Commit graph

62758 commits

Author SHA1 Message Date
Jeff Layton
f9c551d874 nfsd: shut down the NFSv4 state objects before the filecache
[ Upstream commit 789e1e10f2 ]

Currently, we shut down the filecache before trying to clean up the
stateids that depend on it. This leads to the kernel trying to free an
nfsd_file twice, and a refcount overput on the nf_mark.

Change the shutdown procedure to tear down all of the stateids prior
to shutting down the filecache.

Reported-and-tested-by: Wang Yugui <wangyugui@e16-tech.com>
Signed-off-by: Jeff Layton <jlayton@kernel.org>
Fixes: 5e113224c1 ("nfsd: nfsd_file cache entries should be per net namespace")
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-18 11:41:56 +01:00
Jan Kara
af53065276 ext4: fix deadlock due to mbcache entry corruption
[ Upstream commit a44e84a9b7 ]

When manipulating xattr blocks, we can deadlock infinitely looping
inside ext4_xattr_block_set() where we constantly keep finding xattr
block for reuse in mbcache but we are unable to reuse it because its
reference count is too big. This happens because cache entry for the
xattr block is marked as reusable (e_reusable set) although its
reference count is too big. When this inconsistency happens, this
inconsistent state is kept indefinitely and so ext4_xattr_block_set()
keeps retrying indefinitely.

The inconsistent state is caused by non-atomic update of e_reusable bit.
e_reusable is part of a bitfield and e_reusable update can race with
update of e_referenced bit in the same bitfield resulting in loss of one
of the updates. Fix the problem by using atomic bitops instead.

This bug has been around for many years, but it became *much* easier
to hit after commit 65f8b80053 ("ext4: fix race when reusing xattr
blocks").

Cc: stable@vger.kernel.org
Fixes: 6048c64b26 ("mbcache: add reusable flag to cache entries")
Fixes: 65f8b80053 ("ext4: fix race when reusing xattr blocks")
Reported-and-tested-by: Jeremi Piotrowski <jpiotrowski@linux.microsoft.com>
Reported-by: Thilo Fromm <t-lo@linux.microsoft.com>
Link: https://lore.kernel.org/r/c77bf00f-4618-7149-56f1-b8d1664b9d07@linux.microsoft.com/
Signed-off-by: Jan Kara <jack@suse.cz>
Reviewed-by: Andreas Dilger <adilger@dilger.ca>
Link: https://lore.kernel.org/r/20221123193950.16758-1-jack@suse.cz
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-18 11:41:56 +01:00
Jan Kara
711ef736dd mbcache: automatically delete entries from cache on freeing
[ Upstream commit 307af6c879 ]

Use the fact that entries with elevated refcount are not removed from
the hash and just move removal of the entry from the hash to the entry
freeing time. When doing this we also change the generic code to hold
one reference to the cache entry, not two of them, which makes code
somewhat more obvious.

Signed-off-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20220712105436.32204-10-jack@suse.cz
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Stable-dep-of: a44e84a9b7 ("ext4: fix deadlock due to mbcache entry corruption")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-18 11:41:56 +01:00
Jan Kara
af8ecc8d20 ext4: fix race when reusing xattr blocks
[ Upstream commit 65f8b80053 ]

When ext4_xattr_block_set() decides to remove xattr block the following
race can happen:

CPU1                                    CPU2
ext4_xattr_block_set()                  ext4_xattr_release_block()
  new_bh = ext4_xattr_block_cache_find()

                                          lock_buffer(bh);
                                          ref = le32_to_cpu(BHDR(bh)->h_refcount);
                                          if (ref == 1) {
                                            ...
                                            mb_cache_entry_delete();
                                            unlock_buffer(bh);
                                            ext4_free_blocks();
                                              ...
                                              ext4_forget(..., bh, ...);
                                                jbd2_journal_revoke(..., bh);

  ext4_journal_get_write_access(..., new_bh, ...)
    do_get_write_access()
      jbd2_journal_cancel_revoke(..., new_bh);

Later the code in ext4_xattr_block_set() finds out the block got freed
and cancels reusal of the block but the revoke stays canceled and so in
case of block reuse and journal replay the filesystem can get corrupted.
If the race works out slightly differently, we can also hit assertions
in the jbd2 code.

Fix the problem by making sure that once matching mbcache entry is
found, code dropping the last xattr block reference (or trying to modify
xattr block in place) waits until the mbcache entry reference is
dropped. This way code trying to reuse xattr block is protected from
someone trying to drop the last reference to xattr block.

Reported-and-tested-by: Ritesh Harjani <ritesh.list@gmail.com>
CC: stable@vger.kernel.org
Fixes: 82939d7999 ("ext4: convert to mbcache2")
Signed-off-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20220712105436.32204-5-jack@suse.cz
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Stable-dep-of: a44e84a9b7 ("ext4: fix deadlock due to mbcache entry corruption")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-18 11:41:56 +01:00
Jan Kara
ea4b9091aa ext4: unindent codeblock in ext4_xattr_block_set()
[ Upstream commit fd48e9acdf ]

Remove unnecessary else (and thus indentation level) from a code block
in ext4_xattr_block_set(). It will also make following code changes
easier. No functional changes.

CC: stable@vger.kernel.org
Fixes: 82939d7999 ("ext4: convert to mbcache2")
Signed-off-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20220712105436.32204-4-jack@suse.cz
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Stable-dep-of: a44e84a9b7 ("ext4: fix deadlock due to mbcache entry corruption")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-18 11:41:56 +01:00
Jan Kara
a5f9bd4bea ext4: remove EA inode entry from mbcache on inode eviction
[ Upstream commit 6bc0d63dad ]

Currently we remove EA inode from mbcache as soon as its xattr refcount
drops to zero. However there can be pending attempts to reuse the inode
and thus refcount handling code has to handle the situation when
refcount increases from zero anyway. So save some work and just keep EA
inode in mbcache until it is getting evicted. At that moment we are sure
following iget() of EA inode will fail anyway (or wait for eviction to
finish and load things from the disk again) and so removing mbcache
entry at that moment is fine and simplifies the code a bit.

CC: stable@vger.kernel.org
Fixes: 82939d7999 ("ext4: convert to mbcache2")
Signed-off-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20220712105436.32204-3-jack@suse.cz
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Stable-dep-of: a44e84a9b7 ("ext4: fix deadlock due to mbcache entry corruption")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-18 11:41:55 +01:00
Jan Kara
951ea4d3df mbcache: add functions to delete entry if unused
[ Upstream commit 3dc96bba65 ]

Add function mb_cache_entry_delete_or_get() to delete mbcache entry if
it is unused and also add a function to wait for entry to become unused
- mb_cache_entry_wait_unused(). We do not share code between the two
deleting function as one of them will go away soon.

CC: stable@vger.kernel.org
Fixes: 82939d7999 ("ext4: convert to mbcache2")
Signed-off-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20220712105436.32204-2-jack@suse.cz
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Stable-dep-of: a44e84a9b7 ("ext4: fix deadlock due to mbcache entry corruption")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-18 11:41:55 +01:00
Jan Kara
81b0bb1eb2 mbcache: don't reclaim used entries
[ Upstream commit 5831891418 ]

Do not reclaim entries that are currently used by somebody from a
shrinker. Firstly, these entries are likely useful. Secondly, we will
need to keep such entries to protect pending increment of xattr block
refcount.

CC: stable@vger.kernel.org
Fixes: 82939d7999 ("ext4: convert to mbcache2")
Signed-off-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20220712105436.32204-1-jack@suse.cz
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Stable-dep-of: a44e84a9b7 ("ext4: fix deadlock due to mbcache entry corruption")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-18 11:41:55 +01:00
Shuqi Zhang
c2f1e12b65 ext4: use kmemdup() to replace kmalloc + memcpy
[ Upstream commit 4efd9f0d12 ]

Replace kmalloc + memcpy with kmemdup()

Signed-off-by: Shuqi Zhang <zhangshuqi3@huawei.com>
Reviewed-by: Ritesh Harjani <ritesh.list@gmail.com>
Link: https://lore.kernel.org/r/20220525030120.803330-1-zhangshuqi3@huawei.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Stable-dep-of: a44e84a9b7 ("ext4: fix deadlock due to mbcache entry corruption")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-18 11:41:55 +01:00
Alexander Potapenko
6453836e37 fs: ext4: initialize fsdata in pagecache_write()
[ Upstream commit 956510c0c7 ]

When aops->write_begin() does not initialize fsdata, KMSAN reports
an error passing the latter to aops->write_end().

Fix this by unconditionally initializing fsdata.

Cc: Eric Biggers <ebiggers@kernel.org>
Fixes: c93d8f8858 ("ext4: add basic fs-verity support")
Reported-by: syzbot+9767be679ef5016b6082@syzkaller.appspotmail.com
Signed-off-by: Alexander Potapenko <glider@google.com>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Link: https://lore.kernel.org/r/20221121112134.407362-1-glider@google.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Cc: stable@kernel.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-18 11:41:55 +01:00
Chaitanya Kulkarni
1af609646c ext4: use memcpy_to_page() in pagecache_write()
[ Upstream commit bd256fda92 ]

Signed-off-by: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com>
Link: https://lore.kernel.org/r/20210207190425.38107-7-chaitanya.kulkarni@wdc.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Stable-dep-of: 956510c0c7 ("fs: ext4: initialize fsdata in pagecache_write()")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-18 11:41:55 +01:00
Baokun Li
f44dcd9dce ext4: correct inconsistent error msg in nojournal mode
[ Upstream commit 89481b5fa8 ]

When we used the journal_async_commit mounting option in nojournal mode,
the kernel told me that "can't mount with journal_checksum", was very
confusing. I find that when we mount with journal_async_commit, both the
JOURNAL_ASYNC_COMMIT and EXPLICIT_JOURNAL_CHECKSUM flags are set. However,
in the error branch, CHECKSUM is checked before ASYNC_COMMIT. As a result,
the above inconsistency occurs, and the ASYNC_COMMIT branch becomes dead
code that cannot be executed. Therefore, we exchange the positions of the
two judgments to make the error msg more accurate.

Signed-off-by: Baokun Li <libaokun1@huawei.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20221109074343.4184862-1-libaokun1@huawei.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Cc: stable@kernel.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-18 11:41:55 +01:00
Jason Yan
b02aa6a05a ext4: goto right label 'failed_mount3a'
[ Upstream commit 43bd6f1b49 ]

Before these two branches neither loaded the journal nor created the
xattr cache. So the right label to goto is 'failed_mount3a'. Although
this did not cause any issues because the error handler validated if the
pointer is null. However this still made me confused when reading
the code. So it's still worth to modify to goto the right label.

Signed-off-by: Jason Yan <yanaijie@huawei.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Ritesh Harjani (IBM) <ritesh.list@gmail.com>
Link: https://lore.kernel.org/r/20220916141527.1012715-2-yanaijie@huawei.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Stable-dep-of: 89481b5fa8 ("ext4: correct inconsistent error msg in nojournal mode")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-18 11:41:54 +01:00
Sasha Levin
839f3ca8bc btrfs: replace strncpy() with strscpy()
[ Upstream commit 63d5429f68 ]

Using strncpy() on NUL-terminated strings are deprecated.  To avoid
possible forming of non-terminated string strscpy() should be used.

Found by Linux Verification Center (linuxtesting.org) with SVACE.

CC: stable@vger.kernel.org # 4.9+
Signed-off-by: Artem Chernyshev <artem.chernyshev@red-soft.ru>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-18 11:41:52 +01:00
Ye Bin
b5db135457 ext4: allocate extended attribute value in vmalloc area
commit cc12a6f25e upstream.

Now, extended attribute value maximum length is 64K. The memory
requested here does not need continuous physical addresses, so it is
appropriate to use kvmalloc to request memory. At the same time, it
can also cope with the situation that the extended attribute will
become longer in the future.

Signed-off-by: Ye Bin <yebin10@huawei.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20221208023233.1231330-3-yebin@huaweicloud.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Cc: stable@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-18 11:41:52 +01:00
Jan Kara
6ef8b0a743 ext4: avoid unaccounted block allocation when expanding inode
commit 8994d11395 upstream.

When expanding inode space in ext4_expand_extra_isize_ea() we may need
to allocate external xattr block. If quota is not initialized for the
inode, the block allocation will not be accounted into quota usage. Make
sure the quota is initialized before we try to expand inode space.

Reported-by: Pengfei Xu <pengfei.xu@intel.com>
Link: https://lore.kernel.org/all/Y5BT+k6xWqthZc1P@xpf.sh.intel.com
Signed-off-by: Jan Kara <jack@suse.cz>
Cc: stable@kernel.org
Link: https://lore.kernel.org/r/20221207115937.26601-2-jack@suse.cz
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-18 11:41:52 +01:00
Jan Kara
b14a553b0f ext4: initialize quota before expanding inode in setproject ioctl
commit 1485f726c6 upstream.

Make sure we initialize quotas before possibly expanding inode space
(and thus maybe needing to allocate external xattr block) in
ext4_ioctl_setproject(). This prevents not accounting the necessary
block allocation.

Signed-off-by: Jan Kara <jack@suse.cz>
Cc: stable@kernel.org
Link: https://lore.kernel.org/r/20221207115937.26601-1-jack@suse.cz
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-18 11:41:52 +01:00
Ye Bin
9ef603086c ext4: fix inode leak in ext4_xattr_inode_create() on an error path
commit e4db04f7d3 upstream.

There is issue as follows when do setxattr with inject fault:

[localhost]# fsck.ext4  -fn  /dev/sda
e2fsck 1.46.6-rc1 (12-Sep-2022)
Pass 1: Checking inodes, blocks, and sizes
Pass 2: Checking directory structure
Pass 3: Checking directory connectivity
Pass 4: Checking reference counts
Unattached zero-length inode 15.  Clear? no

Unattached inode 15
Connect to /lost+found? no

Pass 5: Checking group summary information

/dev/sda: ********** WARNING: Filesystem still has errors **********

/dev/sda: 15/655360 files (0.0% non-contiguous), 66755/2621440 blocks

This occurs in 'ext4_xattr_inode_create()'. If 'ext4_mark_inode_dirty()'
fails, dropping i_nlink of the inode is needed. Or will lead to inode leak.

Signed-off-by: Ye Bin <yebin10@huawei.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20221208023233.1231330-5-yebin@huaweicloud.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Cc: stable@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-18 11:41:52 +01:00
Jan Kara
7138ef745e ext4: avoid BUG_ON when creating xattrs
commit b40ebaf638 upstream.

Commit fb0a387dcd ("ext4: limit block allocations for indirect-block
files to < 2^32") added code to try to allocate xattr block with 32-bit
block number for indirect block based files on the grounds that these
files cannot use larger block numbers. It also added BUG_ON when
allocated block could not fit into 32 bits. This is however bogus
reasoning because xattr block is stored in inode->i_file_acl and
inode->i_file_acl_hi and as such even indirect block based files can
happily use full 48 bits for xattr block number. The proper handling
seems to be there basically since 64-bit block number support was added.
So remove the bogus limitation and BUG_ON.

Cc: Eric Sandeen <sandeen@redhat.com>
Fixes: fb0a387dcd ("ext4: limit block allocations for indirect-block files to < 2^32")
Signed-off-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20221121130929.32031-1-jack@suse.cz
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Cc: stable@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-18 11:41:52 +01:00
Luís Henriques
4d84ec8e5c ext4: fix error code return to user-space in ext4_get_branch()
commit 26d75a16af upstream.

If a block is out of range in ext4_get_branch(), -ENOMEM will be returned
to user-space.  Obviously, this error code isn't really useful.  This
patch fixes it by making sure the right error code (-EFSCORRUPTED) is
propagated to user-space.  EUCLEAN is more informative than ENOMEM.

Signed-off-by: Luís Henriques <lhenriques@suse.de>
Link: https://lore.kernel.org/r/20221109181445.17843-1-lhenriques@suse.de
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Cc: stable@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-18 11:41:52 +01:00
Baokun Li
a4c3c1d57d ext4: fix corruption when online resizing a 1K bigalloc fs
commit 0aeaa2559d upstream.

When a backup superblock is updated in update_backups(), the primary
superblock's offset in the group (that is, sbi->s_sbh->b_blocknr) is used
as the backup superblock's offset in its group. However, when the block
size is 1K and bigalloc is enabled, the two offsets are not equal. This
causes the backup group descriptors to be overwritten by the superblock
in update_backups(). Moreover, if meta_bg is enabled, the file system will
be corrupted because this feature uses backup group descriptors.

To solve this issue, we use a more accurate ext4_group_first_block_no() as
the offset of the backup superblock in its group.

Fixes: d77147ff44 ("ext4: add support for online resizing with bigalloc")
Signed-off-by: Baokun Li <libaokun1@huawei.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: stable@kernel.org
Link: https://lore.kernel.org/r/20221117040341.1380702-4-libaokun1@huawei.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-18 11:41:51 +01:00
Eric Whitney
6f4200ec76 ext4: fix delayed allocation bug in ext4_clu_mapped for bigalloc + inline
commit 131294c35e upstream.

When converting files with inline data to extents, delayed allocations
made on a file system created with both the bigalloc and inline options
can result in invalid extent status cache content, incorrect reserved
cluster counts, kernel memory leaks, and potential kernel panics.

With bigalloc, the code that determines whether a block must be
delayed allocated searches the extent tree to see if that block maps
to a previously allocated cluster.  If not, the block is delayed
allocated, and otherwise, it isn't.  However, if the inline option is
also used, and if the file containing the block is marked as able to
store data inline, there isn't a valid extent tree associated with
the file.  The current code in ext4_clu_mapped() calls
ext4_find_extent() to search the non-existent tree for a previously
allocated cluster anyway, which typically finds nothing, as desired.
However, a side effect of the search can be to cache invalid content
from the non-existent tree (garbage) in the extent status tree,
including bogus entries in the pending reservation tree.

To fix this, avoid searching the extent tree when allocating blocks
for bigalloc + inline files that are being converted from inline to
extent mapped.

Signed-off-by: Eric Whitney <enwlinux@gmail.com>
Link: https://lore.kernel.org/r/20221117152207.2424-1-enwlinux@gmail.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Cc: stable@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-18 11:41:51 +01:00
Ye Bin
f263e349ba ext4: init quota for 'old.inode' in 'ext4_rename'
commit fae381a3d7 upstream.

