy to decrement the count to 0 frees the memory.
Signed-off-by: Bob Peterson <rpeterso@redhat.com>
Before this patch, multiple callers called gfs2_rsqa_alloc to force
the existence of a reservations structure and a quota data structure
if needed. However, now the reservations are handled separately, so
the quota data is only the quota data. So we eliminate the one in
favor of just calling gfs2_qa_alloc directly.
Signed-off-by: Bob Peterson <rpeterso@redhat.com>
Replace open-coded versions of list_first_entry and list_last_entry with those
functions.
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Signed-off-by: Bob Peterson <rpeterso@redhat.com>
When allocating a new inode, mark the iopen glock holder as uninitialized to
make sure gfs2_evict_inode won't fail after an incomplete create or lookup. In
gfs2_evict_inode, allow the inode glock to be NULL and remove the duplicate
iopen glock teardown code. In gfs2_inode_lookup, don't tear down things that
gfs2_evict_inode will already tear down.
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Signed-off-by: Bob Peterson <rpeterso@redhat.com>
It clarifies the code slightly to use SMB2_SIGNATURE_SIZE
define rather than 16.
Suggested-by: Henning Schild <henning.schild@siemens.com>
Signed-off-by: Steve French <stfrench@microsoft.com>
So far, with xino=auto, we only enable xino if we know that all
underlying filesystem use 32bit inode numbers.
When users configure overlay with xino=auto, they already declare that
they are ready to handle 64bit inode number from overlay.
It is a very common case, that underlying filesystem uses 64bit ino,
but rarely or never uses the high inode number bits (e.g. tmpfs, xfs).
Leaving it for the users to declare high ino bits are unused with
xino=on is not a recipe for many users to enjoy the benefits of xino.
There appears to be very little reason not to enable xino when users
declare xino=auto even if we do not know how many bits underlying
filesystem uses for inode numbers.
In the worst case of xino bits overflow by real inode number, we
already fall back to the non-xino behavior - real inode number with
unique pseudo dev or to non persistent inode number and overlay st_dev
(for directories).
The only annoyance from auto enabling xino is that xino bits overflow
emits a warning to kmsg. Suppress those warnings unless users explicitly
asked for xino=on, suggesting that they expected high ino bits to be
unused by underlying filesystem.
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
When xino feature is enabled and a real directory inode number overflows
the lower xino bits, we cannot map this directory inode number to a unique
and persistent inode number and we fall back to the real inode st_ino and
overlay st_dev.
The real inode st_ino with high bits may collide with a lower inode number
on overlay st_dev that was mapped using xino.
To avoid possible collision with legitimate xino values, map a non
persistent inode number to a dedicated range in the xino address space.
The dedicated range is created by adding one more bit to the number of
reserved high xino bits. We could have added just one more fsid, but that
would have had the undesired effect of changing persistent overlay inode
numbers on kernel or require more complex xino mapping code.
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
There is no reason to deplete the system's global get_next_ino() pool for
overlay non-persistent inode numbers and there is no reason at all to
allocate non-persistent inode numbers for non-directories.
For non-directories, it is much better to leave i_ino the same as real
i_ino, to be consistent with st_ino/d_ino.
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Changes to underlying layers should not cause WARN_ON(), but this repro
does:
mkdir w l u mnt
sudo mount -t overlay -o workdir=w,lowerdir=l,upperdir=u overlay mnt
touch mnt/h
ln u/h u/k
rm -rf mnt/k
rm -rf mnt/h
dmesg
------------[ cut here ]------------
WARNING: CPU: 1 PID: 116244 at fs/inode.c:302 drop_nlink+0x28/0x40
After upper hardlinks were added while overlay is mounted, unlinking all
overlay hardlinks drops overlay nlink to zero before all upper inodes
are unlinked.
After unlink/rename prevent i_nlink from going to zero if there are still
hashed aliases (i.e. cached hard links to the victim) remaining.
Reported-by: Phasip <phasip@gmail.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
In commit f467cad95f, I added the ability to force a recalculation of
the filesystem summary counters if they seemed incorrect. This was done
(not entirely correctly) by tweaking the log code to write an unmount
record without the UMOUNT_TRANS flag set. At next mount, the log
recovery code will fail to find the unmount record and go into recovery,
which triggers the recalculation.
What actually gets written to the log is what ought to be an unmount
record, but without any flags set to indicate what kind of record it
actually is. This worked to trigger the recalculation, but we shouldn't
write bogus log records when we could simply write nothing.
Fixes: f467cad95f ("xfs: force summary counter recalc at next mount")
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
There's lots of indent in this code which makes it a bit hard to
follow. We are also going to completely rework the inode lookup code
as part of the inode reclaim rework, so factor out the inode lookup
code from the inode cluster freeing code.
Based on prototype code from Christoph Hellwig.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
We currently wake anything waiting on the log tail to move whenever
the log item at the tail of the log is removed. Historically this
was fine behaviour because there were very few items at any given
LSN. But with delayed logging, there may be thousands of items at
any given LSN, and we can't move the tail until they are all gone.
Hence if we are removing them in near tail-first order, we might be
waking up processes waiting on the tail LSN to change (e.g. log
space waiters) repeatedly without them being able to make progress.
This also occurs with the new sync push waiters, and can result in
thousands of spurious wakeups every second when under heavy direct
reclaim pressure.
To fix this, check that the tail LSN has actually changed on the
AIL before triggering wakeups. This will reduce the number of
spurious wakeups when doing bulk AIL removal and make this code much
more efficient.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Factor the common AIL deletion code that does all the wakeups into a
helper so we only have one copy of this somewhat tricky code to
interface with all the wakeups necessary when the LSN of the log
tail changes.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The XFS inode item slab actually reclaimed by inode shrinker
callbacks from the memory reclaim subsystem. These should be marked
as reclaimable so the mm subsystem has the full picture of how much
memory it can actually reclaim from the XFS slab caches.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The buffer cache shrinker frees more than just the xfs_buf slab
objects - it also frees the pages attached to the buffers. Make sure
the memory reclaim code accounts for this memory being freed
correctly, similar to how the inode shrinker accounts for pages
freed from the page cache due to mapping invalidation.
We also need to make sure that the mm subsystem knows these are
reclaimable objects. We provide the memory reclaim subsystem with a
a shrinker to reclaim xfs_bufs, so we should really mark the slab
that way.
We also have a lot of xfs_bufs in a busy system, spread them around
like we do inodes.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Running metadata intensive workloads, I've been seeing the AIL
pushing getting stuck on pinned buffers and triggering log forces.
The log force is taking a long time to run because the log IO is
getting throttled by wbt_wait() - the block layer writeback
throttle. It's being throttled because there is a huge amount of
metadata writeback going on which is filling the request queue.
IOWs, we have a priority inversion problem here.
Mark the log IO bios with REQ_IDLE so they don't get throttled
by the block layer writeback throttle. When we are forcing the CIL,
we are likely to need to to tens of log IOs, and they are issued as
fast as they can be build and IO completed. Hence REQ_IDLE is
appropriate - it's an indication that more IO will follow shortly.
And because we also set REQ_SYNC, the writeback throttle will now
treat log IO the same way it treats direct IO writes - it will not
throttle them at all. Hence we solve the priority inversion problem
caused by the writeback throttle being unable to distinguish between
high priority log IO and background metadata writeback.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
In certain situations the background CIL push can be indefinitely
delayed. While we have workarounds from the obvious cases now, it
doesn't solve the underlying issue. This issue is that there is no
upper limit on the CIL where we will either force or wait for
a background push to start, hence allowing the CIL to grow without
bound until it consumes all log space.
To fix this, add a new wait queue to the CIL which allows background
pushes to wait for the CIL context to be switched out. This happens
when the push starts, so it will allow us to block incoming
transaction commit completion until the push has started. This will
only affect processes that are running modifications, and only when
the CIL threshold has been significantly overrun.
This has no apparent impact on performance, and doesn't even trigger
until over 45 million inodes had been created in a 16-way fsmark
test on a 2GB log. That was limiting at 64MB of log space used, so
the active CIL size is only about 3% of the total log in that case.
The concurrent removal of those files did not trigger the background
sleep at all.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The current CIL size aggregation limit is 1/8th the log size. This
means for large logs we might be aggregating at least 250MB of dirty objects
in memory before the CIL is flushed to the journal. With CIL shadow
buffers sitting around, this means the CIL is often consuming >500MB
of temporary memory that is all allocated under GFP_NOFS conditions.
Flushing the CIL can take some time to do if there is other IO
ongoing, and can introduce substantial log force latency by itself.
It also pins the memory until the objects are in the AIL and can be
written back and reclaimed by shrinkers. Hence this threshold also
tends to determine the minimum amount of memory XFS can operate in
under heavy modification without triggering the OOM killer.
Modify the CIL space limit to prevent such huge amounts of pinned
metadata from aggregating. We can have 2MB of log IO in flight at
once, so limit aggregation to 16x this size. This threshold was
chosen as it little impact on performance (on 16-way fsmark) or log
traffic but pins a lot less memory on large logs especially under
heavy memory pressure. An aggregation limit of 8x had 5-10%
performance degradation and a 50% increase in log throughput for
the same workload, so clearly that was too small for highly
concurrent workloads on large logs.
This was found via trace analysis of AIL behaviour. e.g. insertion
from a single CIL flush:
xfs_ail_insert: old lsn 0/0 new lsn 1/3033090 type XFS_LI_INODE flags IN_AIL
$ grep xfs_ail_insert /mnt/scratch/s.t |grep "new lsn 1/3033090" |wc -l
1721823
$
So there were 1.7 million objects inserted into the AIL from this
CIL checkpoint, the first at 2323.392108, the last at 2325.667566 which
was the end of the trace (i.e. it hadn't finished). Clearly a major
problem.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Separate out the unmount record writing from the rest of the
ticket and log state futzing necessary to make it work. This is
a no-op, just makes the code cleaner and places the unmount record
formatting and writing alongside the commit record formatting and
writing code.
We can also get rid of the ticket flag clearing before the
xlog_write() call because it no longer cares about the state of
XLOG_TIC_INITED.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
xlog_write_done() is just a thin wrapper around xlog_commit_record(), so
they can be merged together easily.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Remove xlog_ticket_done and just call the renamed low-level helpers for
ungranting or regranting log space directly. To make that a little
the reference put on the ticket and all tracing is moved into the actual
helpers.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
It is not longer used or checked by anything, so remove the last
traces from the log ticket code.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
xfs_log_done() does two separate things. Firstly, it triggers commit
records to be written for permanent transactions, and secondly it
releases or regrants transaction reservation space.
Since delayed logging was introduced, transactions no longer write
directly to the log, hence they never have the XLOG_TIC_INITED flag
cleared on them. Hence transactions never write commit records to
the log and only need to modify reservation space.
Split up xfs_log_done into two parts, and only call the parts of the
operation needed for the context xfs_log_done() is currently being
called from.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Commit and unmount records records do not need start records to be
written, so rearrange the logic in xlog_write() to remove the need
to check for XLOG_TIC_INITED to determine if we should account for
the space used by a start record.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
The xlog_write() function iterates over iclogs until it completes
writing all the log vectors passed in. The ticket tracks whether
a start record has been written or not, so only the first iclog gets
a start record. We only ever pass single use tickets to
xlog_write() so we only ever need to write a start record once per
xlog_write() call.
Hence we don't need to store whether we should write a start record
in the ticket as the callers provide all the information we need to
determine if a start record should be written. For the moment, we
have to ensure that we clear the XLOG_TIC_INITED appropriately so
the code in xfs_log_done() still works correctly for committing
transactions.
(darrick: Note the slight behavior change that we always deduct the
size of the op header from the ticket, even for unmount records)
Signed-off-by: Dave Chinner <dchinner@redhat.com>
[hch: pass an explicit need_start_rec argument]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Validate the geometry of the realtime geometry when we mount the
filesystem, so that we don't abruptly shut down the filesystem later on.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Cleanup io_alloc_async_ctx() a bit, add a new __io_alloc_async_ctx(),
so io_setup_async_rw() won't need to check whether async_ctx is true
or false again.
Reviewed-by: Stefano Garzarella <sgarzare@redhat.com>
Signed-off-by: Xiaoguang Wang <xiaoguang.wang@linux.alibaba.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
A proper way to handle O_NONBLOCK would be making the requests and
responses happen asynchronously, but this would require serious code
refactoring.
Link: http://lkml.kernel.org/r/20200205003457.24340-2-l29ah@cock.li
Signed-off-by: Sergey Alirzaev <l29ah@cock.li>
Signed-off-by: Dominique Martinet <dominique.martinet@cea.fr>
Adjust indentation from spaces to tab (+optional two spaces) as in
coding style with command like:
$ sed -e 's/^ /\t/' -i */Kconfig
Link: http://lkml.kernel.org/r/20191120134340.16770-1-krzk@kernel.org
Signed-off-by: Krzysztof Kozlowski <krzk@kernel.org>
Signed-off-by: Dominique Martinet <dominique.martinet@cea.fr>
When it's probing all of a fileserver's interfaces to find which one is
best to use, afs_do_probe_fileserver() takes a lock on the server record
and notes the pointer to the address list.
It doesn't, however, pin the address list, so as soon as it drops the
lock, there's nothing to stop the address list from being freed under
us.
Fix this by taking a ref on the address list inside the locked section
and dropping it at the end of the function.
Fixes: 3bf0fb6f33 ("afs: Probe multiple fileservers simultaneously")
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Marc Dionne <marc.dionne@auristor.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
leak fixes, marked for stable.
-----BEGIN PGP SIGNATURE-----
iQFHBAABCAAxFiEEydHwtzie9C7TfviiSn/eOAIR84sFAl59DCwTHGlkcnlvbW92
QGdtYWlsLmNvbQAKCRBKf944AhHzi5oGB/943a7gIBV52PD3MGCnI8RWjgHkk3d0
en2JNI6i7hf7GD7GplMGkc0D8INBJhCZo1mwzX36QXYA3BeXKARkNXvEE+AZ4dX5
XbUiPE5WuUwxcT9sE9rTiCurx1ToN/XUlA27Vbt9J67U08w5BjJ3utO1LuW7z2ME
NPx6aw6tdwIEeNJBo4ge8y9vPKevtXqhkCbzSb2kn+tMhoMPuJ3RIj8kWIF7mYWZ
ofwOFoDnOfQuH+9ZA/mT4jL7ifR0am5QptHSD9kxge2mKlc0pmoABZK6sWNPOslg
jQaEiefH77K/IxRyAsQNM7iHbUzKpZGbqAHx92MU0redUjUWNdCDGUmF
=c01Y
-----END PGP SIGNATURE-----
Merge tag 'ceph-for-5.6-rc8' of git://github.com/ceph/ceph-client
Pull ceph fixes from Ilya Dryomov:
"A patch for a rather old regression in fullness handling and two
memory leak fixes, marked for stable"
* tag 'ceph-for-5.6-rc8' of git://github.com/ceph/ceph-client:
ceph: fix memory leak in ceph_cleanup_snapid_map()
libceph: fix alloc_msg_with_page_vector() memory leaks
ceph: check POOL_FLAG_FULL/NEARFULL in addition to OSDMAP_FULL/NEARFULL
I noticed that fsfreeze can take a very long time to freeze an XFS if
there happens to be a GETFSMAP caller running in the background. I also
happened to notice the following in dmesg:
------------[ cut here ]------------
WARNING: CPU: 2 PID: 43492 at fs/xfs/xfs_super.c:853 xfs_quiesce_attr+0x83/0x90 [xfs]
Modules linked in: xfs libcrc32c ip6t_REJECT nf_reject_ipv6 ipt_REJECT nf_reject_ipv4 ip_set_hash_ip ip_set_hash_net xt_tcpudp xt_set ip_set_hash_mac ip_set nfnetlink ip6table_filter ip6_tables bfq iptable_filter sch_fq_codel ip_tables x_tables nfsv4 af_packet [last unloaded: xfs]
CPU: 2 PID: 43492 Comm: xfs_io Not tainted 5.6.0-rc4-djw #rc4
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.10.2-1ubuntu1 04/01/2014
RIP: 0010:xfs_quiesce_attr+0x83/0x90 [xfs]
Code: 7c 07 00 00 85 c0 75 22 48 89 df 5b e9 96 c1 00 00 48 c7 c6 b0 2d 38 a0 48 89 df e8 57 64 ff ff 8b 83 7c 07 00 00 85 c0 74 de <0f> 0b 48 89 df 5b e9 72 c1 00 00 66 90 0f 1f 44 00 00 41 55 41 54
RSP: 0018:ffffc900030f3e28 EFLAGS: 00010202
RAX: 0000000000000001 RBX: ffff88802ac54000 RCX: 0000000000000000
RDX: 0000000000000000 RSI: ffffffff81e4a6f0 RDI: 00000000ffffffff
RBP: ffff88807859f070 R08: 0000000000000001 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000010 R12: 0000000000000000
R13: ffff88807859f388 R14: ffff88807859f4b8 R15: ffff88807859f5e8
FS: 00007fad1c6c0fc0(0000) GS:ffff88807e000000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f0c7d237000 CR3: 0000000077f01003 CR4: 00000000001606a0
Call Trace:
xfs_fs_freeze+0x25/0x40 [xfs]
freeze_super+0xc8/0x180
do_vfs_ioctl+0x70b/0x750
? __fget_files+0x135/0x210
ksys_ioctl+0x3a/0xb0
__x64_sys_ioctl+0x16/0x20
do_syscall_64+0x50/0x1a0
entry_SYSCALL_64_after_hwframe+0x49/0xbe
These two things appear to be related. The assertion trips when another
thread initiates a fsmap request (which uses an empty transaction) after
the freezer waited for m_active_trans to hit zero but before the the
freezer executes the WARN_ON just prior to calling xfs_log_quiesce.
The lengthy delays in freezing happen because the freezer calls
xfs_wait_buftarg to clean out the buffer lru list. Meanwhile, the
GETFSMAP caller is continuing to grab and release buffers, which means
that it can take a very long time for the buffer lru list to empty out.
We fix both of these races by calling sb_start_write to obtain freeze
protection while using empty transactions for GETFSMAP and for metadata
scrubbing. The other two users occur during mount, during which time we
cannot fs freeze.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
If the bio_add_page() call fails, we proceed to write out a
partially constructed log buffer. This corrupts the physical log
such that log recovery is not possible. Worse, persistent
occurrences of this error eventually lead to a BUG_ON() failure in
bio_split() as iclogs wrap the end of the physical log, which
triggers log recovery on subsequent mount.
Rather than warn about writing out a corrupted log buffer, shutdown
the fs as is done for any log I/O related error. This preserves the
consistency of the physical log such that log recovery succeeds on a
subsequent mount. Note that this was observed on a 64k page debug
kernel without upstream commit 59bb47985c ("mm, sl[aou]b:
guarantee natural alignment for kmalloc(power-of-two)"), which
demonstrated frequent iclog bio overflows due to unaligned (slab
allocated) iclog data buffers.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
When we're checking bestfree information in directory blocks, always
drop the block buffer at the end of the function. We should always
release resources when we're done using them.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
The dirattr btree checking code uses the altpath substructure of the
dirattr state structure to check the sibling pointers of dir/attr tree
blocks. At the end of sibling checks, xfs_da3_path_shift could have
changed multiple levels of buffer pointers in the altpath structure.
Although we release the leaf level buffer, this isn't enough -- we also
need to release the node buffers that are unique to the altpath.
Not releasing all of the altpath buffers leaves them locked to the
transaction. This is suboptimal because we should release resources
when we don't need them anymore. Fix the function to loop all levels of
the altpath, and fix the return logic so that we always run the loop.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
When quotacheck runs, it zeroes all the timer fields in every dquot.
Unfortunately, it also does this to the root dquot, which erases any
preconfigured grace intervals and warning limits that the administrator
may have set. Worse yet, the incore copies of those variables remain
set. This cache coherence problem manifests itself as the grace
interval mysteriously being reset back to the defaults at the /next/
mount.
Fix it by not resetting the root disk dquot's timer and warning fields.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
The patch "ext4: make dioread_nolock the default" (244adf6426) causes
generic/422 to fail when run in kvm-xfstests' ext3conv test case. This
applies both the dioread_nolock and nodelalloc mount options, a
combination not previously tested by kvm-xfstests. The failure occurs
because the dioread_nolock code path splits a previously fallocated
multiblock extent into a series of single block extents when overwriting
a portion of that extent. That causes allocation of an extent tree leaf
node and a reshuffling of extents. Once writeback is completed, the
individual extents are recombined into a single extent, the extent is
moved again, and the leaf node is deleted. The difference in block
utilization before and after writeback due to the leaf node triggers the
failure.
The original reason for this behavior was to avoid ENOSPC when handling
I/O completions during writeback in the dioread_nolock code paths when
delayed allocation is disabled. It may no longer be necessary, because
code was added in the past to reserve extra space to solve this problem
when delayed allocation is enabled, and this code may also apply when
delayed allocation is disabled. Until this can be verified, don't use
the dioread_nolock code paths if delayed allocation is disabled.
Signed-off-by: Eric Whitney <enwlinux@gmail.com>
Link: https://lore.kernel.org/r/20200319150028.24592-1-enwlinux@gmail.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Under some circumstances we may encounter a filesystem error on a
read-only block device, and if we try to save the error info to the
superblock and commit it, we'll wind up with a noisy error and
backtrace, i.e.:
[ 3337.146838] EXT4-fs error (device pmem1p2): ext4_get_journal_inode:4634: comm mount: inode #0: comm mount: iget: illegal inode #
------------[ cut here ]------------
generic_make_request: Trying to write to read-only block-device pmem1p2 (partno 2)
WARNING: CPU: 107 PID: 115347 at block/blk-core.c:788 generic_make_request_checks+0x6b4/0x7d0
...
To avoid this, commit the error info in the superblock only if the
block device is writable.
Reported-by: Ritesh Harjani <riteshh@linux.ibm.com>
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Andreas Dilger <adilger@dilger.ca>
Link: https://lore.kernel.org/r/4b6e774d-cc00-3469-7abb-108eb151071a@sandeen.net
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
When ext4 is running on a filesystem without a journal, it tries not to
reuse recently deleted inodes to provide better chances for filesystem
recovery in case of crash. However this logic forbids reuse of freed
inodes for up to 5 minutes and especially for filesystems with smaller
number of inodes can lead to ENOSPC errors returned when allocating new
inodes.
Fix the problem by allowing to reuse recently deleted inode if there's
no other inode free in the scanned range.
Signed-off-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20200318121317.31941-1-jack@suse.cz
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Refactor pnfs_generic_commit_pagelist() to simplify the conversion
to layout segment based commit lists.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Just allocate the array at the end of the layout segment structure,
instead of allocating it as a separate array of pointers.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Overlapping header include additions in macsec.c
A bug fix in 'net' overlapping with the removal of 'version'
string in ena_netdev.c
Overlapping test additions in selftests Makefile
Overlapping PCI ID table adjustments in iwlwifi driver.
Signed-off-by: David S. Miller <davem@davemloft.net>
Report event FAN_DIR_MODIFY with name in a variable length record similar
to how fid's are reported. With name info reporting implemented, setting
FAN_DIR_MODIFY in mark mask is now allowed.
When events are reported with name, the reported fid identifies the
directory and the name follows the fid. The info record type for this
event info is FAN_EVENT_INFO_TYPE_DFID_NAME.
For now, all reported events have at most one info record which is
either FAN_EVENT_INFO_TYPE_FID or FAN_EVENT_INFO_TYPE_DFID_NAME (for
FAN_DIR_MODIFY). Later on, events "on child" will report both records.
There are several ways that an application can use this information:
1. When watching a single directory, the name is always relative to
the watched directory, so application need to fstatat(2) the name
relative to the watched directory.
2. When watching a set of directories, the application could keep a map
of dirfd for all watched directories and hash the map by fid obtained
with name_to_handle_at(2). When getting a name event, the fid in the
event info could be used to lookup the base dirfd in the map and then
call fstatat(2) with that dirfd.
3. When watching a filesystem (FAN_MARK_FILESYSTEM) or a large set of
directories, the application could use open_by_handle_at(2) with the fid
in event info to obtain dirfd for the directory where event happened and
call fstatat(2) with this dirfd.
The last option scales better for a large number of watched directories.
The first two options may be available in the future also for non
privileged fanotify watchers, because open_by_handle_at(2) requires
the CAP_DAC_READ_SEARCH capability.
Link: https://lore.kernel.org/r/20200319151022.31456-15-amir73il@gmail.com
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
For FAN_DIR_MODIFY event, allocate a variable size event struct to store
the dir entry name along side the directory file handle.
At this point, name info reporting is not yet implemented, so trying to
set FAN_DIR_MODIFY in mark mask will return -EINVAL.
Link: https://lore.kernel.org/r/20200319151022.31456-14-amir73il@gmail.com
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Pull networking fixes from David Miller:
1) Fix deadlock in bpf_send_signal() from Yonghong Song.
2) Fix off by one in kTLS offload of mlx5, from Tariq Toukan.
3) Add missing locking in iwlwifi mvm code, from Avraham Stern.
4) Fix MSG_WAITALL handling in rxrpc, from David Howells.
5) Need to hold RTNL mutex in tcindex_partial_destroy_work(), from Cong
Wang.
6) Fix producer race condition in AF_PACKET, from Willem de Bruijn.
7) cls_route removes the wrong filter during change operations, from
Cong Wang.
8) Reject unrecognized request flags in ethtool netlink code, from
Michal Kubecek.
9) Need to keep MAC in reset until PHY is up in bcmgenet driver, from
Doug Berger.
10) Don't leak ct zone template in act_ct during replace, from Paul
Blakey.
11) Fix flushing of offloaded netfilter flowtable flows, also from Paul
Blakey.
12) Fix throughput drop during tx backpressure in cxgb4, from Rahul
Lakkireddy.
13) Don't let a non-NULL skb->dev leave the TCP stack, from Eric
Dumazet.
14) TCP_QUEUE_SEQ socket option has to update tp->copied_seq as well,
also from Eric Dumazet.
15) Restrict macsec to ethernet devices, from Willem de Bruijn.
16) Fix reference leak in some ethtool *_SET handlers, from Michal
Kubecek.
17) Fix accidental disabling of MSI for some r8169 chips, from Heiner
Kallweit.
* git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net: (138 commits)
net: Fix CONFIG_NET_CLS_ACT=n and CONFIG_NFT_FWD_NETDEV={y, m} build
net: ena: Add PCI shutdown handler to allow safe kexec
selftests/net/forwarding: define libs as TEST_PROGS_EXTENDED
selftests/net: add missing tests to Makefile
r8169: re-enable MSI on RTL8168c
net: phy: mdio-bcm-unimac: Fix clock handling
cxgb4/ptp: pass the sign of offset delta in FW CMD
net: dsa: tag_8021q: replace dsa_8021q_remove_header with __skb_vlan_pop
net: cbs: Fix software cbs to consider packet sending time
net/mlx5e: Do not recover from a non-fatal syndrome
net/mlx5e: Fix ICOSQ recovery flow with Striding RQ
net/mlx5e: Fix missing reset of SW metadata in Striding RQ reset
net/mlx5e: Enhance ICOSQ WQE info fields
net/mlx5_core: Set IB capability mask1 to fix ib_srpt connection failure
selftests: netfilter: add nfqueue test case
netfilter: nft_fwd_netdev: allow to redirect to ifb via ingress
netfilter: nft_fwd_netdev: validate family and chain type
netfilter: nft_set_rbtree: Detect partial overlaps on insertion
netfilter: nft_set_rbtree: Introduce and use nft_rbtree_interval_start()
netfilter: nft_set_pipapo: Separate partial and complete overlap cases on insertion
...
A single fix in this pull request to correctly handle the size of
read-only zone files (from me).
Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com>
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQSRPv8tYSvhwAzJdzjdoc3SxdoYdgUCXnrJJAAKCRDdoc3SxdoY
dgZXAQDK88T4sdtFq1Fl1PuP+oyzHml+xgNo0djZQOdicnD6qQD8CgMGDFQQG4dv
Ral+67qEyvUABGt0Vkmy29wuN8El6wQ=
=+1D9
-----END PGP SIGNATURE-----
Merge tag 'zonefs-5.6-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/dlemoal/zonefs
Pull zonefs fix from Damien Le Moal:
"A single fix from me to correctly handle the size of read-only zone
files"
* tag 'zonefs-5.6-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/dlemoal/zonefs:
zonfs: Fix handling of read-only zones
These macros are just used by a few files. Move them out of genhd.h,
which is included everywhere into a new standalone header.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This is bio layer functionality and not related to buffer heads.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Ordered ops are started twice in sync file, once outside of inode mutex
and once inside, taking the dio semaphore. There was one error path
missing the semaphore unlock.
Fixes: aab15e8ec2 ("Btrfs: fix rare chances for data loss when doing a fast fsync")
CC: stable@vger.kernel.org # 4.19+
Signed-off-by: Robbie Ko <robbieko@synology.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
[ add changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
This changes do_io_accounting to use the new exec_update_mutex
instead of cred_guard_mutex.
This fixes possible deadlocks when the trace is accessing
/proc/$pid/io for instance.
This should be safe, as the credentials are only used for reading.
Signed-off-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
This changes lock_trace to use the new exec_update_mutex
instead of cred_guard_mutex.
This fixes possible deadlocks when the trace is accessing
/proc/$pid/stack for instance.
This should be safe, as the credentials are only used for reading,
and task->mm is updated on execve under the new exec_update_mutex.