Syzbot found the following issue:
ext4_parse_param: s_want_extra_isize=128
ext4_inode_info_init: s_want_extra_isize=32
ext4_rename: old.inode=ffff88823869a2c8 old.dir=ffff888238699828 new.inode=ffff88823869d7e8 new.dir=ffff888238699828
__ext4_mark_inode_dirty: inode=ffff888238699828 ea_isize=32 want_ea_size=128
__ext4_mark_inode_dirty: inode=ffff88823869a2c8 ea_isize=32 want_ea_size=128
ext4_xattr_block_set: inode=ffff88823869a2c8
------------[ cut here ]------------
WARNING: CPU: 13 PID: 2234 at fs/ext4/xattr.c:2070 ext4_xattr_block_set.cold+0x22/0x980
Modules linked in:
RIP: 0010:ext4_xattr_block_set.cold+0x22/0x980
RSP: 0018:ffff888227d3f3b0 EFLAGS: 00010202
RAX: 0000000000000001 RBX: ffff88823007a000 RCX: 0000000000000000
RDX: 0000000000000a03 RSI: 0000000000000040 RDI: ffff888230078178
RBP: 0000000000000000 R08: 000000000000002c R09: ffffed1075c7df8e
R10: ffff8883ae3efc6b R11: ffffed1075c7df8d R12: 0000000000000000
R13: ffff88823869a2c8 R14: ffff8881012e0460 R15: dffffc0000000000
FS:  00007f350ac1f740(0000) GS:ffff8883ae200000(0000) knlGS:0000000000000000
CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f350a6ed6a0 CR3: 0000000237456000 CR4: 00000000000006e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
 <TASK>
 ? ext4_xattr_set_entry+0x3b7/0x2320
 ? ext4_xattr_block_set+0x0/0x2020
 ? ext4_xattr_set_entry+0x0/0x2320
 ? ext4_xattr_check_entries+0x77/0x310
 ? ext4_xattr_ibody_set+0x23b/0x340
 ext4_xattr_move_to_block+0x594/0x720
 ext4_expand_extra_isize_ea+0x59a/0x10f0
 __ext4_expand_extra_isize+0x278/0x3f0
 __ext4_mark_inode_dirty.cold+0x347/0x410
 ext4_rename+0xed3/0x174f
 vfs_rename+0x13a7/0x2510
 do_renameat2+0x55d/0x920
 __x64_sys_rename+0x7d/0xb0
 do_syscall_64+0x3b/0xa0
 entry_SYSCALL_64_after_hwframe+0x72/0xdc

As 'ext4_rename' will modify 'old.inode' ctime and mark inode dirty,
which may trigger expand 'extra_isize' and allocate block. If inode
didn't init quota will lead to warning.  To solve above issue, init
'old.inode' firstly in 'ext4_rename'.

Reported-by: syzbot+98346927678ac3059c77@syzkaller.appspotmail.com
Signed-off-by: Ye Bin <yebin10@huawei.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20221107015335.2524319-1-yebin@huaweicloud.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Cc: stable@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-18 11:41:51 +01:00
Baokun Li
78e335fb57 ext4: fix bug_on in __es_tree_search caused by bad boot loader inode
commit 991ed014de upstream.

We got a issue as fllows:
==================================================================
 kernel BUG at fs/ext4/extents_status.c:203!
 invalid opcode: 0000 [#1] PREEMPT SMP
 CPU: 1 PID: 945 Comm: cat Not tainted 6.0.0-next-20221007-dirty #349
 RIP: 0010:ext4_es_end.isra.0+0x34/0x42
 RSP: 0018:ffffc9000143b768 EFLAGS: 00010203
 RAX: 0000000000000000 RBX: ffff8881769cd0b8 RCX: 0000000000000000
 RDX: 0000000000000000 RSI: ffffffff8fc27cf7 RDI: 00000000ffffffff
 RBP: ffff8881769cd0bc R08: 0000000000000000 R09: ffffc9000143b5f8
 R10: 0000000000000001 R11: 0000000000000001 R12: ffff8881769cd0a0
 R13: ffff8881768e5668 R14: 00000000768e52f0 R15: 0000000000000000
 FS: 00007f359f7f05c0(0000)GS:ffff88842fd00000(0000)knlGS:0000000000000000
 CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
 CR2: 00007f359f5a2000 CR3: 000000017130c000 CR4: 00000000000006e0
 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
 Call Trace:
  <TASK>
  __es_tree_search.isra.0+0x6d/0xf5
  ext4_es_cache_extent+0xfa/0x230
  ext4_cache_extents+0xd2/0x110
  ext4_find_extent+0x5d5/0x8c0
  ext4_ext_map_blocks+0x9c/0x1d30
  ext4_map_blocks+0x431/0xa50
  ext4_mpage_readpages+0x48e/0xe40
  ext4_readahead+0x47/0x50
  read_pages+0x82/0x530
  page_cache_ra_unbounded+0x199/0x2a0
  do_page_cache_ra+0x47/0x70
  page_cache_ra_order+0x242/0x400
  ondemand_readahead+0x1e8/0x4b0
  page_cache_sync_ra+0xf4/0x110
  filemap_get_pages+0x131/0xb20
  filemap_read+0xda/0x4b0
  generic_file_read_iter+0x13a/0x250
  ext4_file_read_iter+0x59/0x1d0
  vfs_read+0x28f/0x460
  ksys_read+0x73/0x160
  __x64_sys_read+0x1e/0x30
  do_syscall_64+0x35/0x80
  entry_SYSCALL_64_after_hwframe+0x63/0xcd
  </TASK>
==================================================================

In the above issue, ioctl invokes the swap_inode_boot_loader function to
swap inode<5> and inode<12>. However, inode<5> contain incorrect imode and
disordered extents, and i_nlink is set to 1. The extents check for inode in
the ext4_iget function can be bypassed bacause 5 is EXT4_BOOT_LOADER_INO.
While links_count is set to 1, the extents are not initialized in
swap_inode_boot_loader. After the ioctl command is executed successfully,
the extents are swapped to inode<12>, in this case, run the `cat` command
to view inode<12>. And Bug_ON is triggered due to the incorrect extents.

When the boot loader inode is not initialized, its imode can be one of the
following:
1) the imode is a bad type, which is marked as bad_inode in ext4_iget and
   set to S_IFREG.
2) the imode is good type but not S_IFREG.
3) the imode is S_IFREG.

The BUG_ON may be triggered by bypassing the check in cases 1 and 2.
Therefore, when the boot loader inode is bad_inode or its imode is not
S_IFREG, initialize the inode to avoid triggering the BUG.

Signed-off-by: Baokun Li <libaokun1@huawei.com>
Reviewed-by: Jason Yan <yanaijie@huawei.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20221026042310.3839669-5-libaokun1@huawei.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Cc: stable@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-18 11:41:51 +01:00
Ye Bin
362ce137d5 ext4: fix reserved cluster accounting in __es_remove_extent()
commit 1da18e38cb upstream.

When bigalloc is enabled, reserved cluster accounting for delayed
allocation is handled in extent_status.c.  With a corrupted file
system, it's possible for this accounting to be incorrect,
dsicovered by Syzbot:

EXT4-fs error (device loop0): ext4_validate_block_bitmap:398: comm rep:
	bg 0: block 5: invalid block bitmap
EXT4-fs (loop0): Delayed block allocation failed for inode 18 at logical
	offset 0 with max blocks 32 with error 28
EXT4-fs (loop0): This should not happen!! Data will be lost

EXT4-fs (loop0): Total free blocks count 0
EXT4-fs (loop0): Free/Dirty block details
EXT4-fs (loop0): free_blocks=0
EXT4-fs (loop0): dirty_blocks=32
EXT4-fs (loop0): Block reservation details
EXT4-fs (loop0): i_reserved_data_blocks=2
EXT4-fs (loop0): Inode 18 (00000000845cd634):
	i_reserved_data_blocks (1) not cleared!

Above issue happens as follows:
Assume:
sbi->s_cluster_ratio = 16
Step1:
Insert delay block [0, 31] -> ei->i_reserved_data_blocks=2
Step2:
ext4_writepages
  mpage_map_and_submit_extent -> return failed
  mpage_release_unused_pages -> to release [0, 30]
    ext4_es_remove_extent -> remove lblk=0 end=30
      __es_remove_extent -> len1=0 len2=31-30=1
 __es_remove_extent:
 ...
 if (len2 > 0) {
  ...
	  if (len1 > 0) {
		  ...
	  } else {
		es->es_lblk = end + 1;
		es->es_len = len2;
		...
	  }
  	if (count_reserved)
		count_rsvd(inode, lblk, ...);
	goto out; -> will return but didn't calculate 'reserved'
 ...
Step3:
ext4_destroy_inode -> trigger "i_reserved_data_blocks (1) not cleared!"

To solve above issue if 'len2>0' call 'get_rsvd()' before goto out.

Reported-by: syzbot+05a0f0ccab4a25626e38@syzkaller.appspotmail.com
Fixes: 8fcc3a5806 ("ext4: rework reserved cluster accounting when invalidating pages")
Signed-off-by: Ye Bin <yebin10@huawei.com>
Reviewed-by: Eric Whitney <enwlinux@gmail.com>
Link: https://lore.kernel.org/r/20221208033426.1832460-2-yebin@huaweicloud.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Cc: stable@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-18 11:41:51 +01:00
Baokun Li
e1d946d9c8 ext4: add helper to check quota inums
commit 07342ec259 upstream.

Before quota is enabled, a check on the preset quota inums in
ext4_super_block is added to prevent wrong quota inodes from being loaded.
In addition, when the quota fails to be enabled, the quota type and quota
inum are printed to facilitate fault locating.

Signed-off-by: Baokun Li <libaokun1@huawei.com>
Reviewed-by: Jason Yan <yanaijie@huawei.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20221026042310.3839669-3-libaokun1@huawei.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Cc: stable@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-18 11:41:51 +01:00
Baokun Li
2142dfa1de ext4: add EXT4_IGET_BAD flag to prevent unexpected bad inode
commit 63b1e9bccb upstream.

There are many places that will get unhappy (and crash) when ext4_iget()
returns a bad inode. However, if iget the boot loader inode, allows a bad
inode to be returned, because the inode may not be initialized. This
mechanism can be used to bypass some checks and cause panic. To solve this
problem, we add a special iget flag EXT4_IGET_BAD. Only with this flag
we'd be returning bad inode from ext4_iget(), otherwise we always return
the error code if the inode is bad inode.(suggested by Jan Kara)

Signed-off-by: Baokun Li <libaokun1@huawei.com>
Reviewed-by: Jason Yan <yanaijie@huawei.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20221026042310.3839669-4-libaokun1@huawei.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Cc: stable@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-18 11:41:51 +01:00
Gaosheng Cui
4690a4bdcf ext4: fix undefined behavior in bit shift for ext4_check_flag_values
commit 3bf678a0f9 upstream.

Shifting signed 32-bit value by 31 bits is undefined, so changing
significant bit to unsigned. The UBSAN warning calltrace like below:

UBSAN: shift-out-of-bounds in fs/ext4/ext4.h:591:2
left shift of 1 by 31 places cannot be represented in type 'int'
Call Trace:
 <TASK>
 dump_stack_lvl+0x7d/0xa5
 dump_stack+0x15/0x1b
 ubsan_epilogue+0xe/0x4e
 __ubsan_handle_shift_out_of_bounds+0x1e7/0x20c
 ext4_init_fs+0x5a/0x277
 do_one_initcall+0x76/0x430
 kernel_init_freeable+0x3b3/0x422
 kernel_init+0x24/0x1e0
 ret_from_fork+0x1f/0x30
 </TASK>

Fixes: 9a4c801947 ("ext4: ensure Inode flags consistency are checked at build time")
Signed-off-by: Gaosheng Cui <cuigaosheng1@huawei.com>
Link: https://lore.kernel.org/r/20221031055833.3966222-1-cuigaosheng1@huawei.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Cc: stable@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-18 11:41:51 +01:00
Baokun Li
e347c269b5 ext4: add inode table check in __ext4_get_inode_loc to aovid possible infinite loop
commit eee22187b5 upstream.

In do_writepages, if the value returned by ext4_writepages is "-ENOMEM"
and "wbc->sync_mode == WB_SYNC_ALL", retry until the condition is not met.

In __ext4_get_inode_loc, if the bh returned by sb_getblk is NULL,
the function returns -ENOMEM.

In __getblk_slow, if the return value of grow_buffers is less than 0,
the function returns NULL.

When the three processes are connected in series like the following stack,
an infinite loop may occur:

do_writepages					<--- keep retrying
 ext4_writepages
  mpage_map_and_submit_extent
   mpage_map_one_extent
    ext4_map_blocks
     ext4_ext_map_blocks
      ext4_ext_handle_unwritten_extents
       ext4_ext_convert_to_initialized
        ext4_split_extent
         ext4_split_extent_at
          __ext4_ext_dirty
           __ext4_mark_inode_dirty
            ext4_reserve_inode_write
             ext4_get_inode_loc
              __ext4_get_inode_loc		<--- return -ENOMEM
               sb_getblk
                __getblk_gfp
                 __getblk_slow			<--- return NULL
                  grow_buffers
                   grow_dev_page		<--- return -ENXIO
                    ret = (block < end_block) ? 1 : -ENXIO;

In this issue, bg_inode_table_hi is overwritten as an incorrect value.
As a result, `block < end_block` cannot be met in grow_dev_page.
Therefore, __ext4_get_inode_loc always returns '-ENOMEM' and do_writepages
keeps retrying. As a result, the writeback process is in the D state due
to an infinite loop.

Add a check on inode table block in the __ext4_get_inode_loc function by
referring to ext4_read_inode_bitmap to avoid this infinite loop.

Cc: stable@kernel.org
Signed-off-by: Baokun Li <libaokun1@huawei.com>
Reviewed-by: Ritesh Harjani (IBM) <ritesh.list@gmail.com>
Link: https://lore.kernel.org/r/20220817132701.3015912-3-libaokun1@huawei.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-18 11:41:50 +01:00
Steve French
b869cb7a3d cifs: fix missing display of three mount options
commit 2bfd81043e upstream.

Three mount options: "tcpnodelay" and "noautotune" and "noblocksend"
were not displayed when passed in on cifs/smb3 mounts (e.g. displayed
in /proc/mounts e.g.).  No change to defaults so these are not
displayed if not specified on mount.

Cc: stable@vger.kernel.org
Reviewed-by: Paulo Alcantara (SUSE) <pc@cjr.nz>
Signed-off-by: Steve French <stfrench@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-18 11:41:49 +01:00
Paulo Alcantara
149babe5e0 cifs: fix confusing debug message
commit a85ceafd41 upstream.

Since rc was initialised to -ENOMEM in cifs_get_smb_ses(), when an
existing smb session was found, free_xid() would be called and then
print

  CIFS: fs/cifs/connect.c: Existing tcp session with server found
  CIFS: fs/cifs/connect.c: VFS: in cifs_get_smb_ses as Xid: 44 with uid: 0
  CIFS: fs/cifs/connect.c: Existing smb sess found (status=1)
  CIFS: fs/cifs/connect.c: VFS: leaving cifs_get_smb_ses (xid = 44) rc = -12

Fix this by initialising rc to 0 and then let free_xid() print this
instead

  CIFS: fs/cifs/connect.c: Existing tcp session with server found
  CIFS: fs/cifs/connect.c: VFS: in cifs_get_smb_ses as Xid: 14 with uid: 0
  CIFS: fs/cifs/connect.c: Existing smb sess found (status=1)
  CIFS: fs/cifs/connect.c: VFS: leaving cifs_get_smb_ses (xid = 14) rc = 0

Signed-off-by: Paulo Alcantara (SUSE) <pc@cjr.nz>
Cc: stable@vger.kernel.org
Signed-off-by: Steve French <stfrench@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-18 11:41:48 +01:00
Wang Yufen
52ba5b87a3 binfmt: Fix error return code in load_elf_fdpic_binary()
[ Upstream commit e7f703ff25 ]

Fix to return a negative error code from create_elf_fdpic_tables()
instead of 0.

Fixes: 1da177e4c3 ("Linux-2.6.12-rc2")
Cc: stable@vger.kernel.org
Signed-off-by: Wang Yufen <wangyufen@huawei.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/1669945261-30271-1-git-send-email-wangyufen@huawei.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-18 11:41:46 +01:00
Eric W. Biederman
33933af45d binfmt: Move install_exec_creds after setup_new_exec to match binfmt_elf
[ Upstream commit e7f7785449 ]

In 2016 Linus moved install_exec_creds immediately after
setup_new_exec, in binfmt_elf as a cleanup and as part of closing a
potential information leak.

Perform the same cleanup for the other binary formats.

Different binary formats doing the same things the same way makes exec
easier to reason about and easier to maintain.

Greg Ungerer reports:
> I tested the the whole series on non-MMU m68k and non-MMU arm
> (exercising binfmt_flat) and it all tested out with no problems,
> so for the binfmt_flat changes:
Tested-by: Greg Ungerer <gerg@linux-m68k.org>

Ref: 9f834ec18d ("binfmt_elf: switch to new creds when switching to new mm")
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Greg Ungerer <gerg@linux-m68k.org>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Stable-dep-of: e7f703ff25 ("binfmt: Fix error return code in load_elf_fdpic_binary()")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-18 11:41:46 +01:00
Boris Burkov
c59ee1528b btrfs: fix resolving backrefs for inline extent followed by prealloc
commit 560840afc3 upstream.

If a file consists of an inline extent followed by a regular or prealloc
extent, then a legitimate attempt to resolve a logical address in the
non-inline region will result in add_all_parents reading the invalid
offset field of the inline extent. If the inline extent item is placed
in the leaf eb s.t. it is the first item, attempting to access the
offset field will not only be meaningless, it will go past the end of
the eb and cause this panic:

  [17.626048] BTRFS warning (device dm-2): bad eb member end: ptr 0x3fd4 start 30834688 member offset 16377 size 8
  [17.631693] general protection fault, probably for non-canonical address 0x5088000000000: 0000 [#1] SMP PTI
  [17.635041] CPU: 2 PID: 1267 Comm: btrfs Not tainted 5.12.0-07246-g75175d5adc74-dirty #199
  [17.637969] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
  [17.641995] RIP: 0010:btrfs_get_64+0xe7/0x110
  [17.649890] RSP: 0018:ffffc90001f73a08 EFLAGS: 00010202
  [17.651652] RAX: 0000000000000001 RBX: ffff88810c42d000 RCX: 0000000000000000
  [17.653921] RDX: 0005088000000000 RSI: ffffc90001f73a0f RDI: 0000000000000001
  [17.656174] RBP: 0000000000000ff9 R08: 0000000000000007 R09: c0000000fffeffff
  [17.658441] R10: ffffc90001f73790 R11: ffffc90001f73788 R12: ffff888106afe918
  [17.661070] R13: 0000000000003fd4 R14: 0000000000003f6f R15: cdcdcdcdcdcdcdcd
  [17.663617] FS:  00007f64e7627d80(0000) GS:ffff888237c80000(0000) knlGS:0000000000000000
  [17.666525] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  [17.668664] CR2: 000055d4a39152e8 CR3: 000000010c596002 CR4: 0000000000770ee0
  [17.671253] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
  [17.673634] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
  [17.676034] PKRU: 55555554
  [17.677004] Call Trace:
  [17.677877]  add_all_parents+0x276/0x480
  [17.679325]  find_parent_nodes+0xfae/0x1590
  [17.680771]  btrfs_find_all_leafs+0x5e/0xa0
  [17.682217]  iterate_extent_inodes+0xce/0x260
  [17.683809]  ? btrfs_inode_flags_to_xflags+0x50/0x50
  [17.685597]  ? iterate_inodes_from_logical+0xa1/0xd0
  [17.687404]  iterate_inodes_from_logical+0xa1/0xd0
  [17.689121]  ? btrfs_inode_flags_to_xflags+0x50/0x50
  [17.691010]  btrfs_ioctl_logical_to_ino+0x131/0x190
  [17.692946]  btrfs_ioctl+0x104a/0x2f60
  [17.694384]  ? selinux_file_ioctl+0x182/0x220
  [17.695995]  ? __x64_sys_ioctl+0x84/0xc0
  [17.697394]  __x64_sys_ioctl+0x84/0xc0
  [17.698697]  do_syscall_64+0x33/0x40
  [17.700017]  entry_SYSCALL_64_after_hwframe+0x44/0xae
  [17.701753] RIP: 0033:0x7f64e72761b7
  [17.709355] RSP: 002b:00007ffefb067f58 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
  [17.712088] RAX: ffffffffffffffda RBX: 0000000000000003 RCX: 00007f64e72761b7
  [17.714667] RDX: 00007ffefb067fb0 RSI: 00000000c0389424 RDI: 0000000000000003
  [17.717386] RBP: 00007ffefb06d188 R08: 000055d4a390d2b0 R09: 00007f64e7340a60
  [17.719938] R10: 0000000000000231 R11: 0000000000000246 R12: 0000000000000001
  [17.722383] R13: 0000000000000000 R14: 00000000c0389424 R15: 000055d4a38fd2a0
  [17.724839] Modules linked in:

Fix the bug by detecting the inline extent item in add_all_parents and
skipping to the next extent item.