Signed-off-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
The cred_guard_mutex is problematic as it is held over possibly
indefinite waits for userspace. The possible indefinite waits for
userspace that I have identified are: The cred_guard_mutex is held in
PTRACE_EVENT_EXIT waiting for the tracer. The cred_guard_mutex is
held over "put_user(0, tsk->clear_child_tid)" in exit_mm(). The
cred_guard_mutex is held over "get_user(futex_offset, ...") in
exit_robust_list. The cred_guard_mutex held over copy_strings.
The functions get_user and put_user can trigger a page fault which can
potentially wait indefinitely in the case of userfaultfd or if
userspace implements part of the page fault path.
In any of those cases the userspace process that the kernel is waiting
for might make a different system call that winds up taking the
cred_guard_mutex and result in deadlock.
Holding a mutex over any of those possibly indefinite waits for
userspace does not appear necessary. Add exec_update_mutex that will
just cover updating the process during exec where the permissions and
the objects pointed to by the task struct may be out of sync.
The plan is to switch the users of cred_guard_mutex to
exec_update_mutex one by one. This lets us move forward while still
being careful and not introducing any regressions.
Link: https://lore.kernel.org/lkml/20160921152946.GA24210@dhcp22.suse.cz/
Link: https://lore.kernel.org/lkml/AM6PR03MB5170B06F3A2B75EFB98D071AE4E60@AM6PR03MB5170.eurprd03.prod.outlook.com/
Link: https://lore.kernel.org/linux-fsdevel/20161102181806.GB1112@redhat.com/
Link: https://lore.kernel.org/lkml/20160923095031.GA14923@redhat.com/
Link: https://lore.kernel.org/lkml/20170213141452.GA30203@redhat.com/
Ref: 45c1a159b85b ("Add PTRACE_O_TRACEVFORKDONE and PTRACE_O_TRACEEXIT facilities.")
Ref: 456f17cd1a28 ("[PATCH] user-vm-unlock-2.5.31-A2")
Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
I have read through the code in exec_mmap and I do not see anything
that depends on sighand or the sighand lock, or on signals in anyway
so this should be safe.
This rearrangement of code has two significant benefits. It makes
the determination of passing the point of no return by testing bprm->mm
accurate. All failures prior to that point in flush_old_exec are
either truly recoverable or they are fatal.
Further this consolidates all of the possible indefinite waits for
userspace together at the top of flush_old_exec. The possible wait
for a ptracer on PTRACE_EVENT_EXIT, the possible wait for a page fault
to be resolved in clear_child_tid, and the possible wait for a page
fault in exit_robust_list.
This consolidation allows the creation of a mutex to replace
cred_guard_mutex that is not held over possible indefinite userspace
waits. Which will allow removing deadlock scenarios from the kernel.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Reviewed-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Signed-off-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
These functions have very little to do with de_thread move them out
of de_thread an into flush_old_exec proper so it can be more clearly
seen what flush_old_exec is doing.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Reviewed-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Christian Brauner <christian.brauner@ubuntu.com>
Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Signed-off-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
This makes the code clearer and makes it easier to implement a mutex
that is not taken over any locations that may block indefinitely waiting
for userspace.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Reviewed-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Christian Brauner <christian.brauner@ubuntu.com>
Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Signed-off-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Make it clear that current only needs to be computed once in
flush_old_exec. This may have some efficiency improvements and it
makes the code easier to change.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Reviewed-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Christian Brauner <christian.brauner@ubuntu.com>
Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Signed-off-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
UDP was originally disabled in 6da1a03436 for NFSv4. Later in
b24ee6c64c UDP is by default disabled by NFS_DISABLE_UDP_SUPPORT=y for
all NFS versions. Therefore remove v4 from error message.
Fixes: b24ee6c64c ("NFS: allow deprecation of NFS UDP protocol")
Signed-off-by: Petr Vorel <pvorel@suse.cz>
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
UDP is disabled by default in commit b24ee6c64c ("NFS: allow
deprecation of NFS UDP protocol"), but the default mount options
is still udp, change it to tcp to avoid the "Unsupported transport
protocol udp" error if no protocol is specified when mount nfs.
Fixes: b24ee6c64c ("NFS: allow deprecation of NFS UDP protocol")
Signed-off-by: Liwei Song <liwei.song@windriver.com>
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
When some events have directory id and some object id,
fanotify_event_has_fid() becomes mostly useless and confusing because we
usually need to know which type of file handle the event has. So just
drop the function and use fanotify_event_object_fh() instead.
Signed-off-by: Jan Kara <jack@suse.cz>
For some events, we are going to report both child and parent fid's,
so pass fsid and file handle as arguments to copy_fid_to_user(),
which is going to be called with parent and child file handles.
Link: https://lore.kernel.org/r/20200319151022.31456-13-amir73il@gmail.com
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Dirent events are going to be supported in two flavors:
1. Directory fid info + mask that includes the specific event types
(e.g. FAN_CREATE) and an optional FAN_ONDIR flag.
2. Directory fid info + name + mask that includes only FAN_DIR_MODIFY.
To request the second event flavor, user needs to set the event type
FAN_DIR_MODIFY in the mark mask.
The first flavor is supported since kernel v5.1 for groups initialized
with flag FAN_REPORT_FID. It is intended to be used for watching
directories in "batch mode" - the watcher is notified when directory is
changed and re-scans the directory content in response. This event
flavor is stored more compactly in the event queue, so it is optimal
for workloads with frequent directory changes.
The second event flavor is intended to be used for watching large
directories, where the cost of re-scan of the directory on every change
is considered too high. The watcher getting the event with the directory
fid and entry name is expected to call fstatat(2) to query the content of
the entry after the change.
Legacy inotify events are reported with name and event mask (e.g. "foo",
FAN_CREATE | FAN_ONDIR). That can lead users to the conclusion that
there is *currently* an entry "foo" that is a sub-directory, when in fact
"foo" may be negative or non-dir by the time user gets the event.
To make it clear that the current state of the named entry is unknown,
when reporting an event with name info, fanotify obfuscates the specific
event types (e.g. create,delete,rename) and uses a common event type -
FAN_DIR_MODIFY to describe the change. This should make it harder for
users to make wrong assumptions and write buggy filesystem monitors.
At this point, name info reporting is not yet implemented, so trying to
set FAN_DIR_MODIFY in mark mask will return -EINVAL.
Link: https://lore.kernel.org/r/20200319151022.31456-12-amir73il@gmail.com
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Breakup the union and make them both inherit from abstract fanotify_event.
fanotify_path_event, fanotify_fid_event and fanotify_perm_event inherit
from fanotify_event.
type field in abstract fanotify_event determines the concrete event type.
fanotify_path_event, fanotify_fid_event and fanotify_perm_event are
allocated from separate memcache pools.
Rename fanotify_perm_event casting macro to FANOTIFY_PERM(), so that
FANOTIFY_PE() and FANOTIFY_FE() can be used as casting macros to
fanotify_path_event and fanotify_fid_event.
[JK: Cleanup FANOTIFY_PE() and FANOTIFY_FE() to be proper inline
functions and remove requirement that fanotify_event is the first in
event structures]
Link: https://lore.kernel.org/r/20200319151022.31456-11-amir73il@gmail.com
Suggested-by: Jan Kara <jack@suse.cz>
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Currently, struct fanotify_fid groups fsid and file handle and is
unioned together with struct path to save space. Also there is fh_type
and fh_len directly in struct fanotify_event to avoid padding overhead.
In the follwing patches, we will be adding more event types and this
packing makes code difficult to follow. So unpack everything and create
struct fanotify_fh which groups members logically related to file handle
to make code easier to follow. In the following patch we will pack
things again differently to make events smaller.
Signed-off-by: Jan Kara <jack@suse.cz>
create_fd() is never used with invalid path. Also the only thing it
needs to know from fanotify_event is the path. Simplify the function to
take path directly and assume it is correct.
Signed-off-by: Jan Kara <jack@suse.cz>
The missing 'return' work may make it hard for other developers to
understand it.
Signed-off-by: Chucheng Luo <luochucheng@vivo.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
The write pointer of zones in the read-only consition is defined as
invalid by the SCSI ZBC and ATA ZAC specifications. It is thus not
possible to determine the correct size of a read-only zone file on
mount. Fix this by handling read-only zones in the same manner as
offline zones by disabling all accesses to the zone (read and write)
and initializing the inode size of the read-only zone to 0).
For zones found to be in the read-only condition at runtime, only
disable write access to the zone and keep the size of the zone file to
its last updated value to allow the user to recover previously written
data.
Also fix zonefs documentation file to reflect this change.
Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
There is no good reason for __bdevname to exist. Just open code
printing the string in the callers. For three of them the format
string can be trivially merged into existing printk statements,
and in init/do_mounts.c we can at least do the scnprintf once at
the start of the function, and unconditional of CONFIG_BLOCK to
make the output for tiny configfs a little more helpful.
Acked-by: Theodore Ts'o <tytso@mit.edu> # for ext4
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Reading from a debugfs file at a nonzero position, without first reading
at position 0, leaks uninitialized memory to userspace.
It's a bit tricky to do this, since lseek() and pread() aren't allowed
on these files, and write() doesn't update the position on them. But
writing to them with splice() *does* update the position:
#define _GNU_SOURCE 1
#include <fcntl.h>
#include <stdio.h>
#include <unistd.h>
int main()
{
int pipes[2], fd, n, i;
char buf[32];
pipe(pipes);
write(pipes[1], "0", 1);
fd = open("/sys/kernel/debug/fault_around_bytes", O_RDWR);
splice(pipes[0], NULL, fd, NULL, 1, 0);
n = read(fd, buf, sizeof(buf));
for (i = 0; i < n; i++)
printf("%02x", buf[i]);
printf("\n");
}
Output:
5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a5a30
Fix the infoleak by making simple_attr_read() always fill
simple_attr::get_buf if it hasn't been filled yet.
Reported-by: syzbot+fcab69d1ada3e8d6f06b@syzkaller.appspotmail.com
Reported-by: Alexander Potapenko <glider@google.com>
Fixes: acaefc25d2 ("[PATCH] libfs: add simple attribute files")
Cc: stable@vger.kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Acked-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20200308023849.988264-1-ebiggers@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Change the logic of FAN_ONDIR in two ways that are similar to the logic
of FAN_EVENT_ON_CHILD, that was fixed in commit 54a307ba8d ("fanotify:
fix logic of events on child"):
1. The flag is meaningless in ignore mask
2. The flag refers only to events in the mask of the mark where it is set
This is what the fanotify_mark.2 man page says about FAN_ONDIR:
"Without this flag, only events for files are created." It doesn't
say anything about setting this flag in ignore mask to stop getting
events on directories nor can I think of any setup where this capability
would be useful.
Currently, when marks masks are merged, the FAN_ONDIR flag set in one
mark affects the events that are set in another mark's mask and this
behavior causes unexpected results. For example, a user adds a mark on a
directory with mask FAN_ATTRIB | FAN_ONDIR and a mount mark with mask
FAN_OPEN (without FAN_ONDIR). An opendir() of that directory (which is
inside that mount) generates a FAN_OPEN event even though neither of the
marks requested to get open events on directories.
Link: https://lore.kernel.org/r/20200319151022.31456-10-amir73il@gmail.com
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
With inotify, when a watch is set on a directory and on its child, an
event on the child is reported twice, once with wd of the parent watch
and once with wd of the child watch without the filename.
With fanotify, when a watch is set on a directory and on its child, an
event on the child is reported twice, but it has the exact same
information - either an open file descriptor of the child or an encoded
fid of the child.
The reason that the two identical events are not merged is because the
object id used for merging events in the queue is the child inode in one
event and parent inode in the other.
For events with path or dentry data, use the victim inode instead of the
watched inode as the object id for event merging, so that the event
reported on parent will be merged with the event reported on the child.
Link: https://lore.kernel.org/r/20200319151022.31456-9-amir73il@gmail.com
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
The event inode field is used only for comparison in queue merges and
cannot be dereferenced after handle_event(), because it does not hold a
refcount on the inode.
Replace it with an abstract id to do the same thing.
Link: https://lore.kernel.org/r/20200319151022.31456-8-amir73il@gmail.com
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Pull RCU changes from Paul E. McKenney:
- Make kfree_rcu() use kfree_bulk() for added performance
- RCU updates
- Callback-overload handling updates
- Tasks-RCU KCSAN and sparse updates
- Locking torture test and RCU torture test updates
- Documentation updates
- Miscellaneous fixes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We always punt async buffered writes to an io-wq helper, as the core
kernel does not have IOCB_NOWAIT support for that. Most buffered async
writes complete very quickly, as it's just a copy operation. This means
that doing multiple locking roundtrips on the shared wqe lock for each
buffered write is wasteful. Additionally, buffered writes are hashed
work items, which means that any buffered write to a given file is
serialized.
Keep identicaly hashed work items contiguously in @wqe->work_list, and
track a tail for each hash bucket. On dequeue of a hashed item, splice
all of the same hash in one go using the tracked tail. Until the batch
is done, the caller doesn't have to synchronize with the wqe or worker
locks again.
Signed-off-by: Pavel Begunkov <asml.silence@gmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Instead of passing both dentry and path and having to figure out which
one to use, pass data/data_type to simplify the code.
Link: https://lore.kernel.org/r/20200319151022.31456-6-amir73il@gmail.com
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
snprintf() is a hard-to-use function, and it's especially difficult to
use it properly for concatenating substrings in a buffer with a limited
size. Since snprintf() returns the would-be-output size, not the actual
size, the subsequent use of snprintf() may point to the incorrect
position easily. Also, returning the value from snprintf() directly to
sysfs show function would pass a bogus value that is higher than the
actually truncated string.
That said, although the current code doesn't actually overflow the
buffer with PAGE_SIZE, it's a usage that shouldn't be done. Or it's
worse; this gives a wrong confidence as if it were doing safe
operations.
This patch replaces such snprintf() calls with a safer version,
scnprintf(). It returns the actual output size, hence it's more
intuitive and the code does what's expected.
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Zygo reported a deadlock where a task was stuck in the inode logical
resolve code. The deadlock looks like this
Task 1
btrfs_ioctl_logical_to_ino
->iterate_inodes_from_logical
->iterate_extent_inodes
->path->search_commit_root isn't set, so a transaction is started
->resolve_indirect_ref for a root that's being deleted
->search for our key, attempt to lock a node, DEADLOCK
Task 2
btrfs_drop_snapshot
->walk down to a leaf, lock it, walk up, lock node
->end transaction
->start transaction
-> wait_cur_trans
Task 3
btrfs_commit_transaction
->wait_event(cur_trans->write_wait, num_writers == 1) DEADLOCK
We are holding a transaction open in btrfs_ioctl_logical_to_ino while we
try to resolve our references. btrfs_drop_snapshot() holds onto its
locks while it stops and starts transaction handles, because it assumes
nobody is going to touch the root now. Commit just does what commit
does, waiting for the writers to finish, blocking any new trans handles
from starting.
Fix this by making the backref code not try to resolve backrefs of roots
that are currently being deleted. This will keep us from walking into a
snapshot that's currently being deleted.