CC: stable@vger.kernel.org # 4.9+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-18 11:41:46 +01:00
Pavel Machek
f4b5a27f56 f2fs: should put a page when checking the summary info
commit c3db3c2fd9 upstream.

The commit introduces another bug.

Cc: stable@vger.kernel.org
Fixes: c6ad7fd166 ("f2fs: fix to do sanity check on summary info")
Signed-off-by: Pavel Machek <pavel@denx.de>
Reviewed-by: Chao Yu <chao@kernel.org>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-18 11:41:44 +01:00
Christian Brauner
2dae4211b5 pnode: terminate at peers of source
commit 11933cf1d9 upstream.

The propagate_mnt() function handles mount propagation when creating
mounts and propagates the source mount tree @source_mnt to all
applicable nodes of the destination propagation mount tree headed by
@dest_mnt.

Unfortunately it contains a bug where it fails to terminate at peers of
@source_mnt when looking up copies of the source mount that become
masters for copies of the source mount tree mounted on top of slaves in
the destination propagation tree causing a NULL dereference.

Once the mechanics of the bug are understood it's easy to trigger.
Because of unprivileged user namespaces it is available to unprivileged
users.

While fixing this bug we've gotten confused multiple times due to
unclear terminology or missing concepts. So let's start this with some
clarifications:

* The terms "master" or "peer" denote a shared mount. A shared mount
  belongs to a peer group.

* A peer group is a set of shared mounts that propagate to each other.
  They are identified by a peer group id. The peer group id is available
  in @shared_mnt->mnt_group_id.
  Shared mounts within the same peer group have the same peer group id.
  The peers in a peer group can be reached via @shared_mnt->mnt_share.

* The terms "slave mount" or "dependent mount" denote a mount that
  receives propagation from a peer in a peer group. IOW, shared mounts
  may have slave mounts and slave mounts have shared mounts as their
  master. Slave mounts of a given peer in a peer group are listed on
  that peers slave list available at @shared_mnt->mnt_slave_list.

* The term "master mount" denotes a mount in a peer group. IOW, it
  denotes a shared mount or a peer mount in a peer group. The term
  "master mount" - or "master" for short - is mostly used when talking
  in the context of slave mounts that receive propagation from a master
  mount. A master mount of a slave identifies the closest peer group a
  slave mount receives propagation from. The master mount of a slave can
  be identified via @slave_mount->mnt_master. Different slaves may point
  to different masters in the same peer group.

* Multiple peers in a peer group can have non-empty ->mnt_slave_lists.
  Non-empty ->mnt_slave_lists of peers don't intersect. Consequently, to
  ensure all slave mounts of a peer group are visited the
  ->mnt_slave_lists of all peers in a peer group have to be walked.

* Slave mounts point to a peer in the closest peer group they receive
  propagation from via @slave_mnt->mnt_master (see above). Together with
  these peers they form a propagation group (see below). The closest
  peer group can thus be identified through the peer group id
  @slave_mnt->mnt_master->mnt_group_id of the peer/master that a slave
  mount receives propagation from.

* A shared-slave mount is a slave mount to a peer group pg1 while also
  a peer in another peer group pg2. IOW, a peer group may receive
  propagation from another peer group.

  If a peer group pg1 is a slave to another peer group pg2 then all
  peers in peer group pg1 point to the same peer in peer group pg2 via
  ->mnt_master. IOW, all peers in peer group pg1 appear on the same
  ->mnt_slave_list. IOW, they cannot be slaves to different peer groups.

* A pure slave mount is a slave mount that is a slave to a peer group
  but is not a peer in another peer group.

* A propagation group denotes the set of mounts consisting of a single
  peer group pg1 and all slave mounts and shared-slave mounts that point
  to a peer in that peer group via ->mnt_master. IOW, all slave mounts
  such that @slave_mnt->mnt_master->mnt_group_id is equal to
  @shared_mnt->mnt_group_id.

  The concept of a propagation group makes it easier to talk about a
  single propagation level in a propagation tree.

  For example, in propagate_mnt() the immediate peers of @dest_mnt and
  all slaves of @dest_mnt's peer group form a propagation group propg1.
  So a shared-slave mount that is a slave in propg1 and that is a peer
  in another peer group pg2 forms another propagation group propg2
  together with all slaves that point to that shared-slave mount in
  their ->mnt_master.

* A propagation tree refers to all mounts that receive propagation
  starting from a specific shared mount.

  For example, for propagate_mnt() @dest_mnt is the start of a
  propagation tree. The propagation tree ecompasses all mounts that
  receive propagation from @dest_mnt's peer group down to the leafs.

With that out of the way let's get to the actual algorithm.

We know that @dest_mnt is guaranteed to be a pure shared mount or a
shared-slave mount. This is guaranteed by a check in
attach_recursive_mnt(). So propagate_mnt() will first propagate the
source mount tree to all peers in @dest_mnt's peer group:

for (n = next_peer(dest_mnt); n != dest_mnt; n = next_peer(n)) {
        ret = propagate_one(n);
        if (ret)
               goto out;
}

Notice, that the peer propagation loop of propagate_mnt() doesn't
propagate @dest_mnt itself. @dest_mnt is mounted directly in
attach_recursive_mnt() after we propagated to the destination
propagation tree.

The mount that will be mounted on top of @dest_mnt is @source_mnt. This
copy was created earlier even before we entered attach_recursive_mnt()
and doesn't concern us a lot here.

It's just important to notice that when propagate_mnt() is called
@source_mnt will not yet have been mounted on top of @dest_mnt. Thus,
@source_mnt->mnt_parent will either still point to @source_mnt or - in
the case @source_mnt is moved and thus already attached - still to its
former parent.

For each peer @m in @dest_mnt's peer group propagate_one() will create a
new copy of the source mount tree and mount that copy @child on @m such
that @child->mnt_parent points to @m after propagate_one() returns.

propagate_one() will stash the last destination propagation node @m in
@last_dest and the last copy it created for the source mount tree in
@last_source.

Hence, if we call into propagate_one() again for the next destination
propagation node @m, @last_dest will point to the previous destination
propagation node and @last_source will point to the previous copy of the
source mount tree and mounted on @last_dest.

Each new copy of the source mount tree is created from the previous copy
of the source mount tree. This will become important later.

The peer loop in propagate_mnt() is straightforward. We iterate through
the peers copying and updating @last_source and @last_dest as we go
through them and mount each copy of the source mount tree @child on a
peer @m in @dest_mnt's peer group.

After propagate_mnt() handled the peers in @dest_mnt's peer group
propagate_mnt() will propagate the source mount tree down the
propagation tree that @dest_mnt's peer group propagates to:

for (m = next_group(dest_mnt, dest_mnt); m;
                m = next_group(m, dest_mnt)) {
        /* everything in that slave group */
        n = m;
        do {
                ret = propagate_one(n);
                if (ret)
                        goto out;
                n = next_peer(n);
        } while (n != m);
}

The next_group() helper will recursively walk the destination
propagation tree, descending into each propagation group of the
propagation tree.

The important part is that it takes care to propagate the source mount
tree to all peers in the peer group of a propagation group before it
propagates to the slaves to those peers in the propagation group. IOW,
it creates and mounts copies of the source mount tree that become
masters before it creates and mounts copies of the source mount tree
that become slaves to these masters.

It is important to remember that propagating the source mount tree to
each mount @m in the destination propagation tree simply means that we
create and mount new copies @child of the source mount tree on @m such
that @child->mnt_parent points to @m.

Since we know that each node @m in the destination propagation tree
headed by @dest_mnt's peer group will be overmounted with a copy of the
source mount tree and since we know that the propagation properties of
each copy of the source mount tree we create and mount at @m will mostly
mirror the propagation properties of @m. We can use that information to
create and mount the copies of the source mount tree that become masters
before their slaves.

The easy case is always when @m and @last_dest are peers in a peer group
of a given propagation group. In that case we know that we can simply
copy @last_source without having to figure out what the master for the
new copy @child of the source mount tree needs to be as we've done that
in a previous call to propagate_one().

The hard case is when we're dealing with a slave mount or a shared-slave
mount @m in a destination propagation group that we need to create and
mount a copy of the source mount tree on.

For each propagation group in the destination propagation tree we
propagate the source mount tree to we want to make sure that the copies
@child of the source mount tree we create and mount on slaves @m pick an
ealier copy of the source mount tree that we mounted on a master @m of
the destination propagation group as their master. This is a mouthful
but as far as we can tell that's the core of it all.

But, if we keep track of the masters in the destination propagation tree
@m we can use the information to find the correct master for each copy
of the source mount tree we create and mount at the slaves in the
destination propagation tree @m.

Let's walk through the base case as that's still fairly easy to grasp.

If we're dealing with the first slave in the propagation group that
@dest_mnt is in then we don't yet have marked any masters in the
destination propagation tree.

We know the master for the first slave to @dest_mnt's peer group is
simple @dest_mnt. So we expect this algorithm to yield a copy of the
source mount tree that was mounted on a peer in @dest_mnt's peer group
as the master for the copy of the source mount tree we want to mount at
the first slave @m:

for (n = m; ; n = p) {
        p = n->mnt_master;
        if (p == dest_master || IS_MNT_MARKED(p))
                break;
}

For the first slave we walk the destination propagation tree all the way
up to a peer in @dest_mnt's peer group. IOW, the propagation hierarchy
can be walked by walking up the @mnt->mnt_master hierarchy of the
destination propagation tree @m. We will ultimately find a peer in
@dest_mnt's peer group and thus ultimately @dest_mnt->mnt_master.

Btw, here the assumption we listed at the beginning becomes important.
Namely, that peers in a peer group pg1 that are slaves in another peer
group pg2 appear on the same ->mnt_slave_list. IOW, all slaves who are
peers in peer group pg1 point to the same peer in peer group pg2 via
their ->mnt_master. Otherwise the termination condition in the code
above would be wrong and next_group() would be broken too.

So the first iteration sets:

n = m;
p = n->mnt_master;

such that @p now points to a peer or @dest_mnt itself. We walk up one
more level since we don't have any marked mounts. So we end up with:

n = dest_mnt;
p = dest_mnt->mnt_master;

If @dest_mnt's peer group is not slave to another peer group then @p is
now NULL. If @dest_mnt's peer group is a slave to another peer group
then @p now points to @dest_mnt->mnt_master points which is a master
outside the propagation tree we're dealing with.

Now we need to figure out the master for the copy of the source mount
tree we're about to create and mount on the first slave of @dest_mnt's
peer group:

do {
        struct mount *parent = last_source->mnt_parent;
        if (last_source == first_source)
                break;
        done = parent->mnt_master == p;
        if (done && peers(n, parent))
                break;
        last_source = last_source->mnt_master;
} while (!done);

We know that @last_source->mnt_parent points to @last_dest and
@last_dest is the last peer in @dest_mnt's peer group we propagated to
in the peer loop in propagate_mnt().

Consequently, @last_source is the last copy we created and mount on that
last peer in @dest_mnt's peer group. So @last_source is the master we
want to pick.

We know that @last_source->mnt_parent->mnt_master points to
@last_dest->mnt_master. We also know that @last_dest->mnt_master is
either NULL or points to a master outside of the destination propagation
tree and so does @p. Hence:

done = parent->mnt_master == p;

is trivially true in the base condition.

We also know that for the first slave mount of @dest_mnt's peer group
that @last_dest either points @dest_mnt itself because it was
initialized to:

last_dest = dest_mnt;

at the beginning of propagate_mnt() or it will point to a peer of
@dest_mnt in its peer group. In both cases it is guaranteed that on the
first iteration @n and @parent are peers (Please note the check for
peers here as that's important.):

if (done && peers(n, parent))
        break;

So, as we expected, we select @last_source, which referes to the last
copy of the source mount tree we mounted on the last peer in @dest_mnt's
peer group, as the master of the first slave in @dest_mnt's peer group.
The rest is taken care of by clone_mnt(last_source, ...). We'll skip
over that part otherwise this becomes a blogpost.

At the end of propagate_mnt() we now mark @m->mnt_master as the first
master in the destination propagation tree that is distinct from
@dest_mnt->mnt_master. IOW, we mark @dest_mnt itself as a master.

By marking @dest_mnt or one of it's peers we are able to easily find it
again when we later lookup masters for other copies of the source mount
tree we mount copies of the source mount tree on slaves @m to
@dest_mnt's peer group. This, in turn allows us to find the master we
selected for the copies of the source mount tree we mounted on master in
the destination propagation tree again.

The important part is to realize that the code makes use of the fact
that the last copy of the source mount tree stashed in @last_source was
mounted on top of the previous destination propagation node @last_dest.
What this means is that @last_source allows us to walk the destination
propagation hierarchy the same way each destination propagation node @m
does.

If we take @last_source, which is the copy of @source_mnt we have
mounted on @last_dest in the previous iteration of propagate_one(), then
we know @last_source->mnt_parent points to @last_dest but we also know
that as we walk through the destination propagation tree that
@last_source->mnt_master will point to an earlier copy of the source
mount tree we mounted one an earlier destination propagation node @m.

IOW, @last_source->mnt_parent will be our hook into the destination
propagation tree and each consecutive @last_source->mnt_master will lead
us to an earlier propagation node @m via
@last_source->mnt_master->mnt_parent.

Hence, by walking up @last_source->mnt_master, each of which is mounted
on a node that is a master @m in the destination propagation tree we can
also walk up the destination propagation hierarchy.

So, for each new destination propagation node @m we use the previous
copy of @last_source and the fact it's mounted on the previous
propagation node @last_dest via @last_source->mnt_master->mnt_parent to
determine what the master of the new copy of @last_source needs to be.

The goal is to find the _closest_ master that the new copy of the source
mount tree we are about to create and mount on a slave @m in the
destination propagation tree needs to pick. IOW, we want to find a
suitable master in the propagation group.

As the propagation structure of the source mount propagation tree we
create mirrors the propagation structure of the destination propagation
tree we can find @m's closest master - i.e., a marked master - which is
a peer in the closest peer group that @m receives propagation from. We
store that closest master of @m in @p as before and record the slave to
that master in @n

We then search for this master @p via @last_source by walking up the
master hierarchy starting from the last copy of the source mount tree
stored in @last_source that we created and mounted on the previous
destination propagation node @m.

We will try to find the master by walking @last_source->mnt_master and
by comparing @last_source->mnt_master->mnt_parent->mnt_master to @p. If
we find @p then we can figure out what earlier copy of the source mount
tree needs to be the master for the new copy of the source mount tree
we're about to create and mount at the current destination propagation
node @m.

If @last_source->mnt_master->mnt_parent and @n are peers then we know
that the closest master they receive propagation from is
@last_source->mnt_master->mnt_parent->mnt_master. If not then the
closest immediate peer group that they receive propagation from must be
one level higher up.

This builds on the earlier clarification at the beginning that all peers
in a peer group which are slaves of other peer groups all point to the
same ->mnt_master, i.e., appear on the same ->mnt_slave_list, of the
closest peer group that they receive propagation from.

However, terminating the walk has corner cases.

If the closest marked master for a given destination node @m cannot be
found by walking up the master hierarchy via @last_source->mnt_master
then we need to terminate the walk when we encounter @source_mnt again.

This isn't an arbitrary termination. It simply means that the new copy
of the source mount tree we're about to create has a copy of the source
mount tree we created and mounted on a peer in @dest_mnt's peer group as
its master. IOW, @source_mnt is the peer in the closest peer group that
the new copy of the source mount tree receives propagation from.

We absolutely have to stop @source_mnt because @last_source->mnt_master
either points outside the propagation hierarchy we're dealing with or it
is NULL because @source_mnt isn't a shared-slave.

So continuing the walk past @source_mnt would cause a NULL dereference
via @last_source->mnt_master->mnt_parent. And so we have to stop the
walk when we encounter @source_mnt again.

One scenario where this can happen is when we first handled a series of
slaves of @dest_mnt's peer group and then encounter peers in a new peer
group that is a slave to @dest_mnt's peer group. We handle them and then
we encounter another slave mount to @dest_mnt that is a pure slave to
@dest_mnt's peer group. That pure slave will have a peer in @dest_mnt's
peer group as its master. Consequently, the new copy of the source mount
tree will need to have @source_mnt as it's master. So we walk the
propagation hierarchy all the way up to @source_mnt based on
@last_source->mnt_master.

So terminate on @source_mnt, easy peasy. Except, that the check misses
something that the rest of the algorithm already handles.

If @dest_mnt has peers in it's peer group the peer loop in
propagate_mnt():

for (n = next_peer(dest_mnt); n != dest_mnt; n = next_peer(n)) {
        ret = propagate_one(n);
        if (ret)
                goto out;
}

will consecutively update @last_source with each previous copy of the
source mount tree we created and mounted at the previous peer in
@dest_mnt's peer group. So after that loop terminates @last_source will
point to whatever copy of the source mount tree was created and mounted
on the last peer in @dest_mnt's peer group.

Furthermore, if there is even a single additional peer in @dest_mnt's
peer group then @last_source will __not__ point to @source_mnt anymore.
Because, as we mentioned above, @dest_mnt isn't even handled in this
loop but directly in attach_recursive_mnt(). So it can't even accidently
come last in that peer loop.

So the first time we handle a slave mount @m of @dest_mnt's peer group
the copy of the source mount tree we create will make the __last copy of
the source mount tree we created and mounted on the last peer in
@dest_mnt's peer group the master of the new copy of the source mount
tree we create and mount on the first slave of @dest_mnt's peer group__.

But this means that the termination condition that checks for
@source_mnt is wrong. The @source_mnt cannot be found anymore by
propagate_one(). Instead it will find the last copy of the source mount
tree we created and mounted for the last peer of @dest_mnt's peer group
again. And that is a peer of @source_mnt not @source_mnt itself.

IOW, we fail to terminate the loop correctly and ultimately dereference
@last_source->mnt_master->mnt_parent. When @source_mnt's peer group
isn't slave to another peer group then @last_source->mnt_master is NULL
causing the splat below.

For example, assume @dest_mnt is a pure shared mount and has three peers
in its peer group:

===================================================================================
                                         mount-id   mount-parent-id   peer-group-id
===================================================================================
(@dest_mnt) mnt_master[216]              309        297               shared:216
    \
     (@source_mnt) mnt_master[218]:      609        609               shared:218

(1) mnt_master[216]:                     607        605               shared:216
    \
     (P1) mnt_master[218]:               624        607               shared:218

(2) mnt_master[216]:                     576        574               shared:216
    \
     (P2) mnt_master[218]:               625        576               shared:218

(3) mnt_master[216]:                     545        543               shared:216
    \
     (P3) mnt_master[218]:               626        545               shared:218

After this sequence has been processed @last_source will point to (P3),
the copy generated for the third peer in @dest_mnt's peer group we
handled. So the copy of the source mount tree (P4) we create and mount
on the first slave of @dest_mnt's peer group:

===================================================================================
                                         mount-id   mount-parent-id   peer-group-id
===================================================================================
    mnt_master[216]                      309        297               shared:216
   /
  /
(S0) mnt_slave                           483        481               master:216
  \
   \    (P3) mnt_master[218]             626        545               shared:218
    \  /
     \/
    (P4) mnt_slave                       627        483               master:218

will pick the last copy of the source mount tree (P3) as master, not (S0).

When walking the propagation hierarchy via @last_source's master
hierarchy we encounter (P3) but not (S0), i.e., @source_mnt.

We can fix this in multiple ways:

(1) By setting @last_source to @source_mnt after we processed the peers
    in @dest_mnt's peer group right after the peer loop in
    propagate_mnt().

(2) By changing the termination condition that relies on finding exactly
    @source_mnt to finding a peer of @source_mnt.

(3) By only moving @last_source when we actually venture into a new peer
    group or some clever variant thereof.

The first two options are minimally invasive and what we want as a fix.
The third option is more intrusive but something we'd like to explore in
the near future.

This passes all LTP tests and specifically the mount propagation
testsuite part of it. It also holds up against all known reproducers of
this issues.

Final words.
First, this is a clever but __worringly__ underdocumented algorithm.
There isn't a single detailed comment to be found in next_group(),
propagate_one() or anywhere else in that file for that matter. This has
been a giant pain to understand and work through and a bug like this is
insanely difficult to fix without a detailed understanding of what's
happening. Let's not talk about the amount of time that was sunk into
fixing this.

Second, all the cool kids with access to
unshare --mount --user --map-root --propagation=unchanged
are going to have a lot of fun. IOW, triggerable by unprivileged users
while namespace_lock() lock is held.

[  115.848393] BUG: kernel NULL pointer dereference, address: 0000000000000010
[  115.848967] #PF: supervisor read access in kernel mode
[  115.849386] #PF: error_code(0x0000) - not-present page
[  115.849803] PGD 0 P4D 0
[  115.850012] Oops: 0000 [#1] PREEMPT SMP PTI
[  115.850354] CPU: 0 PID: 15591 Comm: mount Not tainted 6.1.0-rc7 #3
[  115.850851] Hardware name: innotek GmbH VirtualBox/VirtualBox, BIOS
VirtualBox 12/01/2006
[  115.851510] RIP: 0010:propagate_one.part.0+0x7f/0x1a0
[  115.851924] Code: 75 eb 4c 8b 05 c2 25 37 02 4c 89 ca 48 8b 4a 10
49 39 d0 74 1e 48 3b 81 e0 00 00 00 74 26 48 8b 92 e0 00 00 00 be 01
00 00 00 <48> 8b 4a 10 49 39 d0 75 e2 40 84 f6 74 38 4c 89 05 84 25 37
02 4d
[  115.853441] RSP: 0018:ffffb8d5443d7d50 EFLAGS: 00010282
[  115.853865] RAX: ffff8e4d87c41c80 RBX: ffff8e4d88ded780 RCX: ffff8e4da4333a00
[  115.854458] RDX: 0000000000000000 RSI: 0000000000000001 RDI: ffff8e4d88ded780
[  115.855044] RBP: ffff8e4d88ded780 R08: ffff8e4da4338000 R09: ffff8e4da43388c0
[  115.855693] R10: 0000000000000002 R11: ffffb8d540158000 R12: ffffb8d5443d7da8
[  115.856304] R13: ffff8e4d88ded780 R14: 0000000000000000 R15: 0000000000000000
[  115.856859] FS:  00007f92c90c9800(0000) GS:ffff8e4dfdc00000(0000)
knlGS:0000000000000000
[  115.857531] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[  115.858006] CR2: 0000000000000010 CR3: 0000000022f4c002 CR4: 00000000000706f0
[  115.858598] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[  115.859393] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[  115.860099] Call Trace:
[  115.860358]  <TASK>
[  115.860535]  propagate_mnt+0x14d/0x190
[  115.860848]  attach_recursive_mnt+0x274/0x3e0
[  115.861212]  path_mount+0x8c8/0xa60
[  115.861503]  __x64_sys_mount+0xf6/0x140
[  115.861819]  do_syscall_64+0x5b/0x80
[  115.862117]  ? do_faccessat+0x123/0x250
[  115.862435]  ? syscall_exit_to_user_mode+0x17/0x40
[  115.862826]  ? do_syscall_64+0x67/0x80
[  115.863133]  ? syscall_exit_to_user_mode+0x17/0x40
[  115.863527]  ? do_syscall_64+0x67/0x80
[  115.863835]  ? do_syscall_64+0x67/0x80
[  115.864144]  ? do_syscall_64+0x67/0x80
[  115.864452]  ? exc_page_fault+0x70/0x170
[  115.864775]  entry_SYSCALL_64_after_hwframe+0x63/0xcd
[  115.865187] RIP: 0033:0x7f92c92b0ebe
[  115.865480] Code: 48 8b 0d 75 4f 0c 00 f7 d8 64 89 01 48 83 c8 ff
c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 49 89 ca b8 a5 00 00
00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 42 4f 0c 00 f7 d8 64 89
01 48
[  115.866984] RSP: 002b:00007fff000aa728 EFLAGS: 00000246 ORIG_RAX:
00000000000000a5
[  115.867607] RAX: ffffffffffffffda RBX: 000055a77888d6b0 RCX: 00007f92c92b0ebe
[  115.868240] RDX: 000055a77888d8e0 RSI: 000055a77888e6e0 RDI: 000055a77888e620
[  115.868823] RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000001
[  115.869403] R10: 0000000000001000 R11: 0000000000000246 R12: 000055a77888e620
[  115.869994] R13: 000055a77888d8e0 R14: 00000000ffffffff R15: 00007f92c93e4076
[  115.870581]  </TASK>
[  115.870763] Modules linked in: nft_fib_inet nft_fib_ipv4
nft_fib_ipv6 nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6
nft_reject nft_ct nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6
nf_defrag_ipv4 ip_set rfkill nf_tables nfnetlink qrtr snd_intel8x0
sunrpc snd_ac97_codec ac97_bus snd_pcm snd_timer intel_rapl_msr
intel_rapl_common snd vboxguest intel_powerclamp video rapl joydev
soundcore i2c_piix4 wmi fuse zram xfs vmwgfx crct10dif_pclmul
crc32_pclmul crc32c_intel polyval_clmulni polyval_generic
drm_ttm_helper ttm e1000 ghash_clmulni_intel serio_raw ata_generic
pata_acpi scsi_dh_rdac scsi_dh_emc scsi_dh_alua dm_multipath
[  115.875288] CR2: 0000000000000010
[  115.875641] ---[ end trace 0000000000000000 ]---
[  115.876135] RIP: 0010:propagate_one.part.0+0x7f/0x1a0
[  115.876551] Code: 75 eb 4c 8b 05 c2 25 37 02 4c 89 ca 48 8b 4a 10
49 39 d0 74 1e 48 3b 81 e0 00 00 00 74 26 48 8b 92 e0 00 00 00 be 01
00 00 00 <48> 8b 4a 10 49 39 d0 75 e2 40 84 f6 74 38 4c 89 05 84 25 37
02 4d
[  115.878086] RSP: 0018:ffffb8d5443d7d50 EFLAGS: 00010282
[  115.878511] RAX: ffff8e4d87c41c80 RBX: ffff8e4d88ded780 RCX: ffff8e4da4333a00
[  115.879128] RDX: 0000000000000000 RSI: 0000000000000001 RDI: ffff8e4d88ded780
[  115.879715] RBP: ffff8e4d88ded780 R08: ffff8e4da4338000 R09: ffff8e4da43388c0
[  115.880359] R10: 0000000000000002 R11: ffffb8d540158000 R12: ffffb8d5443d7da8
[  115.880962] R13: ffff8e4d88ded780 R14: 0000000000000000 R15: 0000000000000000
[  115.881548] FS:  00007f92c90c9800(0000) GS:ffff8e4dfdc00000(0000)
knlGS:0000000000000000
[  115.882234] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[  115.882713] CR2: 0000000000000010 CR3: 0000000022f4c002 CR4: 00000000000706f0
[  115.883314] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[  115.883966] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400

Fixes: f2ebb3a921 ("smarter propagate_mnt()")
Fixes: 5ec0811d30 ("propogate_mnt: Handle the first propogated copy being a slave")
Cc: <stable@vger.kernel.org>
Reported-by: Ditang Chen <ditang.c@gmail.com>
Signed-off-by: Seth Forshee (Digital Ocean) <sforshee@kernel.org>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-18 11:41:44 +01:00
Zhang Tianci
0e727c328e ovl: Use ovl mounter's fsuid and fsgid in ovl_link()
commit 5b0db51215 upstream.

There is a wrong case of link() on overlay:
  $ mkdir /lower /fuse /merge
  $ mount -t fuse /fuse
  $ mkdir /fuse/upper /fuse/work
  $ mount -t overlay /merge -o lowerdir=/lower,upperdir=/fuse/upper,\
    workdir=work
  $ touch /merge/file
  $ chown bin.bin /merge/file // the file's caller becomes "bin"
  $ ln /merge/file /merge/lnkfile

Then we will get an error(EACCES) because fuse daemon checks the link()'s
caller is "bin", it denied this request.

In the changing history of ovl_link(), there are two key commits:

The first is commit bb0d2b8ad2 ("ovl: fix sgid on directory") which
overrides the cred's fsuid/fsgid using the new inode. The new inode's
owner is initialized by inode_init_owner(), and inode->fsuid is
assigned to the current user. So the override fsuid becomes the
current user. We know link() is actually modifying the directory, so
the caller must have the MAY_WRITE permission on the directory. The
current caller may should have this permission. This is acceptable
to use the caller's fsuid.

The second is commit 51f7e52dc9 ("ovl: share inode for hard link")
which removed the inode creation in ovl_link(). This commit move
inode_init_owner() into ovl_create_object(), so the ovl_link() just
give the old inode to ovl_create_or_link(). Then the override fsuid
becomes the old inode's fsuid, neither the caller nor the overlay's
mounter! So this is incorrect.

Fix this bug by using ovl mounter's fsuid/fsgid to do underlying
fs's link().

Link: https://lore.kernel.org/all/20220817102952.xnvesg3a7rbv576x@wittgenstein/T
Link: https://lore.kernel.org/lkml/20220825130552.29587-1-zhangtianci.1997@bytedance.com/t
Signed-off-by: Zhang Tianci <zhangtianci.1997@bytedance.com>
Signed-off-by: Jiachen Zhang <zhangjiachen.jaycee@bytedance.com>
Reviewed-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Fixes: 51f7e52dc9 ("ovl: share inode for hard link")
Cc: <stable@vger.kernel.org> # v4.8
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-18 11:41:43 +01:00
Aditya Garg
cae6dddef2 hfsplus: fix bug causing custom uid and gid being unable to be assigned with mount
commit 9f2b5debc0 upstream.

Despite specifying UID and GID in mount command, the specified UID and GID
were not being assigned. This patch fixes this issue.

Link: https://lkml.kernel.org/r/C0264BF5-059C-45CF-B8DA-3A3BD2C803A2@live.com
Signed-off-by: Aditya Garg <gargaditya08@live.com>
Reviewed-by: Viacheslav Dubeyko <slava@dubeyko.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-18 11:41:43 +01:00
Paulo Alcantara
e8e2861cc3 cifs: fix oops during encryption
[ Upstream commit f7f291e14d ]

When running xfstests against Azure the following oops occurred on an
arm64 system

  Unable to handle kernel write to read-only memory at virtual address
  ffff0001221cf000
  Mem abort info:
    ESR = 0x9600004f
    EC = 0x25: DABT (current EL), IL = 32 bits
    SET = 0, FnV = 0
    EA = 0, S1PTW = 0
    FSC = 0x0f: level 3 permission fault
  Data abort info:
    ISV = 0, ISS = 0x0000004f
    CM = 0, WnR = 1
  swapper pgtable: 4k pages, 48-bit VAs, pgdp=00000000294f3000
  [ffff0001221cf000] pgd=18000001ffff8003, p4d=18000001ffff8003,
  pud=18000001ff82e003, pmd=18000001ff71d003, pte=00600001221cf787
  Internal error: Oops: 9600004f [#1] PREEMPT SMP
  ...
  pstate: 80000005 (Nzcv daif -PAN -UAO -TCO BTYPE=--)
  pc : __memcpy+0x40/0x230
  lr : scatterwalk_copychunks+0xe0/0x200
  sp : ffff800014e92de0
  x29: ffff800014e92de0 x28: ffff000114f9de80 x27: 0000000000000008
  x26: 0000000000000008 x25: ffff800014e92e78 x24: 0000000000000008
  x23: 0000000000000001 x22: 0000040000000000 x21: ffff000000000000
  x20: 0000000000000001 x19: ffff0001037c4488 x18: 0000000000000014
  x17: 235e1c0d6efa9661 x16: a435f9576b6edd6c x15: 0000000000000058
  x14: 0000000000000001 x13: 0000000000000008 x12: ffff000114f2e590
  x11: ffffffffffffffff x10: 0000040000000000 x9 : ffff8000105c3580
  x8 : 2e9413b10000001a x7 : 534b4410fb86b005 x6 : 534b4410fb86b005
  x5 : ffff0001221cf008 x4 : ffff0001037c4490 x3 : 0000000000000001
  x2 : 0000000000000008 x1 : ffff0001037c4488 x0 : ffff0001221cf000
  Call trace:
   __memcpy+0x40/0x230
   scatterwalk_map_and_copy+0x98/0x100
   crypto_ccm_encrypt+0x150/0x180
   crypto_aead_encrypt+0x2c/0x40
   crypt_message+0x750/0x880
   smb3_init_transform_rq+0x298/0x340
   smb_send_rqst.part.11+0xd8/0x180
   smb_send_rqst+0x3c/0x100
   compound_send_recv+0x534/0xbc0
   smb2_query_info_compound+0x32c/0x440
   smb2_set_ea+0x438/0x4c0
   cifs_xattr_set+0x5d4/0x7c0

This is because in scatterwalk_copychunks(), we attempted to write to
a buffer (@sign) that was allocated in the stack (vmalloc area) by
crypt_message() and thus accessing its remaining 8 (x2) bytes ended up
crossing a page boundary.

To simply fix it, we could just pass @sign kmalloc'd from
crypt_message() and then we're done.  Luckily, we don't seem to pass
any other vmalloc'd buffers in smb_rqst::rq_iov...

Instead, let's map the correct pages and offsets from vmalloc buffers
as well in cifs_sg_set_buf() and then avoiding such oopses.

Signed-off-by: Paulo Alcantara (SUSE) <pc@cjr.nz>
Cc: stable@vger.kernel.org
Signed-off-by: Steve French <stfrench@microsoft.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-18 11:41:42 +01:00
Roberto Sassu
ad4eb32ced reiserfs: Add missing calls to reiserfs_security_free()
commit 572302af12 upstream.

Commit 57fe60df62 ("reiserfs: add atomic addition of selinux attributes
during inode creation") defined reiserfs_security_free() to free the name
and value of a security xattr allocated by the active LSM through
security_old_inode_init_security(). However, this function is not called
in the reiserfs code.

Thus, add a call to reiserfs_security_free() whenever
reiserfs_security_init() is called, and initialize value to NULL, to avoid
to call kfree() on an uninitialized pointer.

Finally, remove the kfree() for the xattr name, as it is not allocated
anymore.

Fixes: 57fe60df62 ("reiserfs: add atomic addition of selinux attributes during inode creation")
Cc: stable@vger.kernel.org
Cc: Jeff Mahoney <jeffm@suse.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Reported-by: Mimi Zohar <zohar@linux.ibm.com>
Reported-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Roberto Sassu <roberto.sassu@huawei.com>
Reviewed-by: Mimi Zohar <zohar@linux.ibm.com>
Signed-off-by: Paul Moore <paul@paul-moore.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-18 11:41:41 +01:00
John Stultz
fad324bc07 pstore: Make sure CONFIG_PSTORE_PMSG selects CONFIG_RT_MUTEXES
[ Upstream commit 2f4fec5943 ]

In commit 76d62f24db ("pstore: Switch pmsg_lock to an rt_mutex
to avoid priority inversion") I changed a lock to an rt_mutex.

However, its possible that CONFIG_RT_MUTEXES is not enabled,
which then results in a build failure, as the 0day bot detected:
  https://lore.kernel.org/linux-mm/202212211244.TwzWZD3H-lkp@intel.com/

Thus this patch changes CONFIG_PSTORE_PMSG to select
CONFIG_RT_MUTEXES, which ensures the build will not fail.

Cc: Wei Wang <wvw@google.com>
Cc: Midas Chien<midaschieh@google.com>
Cc: Connor O'Brien <connoro@google.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Anton Vorontsov <anton@enomsg.org>
Cc: Colin Cross <ccross@android.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: kernel test robot <lkp@intel.com>
Cc: kernel-team@android.com
Fixes: 76d62f24db ("pstore: Switch pmsg_lock to an rt_mutex to avoid priority inversion")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: John Stultz <jstultz@google.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20221221051855.15761-1-jstultz@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-18 11:41:40 +01:00
John Stultz
e56423bb8e pstore: Switch pmsg_lock to an rt_mutex to avoid priority inversion
[ Upstream commit 76d62f24db ]

Wei Wang reported seeing priority inversion caused latencies
caused by contention on pmsg_lock, and suggested it be switched
to a rt_mutex.

I was initially hesitant this would help, as the tasks in that
trace all seemed to be SCHED_NORMAL, so the benefit would be
limited to only nice boosting.

However, another similar issue was raised where the priority
inversion was seen did involve a blocked RT task so it is clear
this would be helpful in that case.