This problem was harder to hit before because we rarely broke out of the
snapshot delete halfway through, but with my delayed ref throttling code
it happened much more often. However we've always been able to do this,
so it's not a new problem.
Fixes: 8da6d5815c ("Btrfs: added btrfs_find_all_roots()")
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We always search the commit root of the extent tree for looking up back
references, however we track the reloc roots based on their current
bytenr.
This is wrong, if we commit the transaction between relocating tree
blocks we could end up in this code in build_backref_tree
if (key.objectid == key.offset) {
/*
* Only root blocks of reloc trees use backref
* pointing to itself.
*/
root = find_reloc_root(rc, cur->bytenr);
ASSERT(root);
cur->root = root;
break;
}
find_reloc_root() is looking based on the bytenr we had in the commit
root, but if we've COWed this reloc root we will not find that bytenr,
and we will trip over the ASSERT(root).
Fix this by using the commit_root->start bytenr for indexing the commit
root. Then we change the __update_reloc_root() caller to be used when
we switch the commit root for the reloc root during commit.
This fixes the panic I was seeing when we started throttling relocation
for delayed refs.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are two bugs here, but fixing them independently would just result
in pain if you happened to bisect between the two patches.
First is how we handle the -EAGAIN from relocate_tree_block(). We don't
set error, unless we happen to be the first node, which makes no sense,
I have no idea what the code was trying to accomplish here.
We in fact _do_ want err set here so that we know we need to restart in
relocate_block_group(). Also we need finish_pending_nodes() to not
actually call link_to_upper(), because we didn't actually relocate the
block.
And then if we do get -EAGAIN we do not want to set our backref cache
last_trans to the one before ours. This would force us to update our
backref cache if we didn't cross transaction ids, which would mean we'd
have some nodes updated to their new_bytenr, but still able to find
their old bytenr because we're searching the same commit root as the
last time we went through relocate_tree_blocks.
Fixing these two things keeps us from panicing when we start breaking
out of relocate_tree_blocks() either for delayed ref flushing or enospc.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since we're not only checking for metadata reservations but also if we
need to throttle our delayed ref generation, reorder
reserve_metadata_space() above the select_one_root() call in
relocate_tree_block().
The reason we want this is because select_reloc_root() will mess with
the backref cache, and if we're going to bail we want to be able to
cleanly remove this node from the backref cache and come back along to
regenerate it. Move it up so this is the first thing we do to make
restarting cleaner.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Here we are just searching down to the bytenr we're building the backref
tree for, and all of it's paths to the roots. These bytenrs are not
guaranteed to be anywhere near each other, so readahead just generates
extra latency.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Readahead will generate a lot of extra reads for adjacent nodes, but
when running delayed refs we have no idea if the next ref is going to be
adjacent or not, so this potentially just generates a lot of extra IO.
To make matters worse each ref is truly just looking for one item, it
doesn't generally search forward, so we simply don't need it here.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
With BTRFS_SUBVOL_CREATE_ASYNC support remove it's no longer required to
pass the async_transid parameter so remove it and any code using it.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_ioctl_snap_create_transid no longer takes a transid argument, so
remove it and rename the function to __btrfs_ioctl_snap_create to
reflect it's an internal, worker function.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This functionality was deprecated in kernel 5.4. Since no one has
complained of the impending removal it's time we did so.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add comment ]
Signed-off-by: David Sterba <dsterba@suse.com>
Now that we have proper root ref counting everywhere we can kill the
subvol_srcu.
* removal of fs_info::subvol_srcu reduces size of fs_info by 1176 bytes
* the refcount_t used for the references checks for accidental 0->1
in cases where the root lifetime would not be properly protected
* there's a leak detector for roots to catch unfreed roots at umount
time
* SRCU served us well over the years but is was not a proper
synchronization mechanism for some cases
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ update changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
The radix root is primarily protected by the fs_roots_radix_lock, so use
that to lookup and get a ref on all of our fs roots in
btrfs_cleanup_fs_roots. The tree reference is taken in the protected
section as before.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that all the users of roots take references for them we can drop the
extra root ref we've been taking. Before we had roots at 2 refs for the
life of the file system, one for the radix tree, and one simply for
existing. Now that we have proper ref accounting in all places that use
roots we can drop this extra ref simply for existing as we no longer
need it.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At the point we add a root to the dead roots list we have no open inodes
for that root, so we need to hold a ref on that root to keep it from
disappearing.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we make sure all the inodes have refs on their root we don't have to
worry about the root disappearing while we have open inodes.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are a few different ways to free roots, either you allocated them
yourself and you just do
free_extent_buffer(root->node);
free_extent_buffer(root->commit_node);
btrfs_put_root(root);
Which is the pattern for log roots. Or for snapshots/subvolumes that
are being dropped you simply call btrfs_free_fs_root() which does all
the cleanup for you.
Unify this all into btrfs_put_root(), so that we don't free up things
associated with the root until the last reference is dropped. This
makes the root freeing code much more significant.
The only caveat is at close_ctree() time we have to free the extent
buffers for all of our main roots (extent_root, chunk_root, etc) because
we have to drop the btree_inode and we'll run into issues if we hold
onto those nodes until ->kill_sb() time. This will be addressed in the
future when we kill the btree_inode.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We are going to make root life be controlled soley by refcounting, and
inodes will be one of the things that hold a ref on the root. This
means we need to handle dropping the ino_cache_inode outside of the root
freeing logic, so move it into btrfs_drop_and_free_fs_root() so it is
cleaned up properly on unmount.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
I'm going to make the entire destruction of btrfs_root's controlled by
their refcount, so it will be helpful to notice if we're leaking their
eb's on umount.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This was pretty subtle, we default to reloc roots having 0 root refs, so
if we crash in the middle of the relocation they can just be deleted.
If we successfully complete the relocation operations we'll set our root
refs to 1 in prepare_to_merge() and then go on to merge_reloc_roots().
At prepare_to_merge() time if any of the reloc roots have a 0 reference
still, we will remove that reloc root from our reloc root rb tree, and
then clean it up later.
However this only happens if we successfully start a transaction. If
we've aborted previously we will skip this step completely, and only
have reloc roots with a reference count of 0, but were never properly
removed from the reloc control's rb tree.
This isn't a problem per-se, our references are held by the list the
reloc roots are on, and by the original root the reloc root belongs to.
If we end up in this situation all the reloc roots will be added to the
dirty_reloc_list, and then properly dropped at that point. The reloc
control will be free'd and the rb tree is no longer used.
There were two options when fixing this, one was to remove the BUG_ON(),
the other was to make prepare_to_merge() handle the case where we
couldn't start a trans handle.
IMO this is the cleaner solution. I started with handling the error in
prepare_to_merge(), but it turned out super ugly. And in the end this
BUG_ON() simply doesn't matter, the cleanup was happening properly, we
were just panicing because this BUG_ON() only matters in the success
case. So I've opted to just remove it and add a comment where it was.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We previously were relying on root->reloc_root to be cleaned up by the
drop snapshot, or the error handling. However if btrfs_drop_snapshot()
failed it wouldn't drop the ref for the root. Also we sort of depend on
the right thing to happen with moving reloc roots between lists and the
fs root they belong to, which makes it hard to figure out who owns the
reference.
Fix this by explicitly holding a reference on the reloc root for
roo->reloc_root. This means that we hold two references on reloc roots,
one for whichever reloc_roots list it's attached to, and the
root->reloc_root we're on.
This makes it easier to reason out who owns a reference on the root, and
when it needs to be dropped.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The DEAD_RELOC_TREE flag is in place in order to avoid a use after free
in init_reloc_root, tracking the presence of reloc_root. However adding
the explicit tree references in previous patches makes the use after
free impossible because at this point we no longer have a reloc_control
set on the fs_info and thus cannot enter the function.
So move this to be coupled with clearing the root->reloc_root so we're
consistent with all other operations of the reloc root.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ update changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
If we have an error while processing the reloc roots we could leak roots
that were added to rc->reloc_roots before we hit the error. We could
have also not removed the reloc tree mapping from our rb_tree, so clean
up any remaining nodes in the reloc root rb_tree.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ use rbtree_postorder_for_each_entry_safe ]
Signed-off-by: David Sterba <dsterba@suse.com>
We previously were checking if the root had a dead root before accessing
root->reloc_root in order to avoid a use-after-free type bug. However
this scenario happens after we've unset the reloc control, so we would
have been saved if we'd simply checked for fs_info->reloc_control. At
this point during relocation we no longer need to be creating new reloc
roots, so simply move this check above the reloc_root checks to avoid
any future races and confusion.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we do merge_reloc_roots() we could insert a few roots onto the dirty
subvol roots list, where we hold a ref on them. If we fail to start the
transaction we need to run clean_dirty_subvols() in order to cleanup the
refs.
CC: stable@vger.kernel.org # 5.4+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we fail to load an fs root, or fail to start a transaction we can
bail without unsetting the reloc control, which leads to problems later
when we free the reloc control but still have it attached to the file
system.
In the normal path we'll end up calling unset_reloc_control() twice, but
all it does is set fs_info->reloc_control = NULL, and we can only have
one balance at a time so it's not racey.
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we have an error while building the backref tree in relocation we'll
process all the pending edges and then free the node. However if we
integrated some edges into the cache we'll lose our link to those edges
by simply freeing this node, which means we'll leak memory and
references to any roots that we've found.
Instead we need to use remove_backref_node(), which walks through all of
the edges that are still linked to this node and free's them up and
drops any root references we may be holding.
CC: stable@vger.kernel.org # 4.9+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In relocation, we need to locate all parent tree leaves referring to one
data extent, thus we have a complex mechanism to iterate throught extent
tree and subvolume trees to locate the related leaves.
However this is already done in backref.c, we have
btrfs_find_all_leafs(), which can return a ulist containing all leaves
referring to that data extent.
Use btrfs_find_all_leafs() to replace find_data_references().
There is a special handling for v1 space cache data extents, where we
need to delete the v1 space cache data extents, to avoid those data
extents to hang the data relocation.
In this patch, the special handling is done by re-iterating the root
tree leaf. Although it's a little less efficient than the old handling,
considering we can reuse a lot of code, it should be acceptable.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
While debugging I noticed I wasn't getting ref verify errors before
everything blew up. Turns out it's because we don't warn when we try to
add a normal ref via btrfs_inc_ref() if the block entry exists but has 0
references. This is incorrect, we should never be doing anything other
than adding a new extent once a block entry drops to 0 references.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Commit 0c713cbab6 ("Btrfs: fix race between ranged fsync and writeback
of adjacent ranges") fixed a bug where we could end up with file extent
items in a log tree that represent file ranges that overlap due to a race
between the hole detection of a ranged full fsync and writeback for a
different file range.
The problem was solved by forcing any ranged full fsync to become a
non-ranged full fsync - setting the range start to 0 and the end offset to
LLONG_MAX. This was a simple solution because the code that detected and
marked holes was very complex, it used to be done at copy_items() and
implied several searches on the fs/subvolume tree. The drawback of that
solution was that we started to flush delalloc for the entire file and
wait for all the ordered extents to complete for ranged full fsyncs
(including ordered extents covering ranges completely outside the given
range). Fortunatelly ranged full fsyncs are not the most common case
(hopefully for most workloads).
However a later fix for detecting and marking holes was made by commit
0e56315ca1 ("Btrfs: fix missing hole after hole punching and fsync
when using NO_HOLES") and it simplified a lot the detection of holes,
and now copy_items() no longer does it and we do it in a much more simple
way at btrfs_log_holes().
This makes it now possible to simply make the code that detects holes to
operate only on the initial range and no longer need to operate on the
whole file, while also avoiding the need to flush delalloc for the entire
file and wait for ordered extents that cover ranges that don't overlap the
given range.
Another special care is that we must skip file extent items that fall
entirely outside the fsync range when copying inode items from the
fs/subvolume tree into the log tree - this is to avoid races with ordered
extent completion for extents falling outside the fsync range, which could
cause us to end up with file extent items in the log tree that have
overlapping ranges - for example if the fsync range is [1Mb, 2Mb], when
we copy inode items we could copy an extent item for the range [0, 512K],
then release the search path and before moving to the next leaf, an
ordered extent for a range of [256Kb, 512Kb] completes - this would
cause us to copy the new extent item for range [256Kb, 512Kb] into the
log tree after we have copied one for the range [0, 512Kb] - the extents
overlap, resulting in a corruption.
So this change just does these steps:
1) When the NO_HOLES feature is enabled it leaves the initial range
intact - no longer sets it to [0, LLONG_MAX] when the full sync bit
is set in the inode. If NO_HOLES is not enabled, always set the range
to a full, just like before this change, to avoid missing file extent
items representing holes after replaying the log (for both full and
fast fsyncs);
2) Make the hole detection code to operate only on the fsync range;
3) Make the code that copies items from the fs/subvolume tree to skip
copying file extent items that cover a range completely outside the
range of the fsync.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The function btrfs_log_inode() is quite large and so is its loop which
iterates the inode items from the fs/subvolume tree and copies them into
a log tree. Because this is a large loop inside a very large function
and because an upcoming patch in this series needs to add some more logic
inside that loop, move the loop into a helper function to make it a bit
more manageable.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Getting the end offset for a file extent item requires a bit of code since
the extent can be either inline or regular/prealloc. There are some places
all over the code base that open code this logic and in another patch
later in this series it will be needed again. Therefore encapsulate this
logic in a helper function and use it.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When doing a fast fsync for a range that starts at an offset greater than
zero, we can end up with a log that when replayed causes the respective
inode miss a file extent item representing a hole if we are not using the
NO_HOLES feature. This is because for fast fsyncs we don't log any extents
that cover a range different from the one requested in the fsync.
Example scenario to trigger it:
$ mkfs.btrfs -O ^no-holes -f /dev/sdd
$ mount /dev/sdd /mnt
# Create a file with a single 256K and fsync it to clear to full sync
# bit in the inode - we want the msync below to trigger a fast fsync.
$ xfs_io -f -c "pwrite -S 0xab 0 256K" -c "fsync" /mnt/foo
# Force a transaction commit and wipe out the log tree.
$ sync
# Dirty 768K of data, increasing the file size to 1Mb, and flush only
# the range from 256K to 512K without updating the log tree
# (sync_file_range() does not trigger fsync, it only starts writeback
# and waits for it to finish).
$ xfs_io -c "pwrite -S 0xcd 256K 768K" /mnt/foo
$ xfs_io -c "sync_range -abw 256K 256K" /mnt/foo
# Now dirty the range from 768K to 1M again and sync that range.
$ xfs_io -c "mmap -w 768K 256K" \
-c "mwrite -S 0xef 768K 256K" \
-c "msync -s 768K 256K" \
-c "munmap" \
/mnt/foo
<power fail>
# Mount to replay the log.
$ mount /dev/sdd /mnt
$ umount /mnt
$ btrfs check /dev/sdd
Opening filesystem to check...
Checking filesystem on /dev/sdd
UUID: 482fb574-b288-478e-a190-a9c44a78fca6
[1/7] checking root items
[2/7] checking extents
[3/7] checking free space cache
[4/7] checking fs roots
root 5 inode 257 errors 100, file extent discount
Found file extent holes:
start: 262144, len: 524288
ERROR: errors found in fs roots
found 720896 bytes used, error(s) found
total csum bytes: 512
total tree bytes: 131072
total fs tree bytes: 32768
total extent tree bytes: 16384
btree space waste bytes: 123514
file data blocks allocated: 589824
referenced 589824
Fix this issue by setting the range to full (0 to LLONG_MAX) when the
NO_HOLES feature is not enabled. This results in extra work being done
but it gives the guarantee we don't end up with missing holes after
replaying the log.
CC: stable@vger.kernel.org # 4.19+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of iterating all pending tickets on the normal/priority list to
sum their total size the cost can be amortized across ticket addition/
removal. This turns O(n) + O(m) (where n is the size of the normal list
and m of the priority list) into O(1). This will mostly have effect in
workloads that experience heavy flushing.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently btrfs doesn't provide a migratepage callback for data pages.
It means that fallback_migrate_page() is used to migrate btrfs pages.
fallback_migrate_page() cannot move dirty pages, instead it tries to
flush them (in sync mode) or just fails (in async mode).
In the sync mode pages which are scheduled to be processed by
btrfs_writepage_fixup_worker() can't be effectively flushed by the
migration code, because there is no established way to wait for the
completion of the delayed work.
It all leads to page migration failures.
To fix it the patch implements a btrs-specific migratepage callback,
which is similar to iomap_migrate_page() used by some other fs, except
it does take care of the PagePrivate2 flag which is used for data
ordering purposes.
Reviewed-by: Chris Mason <clm@fb.com>
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It's no longer used following 30d40577e3 ("btrfs: reloc: Also queue
orphan reloc tree for cleanup to avoid BUG_ON()"), so just remove it.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently the non-prefixed version is a simple wrapper used to hide
the 4th argument of the prefixed version. This doesn't bring much value
in practice and only makes the code harder to follow by adding another
level of indirection. Rectify this by removing the __ prefix and
have only one public function to release bytes from a block reservation.
No semantic changes.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When relocating data block groups with tons of small extents, or large
metadata block groups, there can be over 200,000 extents.
We will iterate all extents of such block group in relocate_block_group(),
where iteration itself can be kinda time-consuming.
So when user want to cancel the balance, the extent iteration loop can
be another target.
This patch will add the cancelling check in the extent iteration loop of
relocate_block_group() to make balance cancelling faster.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When relocating a data extents with large large data extents, we spend
most of our time in relocate_file_extent_cluster() at stage "moving data
extents":
1) | btrfs_relocate_block_group [btrfs]() {
1) | relocate_file_extent_cluster [btrfs]() {
1) $ 6586769 us | }
1) + 18.260 us | relocate_file_extent_cluster [btrfs]();
1) + 15.770 us | relocate_file_extent_cluster [btrfs]();
1) $ 8916340 us | }
1) | btrfs_relocate_block_group [btrfs]() {
1) | relocate_file_extent_cluster [btrfs]() {
1) $ 11611586 us | }
1) + 16.930 us | relocate_file_extent_cluster [btrfs]();
1) + 15.870 us | relocate_file_extent_cluster [btrfs]();
1) $ 14986130 us | }
To make data relocation cancelling quicker, add extra balance cancelling
check after each page read in relocate_file_extent_cluster().
Cleanup and error handling uses the same mechanism as if the whole
process finished
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Introduce a new error injection point, should_cancel_balance().
It's just a wrapper of atomic_read(&fs_info->balance_cancel_req), but
allows us to override the return value.
Currently there are only one locations using this function:
- btrfs_balance()
It checks cancel before each block group.
There are other locations checking fs_info->balance_cancel_req, but they
are not used as an indicator to exit, so there is no need to use the
wrapper.
But there will be more locations coming, and some locations can cause
kernel panic if not handled properly. So introduce this error injection
to provide better test interface.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are a few cases where we don't allow cloning an inline extent into
the destination inode, returning -EOPNOTSUPP to user space. This was done
to prevent several types of file corruption and because it's not very
straightforward to deal with these cases, as they can't rely on simply
copying the inline extent between leaves. Such cases require copying the
inline extent's data into the respective page of the destination inode.
Not supporting these cases makes it harder and more cumbersome to write
applications/libraries that work on any filesystem with reflink support,
since all these cases for which btrfs fails with -EOPNOTSUPP work just
fine on xfs for example. These unsupported cases are also not documented
anywhere and explaining which exact cases fail require a bit of too
technical understanding of btrfs's internal (inline extents and when and
where can they exist in a file), so it's not really user friendly.
Also some test cases from fstests that use fsx, such as generic/522 for
example, can sporadically fail because they trigger one of these cases,
and fsx expects all operations to succeed.
This change adds supports for cloning all these cases by copying the
inline extent's data into the respective page of the destination inode.
With this change test case btrfs/112 from fstests fails because it
expects some clone operations to fail, so it will be updated. Also a
new test case that exercises all these previously unsupported cases
will be added to fstests.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We can not reflink parts of an inline extent, we must always reflink the
whole inline extent. We know that inline extents always start at file
offset 0 and that can never represent an amount of data larger then the
filesystem's sector size (both compressed and uncompressed). We also have
had the constraints that reflink operations must have a start offset that
is aligned to the sector size and an end offset that is also aligned or
it ends the inode's i_size, so there's no way for user space to be able
to do a reflink operation that will refer to only a part of an inline
extent.
Initially there was a bug in the inlining code that could allow compressed
inline extents that encoded more than 1 page, but that was fixed in 2008
by commit 70b99e6959 ("Btrfs: Compression corner fixes") since that
was problematic.
So remove all the extent cloning code that deals with the possibility
of cloning only partial inline extents.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The reflink code is quite large and has been living in ioctl.c since ever.
It has grown over the years after many bug fixes and improvements, and
since I'm planning on making some further improvements on it, it's time
to get it better organized by moving into its own file, reflink.c
(similar to what xfs does for example).
This change only moves the code out of ioctl.c into the new file, it
doesn't do any other change.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array
member[1][2], introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning in
case the flexible array does not occur last in the structure, which will
help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by this
change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero." [1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array
member[1][2], introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning in
case the flexible array does not occur last in the structure, which will
help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by this
change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero." [1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array
member[1][2], introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning in
case the flexible array does not occur last in the structure, which will
help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by this
change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero." [1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The space_info list is normally RCU protected and should be traversed
with rcu_read_lock held. There's a warning
[29.104756] WARNING: suspicious RCU usage
[29.105046] 5.6.0-rc4-next-20200305 #1 Not tainted
[29.105231] -----------------------------
[29.105401] fs/btrfs/block-group.c:2011 RCU-list traversed in non-reader section!!
pointing out that the locking is missing in btrfs_read_block_groups.
However this is not necessary as the list traversal happens at mount
time when there's no other thread potentially accessing the list.
To fix the warning and for consistency let's add the RCU lock/unlock,
the code won't be affected much as it's doing some lightweight
operations.
Reported-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Madhuparna Bhowmik <madhuparnabhowmik10@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
No need to add a level of indirection for hiding a simple 'if'. Open
code insert_extent_backref in its sole caller. No functional changes.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
relocate_tree_blocks calls get_tree_block_key for a block iff that block
has its ->key_ready equal false. Thus the BUG_ON in the latter function
cannot ever be triggered so remove it.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The validation follows the same steps for all three block group types,
the existing helper validate_convert_profile can be enhanced and do more
of the common things.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that csum_tree_block is not returning any errors, we can make
csum_tree_block return void and simplify callers.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Thw whole point of csum_tree_block is to iterate over all extent buffer
pages and pass it to checksumming functions. The bytes where checksum is
stored must be skipped, thus map_private_extent_buffer. This complicates
further offset calculations.
As the first page will be always present, checksum the relevant bytes
unconditionally and then do a simple iteration over the remaining pages.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There's an unnecessary indirection in the checksum definition table,
pointer and the string itself. The strings are short and the overall
size of one entry is now 24 bytes.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Having btrfs_alloc_chunk doesn't bring any value since it
encapsulates a lockdep assert and a call to find_next_chunk. Simply
rename the internal __btrfs_alloc_chunk function to the public one
and remove it's 2nd parameter as all callers always pass the return
value of find_next_chunk. Finally, migrate the call to
lockdep_assert_held so as to not lose the check.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
I noticed while running my snapshot torture test that we were getting a
lot of metadata chunks allocated with very little actually used.
Digging into this we would commit the transaction, still not have enough
space, and then force a chunk allocation.
I noticed that we were barely flushing any delalloc at all, despite the
fact that we had around 13gib of outstanding delalloc reservations. It
turns out this is because of our btrfs_calc_reclaim_metadata_size()
calculation. It _only_ takes into account the outstanding ticket sizes,
which isn't the whole story. In this particular workload we're slowly
filling up the disk, which means our overcommit space will suddenly
become a lot less, and our outstanding reservations will be well more
than what we can handle. However we are only flushing based on our
ticket size, which is much less than we need to actually reclaim.
So fix btrfs_calc_reclaim_metadata_size() to take into account the
overage in the case that we've gotten less available space suddenly.
This makes it so we attempt to reclaim a lot more delalloc space, which
allows us to make our reservations and we no longer are allocating a
bunch of needless metadata chunks.
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
During unmount we can have a job from the delayed inode items work queue
still running, that can lead to at least two bad things:
1) A crash, because the worker can try to create a transaction just
after the fs roots were freed;
2) A transaction leak, because the worker can create a transaction
before the fs roots are freed and just after we committed the last
transaction and after we stopped the transaction kthread.
A stack trace example of the crash:
[79011.691214] kernel BUG at lib/radix-tree.c:982!
[79011.692056] invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC PTI
[79011.693180] CPU: 3 PID: 1394 Comm: kworker/u8:2 Tainted: G W 5.6.0-rc2-btrfs-next-54 #2
(...)
[79011.696789] Workqueue: btrfs-delayed-meta btrfs_work_helper [btrfs]
[79011.697904] RIP: 0010:radix_tree_tag_set+0xe7/0x170
(...)
[79011.702014] RSP: 0018:ffffb3c84a317ca0 EFLAGS: 00010293
[79011.702949] RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000
[79011.704202] RDX: ffffb3c84a317cb0 RSI: ffffb3c84a317ca8 RDI: ffff8db3931340a0
[79011.705463] RBP: 0000000000000005 R08: 0000000000000005 R09: ffffffff974629d0
[79011.706756] R10: ffffb3c84a317bc0 R11: 0000000000000001 R12: ffff8db393134000
[79011.708010] R13: ffff8db3931340a0 R14: ffff8db393134068 R15: 0000000000000001
[79011.709270] FS: 0000000000000000(0000) GS:ffff8db3b6a00000(0000) knlGS:0000000000000000
[79011.710699] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[79011.711710] CR2: 00007f22c2a0a000 CR3: 0000000232ad4005 CR4: 00000000003606e0
[79011.712958] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[79011.714205] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[79011.715448] Call Trace:
[79011.715925] record_root_in_trans+0x72/0xf0 [btrfs]
[79011.716819] btrfs_record_root_in_trans+0x4b/0x70 [btrfs]
[79011.717925] start_transaction+0xdd/0x5c0 [btrfs]
[79011.718829] btrfs_async_run_delayed_root+0x17e/0x2b0 [btrfs]
[79011.719915] btrfs_work_helper+0xaa/0x720 [btrfs]
[79011.720773] process_one_work+0x26d/0x6a0
[79011.721497] worker_thread+0x4f/0x3e0
[79011.722153] ? process_one_work+0x6a0/0x6a0
[79011.722901] kthread+0x103/0x140
[79011.723481] ? kthread_create_worker_on_cpu+0x70/0x70
[79011.724379] ret_from_fork+0x3a/0x50
(...)
The following diagram shows a sequence of steps that lead to the crash
during ummount of the filesystem:
CPU 1 CPU 2 CPU 3
btrfs_punch_hole()
btrfs_btree_balance_dirty()
btrfs_balance_delayed_items()
--> sees
fs_info->delayed_root->items
with value 200, which is greater
than
BTRFS_DELAYED_BACKGROUND (128)
and smaller than
BTRFS_DELAYED_WRITEBACK (512)
btrfs_wq_run_delayed_node()
--> queues a job for
fs_info->delayed_workers to run
btrfs_async_run_delayed_root()
btrfs_async_run_delayed_root()
--> job queued by CPU 1
--> starts picking and running
delayed nodes from the
prepare_list list
close_ctree()
btrfs_delete_unused_bgs()
btrfs_commit_super()
btrfs_join_transaction()
--> gets transaction N
btrfs_commit_transaction(N)
--> set transaction state
to TRANTS_STATE_COMMIT_START
btrfs_first_prepared_delayed_node()
--> picks delayed node X through
the prepared_list list
btrfs_run_delayed_items()
btrfs_first_delayed_node()
--> also picks delayed node X
but through the node_list
list
__btrfs_commit_inode_delayed_items()
--> runs all delayed items from
this node and drops the
node's item count to 0
through call to
btrfs_release_delayed_inode()
--> finishes running any remaining
delayed nodes
--> finishes transaction commit
--> stops cleaner and transaction threads
btrfs_free_fs_roots()
--> frees all roots and removes them
from the radix tree
fs_info->fs_roots_radix
btrfs_join_transaction()
start_transaction()
btrfs_record_root_in_trans()
record_root_in_trans()
radix_tree_tag_set()
--> crashes because
the root is not in
the radix tree
anymore
If the worker is able to call btrfs_join_transaction() before the unmount
task frees the fs roots, we end up leaking a transaction and all its
resources, since after the call to btrfs_commit_super() and stopping the
transaction kthread, we don't expect to have any transaction open anymore.
When this situation happens the worker has a delayed node that has no
more items to run, since the task calling btrfs_run_delayed_items(),
which is doing a transaction commit, picks the same node and runs all
its items first.
We can not wait for the worker to complete when running delayed items
through btrfs_run_delayed_items(), because we call that function in
several phases of a transaction commit, and that could cause a deadlock
because the worker calls btrfs_join_transaction() and the task doing the
transaction commit may have already set the transaction state to
TRANS_STATE_COMMIT_DOING.
Also it's not possible to get into a situation where only some of the
items of a delayed node are added to the fs/subvolume tree in the current
transaction and the remaining ones in the next transaction, because when
running the items of a delayed inode we lock its mutex, effectively
waiting for the worker if the worker is running the items of the delayed
node already.
Since this can only cause issues when unmounting a filesystem, fix it in
a simple way by waiting for any jobs on the delayed workers queue before
calling btrfs_commit_supper() at close_ctree(). This works because at this
point no one can call btrfs_btree_balance_dirty() or
btrfs_balance_delayed_items(), and if we end up waiting for any worker to
complete, btrfs_commit_super() will commit the transaction created by the
worker.