Cc: Wei Wang <wvw@google.com>
Cc: Midas Chien<midaschieh@google.com>
Cc: Connor O'Brien <connoro@google.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Anton Vorontsov <anton@enomsg.org>
Cc: Colin Cross <ccross@android.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: kernel-team@android.com
Fixes: 9d5438f462 ("pstore: Add pmsg - user-space accessible pstore object")
Reported-by: Wei Wang <wvw@google.com>
Signed-off-by: John Stultz <jstultz@google.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20221214231834.3711880-1-jstultz@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-18 11:41:40 +01:00
Zhang Xiaoxu
bdc2d33fa2 orangefs: Fix kmemleak in orangefs_{kernel,client}_debug_init()
[ Upstream commit 31720a2b10 ]

When insert and remove the orangefs module, there are memory leaked
as below:

unreferenced object 0xffff88816b0cc000 (size 2048):
  comm "insmod", pid 783, jiffies 4294813439 (age 65.512s)
  hex dump (first 32 bytes):
    6e 6f 6e 65 0a 00 00 00 00 00 00 00 00 00 00 00  none............
    00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
  backtrace:
    [<0000000031ab7788>] kmalloc_trace+0x27/0xa0
    [<000000005b405fee>] orangefs_debugfs_init.cold+0xaf/0x17f
    [<00000000e5a0085b>] 0xffffffffa02780f9
    [<000000004232d9f7>] do_one_initcall+0x87/0x2a0
    [<0000000054f22384>] do_init_module+0xdf/0x320
    [<000000003263bdea>] load_module+0x2f98/0x3330
    [<0000000052cd4153>] __do_sys_finit_module+0x113/0x1b0
    [<00000000250ae02b>] do_syscall_64+0x35/0x80
    [<00000000f11c03c7>] entry_SYSCALL_64_after_hwframe+0x46/0xb0

Use the golbal variable as the buffer rather than dynamic allocate to
slove the problem.

Signed-off-by: Zhang Xiaoxu <zhangxiaoxu5@huawei.com>
Signed-off-by: Mike Marshall <hubcap@omnibond.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-18 11:41:39 +01:00
Zhang Xiaoxu
2e7c091210 orangefs: Fix kmemleak in orangefs_prepare_debugfs_help_string()
[ Upstream commit d23417a5bf ]

When insert and remove the orangefs module, then debug_help_string will
be leaked:

  unreferenced object 0xffff8881652ba000 (size 4096):
    comm "insmod", pid 1701, jiffies 4294893639 (age 13218.530s)
    hex dump (first 32 bytes):
      43 6c 69 65 6e 74 20 44 65 62 75 67 20 4b 65 79  Client Debug Key
      77 6f 72 64 73 20 61 72 65 20 75 6e 6b 6e 6f 77  words are unknow
    backtrace:
      [<0000000004e6f8e3>] kmalloc_trace+0x27/0xa0
      [<0000000006f75d85>] orangefs_prepare_debugfs_help_string+0x5e/0x480 [orangefs]
      [<0000000091270a2a>] _sub_I_65535_1+0x57/0xf70 [crc_itu_t]
      [<000000004b1ee1a3>] do_one_initcall+0x87/0x2a0
      [<000000001d0614ae>] do_init_module+0xdf/0x320
      [<00000000efef068c>] load_module+0x2f98/0x3330
      [<000000006533b44d>] __do_sys_finit_module+0x113/0x1b0
      [<00000000a0da6f99>] do_syscall_64+0x35/0x80
      [<000000007790b19b>] entry_SYSCALL_64_after_hwframe+0x46/0xb0

When remove the module, should always free debug_help_string. Should
always free the allocated buffer when change the free_debug_help_string.

Signed-off-by: Zhang Xiaoxu <zhangxiaoxu5@huawei.com>
Signed-off-by: Mike Marshall <hubcap@omnibond.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-18 11:41:39 +01:00
Hawkins Jiawei
fa71639873 hugetlbfs: fix null-ptr-deref in hugetlbfs_parse_param()
[ Upstream commit 26215b7ee9 ]

Syzkaller reports a null-ptr-deref bug as follows:
======================================================
KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007]
RIP: 0010:hugetlbfs_parse_param+0x1dd/0x8e0 fs/hugetlbfs/inode.c:1380
[...]
Call Trace:
 <TASK>
 vfs_parse_fs_param fs/fs_context.c:148 [inline]
 vfs_parse_fs_param+0x1f9/0x3c0 fs/fs_context.c:129
 vfs_parse_fs_string+0xdb/0x170 fs/fs_context.c:191
 generic_parse_monolithic+0x16f/0x1f0 fs/fs_context.c:231
 do_new_mount fs/namespace.c:3036 [inline]
 path_mount+0x12de/0x1e20 fs/namespace.c:3370
 do_mount fs/namespace.c:3383 [inline]
 __do_sys_mount fs/namespace.c:3591 [inline]
 __se_sys_mount fs/namespace.c:3568 [inline]
 __x64_sys_mount+0x27f/0x300 fs/namespace.c:3568
 do_syscall_x64 arch/x86/entry/common.c:50 [inline]
 do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
 entry_SYSCALL_64_after_hwframe+0x63/0xcd
 [...]
 </TASK>
======================================================

According to commit "vfs: parse: deal with zero length string value",
kernel will set the param->string to null pointer in vfs_parse_fs_string()
if fs string has zero length.

Yet the problem is that, hugetlbfs_parse_param() will dereference the
param->string, without checking whether it is a null pointer.  To be more
specific, if hugetlbfs_parse_param() parses an illegal mount parameter,
such as "size=,", kernel will constructs struct fs_parameter with null
pointer in vfs_parse_fs_string(), then passes this struct fs_parameter to
hugetlbfs_parse_param(), which triggers the above null-ptr-deref bug.

This patch solves it by adding sanity check on param->string
in hugetlbfs_parse_param().

Link: https://lkml.kernel.org/r/20221020231609.4810-1-yin31149@gmail.com
Reported-by: syzbot+a3e6acd85ded5c16a709@syzkaller.appspotmail.com
Tested-by: syzbot+a3e6acd85ded5c16a709@syzkaller.appspotmail.com
  Link: https://lore.kernel.org/all/0000000000005ad00405eb7148c6@google.com/
Signed-off-by: Hawkins Jiawei <yin31149@gmail.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Hawkins Jiawei <yin31149@gmail.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Ian Kent <raven@themaw.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-18 11:41:38 +01:00
ZhangPeng
90103ccb6e hfs: fix OOB Read in __hfs_brec_find
[ Upstream commit 8d824e69d9 ]

Syzbot reported a OOB read bug:

==================================================================
BUG: KASAN: slab-out-of-bounds in hfs_strcmp+0x117/0x190
fs/hfs/string.c:84
Read of size 1 at addr ffff88807eb62c4e by task kworker/u4:1/11
CPU: 1 PID: 11 Comm: kworker/u4:1 Not tainted
6.1.0-rc6-syzkaller-00308-g644e9524388a #0
Workqueue: writeback wb_workfn (flush-7:0)
Call Trace:
 <TASK>
 __dump_stack lib/dump_stack.c:88 [inline]
 dump_stack_lvl+0x1b1/0x28e lib/dump_stack.c:106
 print_address_description+0x74/0x340 mm/kasan/report.c:284
 print_report+0x107/0x1f0 mm/kasan/report.c:395
 kasan_report+0xcd/0x100 mm/kasan/report.c:495
 hfs_strcmp+0x117/0x190 fs/hfs/string.c:84
 __hfs_brec_find+0x213/0x5c0 fs/hfs/bfind.c:75
 hfs_brec_find+0x276/0x520 fs/hfs/bfind.c:138
 hfs_write_inode+0x34c/0xb40 fs/hfs/inode.c:462
 write_inode fs/fs-writeback.c:1440 [inline]

If the input inode of hfs_write_inode() is incorrect:
struct inode
  struct hfs_inode_info
    struct hfs_cat_key
      struct hfs_name
        u8 len # len is greater than HFS_NAMELEN(31) which is the
maximum length of an HFS filename

OOB read occurred:
hfs_write_inode()
  hfs_brec_find()
    __hfs_brec_find()
      hfs_cat_keycmp()
        hfs_strcmp() # OOB read occurred due to len is too large

Fix this by adding a Check on len in hfs_write_inode() before calling
hfs_brec_find().

Link: https://lkml.kernel.org/r/20221130065959.2168236-1-zhangpeng362@huawei.com
Signed-off-by: ZhangPeng <zhangpeng362@huawei.com>
Reported-by: <syzbot+e836ff7133ac02be825f@syzkaller.appspotmail.com>
Cc: Damien Le Moal <damien.lemoal@opensource.wdc.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Jeff Layton <jlayton@kernel.org>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Nanyong Sun <sunnanyong@huawei.com>
Cc: Viacheslav Dubeyko <slava@dubeyko.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-18 11:41:34 +01:00
Ryusuke Konishi
d706485dff nilfs2: fix shift-out-of-bounds/overflow in nilfs_sb2_bad_offset()
[ Upstream commit 610a2a3d7d ]

Patch series "nilfs2: fix UBSAN shift-out-of-bounds warnings on mount
time".

The first patch fixes a bug reported by syzbot, and the second one fixes
the remaining bug of the same kind.  Although they are triggered by the
same super block data anomaly, I divided it into the above two because the
details of the issues and how to fix it are different.

Both are required to eliminate the shift-out-of-bounds issues at mount
time.

This patch (of 2):

If the block size exponent information written in an on-disk superblock is
corrupted, nilfs_sb2_bad_offset helper function can trigger
shift-out-of-bounds warning followed by a kernel panic (if panic_on_warn
is set):

 shift exponent 38983 is too large for 64-bit type 'unsigned long long'
 Call Trace:
  <TASK>
  __dump_stack lib/dump_stack.c:88 [inline]
  dump_stack_lvl+0x1b1/0x28e lib/dump_stack.c:106
  ubsan_epilogue lib/ubsan.c:151 [inline]
  __ubsan_handle_shift_out_of_bounds+0x33d/0x3b0 lib/ubsan.c:322
  nilfs_sb2_bad_offset fs/nilfs2/the_nilfs.c:449 [inline]
  nilfs_load_super_block+0xdf5/0xe00 fs/nilfs2/the_nilfs.c:523
  init_nilfs+0xb7/0x7d0 fs/nilfs2/the_nilfs.c:577
  nilfs_fill_super+0xb1/0x5d0 fs/nilfs2/super.c:1047
  nilfs_mount+0x613/0x9b0 fs/nilfs2/super.c:1317
  ...

In addition, since nilfs_sb2_bad_offset() performs multiplication without
considering the upper bound, the computation may overflow if the disk
layout parameters are not normal.

This fixes these issues by inserting preliminary sanity checks for those
parameters and by converting the comparison from one involving
multiplication and left bit-shifting to one using division and right
bit-shifting.

Link: https://lkml.kernel.org/r/20221027044306.42774-1-konishi.ryusuke@gmail.com
Link: https://lkml.kernel.org/r/20221027044306.42774-2-konishi.ryusuke@gmail.com
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@gmail.com>
Reported-by: syzbot+e91619dd4c11c4960706@syzkaller.appspotmail.com
Tested-by: Ryusuke Konishi <konishi.ryusuke@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-18 11:41:34 +01:00
Hoi Pok Wu
50163a1158 fs: jfs: fix shift-out-of-bounds in dbDiscardAG
[ Upstream commit 25e70c6162 ]

This should be applied to most URSAN bugs found recently by syzbot,
by guarding the dbMount. As syzbot feeding rubbish into the bmap
descriptor.

Signed-off-by: Hoi Pok Wu <wuhoipok@gmail.com>
Signed-off-by: Dave Kleikamp <dave.kleikamp@oracle.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-18 11:41:34 +01:00
Shigeru Yoshida
156d440dea udf: Avoid double brelse() in udf_rename()
[ Upstream commit c791730f25 ]

syzbot reported a warning like below [1]:

VFS: brelse: Trying to free free buffer
WARNING: CPU: 2 PID: 7301 at fs/buffer.c:1145 __brelse+0x67/0xa0
...
Call Trace:
 <TASK>
 invalidate_bh_lru+0x99/0x150
 smp_call_function_many_cond+0xe2a/0x10c0
 ? generic_remap_file_range_prep+0x50/0x50
 ? __brelse+0xa0/0xa0
 ? __mutex_lock+0x21c/0x12d0
 ? smp_call_on_cpu+0x250/0x250
 ? rcu_read_lock_sched_held+0xb/0x60
 ? lock_release+0x587/0x810
 ? __brelse+0xa0/0xa0
 ? generic_remap_file_range_prep+0x50/0x50
 on_each_cpu_cond_mask+0x3c/0x80
 blkdev_flush_mapping+0x13a/0x2f0
 blkdev_put_whole+0xd3/0xf0
 blkdev_put+0x222/0x760
 deactivate_locked_super+0x96/0x160
 deactivate_super+0xda/0x100
 cleanup_mnt+0x222/0x3d0
 task_work_run+0x149/0x240
 ? task_work_cancel+0x30/0x30
 do_exit+0xb29/0x2a40
 ? reacquire_held_locks+0x4a0/0x4a0
 ? do_raw_spin_lock+0x12a/0x2b0
 ? mm_update_next_owner+0x7c0/0x7c0
 ? rwlock_bug.part.0+0x90/0x90
 ? zap_other_threads+0x234/0x2d0
 do_group_exit+0xd0/0x2a0
 __x64_sys_exit_group+0x3a/0x50
 do_syscall_64+0x34/0xb0
 entry_SYSCALL_64_after_hwframe+0x63/0xcd

The cause of the issue is that brelse() is called on both ofibh.sbh
and ofibh.ebh by udf_find_entry() when it returns NULL.  However,
brelse() is called by udf_rename(), too.  So, b_count on buffer_head
becomes unbalanced.

This patch fixes the issue by not calling brelse() by udf_rename()
when udf_find_entry() returns NULL.

Link: https://syzkaller.appspot.com/bug?id=8297f45698159c6bca8a1f87dc983667c1a1c851 [1]
Reported-by: syzbot+7902cd7684bc35306224@syzkaller.appspotmail.com
Signed-off-by: Shigeru Yoshida <syoshida@redhat.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20221023095741.271430-1-syoshida@redhat.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-18 11:41:34 +01:00
Dongliang Mu
359616ce58 fs: jfs: fix shift-out-of-bounds in dbAllocAG
[ Upstream commit 898f706695 ]

Syzbot found a crash : UBSAN: shift-out-of-bounds in dbAllocAG. The
underlying bug is the missing check of bmp->db_agl2size. The field can
be greater than 64 and trigger the shift-out-of-bounds.

Fix this bug by adding a check of bmp->db_agl2size in dbMount since this
field is used in many following functions. The upper bound for this
field is L2MAXL2SIZE - L2MAXAG, thanks for the help of Dave Kleikamp.
Note that, for maintenance, I reorganized error handling code of dbMount.

Reported-by: syzbot+15342c1aa6a00fb7a438@syzkaller.appspotmail.com
Signed-off-by: Dongliang Mu <mudongliangabcd@gmail.com>
Signed-off-by: Dave Kleikamp <dave.kleikamp@oracle.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-18 11:41:33 +01:00
Liu Shixin
419b808504 binfmt_misc: fix shift-out-of-bounds in check_special_flags
[ Upstream commit 6a46bf5588 ]

UBSAN reported a shift-out-of-bounds warning:

 left shift of 1 by 31 places cannot be represented in type 'int'
 Call Trace:
  <TASK>
  __dump_stack lib/dump_stack.c:88 [inline]
  dump_stack_lvl+0x8d/0xcf lib/dump_stack.c:106
  ubsan_epilogue+0xa/0x44 lib/ubsan.c:151
  __ubsan_handle_shift_out_of_bounds+0x1e7/0x208 lib/ubsan.c:322
  check_special_flags fs/binfmt_misc.c:241 [inline]
  create_entry fs/binfmt_misc.c:456 [inline]
  bm_register_write+0x9d3/0xa20 fs/binfmt_misc.c:654
  vfs_write+0x11e/0x580 fs/read_write.c:582
  ksys_write+0xcf/0x120 fs/read_write.c:637
  do_syscall_x64 arch/x86/entry/common.c:50 [inline]
  do_syscall_64+0x34/0x80 arch/x86/entry/common.c:80
  entry_SYSCALL_64_after_hwframe+0x63/0xcd
 RIP: 0033:0x4194e1

Since the type of Node's flags is unsigned long, we should define these
macros with same type too.

Signed-off-by: Liu Shixin <liushixin2@huawei.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20221102025123.1117184-1-liushixin2@huawei.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-18 11:41:33 +01:00
Dan Aloni
fddac3b457 nfsd: under NFSv4.1, fix double svc_xprt_put on rpc_create failure
[ Upstream commit 3bc8edc98b ]

On error situation `clp->cl_cb_conn.cb_xprt` should not be given
a reference to the xprt otherwise both client cleanup and the
error handling path of the caller call to put it. Better to
delay handing over the reference to a later branch.

[   72.530665] refcount_t: underflow; use-after-free.
[   72.531933] WARNING: CPU: 0 PID: 173 at lib/refcount.c:28 refcount_warn_saturate+0xcf/0x120
[   72.533075] Modules linked in: nfsd(OE) nfsv4(OE) nfsv3(OE) nfs(OE) lockd(OE) compat_nfs_ssc(OE) nfs_acl(OE) rpcsec_gss_krb5(OE) auth_rpcgss(OE) rpcrdma(OE) dns_resolver fscache netfs grace rdma_cm iw_cm ib_cm sunrpc(OE) mlx5_ib mlx5_core mlxfw pci_hyperv_intf ib_uverbs ib_core xt_MASQUERADE nf_conntrack_netlink nft_counter xt_addrtype nft_compat br_netfilter bridge stp llc nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 ip_set overlay nf_tables nfnetlink crct10dif_pclmul crc32_pclmul ghash_clmulni_intel xfs serio_raw virtio_net virtio_blk net_failover failover fuse [last unloaded: sunrpc]
[   72.540389] CPU: 0 PID: 173 Comm: kworker/u16:5 Tainted: G           OE     5.15.82-dan #1
[   72.541511] Hardware name: Red Hat KVM/RHEL-AV, BIOS 1.16.0-3.module+el8.7.0+1084+97b81f61 04/01/2014
[   72.542717] Workqueue: nfsd4_callbacks nfsd4_run_cb_work [nfsd]
[   72.543575] RIP: 0010:refcount_warn_saturate+0xcf/0x120
[   72.544299] Code: 55 00 0f 0b 5d e9 01 50 98 00 80 3d 75 9e 39 08 00 0f 85 74 ff ff ff 48 c7 c7 e8 d1 60 8e c6 05 61 9e 39 08 01 e8 f6 51 55 00 <0f> 0b 5d e9 d9 4f 98 00 80 3d 4b 9e 39 08 00 0f 85 4c ff ff ff 48
[   72.546666] RSP: 0018:ffffb3f841157cf0 EFLAGS: 00010286
[   72.547393] RAX: 0000000000000026 RBX: ffff89ac6231d478 RCX: 0000000000000000
[   72.548324] RDX: ffff89adb7c2c2c0 RSI: ffff89adb7c205c0 RDI: ffff89adb7c205c0
[   72.549271] RBP: ffffb3f841157cf0 R08: 0000000000000000 R09: c0000000ffefffff
[   72.550209] R10: 0000000000000001 R11: ffffb3f841157ad0 R12: ffff89ac6231d180
[   72.551142] R13: ffff89ac6231d478 R14: ffff89ac40c06180 R15: ffff89ac6231d4b0
[   72.552089] FS:  0000000000000000(0000) GS:ffff89adb7c00000(0000) knlGS:0000000000000000
[   72.553175] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[   72.553934] CR2: 0000563a310506a8 CR3: 0000000109a66000 CR4: 0000000000350ef0
[   72.554874] Call Trace:
[   72.555278]  <TASK>
[   72.555614]  svc_xprt_put+0xaf/0xe0 [sunrpc]
[   72.556276]  nfsd4_process_cb_update.isra.11+0xb7/0x410 [nfsd]
[   72.557087]  ? update_load_avg+0x82/0x610
[   72.557652]  ? cpuacct_charge+0x60/0x70
[   72.558212]  ? dequeue_entity+0xdb/0x3e0
[   72.558765]  ? queued_spin_unlock+0x9/0x20
[   72.559358]  nfsd4_run_cb_work+0xfc/0x270 [nfsd]
[   72.560031]  process_one_work+0x1df/0x390
[   72.560600]  worker_thread+0x37/0x3b0
[   72.561644]  ? process_one_work+0x390/0x390
[   72.562247]  kthread+0x12f/0x150
[   72.562710]  ? set_kthread_struct+0x50/0x50
[   72.563309]  ret_from_fork+0x22/0x30
[   72.563818]  </TASK>
[   72.564189] ---[ end trace 031117b1c72ec616 ]---
[   72.566019] list_add corruption. next->prev should be prev (ffff89ac4977e538), but was ffff89ac4763e018. (next=ffff89ac4763e018).
[   72.567647] ------------[ cut here ]------------

Fixes: a4abc6b12e ("nfsd: Fix svc_xprt refcnt leak when setup callback client failed")
Cc: Xiyu Yang <xiyuyang19@fudan.edu.cn>
Cc: J. Bruce Fields <bfields@redhat.com>
Signed-off-by: Dan Aloni <dan.aloni@vastdata.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-18 11:41:31 +01:00
Chuck Lever
f06d3feee9 NFSD: Add tracepoints to NFSD's duplicate reply cache
[ Upstream commit 0b175b1864 ]

Try to capture DRC failures.

Two additional clean-ups:
- Introduce Doxygen-style comments for the main entry points
- Remove a dprintk that fires for an allocation failure. This was
  the only dprintk in the REPCACHE class.

Reported-by: kbuild test robot <lkp@intel.com>
[ cel: force typecast for display of checksum values ]
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Stable-dep-of: 3bc8edc98b ("nfsd: under NFSv4.1, fix double svc_xprt_put on rpc_create failure")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-18 11:41:31 +01:00
Trond Myklebust
fe142d5cee nfsd: Define the file access mode enum for tracing
[ Upstream commit c19285596d ]

Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Stable-dep-of: 3bc8edc98b ("nfsd: under NFSv4.1, fix double svc_xprt_put on rpc_create failure")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-18 11:41:31 +01:00
Yang Yingliang
d85b5247a7 chardev: fix error handling in cdev_device_add()
[ Upstream commit 11fa7fefe3 ]

While doing fault injection test, I got the following report:

------------[ cut here ]------------
kobject: '(null)' (0000000039956980): is not initialized, yet kobject_put() is being called.
WARNING: CPU: 3 PID: 6306 at kobject_put+0x23d/0x4e0
CPU: 3 PID: 6306 Comm: 283 Tainted: G        W          6.1.0-rc2-00005-g307c1086d7c9 #1253
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014
RIP: 0010:kobject_put+0x23d/0x4e0
Call Trace:
 <TASK>
 cdev_device_add+0x15e/0x1b0
 __iio_device_register+0x13b4/0x1af0 [industrialio]
 __devm_iio_device_register+0x22/0x90 [industrialio]
 max517_probe+0x3d8/0x6b4 [max517]
 i2c_device_probe+0xa81/0xc00

When device_add() is injected fault and returns error, if dev->devt is not set,
cdev_add() is not called, cdev_del() is not needed. Fix this by checking dev->devt
in error path.

Fixes: 233ed09d7f ("chardev: add helper function to register char devs with a struct device")
Signed-off-by: Yang Yingliang <yangyingliang@huawei.com>
Link: https://lore.kernel.org/r/20221202030237.520280-1-yangyingliang@huawei.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-18 11:41:25 +01:00
Zhang Xiaoxu
76a9a58a71 orangefs: Fix sysfs not cleanup when dev init failed
[ Upstream commit ea60a4ad0c ]

When the dev init failed, should cleanup the sysfs, otherwise, the
module will never be loaded since can not create duplicate sysfs
directory:

  sysfs: cannot create duplicate filename '/fs/orangefs'

  CPU: 1 PID: 6549 Comm: insmod Tainted: G        W          6.0.0+ #44
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-1.fc33 04/01/2014
  Call Trace:
   <TASK>
   dump_stack_lvl+0x34/0x44
   sysfs_warn_dup.cold+0x17/0x24
   sysfs_create_dir_ns+0x16d/0x180
   kobject_add_internal+0x156/0x3a0
   kobject_init_and_add+0xcf/0x120
   orangefs_sysfs_init+0x7e/0x3a0 [orangefs]
   orangefs_init+0xfe/0x1000 [orangefs]
   do_one_initcall+0x87/0x2a0
   do_init_module+0xdf/0x320
   load_module+0x2f98/0x3330
   __do_sys_finit_module+0x113/0x1b0
   do_syscall_64+0x35/0x80
   entry_SYSCALL_64_after_hwframe+0x46/0xb0

  kobject_add_internal failed for orangefs with -EEXIST, don't try to register things with the same name in the same directory.

Fixes: 2f83ace371 ("orangefs: put register_chrdev immediately before register_filesystem")
Signed-off-by: Zhang Xiaoxu <zhangxiaoxu5@huawei.com>
Signed-off-by: Mike Marshall <hubcap@omnibond.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-18 11:41:20 +01:00
Yonggil Song
c21a09ed1e f2fs: avoid victim selection from previous victim section
[ Upstream commit e219aecfd4 ]

When f2fs chooses GC victim in large section & LFS mode,
next_victim_seg[gc_type] is referenced first. After segment is freed,
next_victim_seg[gc_type] has the next segment number.
However, next_victim_seg[gc_type] still has the last segment number
even after the last segment of section is freed. In this case, when f2fs
chooses a victim for the next GC round, the last segment of previous victim
section is chosen as a victim.

Initialize next_victim_seg[gc_type] to NULL_SEGNO for the last segment in
large section.

Fixes: e3080b0120 ("f2fs: support subsectional garbage collection")
Signed-off-by: Yonggil Song <yonggil.song@samsung.com>
Reviewed-by: Chao Yu <chao@kernel.org>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-18 11:41:20 +01:00
Dongdong Zhang
ef6079d98f f2fs: fix normal discard process
[ Upstream commit b5f1a218ae ]

In the DPOLICY_BG mode, there is a conflict between
the two conditions "i + 1 < dpolicy->granularity" and
"i < DEFAULT_DISCARD_GRANULARITY". If i = 15, the first
condition is false, it will enter the second condition
and dispatch all small granularity discards in function
 __issue_discard_cmd_orderly. The restrictive effect
of the first condition to small discards will be
invalidated. These two conditions should align.

Fixes: 20ee438232 ("f2fs: issue small discard by LBA order")
Signed-off-by: Dongdong Zhang <zhangdongdong1@oppo.com>
Reviewed-by: Chao Yu <chao@kernel.org>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-18 11:41:17 +01:00
Trond Myklebust
e8f20523cf NFSv4.x: Fail client initialisation if state manager thread can't run
[ Upstream commit b4e4f66901 ]

If the state manager thread fails to start, then we should just mark the
client initialisation as failed so that other processes or threads don't
get stuck in nfs_wait_client_init_complete().

Reported-by: ChenXiaoSong <chenxiaosong2@huawei.com>
Fixes: 4697bd5e94 ("NFSv4: Fix a race in the net namespace mount notification")
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-18 11:41:10 +01:00
Chen Zhongjin
90c38f57a8 configfs: fix possible memory leak in configfs_create_dir()
[ Upstream commit c65234b283 ]

kmemleak reported memory leaks in configfs_create_dir():

unreferenced object 0xffff888009f6af00 (size 192):
  comm "modprobe", pid 3777, jiffies 4295537735 (age 233.784s)
  backtrace:
    kmem_cache_alloc (mm/slub.c:3250 mm/slub.c:3256 mm/slub.c:3263 mm/slub.c:3273)
    new_fragment (./include/linux/slab.h:600 fs/configfs/dir.c:163)
    configfs_register_subsystem (fs/configfs/dir.c:1857)
    basic_write (drivers/hwtracing/stm/p_basic.c:14) stm_p_basic
    do_one_initcall (init/main.c:1296)
    do_init_module (kernel/module/main.c:2455)
    ...

unreferenced object 0xffff888003ba7180 (size 96):
  comm "modprobe", pid 3777, jiffies 4295537735 (age 233.784s)
  backtrace:
    kmem_cache_alloc (mm/slub.c:3250 mm/slub.c:3256 mm/slub.c:3263 mm/slub.c:3273)
    configfs_new_dirent (./include/linux/slab.h:723 fs/configfs/dir.c:194)
    configfs_make_dirent (fs/configfs/dir.c:248)
    configfs_create_dir (fs/configfs/dir.c:296)
    configfs_attach_group.isra.28 (fs/configfs/dir.c:816 fs/configfs/dir.c:852)
    configfs_register_subsystem (fs/configfs/dir.c:1881)
    basic_write (drivers/hwtracing/stm/p_basic.c:14) stm_p_basic
    do_one_initcall (init/main.c:1296)
    do_init_module (kernel/module/main.c:2455)
    ...

This is because the refcount is not correct in configfs_make_dirent().
For normal stage, the refcount is changing as:

configfs_register_subsystem()
  configfs_create_dir()
    configfs_make_dirent()
      configfs_new_dirent() # set s_count = 1
      dentry->d_fsdata = configfs_get(sd); # s_count = 2
...
configfs_unregister_subsystem()
  configfs_remove_dir()
    remove_dir()
      configfs_remove_dirent() # s_count = 1
    dput() ...
      *dentry_unlink_inode()*
        configfs_d_iput() # s_count = 0, release

However, if we failed in configfs_create():

configfs_register_subsystem()
  configfs_create_dir()
    configfs_make_dirent() # s_count = 2
    ...
    configfs_create() # fail
    ->out_remove:
    configfs_remove_dirent(dentry)
      configfs_put(sd) # s_count = 1
      return PTR_ERR(inode);

There is no inode in the error path, so the configfs_d_iput() is lost
and makes sd and fragment memory leaked.

To fix this, when we failed in configfs_create(), manually call
configfs_put(sd) to keep the refcount correct.

Fixes: 7063fbf226 ("[PATCH] configfs: User-driven configuration filesystem")
Signed-off-by: Chen Zhongjin <chenzhongjin@huawei.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-18 11:41:09 +01:00
Trond Myklebust
5447f1ad0b NFSv4: Fix a deadlock between nfs4_open_recover_helper() and delegreturn
[ Upstream commit 51069e4aef ]

If we're asked to recover open state while a delegation return is
outstanding, then the state manager thread cannot use a cached open, so
if the server returns a delegation, we can end up deadlocked behind the
pending delegreturn.
To avoid this problem, let's just ask the server not to give us a
delegation unless we're explicitly reclaiming one.

Fixes: be36e185bd ("NFSv4: nfs4_open_recover_helper() must set share access")
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-18 11:41:07 +01:00
Trond Myklebust
e53a7c28a4 NFSv4.2: Fix initialisation of struct nfs4_label
[ Upstream commit c528f70f50 ]

The call to nfs4_label_init_security() should return a fully initialised
label.

Fixes: aa9c266962 ("NFS: Client implementation of Labeled-NFS")
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-18 11:41:07 +01:00
Trond Myklebust
b2b472bcda NFSv4.2: Fix a memory stomp in decode_attr_security_label
[ Upstream commit 43c1031f71 ]

We must not change the value of label->len if it is zero, since that
indicates we stored a label.

Fixes: b4487b9354 ("nfs: Fix getxattr kernel panic and memory overflow")
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-18 11:41:07 +01:00
Trond Myklebust
96f3c70600 NFSv4.2: Clear FATTR4_WORD2_SECURITY_LABEL when done decoding
[ Upstream commit eef7314caf ]

We need to clear the FATTR4_WORD2_SECURITY_LABEL bitmap flag
irrespective of whether or not the label is too long.

Fixes: aa9c266962 ("NFS: Client implementation of Labeled-NFS")
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-18 11:41:06 +01:00
ZhangPeng
6a95b17e4d hfs: Fix OOB Write in hfs_asc2mac
[ Upstream commit c53ed55cb2 ]

Syzbot reported a OOB Write bug:

loop0: detected capacity change from 0 to 64
==================================================================
BUG: KASAN: slab-out-of-bounds in hfs_asc2mac+0x467/0x9a0
fs/hfs/trans.c:133
Write of size 1 at addr ffff88801848314e by task syz-executor391/3632

Call Trace:
 <TASK>
 __dump_stack lib/dump_stack.c:88 [inline]
 dump_stack_lvl+0x1b1/0x28e lib/dump_stack.c:106
 print_address_description+0x74/0x340 mm/kasan/report.c:284
 print_report+0x107/0x1f0 mm/kasan/report.c:395
 kasan_report+0xcd/0x100 mm/kasan/report.c:495
 hfs_asc2mac+0x467/0x9a0 fs/hfs/trans.c:133
 hfs_cat_build_key+0x92/0x170 fs/hfs/catalog.c:28
 hfs_lookup+0x1ab/0x2c0 fs/hfs/dir.c:31
 lookup_open fs/namei.c:3391 [inline]
 open_last_lookups fs/namei.c:3481 [inline]
 path_openat+0x10e6/0x2df0 fs/namei.c:3710
 do_filp_open+0x264/0x4f0 fs/namei.c:3740

If in->len is much larger than HFS_NAMELEN(31) which is the maximum
length of an HFS filename, a OOB write could occur in hfs_asc2mac(). In
that case, when the dst reaches the boundary, the srclen is still
greater than 0, which causes a OOB write.
Fix this by adding a check on dstlen in while() before writing to dst
address.

Link: https://lkml.kernel.org/r/20221202030038.1391945-1-zhangpeng362@huawei.com
Fixes: 328b922786 ("[PATCH] hfs: NLS support")
Signed-off-by: ZhangPeng <zhangpeng362@huawei.com>
Reviewed-by: Viacheslav Dubeyko <slava@dubeyko.com>
Reported-by: <syzbot+dc3b1cf9111ab5fe98e7@syzkaller.appspotmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-18 11:40:59 +01:00
Chen Zhongjin
7aa5325e1b fs: sysv: Fix sysv_nblocks() returns wrong value
[ Upstream commit e0c49bd2b4 ]

sysv_nblocks() returns 'blocks' rather than 'res', which only counting
the number of triple-indirect blocks and causing sysv_getattr() gets a
wrong result.

[AV: this is actually a sysv counterpart of minixfs fix -
0fcd426de9d0 "[PATCH] minix block usage counting fix" in
historical tree; mea culpa, should've thought to check
fs/sysv back then...]

Fixes: 1da177e4c3 ("Linux-2.6.12-rc2")
Signed-off-by: Chen Zhongjin <chenzhongjin@huawei.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-18 11:40:58 +01:00
Li Zetao
7ef516888c ocfs2: fix memory leak in ocfs2_mount_volume()
[ Upstream commit ce2fcf1516 ]

There is a memory leak reported by kmemleak:

  unreferenced object 0xffff88810cc65e60 (size 32):
    comm "mount.ocfs2", pid 23753, jiffies 4302528942 (age 34735.105s)
    hex dump (first 32 bytes):
      10 00 00 00 00 00 00 00 00 01 01 01 01 01 01 01  ................
      01 01 01 01 01 01 01 01 00 00 00 00 00 00 00 00  ................
    backtrace:
      [<ffffffff8170f73d>] __kmalloc+0x4d/0x150
      [<ffffffffa0ac3f51>] ocfs2_compute_replay_slots+0x121/0x330 [ocfs2]
      [<ffffffffa0b65165>] ocfs2_check_volume+0x485/0x900 [ocfs2]
      [<ffffffffa0b68129>] ocfs2_mount_volume.isra.0+0x1e9/0x650 [ocfs2]
      [<ffffffffa0b7160b>] ocfs2_fill_super+0xe0b/0x1740 [ocfs2]
      [<ffffffff818e1fe2>] mount_bdev+0x312/0x400
      [<ffffffff819a086d>] legacy_get_tree+0xed/0x1d0
      [<ffffffff818de82d>] vfs_get_tree+0x7d/0x230
      [<ffffffff81957f92>] path_mount+0xd62/0x1760
      [<ffffffff81958a5a>] do_mount+0xca/0xe0
      [<ffffffff81958d3c>] __x64_sys_mount+0x12c/0x1a0
      [<ffffffff82f26f15>] do_syscall_64+0x35/0x80
      [<ffffffff8300006a>] entry_SYSCALL_64_after_hwframe+0x46/0xb0

This call stack is related to two problems.  Firstly, the ocfs2 super uses
"replay_map" to trace online/offline slots, in order to recover offline
slots during recovery and mount.  But when ocfs2_truncate_log_init()
returns an error in ocfs2_mount_volume(), the memory of "replay_map" will
not be freed in error handling path.  Secondly, the memory of "replay_map"
will not be freed if d_make_root() returns an error in ocfs2_fill_super().
But the memory of "replay_map" will be freed normally when completing
recovery and mount in ocfs2_complete_mount_recovery().

Fix the first problem by adding error handling path to free "replay_map"
when ocfs2_truncate_log_init() fails.  And fix the second problem by
calling ocfs2_free_replay_slots(osb) in the error handling path
"out_dismount".  In addition, since ocfs2_free_replay_slots() is static,
it is necessary to remove its static attribute and declare it in header
file.

Link: https://lkml.kernel.org/r/20221109074627.2303950-1-lizetao1@huawei.com
Fixes: 9140db04ef ("ocfs2: recover orphans in offline slots during recovery and mount")
Signed-off-by: Li Zetao <lizetao1@huawei.com>
Reviewed-by: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Mark Fasheh <mark@fasheh.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Changwei Ge <gechangwei@live.cn>
Cc: Gang He <ghe@suse.com>
Cc: Jun Piao <piaojun@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-18 11:40:56 +01:00
Heming Zhao via Ocfs2-devel
a4d3062f0a ocfs2: rewrite error handling of ocfs2_fill_super
[ Upstream commit f1e75d128b ]

Current ocfs2_fill_super() uses one goto label "read_super_error" to
handle all error cases.  And with previous serial patches, the error
handling should fork more branches to handle different error cases.  This
patch rewrite the error handling of ocfs2_fill_super.

Link: https://lkml.kernel.org/r/20220424130952.2436-6-heming.zhao@suse.com
Signed-off-by: Heming Zhao <heming.zhao@suse.com>
Reviewed-by: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Changwei Ge <gechangwei@live.cn>
Cc: Gang He <ghe@suse.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Jun Piao <piaojun@huawei.com>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Mark Fasheh <mark@fasheh.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Stable-dep-of: ce2fcf1516 ("ocfs2: fix memory leak in ocfs2_mount_volume()")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-18 11:40:56 +01:00
Heming Zhao via Ocfs2-devel
227cc62e00 ocfs2: ocfs2_mount_volume does cleanup job before return error
[ Upstream commit 0737e01de9 ]

After this patch, when error, ocfs2_fill_super doesn't take care to
release resources which are allocated in ocfs2_mount_volume.