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This function finally factor out prepare_allocation() form
find_free_extent(). This function is called before the allocation loop
and a specific allocator function like prepare_allocation_clustered()
should initialize their private information and can set proper hint_byte
to indicate where to start the allocation with.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
LOOP_NO_EMPTY_SIZE is solely dedicated for clustered allocation. So, we
can skip this stage and give up the allocation.
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Factor out chunk_allocation_failed() from
find_free_extent_update_loop(). This function is called when it failed
to allocate a chunk. The function can modify "ffe_ctl->loop" and return
0 to continue with the next stage. Or, it can return -ENOSPC to give up
here.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that, we don't use last_ptr and use_cluster in the function. Drop
these arguments from it.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Factor out found_extent() from find_free_extent_update_loop(). This
function is called when a proper extent is found and before returning
from find_free_extent(). Hook functions like found_extent_clustered()
should save information for a next allocation.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Factor out release_block_group() from find_free_extent(). This function
is called when it gives up an allocation from a block group. Each
allocation policy should reset its information for an allocation in
the next block group.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that, find_free_extent_clustered() and find_free_extent_unclustered()
can access "last_ptr" from the "clustered" variable, we can drop it from
the arguments.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Factor out do_allocation() from find_free_extent(). This function do an
actual extent allocation in a given block group. The ffe_ctl->policy is
used to determine the actual allocator function to use.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Move "last_ptr" and "use_cluster" into struct find_free_extent_ctl, so
that hook functions for clustered allocator can use these variables.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This commit moves hint_byte into find_free_extent_ctl, so that we can
modify the hint_byte in the other functions. This will help us split
find_free_extent further. This commit also renames the function argument
"hint_byte" to "hint_byte_orig" to avoid misuse.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This commit introduces extent allocation policy for btrfs. This policy
controls how btrfs allocate an extents from block groups. There is no
functional change introduced with this commit.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently, we ignore a device whose available space is less than
"BTRFS_STRIPE_LEN * dev_stripes". This is a lower limit for current
allocation policy (to maximize the number of stripes). This commit
parameterizes dev_extent_min, so that other policies can set their own
lower limitat to ignore a device with insufficient space.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Factor out create_chunk() from __btrfs_alloc_chunk(). This function
finally creates a chunk. There is no functional changes.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Factor out decide_stripe_size() from __btrfs_alloc_chunk(). This
function calculates the actual stripe size to allocate.
decide_stripe_size() handles the common case to round down the 'ndevs'
to 'devs_increment' and check the upper and lower limitation of 'ndevs'.
decide_stripe_size_regular() decides the size of a stripe and the size
of a chunk. The policy is to maximize the number of stripes.
This commit has no functional changes.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Factor out gather_device_info() from __btrfs_alloc_chunk(). This
function iterates over devices list and gather information about
devices. This commit also introduces "max_avail" and
"dev_extent_min" to fold the same calculation to one variable.
This commit has no functional changes.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Factor out init_alloc_chunk_ctl() from __btrfs_alloc_chunk(). This
function initialises parameters of "struct alloc_chunk_ctl" for
allocation. init_alloc_chunk_ctl() handles a common part of the
initialisation to load the RAID parameters from btrfs_raid_array.
init_alloc_chunk_ctl_policy_regular() decides some parameters for its
allocation.
The last "else" case in the original code is moved to
__btrfs_alloc_chunk() to handle the error case in the common code.
Replace the BUG_ON with ASSERT() and error return at the same time.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Introduce "struct alloc_chunk_ctl" to wrap needed parameters for the
chunk allocation. This will be used to split __btrfs_alloc_chunk() into
smaller functions.
This commit folds a number of local variables in __btrfs_alloc_chunk()
into one "struct alloc_chunk_ctl ctl". There is no functional change.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Factor out two functions from find_free_dev_extent_start().
dev_extent_search_start() decides the starting position of the search.
dev_extent_hole_check() checks if a hole found is suitable for device
extent allocation.
These functions also have the switch-cases to change the allocation
behavior depending on the policy.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Introduce chunk allocation policy for btrfs. This policy controls how
chunks and device extents are allocated from devices.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Do not BUG_ON() when an invalid profile is passed to __btrfs_alloc_chunk().
Instead return -EINVAL with ASSERT() to catch a bug in the development
stage.
Suggested-by: Johannes Thumshirn <Johannes.Thumshirn@wdc.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
While the "full_search" variable defined in find_free_extent() is bool,
but the full_search argument of find_free_extent_update_loop() is
defined as int. Let's trivially fix the argument type.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
After the previous patch, qgroup_rescan_running is protected by
btrfs_fs_info::qgroup_rescan_lock, thus no need for the extra spinlock.
Suggested-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
There are some reports about btrfs wait forever to unmount itself, with
the following call trace:
INFO: task umount:4631 blocked for more than 491 seconds.
Tainted: G X 5.3.8-2-default #1
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
umount D 0 4631 3337 0x00000000
Call Trace:
([<00000000174adf7a>] __schedule+0x342/0x748)
[<00000000174ae3ca>] schedule+0x4a/0xd8
[<00000000174b1f08>] schedule_timeout+0x218/0x420
[<00000000174af10c>] wait_for_common+0x104/0x1d8
[<000003ff804d6994>] btrfs_qgroup_wait_for_completion+0x84/0xb0 [btrfs]
[<000003ff8044a616>] close_ctree+0x4e/0x380 [btrfs]
[<0000000016fa3136>] generic_shutdown_super+0x8e/0x158
[<0000000016fa34d6>] kill_anon_super+0x26/0x40
[<000003ff8041ba88>] btrfs_kill_super+0x28/0xc8 [btrfs]
[<0000000016fa39f8>] deactivate_locked_super+0x68/0x98
[<0000000016fcb198>] cleanup_mnt+0xc0/0x140
[<0000000016d6a846>] task_work_run+0xc6/0x110
[<0000000016d04f76>] do_notify_resume+0xae/0xb8
[<00000000174b30ae>] system_call+0xe2/0x2c8
[CAUSE]
The problem happens when we have called qgroup_rescan_init(), but
not queued the worker. It can be caused mostly by error handling.
Qgroup ioctl thread | Unmount thread
----------------------------------------+-----------------------------------
|
btrfs_qgroup_rescan() |
|- qgroup_rescan_init() |
| |- qgroup_rescan_running = true; |
| |
|- trans = btrfs_join_transaction() |
| Some error happened |
| |
|- btrfs_qgroup_rescan() returns error |
But qgroup_rescan_running == true; |
| close_ctree()
| |- btrfs_qgroup_wait_for_completion()
| |- running == true;
| |- wait_for_completion();
btrfs_qgroup_rescan_worker is never queued, thus no one is going to wake
up close_ctree() and we get a deadlock.
All involved qgroup_rescan_init() callers are:
- btrfs_qgroup_rescan()
The example above. It's possible to trigger the deadlock when error
happened.
- btrfs_quota_enable()
Not possible. Just after qgroup_rescan_init() we queue the work.
- btrfs_read_qgroup_config()
It's possible to trigger the deadlock. It only init the work, the
work queueing happens in btrfs_qgroup_rescan_resume().
Thus if error happened in between, deadlock is possible.
We shouldn't set fs_info->qgroup_rescan_running just in
qgroup_rescan_init(), as at that stage we haven't yet queued qgroup
rescan worker to run.
[FIX]
Set qgroup_rescan_running before queueing the work, so that we ensure
the rescan work is queued when we wait for it.
Fixes: 8d9eddad19 ("Btrfs: fix qgroup rescan worker initialization")
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
[ Change subject and cause analyse, use a smaller fix ]
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are new types and helpers that are supposed to be used in new code.
As a preparation to get rid of legacy types and API functions do
the conversion here.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
There is a fuzzed image which could cause KASAN report at unmount time.
BUG: KASAN: use-after-free in btrfs_queue_work+0x2c1/0x390
Read of size 8 at addr ffff888067cf6848 by task umount/1922
CPU: 0 PID: 1922 Comm: umount Tainted: G W 5.0.21 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1ubuntu1 04/01/2014
Call Trace:
dump_stack+0x5b/0x8b
print_address_description+0x70/0x280
kasan_report+0x13a/0x19b
btrfs_queue_work+0x2c1/0x390
btrfs_wq_submit_bio+0x1cd/0x240
btree_submit_bio_hook+0x18c/0x2a0
submit_one_bio+0x1be/0x320
flush_write_bio.isra.41+0x2c/0x70
btree_write_cache_pages+0x3bb/0x7f0
do_writepages+0x5c/0x130
__writeback_single_inode+0xa3/0x9a0
writeback_single_inode+0x23d/0x390
write_inode_now+0x1b5/0x280
iput+0x2ef/0x600
close_ctree+0x341/0x750
generic_shutdown_super+0x126/0x370
kill_anon_super+0x31/0x50
btrfs_kill_super+0x36/0x2b0
deactivate_locked_super+0x80/0xc0
deactivate_super+0x13c/0x150
cleanup_mnt+0x9a/0x130
task_work_run+0x11a/0x1b0
exit_to_usermode_loop+0x107/0x130
do_syscall_64+0x1e5/0x280
entry_SYSCALL_64_after_hwframe+0x44/0xa9
[CAUSE]
The fuzzed image has a completely screwd up extent tree:
leaf 29421568 gen 8 total ptrs 6 free space 3587 owner EXTENT_TREE
refs 2 lock (w:0 r:0 bw:0 br:0 sw:0 sr:0) lock_owner 0 current 5938
item 0 key (12587008 168 4096) itemoff 3942 itemsize 53
extent refs 1 gen 9 flags 1
ref#0: extent data backref root 5 objectid 259 offset 0 count 1
item 1 key (12591104 168 8192) itemoff 3889 itemsize 53
extent refs 1 gen 9 flags 1
ref#0: extent data backref root 5 objectid 271 offset 0 count 1
item 2 key (12599296 168 4096) itemoff 3836 itemsize 53
extent refs 1 gen 9 flags 1
ref#0: extent data backref root 5 objectid 259 offset 4096 count 1
item 3 key (29360128 169 0) itemoff 3803 itemsize 33
extent refs 1 gen 9 flags 2
ref#0: tree block backref root 5
item 4 key (29368320 169 1) itemoff 3770 itemsize 33
extent refs 1 gen 9 flags 2
ref#0: tree block backref root 5
item 5 key (29372416 169 0) itemoff 3737 itemsize 33
extent refs 1 gen 9 flags 2
ref#0: tree block backref root 5
Note that leaf 29421568 doesn't have its backref in the extent tree.
Thus extent allocator can re-allocate leaf 29421568 for other trees.
In short, the bug is caused by:
- Existing tree block gets allocated to log tree
This got its generation bumped.
- Log tree balance cleaned dirty bit of offending tree block
It will not be written back to disk, thus no WRITTEN flag.
- Original owner of the tree block gets COWed
Since the tree block has higher transid, no WRITTEN flag, it's reused,
and not traced by transaction::dirty_pages.
- Transaction aborted
Tree blocks get cleaned according to transaction::dirty_pages. But the
offending tree block is not recorded at all.
- Filesystem unmount
All pages are assumed to be are clean, destroying all workqueue, then
call iput(btree_inode).
But offending tree block is still dirty, which triggers writeback, and
causes use-after-free bug.
The detailed sequence looks like this:
- Initial status
eb: 29421568, header=WRITTEN bflags_dirty=0, page_dirty=0, gen=8,
not traced by any dirty extent_iot_tree.
- New tree block is allocated
Since there is no backref for 29421568, it's re-allocated as new tree
block.
Keep in mind that tree block 29421568 is still referred by extent
tree.
- Tree block 29421568 is filled for log tree
eb: 29421568, header=0 bflags_dirty=1, page_dirty=1, gen=9 << (gen bumped)
traced by btrfs_root::dirty_log_pages
- Some log tree operations
Since the fs is using node size 4096, the log tree can easily go a
level higher.
- Log tree needs balance
Tree block 29421568 gets all its content pushed to right, thus now
it is empty, and we don't need it.
btrfs_clean_tree_block() from __push_leaf_right() get called.
eb: 29421568, header=0 bflags_dirty=0, page_dirty=0, gen=9
traced by btrfs_root::dirty_log_pages
- Log tree write back
btree_write_cache_pages() goes through dirty pages ranges, but since
page of tree block 29421568 gets cleaned already, it's not written
back to disk. Thus it doesn't have WRITTEN bit set.
But ranges in dirty_log_pages are cleared.
eb: 29421568, header=0 bflags_dirty=0, page_dirty=0, gen=9
not traced by any dirty extent_iot_tree.
- Extent tree update when committing transaction
Since tree block 29421568 has transid equal to running trans, and has
no WRITTEN bit, should_cow_block() will use it directly without adding
it to btrfs_transaction::dirty_pages.
eb: 29421568, header=0 bflags_dirty=1, page_dirty=1, gen=9
not traced by any dirty extent_iot_tree.
At this stage, we're doomed. We have a dirty eb not tracked by any
extent io tree.
- Transaction gets aborted due to corrupted extent tree
Btrfs cleans up dirty pages according to transaction::dirty_pages and
btrfs_root::dirty_log_pages.
But since tree block 29421568 is not tracked by neither of them, it's
still dirty.
eb: 29421568, header=0 bflags_dirty=1, page_dirty=1, gen=9
not traced by any dirty extent_iot_tree.
- Filesystem unmount
Since all cleanup is assumed to be done, all workqueus are destroyed.
Then iput(btree_inode) is called, expecting no dirty pages.
But tree 29421568 is still dirty, thus triggering writeback.
Since all workqueues are already freed, we cause use-after-free.
This shows us that, log tree blocks + bad extent tree can cause wild
dirty pages.
[FIX]
To fix the problem, don't submit any btree write bio if the filesytem
has any error. This is the last safe net, just in case other cleanup
haven't caught catch it.
Link: https://github.com/bobfuzzer/CVE/tree/master/CVE-2019-19377
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There is no point to inform the user about size change if there's none.
Update the message to conform to a commonly used format where the path
and devid are printed and also print old and new sizes.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Marcos Paulo de Souza <marcos@mpdesouza.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ enhance message ]
Signed-off-by: David Sterba <dsterba@suse.com>
In btrfs_update_global_block_rsv the lines:
num_bytes = block_rsv->size - block_rsv->reserved;
block_rsv->reserved += num_bytes;
imply:
block_rsv->reserved = block_rsv->size;
Assign block_rsv->size to block_rsv->reserved directly and reorder lines
so they match the other branch.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The tree_log_mutex and reloc_mutex locks are properly nested so we can
simplify error handling and add labels for them. This reduces line count
of the function.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
All we need to read is checksum size from fs_info superblock, and
fs_info is provided by extent buffer so we can get rid of the wild
pointer indirections from page/inode/root.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The message seems to be for debugging and has little value for users.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We don't use the u_XX types anywhere, though they're defined.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Remove trivial comprator and open coded swap of two values.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
An unrecognized option is a failure that should get user/administrator
attention, the info level is often below what gets logged, so make it
error.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
All callers pass extent buffer start and length so the extent buffer
itself should work fine.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The helper btrfs_header_chunk_tree_uuid follows naming convention of
other struct accessors but does something compeletly different. As the
offsetof calculation is clear in the context of extent buffer operations
we can remove it.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The helper btrfs_header_fsid follows naming convention of other struct
accessors but does something compeletly different. As the offsetof
calculation is clear in the context of extent buffer operations we can
remove it.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There's a simple forwarded call based on the operation that would better
fit the caller btrfs_map_block that's until now a trivial wrapper.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The struct_size macro does the same calculation and is safe regarding
overflows. Though we're not expecting them to happen, use the helper for
clarity.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This patch removes all haphazard code implementing nocow writers
exclusion from pending snapshot creation and switches to using the drew
lock to ensure this invariant still holds.