Link: https://lkml.kernel.org/r/20220424130952.2436-5-heming.zhao@suse.com
Signed-off-by: Heming Zhao <heming.zhao@suse.com>
Reviewed-by: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Changwei Ge <gechangwei@live.cn>
Cc: Gang He <ghe@suse.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Jun Piao <piaojun@huawei.com>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Mark Fasheh <mark@fasheh.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Stable-dep-of: ce2fcf1516 ("ocfs2: fix memory leak in ocfs2_mount_volume()")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-18 11:40:56 +01:00
Akinobu Mita
5c27b46c20 debugfs: fix error when writing negative value to atomic_t debugfs file
[ Upstream commit d472cf797c ]

The simple attribute files do not accept a negative value since the commit
488dac0c92 ("libfs: fix error cast of negative value in
simple_attr_write()"), so we have to use a 64-bit value to write a
negative value for a debugfs file created by debugfs_create_atomic_t().

This restores the previous behaviour by introducing
DEFINE_DEBUGFS_ATTRIBUTE_SIGNED for a signed value.

Link: https://lkml.kernel.org/r/20220919172418.45257-4-akinobu.mita@gmail.com
Fixes: 488dac0c92 ("libfs: fix error cast of negative value in simple_attr_write()")
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Reported-by: Zhao Gongyi <zhaogongyi@huawei.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Rafael J. Wysocki <rafael@kernel.org>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Wei Yongjun <weiyongjun1@huawei.com>
Cc: Yicong Yang <yangyicong@hisilicon.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-18 11:40:56 +01:00
Akinobu Mita
6fc6461672 libfs: add DEFINE_SIMPLE_ATTRIBUTE_SIGNED for signed value
[ Upstream commit 2e41f274f9 ]

Patch series "fix error when writing negative value to simple attribute
files".

The simple attribute files do not accept a negative value since the commit
488dac0c92 ("libfs: fix error cast of negative value in
simple_attr_write()"), but some attribute files want to accept a negative
value.

This patch (of 3):

The simple attribute files do not accept a negative value since the commit
488dac0c92 ("libfs: fix error cast of negative value in
simple_attr_write()"), so we have to use a 64-bit value to write a
negative value.

This adds DEFINE_SIMPLE_ATTRIBUTE_SIGNED for a signed value.

Link: https://lkml.kernel.org/r/20220919172418.45257-1-akinobu.mita@gmail.com
Link: https://lkml.kernel.org/r/20220919172418.45257-2-akinobu.mita@gmail.com
Fixes: 488dac0c92 ("libfs: fix error cast of negative value in simple_attr_write()")
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Reported-by: Zhao Gongyi <zhaogongyi@huawei.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Rafael J. Wysocki <rafael@kernel.org>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Wei Yongjun <weiyongjun1@huawei.com>
Cc: Yicong Yang <yangyicong@hisilicon.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-18 11:40:55 +01:00
Jeff Layton
b4e28099cd nfsd: don't call nfsd_file_put from client states seqfile display
[ Upstream commit e0aa651068 ]

We had a report of this:

    BUG: sleeping function called from invalid context at fs/nfsd/filecache.c:440

...with a stack trace showing nfsd_file_put being called from
nfs4_show_open. This code has always tried to call fput while holding a
spinlock, but we recently changed this to use the filecache, and that
started triggering the might_sleep() in nfsd_file_put.

states_start takes and holds the cl_lock while iterating over the
client's states, and we can't sleep with that held.

Have the various nfs4_show_* functions instead hold the fi_lock instead
of taking a nfsd_file reference.

Fixes: 78599c42ae ("nfsd4: add file to display list of client's opens")
Link: https://bugzilla.redhat.com/show_bug.cgi?id=2138357
Reported-by: Zhi Li <yieli@redhat.com>
Signed-off-by: Jeff Layton <jlayton@kernel.org>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-18 11:40:55 +01:00
Shang XiaoJing
7c8bf45cea ocfs2: fix memory leak in ocfs2_stack_glue_init()
[ Upstream commit 13b6269dd0 ]

ocfs2_table_header should be free in ocfs2_stack_glue_init() if
ocfs2_sysfs_init() failed, otherwise kmemleak will report memleak.

BUG: memory leak
unreferenced object 0xffff88810eeb5800 (size 128):
  comm "modprobe", pid 4507, jiffies 4296182506 (age 55.888s)
  hex dump (first 32 bytes):
    c0 40 14 a0 ff ff ff ff 00 00 00 00 01 00 00 00  .@..............
    01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
  backtrace:
    [<000000001e59e1cd>] __register_sysctl_table+0xca/0xef0
    [<00000000c04f70f7>] 0xffffffffa0050037
    [<000000001bd12912>] do_one_initcall+0xdb/0x480
    [<0000000064f766c9>] do_init_module+0x1cf/0x680
    [<000000002ba52db0>] load_module+0x6441/0x6f20
    [<000000009772580d>] __do_sys_finit_module+0x12f/0x1c0
    [<00000000380c1f22>] do_syscall_64+0x3f/0x90
    [<000000004cf473bc>] entry_SYSCALL_64_after_hwframe+0x63/0xcd

Link: https://lkml.kernel.org/r/41651ca1-432a-db34-eb97-d35744559de1@linux.alibaba.com
Fixes: 3878f110f7 ("ocfs2: Move the hb_ctl_path sysctl into the stack glue.")
Signed-off-by: Shang XiaoJing <shangxiaojing@huawei.com>
Reviewed-by: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Mark Fasheh <mark@fasheh.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Changwei Ge <gechangwei@live.cn>
Cc: Gang He <ghe@suse.com>
Cc: Jun Piao <piaojun@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-18 11:40:54 +01:00
Ondrej Mosnacek
8511186f10 fs: don't audit the capability check in simple_xattr_list()
[ Upstream commit e7eda157c4 ]

The check being unconditional may lead to unwanted denials reported by
LSMs when a process has the capability granted by DAC, but denied by an
LSM. In the case of SELinux such denials are a problem, since they can't
be effectively filtered out via the policy and when not silenced, they
produce noise that may hide a true problem or an attack.

Checking for the capability only if any trusted xattr is actually
present wouldn't really address the issue, since calling listxattr(2) on
such node on its own doesn't indicate an explicit attempt to see the
trusted xattrs. Additionally, it could potentially leak the presence of
trusted xattrs to an unprivileged user if they can check for the denials
(e.g. through dmesg).

Therefore, it's best (and simplest) to keep the check unconditional and
instead use ns_capable_noaudit() that will silence any associated LSM
denials.

Fixes: 38f3865744 ("xattr: extract simple_xattr code from tmpfs")
Reported-by: Martin Pitt <mpitt@redhat.com>
Suggested-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com>
Reviewed-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Reviewed-by: Paul Moore <paul@paul-moore.com>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-18 11:40:53 +01:00
Stephen Boyd
4d3126f242 pstore: Avoid kcore oops by vmap()ing with VM_IOREMAP
[ Upstream commit e6b842741b ]

An oops can be induced by running 'cat /proc/kcore > /dev/null' on
devices using pstore with the ram backend because kmap_atomic() assumes
lowmem pages are accessible with __va().

 Unable to handle kernel paging request at virtual address ffffff807ff2b000
 Mem abort info:
 ESR = 0x96000006
 EC = 0x25: DABT (current EL), IL = 32 bits
 SET = 0, FnV = 0
 EA = 0, S1PTW = 0
 FSC = 0x06: level 2 translation fault
 Data abort info:
 ISV = 0, ISS = 0x00000006
 CM = 0, WnR = 0
 swapper pgtable: 4k pages, 39-bit VAs, pgdp=0000000081d87000
 [ffffff807ff2b000] pgd=180000017fe18003, p4d=180000017fe18003, pud=180000017fe18003, pmd=0000000000000000
 Internal error: Oops: 96000006 [#1] PREEMPT SMP
 Modules linked in: dm_integrity
 CPU: 7 PID: 21179 Comm: perf Not tainted 5.15.67-10882-ge4eb2eb988cd #1 baa443fb8e8477896a370b31a821eb2009f9bfba
 Hardware name: Google Lazor (rev3 - 8) (DT)
 pstate: a0400009 (NzCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
 pc : __memcpy+0x110/0x260
 lr : vread+0x194/0x294
 sp : ffffffc013ee39d0
 x29: ffffffc013ee39f0 x28: 0000000000001000 x27: ffffff807ff2b000
 x26: 0000000000001000 x25: ffffffc0085a2000 x24: ffffff802d4b3000
 x23: ffffff80f8a60000 x22: ffffff802d4b3000 x21: ffffffc0085a2000
 x20: ffffff8080b7bc68 x19: 0000000000001000 x18: 0000000000000000
 x17: 0000000000000000 x16: 0000000000000000 x15: ffffffd3073f2e60
 x14: ffffffffad588000 x13: 0000000000000000 x12: 0000000000000001
 x11: 00000000000001a2 x10: 00680000fff2bf0b x9 : 03fffffff807ff2b
 x8 : 0000000000000001 x7 : 0000000000000000 x6 : 0000000000000000
 x5 : ffffff802d4b4000 x4 : ffffff807ff2c000 x3 : ffffffc013ee3a78
 x2 : 0000000000001000 x1 : ffffff807ff2b000 x0 : ffffff802d4b3000
 Call trace:
 __memcpy+0x110/0x260
 read_kcore+0x584/0x778
 proc_reg_read+0xb4/0xe4

During early boot, memblock reserves the pages for the ramoops reserved
memory node in DT that would otherwise be part of the direct lowmem
mapping. Pstore's ram backend reuses those reserved pages to change the
memory type (writeback or non-cached) by passing the pages to vmap()
(see pfn_to_page() usage in persistent_ram_vmap() for more details) with
specific flags. When read_kcore() starts iterating over the vmalloc
region, it runs over the virtual address that vmap() returned for
ramoops. In aligned_vread() the virtual address is passed to
vmalloc_to_page() which returns the page struct for the reserved lowmem
area. That lowmem page is passed to kmap_atomic(), which effectively
calls page_to_virt() that assumes a lowmem page struct must be directly
accessible with __va() and friends. These pages are mapped via vmap()
though, and the lowmem mapping was never made, so accessing them via the
lowmem virtual address oopses like above.

Let's side-step this problem by passing VM_IOREMAP to vmap(). This will
tell vread() to not include the ramoops region in the kcore. Instead the
area will look like a bunch of zeros. The alternative is to teach kmap()
about vmalloc areas that intersect with lowmem. Presumably such a change
isn't a one-liner, and there isn't much interest in inspecting the
ramoops region in kcore files anyway, so the most expedient route is
taken for now.

Cc: Brian Geffon <bgeffon@google.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Fixes: 404a604338 ("staging: android: persistent_ram: handle reserving and mapping memory")
Signed-off-by: Stephen Boyd <swboyd@chromium.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20221205233136.3420802-1-swboyd@chromium.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-18 11:40:52 +01:00
Wang Yufen
2de791ff6f pstore/ram: Fix error return code in ramoops_probe()
[ Upstream commit e1fce56490 ]

In the if (dev_of_node(dev) && !pdata) path, the "err" may be assigned a
value of 0, so the error return code -EINVAL may be incorrectly set
to 0. To fix set valid return code before calling to goto.

Fixes: 35da60941e ("pstore/ram: add Device Tree bindings")
Signed-off-by: Wang Yufen <wangyufen@huawei.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/1669969374-46582-1-git-send-email-wangyufen@huawei.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-18 11:40:52 +01:00
Jan Kara
2610c2e59c udf: Fix extending file within last block
commit 1f3868f068 upstream.

When extending file within last block it can happen that the extent is
already rounded to the blocksize and thus contains the offset we want to
grow up to. In such case we would mistakenly expand the last extent and
make it one block longer than it should be, exposing unallocated block
in a file and causing data corruption. Fix the problem by properly
detecting this case and bailing out.

CC: stable@vger.kernel.org
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-18 11:40:47 +01:00
Jan Kara
ade1726d8c udf: Do not bother looking for prealloc extents if i_lenExtents matches i_size
commit 6ad53f0f71 upstream.

If rounded block-rounded i_lenExtents matches block rounded i_size,
there are no preallocation extents. Do not bother walking extent linked
list.

CC: stable@vger.kernel.org
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-18 11:40:47 +01:00
Jan Kara
4d835efd56 udf: Fix preallocation discarding at indirect extent boundary
commit cfe4c1b25d upstream.

When preallocation extent is the first one in the extent block, the
code would corrupt extent tree header instead. Fix the problem and use
udf_delete_aext() for deleting extent to avoid some code duplication.

CC: stable@vger.kernel.org
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-18 11:40:47 +01:00
Jan Kara
0905c78f62 udf: Discard preallocation before extending file with a hole
commit 16d0556568 upstream.

When extending file with a hole, we tried to preserve existing
preallocation for the file. However that is not very useful and
complicates code because the previous extent may need to be rounded to
block boundary as well (which we forgot to do thus causing data
corruption for sequence like:

xfs_io -f -c "pwrite 0x75e63 11008" -c "truncate 0x7b24b" \
  -c "truncate 0xabaa3" -c "pwrite 0xac70b 22954" \
  -c "pwrite 0x93a43 11358" -c "pwrite 0xb8e65 52211" file

with 512-byte block size. Just discard preallocation before extending
file to simplify things and also fix this data corruption.

CC: stable@vger.kernel.org
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-18 11:40:46 +01:00
Filipe Manana
3b2c064a8e btrfs: send: avoid unaligned encoded writes when attempting to clone range
[ Upstream commit a11452a370 ]

When trying to see if we can clone a file range, there are cases where we
end up sending two write operations in case the inode from the source root
has an i_size that is not sector size aligned and the length from the
current offset to its i_size is less than the remaining length we are
trying to clone.

Issuing two write operations when we could instead issue a single write
operation is not incorrect. However it is not optimal, specially if the
extents are compressed and the flag BTRFS_SEND_FLAG_COMPRESSED was passed
to the send ioctl. In that case we can end up sending an encoded write
with an offset that is not sector size aligned, which makes the receiver
fallback to decompressing the data and writing it using regular buffered
IO (so re-compressing the data in case the fs is mounted with compression
enabled), because encoded writes fail with -EINVAL when an offset is not
sector size aligned.

The following example, which triggered a bug in the receiver code for the
fallback logic of decompressing + regular buffer IO and is fixed by the
patchset referred in a Link at the bottom of this changelog, is an example
where we have the non-optimal behaviour due to an unaligned encoded write:

   $ cat test.sh
   #!/bin/bash

   DEV=/dev/sdj
   MNT=/mnt/sdj

   mkfs.btrfs -f $DEV > /dev/null
   mount -o compress $DEV $MNT

   # File foo has a size of 33K, not aligned to the sector size.
   xfs_io -f -c "pwrite -S 0xab 0 33K" $MNT/foo

   xfs_io -f -c "pwrite -S 0xcd 0 64K" $MNT/bar

   # Now clone the first 32K of file bar into foo at offset 0.
   xfs_io -c "reflink $MNT/bar 0 0 32K" $MNT/foo

   # Snapshot the default subvolume and create a full send stream (v2).
   btrfs subvolume snapshot -r $MNT $MNT/snap

   btrfs send --compressed-data -f /tmp/test.send $MNT/snap

   echo -e "\nFile bar in the original filesystem:"
   od -A d -t x1 $MNT/snap/bar

   umount $MNT
   mkfs.btrfs -f $DEV > /dev/null
   mount $DEV $MNT

   echo -e "\nReceiving stream in a new filesystem..."
   btrfs receive -f /tmp/test.send $MNT

   echo -e "\nFile bar in the new filesystem:"
   od -A d -t x1 $MNT/snap/bar

   umount $MNT

Before this patch, the send stream included one regular write and one
encoded write for file 'bar', with the later being not sector size aligned
and causing the receiver to fallback to decompression + buffered writes.
The output of the btrfs receive command in verbose mode (-vvv):

   (...)
   mkfile o258-7-0
   rename o258-7-0 -> bar
   utimes
   clone bar - source=foo source offset=0 offset=0 length=32768
   write bar - offset=32768 length=1024
   encoded_write bar - offset=33792, len=4096, unencoded_offset=33792, unencoded_file_len=31744, unencoded_len=65536, compression=1, encryption=0
   encoded_write bar - falling back to decompress and write due to errno 22 ("Invalid argument")
   (...)

This patch avoids the regular write followed by an unaligned encoded write
so that we end up sending a single encoded write that is aligned. So after
this patch the stream content is (output of btrfs receive -vvv):

   (...)
   mkfile o258-7-0
   rename o258-7-0 -> bar
   utimes
   clone bar - source=foo source offset=0 offset=0 length=32768
   encoded_write bar - offset=32768, len=4096, unencoded_offset=32768, unencoded_file_len=32768, unencoded_len=65536, compression=1, encryption=0
   (...)

So we get more optimal behaviour and avoid the silent data loss bug in
versions of btrfs-progs affected by the bug referred by the Link tag
below (btrfs-progs v5.19, v5.19.1, v6.0 and v6.0.1).

Link: https://lore.kernel.org/linux-btrfs/cover.1668529099.git.fdmanana@suse.com/
Reviewed-by: Boris Burkov <boris@bur.io>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-12-14 11:30:41 +01:00
Soheil Hassas Yeganeh
c41a89af7b epoll: check for events when removing a timed out thread from the wait queue
commit 289caf5d8f upstream.

Patch series "simplify ep_poll".

This patch series is a followup based on the suggestions and feedback by
Linus:
https://lkml.kernel.org/r/CAHk-=wizk=OxUyQPbO8MS41w2Pag1kniUV5WdD5qWL-gq1kjDA@mail.gmail.com

The first patch in the series is a fix for the epoll race in presence of
timeouts, so that it can be cleanly backported to all affected stable
kernels.

The rest of the patch series simplify the ep_poll() implementation.  Some
of these simplifications result in minor performance enhancements as well.
We have kept these changes under self tests and internal benchmarks for a
few days, and there are minor (1-2%) performance enhancements as a result.

This patch (of 8):

After abc610e01c ("fs/epoll: avoid barrier after an epoll_wait(2)
timeout"), we break out of the ep_poll loop upon timeout, without checking
whether there is any new events available.  Prior to that patch-series we
always called ep_events_available() after exiting the loop.

This can cause races and missed wakeups.  For example, consider the
following scenario reported by Guantao Liu:

Suppose we have an eventfd added using EPOLLET to an epollfd.

Thread 1: Sleeps for just below 5ms and then writes to an eventfd.
Thread 2: Calls epoll_wait with a timeout of 5 ms. If it sees an
          event of the eventfd, it will write back on that fd.
Thread 3: Calls epoll_wait with a negative timeout.

Prior to abc610e01c, it is guaranteed that Thread 3 will wake up either
by Thread 1 or Thread 2.  After abc610e01c, Thread 3 can be blocked
indefinitely if Thread 2 sees a timeout right before the write to the
eventfd by Thread 1.  Thread 2 will be woken up from
schedule_hrtimeout_range and, with evail 0, it will not call
ep_send_events().

To fix this issue:
1) Simplify the timed_out case as suggested by Linus.
2) while holding the lock, recheck whether the thread was woken up
   after its time out has reached.