'Readers' are snapshot creators from create_snapshot and 'writers' are
nocow writers from buffered write path or btrfs_setsize. This locking
scheme allows for multiple snapshots to happen while any nocow writers
are blocked, since writes to page cache in the nocow path will make
snapshots inconsistent.
So for performance reasons we'd like to have the ability to run multiple
concurrent snapshots and also favors readers in this case. And in case
there aren't pending snapshots (which will be the majority of the cases)
we rely on the percpu's writers counter to avoid cacheline contention.
The main gain from using the drew lock is it's now a lot easier to
reason about the guarantees of the locking scheme and whether there is
some silent breakage lurking.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
A (D)ouble (R)eader (W)riter (E)xclustion lock is a locking primitive
that allows to have multiple readers or multiple writers but not
multiple readers and writers holding it concurrently.
The code is factored out from the existing open-coded locking scheme
used to exclude pending snapshots from nocow writers and vice-versa.
Current implementation actually favors Readers (that is snapshot
creaters) to writers (nocow writers of the filesystem).
The API provides lock/unlock/trylock for reads and writes.
Formal specification for TLA+ provided by Valentin Schneider is at
https://lore.kernel.org/linux-btrfs/2dcaf81c-f0d3-409e-cb29-733d8b3b4cc9@arm.com/
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The error cleanup gotos in __btrfs_write_out_cache() needlessly jump
back making the code less readable then needed. Flatten them out so no
back-jump is necessary and the read flow is uninterrupted.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
free-space-cache.c has it's own set of DEBUG ifdefs which need to be
turned on instead of the global CONFIG_BTRFS_DEBUG to print debug
messages about failed block-group writes.
Switch this over to CONFIG_BTRFS_DEBUG so we always see these messages
when running a debug kernel.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Make the uptodate argument of io_ctl_add_pages() boolean.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
io_ctl_prepare_pages() gets a 'struct btrfs_io_ctl' as well as a 'struct
inode', but btrfs_io_ctl::inode points to the same struct inode as this is
assgined in io_ctl_init().
Use the inode form io_ctl to reduce the arguments of io_ctl_prepare_pages.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This ioctl will be responsible for deleting a subvolume using its id.
This can be used when a system has a file system mounted from a
subvolume, rather than the root file system, like below:
/
@subvol1/
@subvol2/
@subvol_default/
If only @subvol_default is mounted, we have no path to reach @subvol1
and @subvol2, thus no way to delete them. Current subvolume delete ioctl
takes a file handle point as argument, and if @subvol_default is
mounted, we can't reach @subvol1 and @subvol2 from the same mount point.
This patch introduces a new ioctl BTRFS_IOC_SNAP_DESTROY_V2 that takes
the extended structure with flags to allow to delete subvolume using
subvolid.
Now, we can use this new ioctl specifying the subvolume id and refer to
the same mount point. It doesn't matter which subvolume was mounted,
since we can reach to the desired one using the subvolume id, and then
delete it.
The full path to the subvolume id is resolved internally and access is
verified as if the subvolume was accessed by path.
The volume args v2 structure is extended to use the existing union for
subvolume id specification, that's valid in case the
BTRFS_SUBVOL_SPEC_BY_ID is set.
Signed-off-by: Marcos Paulo de Souza <mpdesouza@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ update changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
The functions will be used outside of export.c and super.c to allow
resolving subvolume name from a given id, eg. for subvolume deletion by
id ioctl.
Signed-off-by: Marcos Paulo de Souza <mpdesouza@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ split from the next patch ]
Signed-off-by: David Sterba <dsterba@suse.com>
When the device remove v2 ioctl was added, the full support mask was
added to sanity check the flags. However this would allow to let the
subvolume related flags to be accepted. This is not supposed to happen.
Use the correct support mask, which means that now any of
BTRFS_SUBVOL_CREATE_ASYNC, BTRFS_SUBVOL_RDONLY or
BTRFS_SUBVOL_QGROUP_INHERIT will be rejected as ENOTSUPP. Though this is
a user-visible change, specifying subvolume flags for device deletion
does not make sense and there are hopefully no applications doing that.
Reviewed-by: Marcos Paulo de Souza <mpdesouza@suse.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Using the defined mask instead of flag enumeration in the ioctl handler
is preferred. No functional changes.
Reviewed-by: Marcos Paulo de Souza <mpdesouza@suse.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Sparse reports a warning at release_extent_buffer()
warning: context imbalance in release_extent_buffer() - unexpected unlock
The root cause is the missing annotation at release_extent_buffer()
Add the missing __releases(&eb->refs_lock) annotation
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Jules Irenge <jbi.octave@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In my EIO stress testing I noticed I was getting forced to rescan the
uuid tree pretty often, which was weird. This is because my error
injection stuff would sometimes inject an error after log replay but
before we loaded the UUID tree. If log replay committed the transaction
it wouldn't have updated the uuid tree generation, but the tree was
valid and didn't change, so there's no reason to not update the
generation here.
Fix this by setting the BTRFS_FS_UPDATE_UUID_TREE_GEN bit immediately
after reading all the fs roots if the uuid tree generation matches the
fs generation. Then any transaction commits that happen during mount
won't screw up our uuid tree state, forcing us to do needless uuid
rescans.
Fixes: 70f8017547 ("Btrfs: check UUID tree during mount if required")
CC: stable@vger.kernel.org # 4.19+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In doing my fsstress+EIO stress testing I started running into issues
where umount would get stuck forever because the uuid checker was
chewing through the thousands of subvolumes I had created.
We shouldn't block umount on this, simply bail if we're unmounting the
fs. We need to make sure we don't mark the UUID tree as ok, so we only
set that bit if we made it through the whole rescan operation, but
otherwise this is completely safe.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It's used only during filesystem mount as such it can be made private to
disk-io.c file. Also use the occasion to move btrfs_uuid_rescan_kthread
as btrfs_check_uuid_tree is its sole caller.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_uuid_tree_iterate is called from only once place and its 2nd
argument is always btrfs_check_uuid_tree_entry. Simplify
btrfs_uuid_tree_iterate's signature by removing its 2nd argument and
directly calling btrfs_check_uuid_tree_entry. Also move the latter into
uuid-tree.h. No functional changes.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are temporary variables tracking the index of P and Q stripes, but
none of them is really used as such, merely for determining if the Q
stripe is present. This leads to compiler warnings with
-Wunused-but-set-variable and has been reported several times.
fs/btrfs/raid56.c: In function ‘finish_rmw’:
fs/btrfs/raid56.c:1199:6: warning: variable ‘p_stripe’ set but not used [-Wunused-but-set-variable]
1199 | int p_stripe = -1;
| ^~~~~~~~
fs/btrfs/raid56.c: In function ‘finish_parity_scrub’:
fs/btrfs/raid56.c:2356:6: warning: variable ‘p_stripe’ set but not used [-Wunused-but-set-variable]
2356 | int p_stripe = -1;
| ^~~~~~~~
Replace the two variables with one that has a clear meaning and also get
rid of the warnings. The logic that verifies that there are only 2
valid cases is unchanged.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
With the following patches:
- btrfs: backref, only collect file extent items matching backref offset
- btrfs: backref, not adding refs from shared block when resolving normal backref
- btrfs: backref, only search backref entries from leaves of the same root
we only collect the normal data refs we want, so the imprecise upper
bound total_refs of that EXTENT_ITEM could now be changed to the count
of the normal backref entry we want to search.
Background and how the patches fit together:
Btrfs has two types of data backref.
For BTRFS_EXTENT_DATA_REF_KEY type of backref, we don't have the
exact block number. Therefore, we need to call resolve_indirect_refs.
It uses btrfs_search_slot to locate the leaf block. Then
we need to walk through the leaves to search for the EXTENT_DATA items
that have disk bytenr matching the extent item (add_all_parents).
When resolving indirect refs, we could take entries that don't
belong to the backref entry we are searching for right now.
For that reason when searching backref entry, we always use total
refs of that EXTENT_ITEM rather than individual count.
For example:
item 11 key (40831553536 EXTENT_ITEM 4194304) itemoff 15460 itemsize
extent refs 24 gen 7302 flags DATA
shared data backref parent 394985472 count 10 #1
extent data backref root 257 objectid 260 offset 1048576 count 3 #2
extent data backref root 256 objectid 260 offset 65536 count 6 #3
extent data backref root 257 objectid 260 offset 65536 count 5 #4
For example, when searching backref entry #4, we'll use total_refs
24, a very loose loop ending condition, instead of total_refs = 5.
But using total_refs = 24 is not accurate. Sometimes, we'll never find
all the refs from specific root. As a result, the loop keeps on going
until we reach the end of that inode.
The first 3 patches, handle 3 different types refs we might encounter.
These refs do not belong to the normal backref we are searching, and
hence need to be skipped.
This patch changes the total_refs to correct number so that we could
end loop as soon as we find all the refs we want.
btrfs send uses backref to find possible clone sources, the following
is a simple test to compare the results with and without this patch:
$ btrfs subvolume create /sub1
$ for i in `seq 1 163840`; do
dd if=/dev/zero of=/sub1/file bs=64K count=1 seek=$((i-1)) conv=notrunc oflag=direct
done
$ btrfs subvolume snapshot /sub1 /sub2
$ for i in `seq 1 163840`; do
dd if=/dev/zero of=/sub1/file bs=4K count=1 seek=$(((i-1)*16+10)) conv=notrunc oflag=direct
done
$ btrfs subvolume snapshot -r /sub1 /snap1
$ time btrfs send /snap1 | btrfs receive /volume2
Without this patch:
real 69m48.124s
user 0m50.199s
sys 70m15.600s
With this patch:
real 1m59.683s
user 0m35.421s
sys 2m42.684s
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: ethanwu <ethanwu@synology.com>
[ add patchset cover letter with background and numbers ]
Signed-off-by: David Sterba <dsterba@suse.com>
We could have some nodes/leaves in subvolume whose owner are not the
that subvolume. In this way, when we resolve normal backrefs of that
subvolume, we should avoid collecting those references from these blocks.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: ethanwu <ethanwu@synology.com>
Signed-off-by: David Sterba <dsterba@suse.com>
All references from the block of SHARED_DATA_REF belong to that shared
block backref.
For example:
item 11 key (40831553536 EXTENT_ITEM 4194304) itemoff 15460 itemsize 95
extent refs 24 gen 7302 flags DATA
extent data backref root 257 objectid 260 offset 65536 count 5
extent data backref root 258 objectid 265 offset 0 count 9
shared data backref parent 394985472 count 10
Block 394985472 might be leaf from root 257, and the item obejctid and
(file_pos - file_extent_item::offset) in that leaf just happens to be
260 and 65536 which is equal to the first extent data backref entry.
Before this patch, when we resolve backref:
root 257 objectid 260 offset 65536
we will add those refs in block 394985472 and wrongly treat those as the
refs we want.
Fix this by checking if the leaf we are processing is shared data
backref, if so, just skip this leaf.
Shared data refs added into preftrees.direct have all entry value = 0
(root_id = 0, key = NULL, level = 0) except parent entry.
Other refs from indirect tree will have key value and root id != 0, and
these values won't be changed when their parent is resolved and added to
preftrees.direct. Therefore, we could reuse the preftrees.direct and
search ref with all values = 0 except parent is set to avoid getting
those resolved refs block.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: ethanwu <ethanwu@synology.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When resolving one backref of type EXTENT_DATA_REF, we collect all
references that simply reference the EXTENT_ITEM even though their
(file_pos - file_extent_item::offset) are not the same as the
btrfs_extent_data_ref::offset we are searching for.
This patch adds additional check so that we only collect references whose
(file_pos - file_extent_item::offset) == btrfs_extent_data_ref::offset.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: ethanwu <ethanwu@synology.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The integrity checking code for the super block mirrors is the last
remaining user of buffer_heads, change it to using plain bios as well.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that the last caller of btrfsic_process_written_block() with
buffer_heads is gone, remove the buffer_head processing path from it as
well.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that the last use of btrfsic_submit_bh() is gone as the super block
is now written using bios, remove the function as well.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Similar to the superblock read path, change the write path to using bios
and pages instead of buffer_heads. This allows us to skip over the
buffer_head code, for writing the superblock to disk.
This is based on a patch originally authored by Nikolay Borisov.
Co-developed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Super-block reading in BTRFS is done using buffer_heads. Buffer_heads
have some drawbacks, like not being able to propagate errors from the
lower layers.
Directly use the page cache for reading the super blocks from disk or
invalidating an on-disk super block. We have to use the page cache so to
avoid races between mkfs and udev. See also 6f60cbd3ae ("btrfs: access
superblock via pagecache in scan_one_device").
This patch unwraps the buffer head API and does not change the way the
super block is actually read.
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_scratch_superblocks() isn't used anywhere outside volumes.c so
remove it from the header file and mark it as static. Also move it
above it's callers so we don't need a forward declaration.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Block device mappings are never in highmem so kmap() / kunmap() calls for
pages from block devices are unneeded. Use page_address() instead of
kmap() to get to the virtual addreses.
While we're at it, read_cache_page_gfp() doesn't return NULL on error,
only an ERR_PTR, so use IS_ERR() to check for errors.
Suggested-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Preparatory patch for removal of buffer_head usage in btrfs.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When attempting to set bits on a range of an exent io tree that already
has those bits set we can end up splitting an extent state record, use
the preallocated extent state record, insert it into the red black tree,
do another search on the red black tree, merge the preallocated extent
state record with the previous extent state record, remove that previous
record from the red black tree and then free it. This is all unnecessary
work that consumes time.
This happens specifically at the following case at __set_extent_bit():
$ cat -n fs/btrfs/extent_io.c
957 static int __must_check
958 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
(...)
1044 /*
1045 * | ---- desired range ---- |
1046 * | state |
1047 * or
1048 * | ------------- state -------------- |
1049 *
(...)
1060 if (state->start < start) {
1061 if (state->state & exclusive_bits) {
1062 *failed_start = start;
1063 err = -EEXIST;
1064 goto out;
1065 }
1066
1067 prealloc = alloc_extent_state_atomic(prealloc);
1068 BUG_ON(!prealloc);
1069 err = split_state(tree, state, prealloc, start);
1070 if (err)
1071 extent_io_tree_panic(tree, err);
1072
1073 prealloc = NULL;
So if our extent state represents a range from 0 to 1MiB for example, and
we want to set bits in the range 128KiB to 256KiB for example, and that
extent state record already has all those bits set, we end up splitting
that record, so we end up with extent state records in the tree which
represent the ranges from 0 to 128KiB and from 128KiB to 1MiB. This is
temporary because a subsequent iteration in that function will end up
merging the records.
The splitting requires using the preallocated extent state record, so
a future iteration that needs to do another split will need to allocate
another extent state record in an atomic context, something not ideal
that we try to avoid as much as possible. The splitting also requires
an insertion in the red black tree, and a subsequent merge will require
a deletion from the red black tree and freeing an extent state record.
This change just skips the splitting of an extent state record when it
already has all the bits the we need to set.
Setting a bit that is already set for a range is very common in the
inode's 'file_extent_tree' extent io tree for example, where we keep
setting the EXTENT_DIRTY bit every time we replace an extent.
This change also fixes a bug that happens after the recent patchset from
Josef that avoids having implicit holes after a power failure when not
using the NO_HOLES feature, more specifically the patch with the subject:
"btrfs: introduce the inode->file_extent_tree"
This patch introduced an extent io tree per inode to keep track of
completed ordered extents and figure out at any time what is the safe
value for the inode's disk_i_size. This assumes that for contiguous
ranges in a file we always end up with a single extent state record in
the io tree, but that is not the case, as there is a short time window
where we can have two extent state records representing contiguous
ranges. When this happens we end setting up an incorrect value for the
inode's disk_i_size, resulting in data loss after a clean unmount
of the filesystem. The following example explains how this can happen.
Suppose we have an inode with an i_size and a disk_i_size of 1MiB, so in
the inode's file_extent_tree we have a single extent state record that
represents the range [0, 1MiB) with the EXTENT_DIRTY bit set. Then the
following steps happen:
1) A buffered write against file range [512KiB, 768KiB) is made. At this
point delalloc was not flushed yet;
2) Deduplication from some other inode into this inode's range
[128KiB, 256KiB) is made. This causes btrfs_inode_set_file_extent_range()
to be called, from btrfs_insert_clone_extent(), to mark the range
[128KiB, 256KiB) with EXTENT_DIRTY in the inode's file_extent_tree;
3) When btrfs_inode_set_file_extent_range() calls set_extent_bits(), we
end up at __set_extent_bit(). In the first iteration of that function's
loop we end up in the following branch:
$ cat -n fs/btrfs/extent_io.c
957 static int __must_check
958 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
(...)
1044 /*
1045 * | ---- desired range ---- |
1046 * | state |
1047 * or
1048 * | ------------- state -------------- |
1049 *
(...)
1060 if (state->start < start) {
1061 if (state->state & exclusive_bits) {
1062 *failed_start = start;
1063 err = -EEXIST;
1064 goto out;
1065 }
1066
1067 prealloc = alloc_extent_state_atomic(prealloc);
1068 BUG_ON(!prealloc);
1069 err = split_state(tree, state, prealloc, start);
1070 if (err)
1071 extent_io_tree_panic(tree, err);
1072
1073 prealloc = NULL;
(...)
1089 goto search_again;
This splits the state record into two, one for range [0, 128KiB) and
another for the range [128KiB, 1MiB). Both already have the EXTENT_DIRTY
bit set. Then we jump to the 'search_again' label, where we unlock the
the spinlock protecting the extent io tree before jumping to the
'again' label to perform the next iteration;
4) In the meanwhile, delalloc is flushed, the ordered extent for the range
[512KiB, 768KiB) is created and when it completes, at
btrfs_finish_ordered_io(), it calls btrfs_inode_safe_disk_i_size_write()
with a value of 0 for its 'new_size' argument;
5) Before the deduplication task currently at __set_extent_bit() moves to
the next iteration, the task finishing the ordered extent calls
find_first_extent_bit() through btrfs_inode_safe_disk_i_size_write()
and gets 'start' set to 0 and 'end' set to 128KiB - because at this
moment the io tree has two extent state records, one representing the
range [0, 128KiB) and another representing the range [128KiB, 1MiB),
both with EXTENT_DIRTY set. Then we set 'isize' to:
isize = min(isize, end + 1)
= min(1MiB, 128KiB - 1 + 1)
= 128KiB
Then we set the inode's disk_i_size to 128KiB (isize).
After a clean unmount of the filesystem and mounting it again, we have
the file with a size of 128KiB, and effectively lost all the data it
had before in the range from 128KiB to 1MiB.
This change fixes that issue too, as we never end up splitting extent
state records when they already have all the bits we want set.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we're allocating a logged extent we attempt to insert an extent
record for the file extent directly. We increase
space_info->bytes_reserved, because the extent entry addition will call
btrfs_update_block_group(), which will convert the ->bytes_reserved to
->bytes_used. However if we fail at any point while inserting the
extent entry we will bail and leave space on ->bytes_reserved, which
will trigger a WARN_ON() on umount. Fix this by pinning the space if we
fail to insert, which is what happens in every other failure case that
involves adding the extent entry.
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This function is only used in read_fs_root(), which is just a wrapper of
btrfs_get_fs_root().
For all the mentioned essential roots except log root tree,
btrfs_get_fs_root() has its own quick path to grab them from fs_info
directly, thus no need for key.offset modification.
For subvolume trees, btrfs_get_fs_root() with key.offset == -1 is
completely fine.
For log trees and log root tree, it's impossible to hit them, as for
relocation all backrefs are fetched from commit root, which never
records log tree blocks.
Log tree blocks either get freed in regular transaction commit, or
replayed at mount time. At runtime we should never hit an backref for
log tree in extent tree.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This commit flips the switch to start tracking/processing pinned extents
on a per-transaction basis. It mostly replaces all references from
btrfs_fs_info::(pinned_extents|freed_extents[]) to
btrfs_transaction::pinned_extents.
Two notable modifications that warrant explicit mention are changing
clean_pinned_extents to get a reference to the previously running
transaction. The other one is removal of call to
btrfs_destroy_pinned_extent since transactions are going to be cleaned
in btrfs_cleanup_one_transaction.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Next patch is going to refactor how pinned extents are tracked which
will necessitate changing this code. To ease that work and contain the
changes factor the code now in preparation, this will also help review.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In preparation to making pinned extents per-transaction ensure that log
such extents are always excluded from caching. To achieve this in
addition to marking them via btrfs_pin_extent_for_log_replay they also
need to be marked with btrfs_add_excluded_extent to prevent log tree
extent buffer being loaded by the free space caching thread. That's
required since log tree blocks are not recorded in the extent tree, hence
they always look free.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Preparation for refactoring pinned extents tracking.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
All callers have a reference to a transaction handle so pass it to
pin_down_extent. This is the final step before switching pinned extent
tracking to a per-transaction basis.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Preparation for refactoring pinned extents tracking.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_pin_reserved_extent is now only called with a valid transaction so
exploit the fact to take a transaction. This is preparation for tracking
pinned extents on a per-transaction basis.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Calling btrfs_pin_reserved_extent makes sense only with a valid
transaction since pinned extents are processed from transaction commit
in btrfs_finish_extent_commit. In case of error it's sufficient to
adjust the reserved counter to account for log tree extents allocated in
the last transaction.
This commit moves btrfs_pin_reserved_extent to be called only with valid
transaction handle and otherwise uses the newly introduced
unaccount_log_buffer to adjust "reserved". If this is not done if a
failure occurs before transaction is committed WARN_ON are going to be
triggered on unmount. This was especially pronounced with generic/475
test.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This function correctly adjusts the reserved bytes occupied by a log
tree extent buffer. It will be used instead of calling
btrfs_pin_reserved_extent.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Preparation for switching pinned extent tracking to a per-transaction
basis.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Having btrfs_destroy_delayed_refs call btrfs_pin_extent is problematic
for making pinned extents tracking per-transaction since
btrfs_trans_handle cannot be passed to btrfs_pin_extent in this context.
Additionally delayed refs heads pinned in btrfs_destroy_delayed_refs
are going to be handled very closely, in btrfs_destroy_pinned_extent.
To enable btrfs_pin_extent to take btrfs_trans_handle simply open code
it in btrfs_destroy_delayed_refs and call btrfs_error_unpin_extent_range
on the range. This enables us to do less work in
btrfs_destroy_pinned_extent and leaves btrfs_pin_extent being called in
contexts which have a valid btrfs_trans_handle.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The devinfo attribute handlers were added in 668e48af7a ("btrfs:
sysfs, add devid/dev_state kobject and device attributes") and the name
should contain _devinfo_, there's one that does not conform, so unify it
with the rest.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since commit 668e48af7a ("btrfs: sysfs, add devid/dev_state kobject and
device attributes"), the functions btrfs_sysfs_add_device_link() and
btrfs_sysfs_rm_device_link() do more than just adding and removing the
device link as its name indicated. Rename them to be more specific
that's about the directory with the attirbutes
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have one simple function btrfs_sysfs_remove_fsid() to undo
btrfs_sysfs_add_fsid(), which also does proper checks before releasing
objects.
One difference, if btrfs_sysfs_remove_fsid is used that now we also call
kobject_del() which was missing before. This was tested (with kobject
debug turned on) and no change in behaviour was found.
This is a cleanup patch.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The tree pointer can be safely read from the inode, use it and drop the
redundant argument.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The tree pointer can be safely read from the inode, use it and drop the
redundant argument.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The tree pointer can be safely read from the inode, use it and drop the
redundant argument.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The tree pointer can be safely read from the page's inode, use it and
drop the redundant argument.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The tree pointer can be safely read from the inode so we can drop the
redundant argument from btrfs_lock_and_flush_ordered_range.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Add assertions to all helpers that get tree as argument and verify that
it's the same that can be obtained from the inode or from its pages. In
followup patches the redundant arguments and assertions will be removed
one by one.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that we're sure the tree from argument is same as the one we can get
from the page's inode io_tree, drop the redundant argument.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
All functions that set up extent_page_data::tree set it to the inode
io_tree. That's passed down the callstack that accesses either the same
inode or its pages. In the end submit_extent_page can pull the tree out
of the page and we don't have to store it in the structure.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The status of aborted transaction can change between calls and it needs
to be accessed by READ_ONCE. Add a helper that also wraps the unlikely
hint.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The helpers are related to locking so move them there, update comments.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We are now using these for all roots, rename them to btrfs_put_root()
and btrfs_grab_root();
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that we're going to start relying on getting ref counting right for
roots, add a list to track allocated roots and print out any roots that
aren't freed up at free_fs_info time.
Hide this behind CONFIG_BTRFS_DEBUG because this will just be used for
developers to verify they aren't breaking things.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In adding things like eb leak checking and root leak checking there were
a lot of weird corner cases that come from the fact that
1) We do not init the fs_info until we get to open_ctree time in the
normal case and
2) The test infrastructure half-init's the fs_info for things that it
needs.
This makes it really annoying to make changes because you have to add
init in two different places, have special cases for testing fs_info's
that may not have certain things initialized, and cases for fs_info's
that didn't make it to open_ctree and thus are not fully set up.
Fix this by extracting out the non-allocating init of the fs info into
it's own public function and use that to make sure we're all getting
consistent views of an allocated fs_info.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
open_ctree mixes initialization of fs stuff and fs_info stuff, which
makes it confusing when doing things like adding the root leak
detection. Make a separate function that inits all the static
structures inside of the fs_info needed for the fs to operate, and then
call that before we start setting up the fs_info to be mounted.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Things like the percpu_counters, the mapping_tree, and the csum hash can
all be freed at btrfs_free_fs_info time, since the helpers all check if
the structure has been initialized already. This significantly cleans
up the error cases in open_ctree.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that all callers of btrfs_get_fs_root are subsequently calling
btrfs_grab_fs_root and handling dropping the ref when they are done
appropriately, go ahead and push btrfs_grab_fs_root up into
btrfs_get_fs_root.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we are going to track leaked roots we need to free them all the same
way, so don't kfree() roots directly, use btrfs_put_fs_root.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We lookup the fs_root and put it in our fs_info directly, we should hold
a ref on this root for the lifetime of the fs_info.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We're going to start freeing roots and doing other complicated things in
free_fs_info, so we need to move it to disk-io.c and export it in order
to use things lik btrfs_put_fs_root().
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We lookup the uuid of arbitrary subvolumes, hold a ref on the root while
we're doing this.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We replay the log into arbitrary fs roots, hold a ref on the root while
we're doing this.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We create the snapshot and then use it for a bunch of things, we need to
hold a ref on it while we're messing with it.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We lookup the name of a subvol which means we'll cross into different
roots. Hold a ref while we're doing the look ups in the fs_root we're
searching.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We lookup all the clone roots and the parent root for send, so we need
to hold refs on all of these roots while we're processing them.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We look up the root for the bytenr that is failing, so we need to hold a
ref on the root for that operation.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We lookup roots for every orphan item we have, we need to hold a ref on
the root while we're doing this work.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
All of relocation uses read_fs_root to lookup fs roots, so push the
btrfs_grab_fs_root() up into that helper and remove the individual
calls.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We look up the fs root in various places in here when recovering from a
crashed relcoation. Make sure we hold a ref on the root whenever we
look them up.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We're creating a reloc inode in the data reloc tree, we need to hold a
ref on the root while we're doing that.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We're looking up the data references for the bytenr in a root, we need
to hold a ref on that root while we're doing that.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We are recording this root in the transaction, so we need to hold a ref
on it until we do that.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We look up the corresponding root for the reloc root, we need to hold a
ref while we're messing with it.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We look up the reloc roots corresponding root, we need to hold a ref on
that root.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is trickier than the previous conversions. We have backref_node's
that need to hold onto their root for their lifetime. Do the read of
the root and grab the ref. If at any point we don't use the root we
discard it, however if we use it in our backref node we don't free it
until we free the backref node. Any time we switch the root's for the
backref node we need to drop our ref on the old root and grab the ref on
the new root, and if we dupe a node we need to get a ref on the root
there as well.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We look up an arbitrary fs root here, we need to hold a ref on the root
for the duration.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We look up whatever root userspace has given us, we need to hold a ref
throughout this operation. Use 'root' only for the on fs root and not as
a temporary variable elsewhere.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We can wander into a different root, so grab a ref on the root we look
up. Later on we make root = fs_info->tree_root so we need this separate
out label to make sure we do the right cleanup only in the case we're
looking up a different root.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We look up an arbitrary fs root, we need to hold a ref on it while we're
doing our search.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We lookup a arbitrary fs root, we need to hold a ref on that root. If
we're using our own inodes root then grab a ref on that as well to make
the cleanup easier.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We're creating the new root here, but we should hold the ref until after
we've initialized the inode for it.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Looking up the inode from an arbitrary tree means we need to hold a ref
on that root.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>