Note that (2) is different from Linus' original suggestion: It do not set
"eavail = ep_events_available(ep)" to avoid unnecessary contention (when
there are too many timed-out threads and a small number of events), as
well as races mentioned in the discussion thread.

This is the first patch in the series so that the backport to stable
releases is straightforward.

Link: https://lkml.kernel.org/r/20201106231635.3528496-1-soheil.kdev@gmail.com
Link: https://lkml.kernel.org/r/CAHk-=wizk=OxUyQPbO8MS41w2Pag1kniUV5WdD5qWL-gq1kjDA@mail.gmail.com
Link: https://lkml.kernel.org/r/20201106231635.3528496-2-soheil.kdev@gmail.com
Fixes: abc610e01c ("fs/epoll: avoid barrier after an epoll_wait(2) timeout")
Signed-off-by: Soheil Hassas Yeganeh <soheil@google.com>
Tested-by: Guantao Liu <guantaol@google.com>
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Reported-by: Guantao Liu <guantaol@google.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Reviewed-by: Willem de Bruijn <willemb@google.com>
Reviewed-by: Khazhismel Kumykov <khazhy@google.com>
Reviewed-by: Davidlohr Bueso <dbueso@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Signed-off-by: Rishabh Bhatnagar <risbhat@amazon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-12-08 11:23:05 +01:00
Roman Penyaev
b8e803cda5 epoll: call final ep_events_available() check under the lock
commit 65759097d8 upstream.

There is a possible race when ep_scan_ready_list() leaves ->rdllist and
->obflist empty for a short period of time although some events are
pending.  It is quite likely that ep_events_available() observes empty
lists and goes to sleep.

Since commit 339ddb53d3 ("fs/epoll: remove unnecessary wakeups of
nested epoll") we are conservative in wakeups (there is only one place
for wakeup and this is ep_poll_callback()), thus ep_events_available()
must always observe correct state of two lists.

The easiest and correct way is to do the final check under the lock.
This does not impact the performance, since lock is taken anyway for
adding a wait entry to the wait queue.

The discussion of the problem can be found here:

   https://lore.kernel.org/linux-fsdevel/a2f22c3c-c25a-4bda-8339-a7bdaf17849e@akamai.com/

In this patch barrierless __set_current_state() is used.  This is safe
since waitqueue_active() is called under the same lock on wakeup side.

Short-circuit for fatal signals (i.e.  fatal_signal_pending() check) is
moved to the line just before actual events harvesting routine.  This is
fully compliant to what is said in the comment of the patch where the
actual fatal_signal_pending() check was added: c257a340ed ("fs, epoll:
short circuit fetching events if thread has been killed").

Fixes: 339ddb53d3 ("fs/epoll: remove unnecessary wakeups of nested epoll")
Reported-by: Jason Baron <jbaron@akamai.com>
Reported-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Roman Penyaev <rpenyaev@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Jason Baron <jbaron@akamai.com>
Cc: Khazhismel Kumykov <khazhy@google.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/20200505145609.1865152-1-rpenyaev@suse.de
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Signed-off-by: Rishabh Bhatnagar <risbhat@amazon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-12-08 11:23:05 +01:00
ZhangPeng
9a130b72e6 nilfs2: fix NULL pointer dereference in nilfs_palloc_commit_free_entry()
commit f0a0ccda18 upstream.

Syzbot reported a null-ptr-deref bug:

 NILFS (loop0): segctord starting. Construction interval = 5 seconds, CP
 frequency < 30 seconds
 general protection fault, probably for non-canonical address
 0xdffffc0000000002: 0000 [#1] PREEMPT SMP KASAN
 KASAN: null-ptr-deref in range [0x0000000000000010-0x0000000000000017]
 CPU: 1 PID: 3603 Comm: segctord Not tainted
 6.1.0-rc2-syzkaller-00105-gb229b6ca5abb #0
 Hardware name: Google Compute Engine/Google Compute Engine, BIOS Google
 10/11/2022
 RIP: 0010:nilfs_palloc_commit_free_entry+0xe5/0x6b0
 fs/nilfs2/alloc.c:608
 Code: 00 00 00 00 fc ff df 80 3c 02 00 0f 85 cd 05 00 00 48 b8 00 00 00
 00 00 fc ff df 4c 8b 73 08 49 8d 7e 10 48 89 fa 48 c1 ea 03 <80> 3c 02
 00 0f 85 26 05 00 00 49 8b 46 10 be a6 00 00 00 48 c7 c7
 RSP: 0018:ffffc90003dff830 EFLAGS: 00010212
 RAX: dffffc0000000000 RBX: ffff88802594e218 RCX: 000000000000000d
 RDX: 0000000000000002 RSI: 0000000000002000 RDI: 0000000000000010
 RBP: ffff888071880222 R08: 0000000000000005 R09: 000000000000003f
 R10: 000000000000000d R11: 0000000000000000 R12: ffff888071880158
 R13: ffff88802594e220 R14: 0000000000000000 R15: 0000000000000004
 FS:  0000000000000000(0000) GS:ffff8880b9b00000(0000)
 knlGS:0000000000000000
 CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
 CR2: 00007fb1c08316a8 CR3: 0000000018560000 CR4: 0000000000350ee0
 Call Trace:
  <TASK>
  nilfs_dat_commit_free fs/nilfs2/dat.c:114 [inline]
  nilfs_dat_commit_end+0x464/0x5f0 fs/nilfs2/dat.c:193
  nilfs_dat_commit_update+0x26/0x40 fs/nilfs2/dat.c:236
  nilfs_btree_commit_update_v+0x87/0x4a0 fs/nilfs2/btree.c:1940
  nilfs_btree_commit_propagate_v fs/nilfs2/btree.c:2016 [inline]
  nilfs_btree_propagate_v fs/nilfs2/btree.c:2046 [inline]
  nilfs_btree_propagate+0xa00/0xd60 fs/nilfs2/btree.c:2088
  nilfs_bmap_propagate+0x73/0x170 fs/nilfs2/bmap.c:337
  nilfs_collect_file_data+0x45/0xd0 fs/nilfs2/segment.c:568
  nilfs_segctor_apply_buffers+0x14a/0x470 fs/nilfs2/segment.c:1018
  nilfs_segctor_scan_file+0x3f4/0x6f0 fs/nilfs2/segment.c:1067
  nilfs_segctor_collect_blocks fs/nilfs2/segment.c:1197 [inline]
  nilfs_segctor_collect fs/nilfs2/segment.c:1503 [inline]
  nilfs_segctor_do_construct+0x12fc/0x6af0 fs/nilfs2/segment.c:2045
  nilfs_segctor_construct+0x8e3/0xb30 fs/nilfs2/segment.c:2379
  nilfs_segctor_thread_construct fs/nilfs2/segment.c:2487 [inline]
  nilfs_segctor_thread+0x3c3/0xf30 fs/nilfs2/segment.c:2570
  kthread+0x2e4/0x3a0 kernel/kthread.c:376
  ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:306
  </TASK>
 ...

If DAT metadata file is corrupted on disk, there is a case where
req->pr_desc_bh is NULL and blocknr is 0 at nilfs_dat_commit_end() during
a b-tree operation that cascadingly updates ancestor nodes of the b-tree,
because nilfs_dat_commit_alloc() for a lower level block can initialize
the blocknr on the same DAT entry between nilfs_dat_prepare_end() and
nilfs_dat_commit_end().

If this happens, nilfs_dat_commit_end() calls nilfs_dat_commit_free()
without valid buffer heads in req->pr_desc_bh and req->pr_bitmap_bh, and
causes the NULL pointer dereference above in
nilfs_palloc_commit_free_entry() function, which leads to a crash.

Fix this by adding a NULL check on req->pr_desc_bh and req->pr_bitmap_bh
before nilfs_palloc_commit_free_entry() in nilfs_dat_commit_free().

This also calls nilfs_error() in that case to notify that there is a fatal
flaw in the filesystem metadata and prevent further operations.

Link: https://lkml.kernel.org/r/00000000000097c20205ebaea3d6@google.com
Link: https://lkml.kernel.org/r/20221114040441.1649940-1-zhangpeng362@huawei.com
Link: https://lkml.kernel.org/r/20221119120542.17204-1-konishi.ryusuke@gmail.com
Signed-off-by: ZhangPeng <zhangpeng362@huawei.com>
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@gmail.com>
Reported-by: syzbot+ebe05ee8e98f755f61d0@syzkaller.appspotmail.com
Tested-by: Ryusuke Konishi <konishi.ryusuke@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-12-08 11:23:04 +01:00
David Howells
1c1d4830a9 afs: Fix fileserver probe RTT handling
[ Upstream commit ca57f02295 ]

The fileserver probing code attempts to work out the best fileserver to
use for a volume by retrieving the RTT calculated by AF_RXRPC for the
probe call sent to each server and comparing them.  Sometimes, however,
no RTT estimate is available and rxrpc_kernel_get_srtt() returns false,
leading good fileservers to be given an RTT of UINT_MAX and thus causing
the rotation algorithm to ignore them.

Fix afs_select_fileserver() to ignore rxrpc_kernel_get_srtt()'s return
value and just take the estimated RTT it provides - which will be capped
at 1 second.

Fixes: 1d4adfaf65 ("rxrpc: Make rxrpc_kernel_get_srtt() indicate validity")
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Marc Dionne <marc.dionne@auristor.com>
Tested-by: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
Link: https://lore.kernel.org/r/166965503999.3392585.13954054113218099395.stgit@warthog.procyon.org.uk/
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-12-08 11:23:03 +01:00
ChenXiaoSong
8eb912af52 btrfs: qgroup: fix sleep from invalid context bug in btrfs_qgroup_inherit()
[ Upstream commit f7e942b5bb ]

Syzkaller reported BUG as follows:

  BUG: sleeping function called from invalid context at
       include/linux/sched/mm.h:274
  Call Trace:
   <TASK>
   dump_stack_lvl+0xcd/0x134
   __might_resched.cold+0x222/0x26b
   kmem_cache_alloc+0x2e7/0x3c0
   update_qgroup_limit_item+0xe1/0x390
   btrfs_qgroup_inherit+0x147b/0x1ee0
   create_subvol+0x4eb/0x1710
   btrfs_mksubvol+0xfe5/0x13f0
   __btrfs_ioctl_snap_create+0x2b0/0x430
   btrfs_ioctl_snap_create_v2+0x25a/0x520
   btrfs_ioctl+0x2a1c/0x5ce0
   __x64_sys_ioctl+0x193/0x200
   do_syscall_64+0x35/0x80

Fix this by calling qgroup_dirty() on @dstqgroup, and update limit item in
btrfs_run_qgroups() later outside of the spinlock context.

CC: stable@vger.kernel.org # 4.9+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: ChenXiaoSong <chenxiaosong2@huawei.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-12-08 11:23:02 +01:00
Nikolay Borisov
787138e4b9 btrfs: move QUOTA_ENABLED check to rescan_should_stop from btrfs_qgroup_rescan_worker
[ Upstream commit db5df25412 ]

Instead of having 2 places that short circuit the qgroup leaf scan have
everything in the qgroup_rescan_leaf function. In addition to that, also
ensure that the inconsistent qgroup flag is set when rescan_should_stop
returns true. This both retains the old behavior when -EINTR was set in
the body of the loop and at the same time also extends this behavior
when scanning is interrupted due to remount or unmount operations.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Stable-dep-of: f7e942b5bb ("btrfs: qgroup: fix sleep from invalid context bug in btrfs_qgroup_inherit()")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-12-08 11:23:02 +01:00
Anand Jain
83aae3204e btrfs: free btrfs_path before copying inodes to userspace
[ Upstream commit 418ffb9e3c ]

btrfs_ioctl_logical_to_ino() frees the search path after the userspace
copy from the temp buffer @inodes. Which potentially can lead to a lock
splat.

Fix this by freeing the path before we copy @inodes to userspace.

CC: stable@vger.kernel.org # 4.19+
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-12-08 11:23:01 +01:00
Miklos Szeredi
9fd11e2de7 fuse: lock inode unconditionally in fuse_fallocate()
commit 44361e8cf9 upstream.

file_modified() must be called with inode lock held.  fuse_fallocate()
didn't lock the inode in case of just FALLOC_KEEP_SIZE flags value, which
resulted in a kernel Warning in notify_change().

Lock the inode unconditionally, like all other fallocate implementations
do.

Reported-by: Pengfei Xu <pengfei.xu@intel.com>
Reported-and-tested-by: syzbot+462da39f0667b357c4b6@syzkaller.appspotmail.com
Fixes: 4a6f278d48 ("fuse: add file_modified() to fallocate")
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-12-08 11:23:01 +01:00
Zhen Lei
a541f1f0ce btrfs: sysfs: normalize the error handling branch in btrfs_init_sysfs()
commit ffdbb44f2f upstream.

Although kset_unregister() can eventually remove all attribute files,
explicitly rolling back with the matching function makes the code logic
look clearer.

CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-12-08 11:23:01 +01:00
Anand Jain
d037681515 btrfs: free btrfs_path before copying subvol info to userspace
commit 013c1c5585 upstream.

btrfs_ioctl_get_subvol_info() frees the search path after the userspace
copy from the temp buffer @subvol_info. This can lead to a lock splat
warning.

Fix this by freeing the path before we copy it to userspace.

CC: stable@vger.kernel.org # 4.19+
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-12-08 11:23:01 +01:00
Anand Jain
69e2f1dd93 btrfs: free btrfs_path before copying fspath to userspace
commit 8cf96b409d upstream.

btrfs_ioctl_ino_to_path() frees the search path after the userspace copy
from the temp buffer @ipath->fspath. Which potentially can lead to a lock
splat warning.

Fix this by freeing the path before we copy it to userspace.

CC: stable@vger.kernel.org # 4.19+
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-12-08 11:23:01 +01:00
Josef Bacik
3cde2bc708 btrfs: free btrfs_path before copying root refs to userspace
commit b740d80616 upstream.

Syzbot reported the following lockdep splat

======================================================
WARNING: possible circular locking dependency detected
6.0.0-rc7-syzkaller-18095-gbbed346d5a96 #0 Not tainted
------------------------------------------------------
syz-executor307/3029 is trying to acquire lock:
ffff0000c02525d8 (&mm->mmap_lock){++++}-{3:3}, at: __might_fault+0x54/0xb4 mm/memory.c:5576

but task is already holding lock:
ffff0000c958a608 (btrfs-root-00){++++}-{3:3}, at: __btrfs_tree_read_lock fs/btrfs/locking.c:134 [inline]
ffff0000c958a608 (btrfs-root-00){++++}-{3:3}, at: btrfs_tree_read_lock fs/btrfs/locking.c:140 [inline]
ffff0000c958a608 (btrfs-root-00){++++}-{3:3}, at: btrfs_read_lock_root_node+0x13c/0x1c0 fs/btrfs/locking.c:279

which lock already depends on the new lock.

the existing dependency chain (in reverse order) is:

-> #3 (btrfs-root-00){++++}-{3:3}:
       down_read_nested+0x64/0x84 kernel/locking/rwsem.c:1624
       __btrfs_tree_read_lock fs/btrfs/locking.c:134 [inline]
       btrfs_tree_read_lock fs/btrfs/locking.c:140 [inline]
       btrfs_read_lock_root_node+0x13c/0x1c0 fs/btrfs/locking.c:279
       btrfs_search_slot_get_root+0x74/0x338 fs/btrfs/ctree.c:1637
       btrfs_search_slot+0x1b0/0xfd8 fs/btrfs/ctree.c:1944
       btrfs_update_root+0x6c/0x5a0 fs/btrfs/root-tree.c:132
       commit_fs_roots+0x1f0/0x33c fs/btrfs/transaction.c:1459
       btrfs_commit_transaction+0x89c/0x12d8 fs/btrfs/transaction.c:2343
       flush_space+0x66c/0x738 fs/btrfs/space-info.c:786
       btrfs_async_reclaim_metadata_space+0x43c/0x4e0 fs/btrfs/space-info.c:1059
       process_one_work+0x2d8/0x504 kernel/workqueue.c:2289
       worker_thread+0x340/0x610 kernel/workqueue.c:2436
       kthread+0x12c/0x158 kernel/kthread.c:376
       ret_from_fork+0x10/0x20 arch/arm64/kernel/entry.S:860

-> #2 (&fs_info->reloc_mutex){+.+.}-{3:3}:
       __mutex_lock_common+0xd4/0xca8 kernel/locking/mutex.c:603
       __mutex_lock kernel/locking/mutex.c:747 [inline]
       mutex_lock_nested+0x38/0x44 kernel/locking/mutex.c:799
       btrfs_record_root_in_trans fs/btrfs/transaction.c:516 [inline]
       start_transaction+0x248/0x944 fs/btrfs/transaction.c:752
       btrfs_start_transaction+0x34/0x44 fs/btrfs/transaction.c:781
       btrfs_create_common+0xf0/0x1b4 fs/btrfs/inode.c:6651
       btrfs_create+0x8c/0xb0 fs/btrfs/inode.c:6697
       lookup_open fs/namei.c:3413 [inline]
       open_last_lookups fs/namei.c:3481 [inline]
       path_openat+0x804/0x11c4 fs/namei.c:3688
       do_filp_open+0xdc/0x1b8 fs/namei.c:3718
       do_sys_openat2+0xb8/0x22c fs/open.c:1313
       do_sys_open fs/open.c:1329 [inline]
       __do_sys_openat fs/open.c:1345 [inline]
       __se_sys_openat fs/open.c:1340 [inline]
       __arm64_sys_openat+0xb0/0xe0 fs/open.c:1340
       __invoke_syscall arch/arm64/kernel/syscall.c:38 [inline]
       invoke_syscall arch/arm64/kernel/syscall.c:52 [inline]
       el0_svc_common+0x138/0x220 arch/arm64/kernel/syscall.c:142
       do_el0_svc+0x48/0x164 arch/arm64/kernel/syscall.c:206
       el0_svc+0x58/0x150 arch/arm64/kernel/entry-common.c:636
       el0t_64_sync_handler+0x84/0xf0 arch/arm64/kernel/entry-common.c:654
       el0t_64_sync+0x18c/0x190 arch/arm64/kernel/entry.S:581

-> #1 (sb_internal#2){.+.+}-{0:0}:
       percpu_down_read include/linux/percpu-rwsem.h:51 [inline]
       __sb_start_write include/linux/fs.h:1826 [inline]
       sb_start_intwrite include/linux/fs.h:1948 [inline]
       start_transaction+0x360/0x944 fs/btrfs/transaction.c:683
       btrfs_join_transaction+0x30/0x40 fs/btrfs/transaction.c:795
       btrfs_dirty_inode+0x50/0x140 fs/btrfs/inode.c:6103
       btrfs_update_time+0x1c0/0x1e8 fs/btrfs/inode.c:6145
       inode_update_time fs/inode.c:1872 [inline]
       touch_atime+0x1f0/0x4a8 fs/inode.c:1945
       file_accessed include/linux/fs.h:2516 [inline]
       btrfs_file_mmap+0x50/0x88 fs/btrfs/file.c:2407
       call_mmap include/linux/fs.h:2192 [inline]
       mmap_region+0x7fc/0xc14 mm/mmap.c:1752
       do_mmap+0x644/0x97c mm/mmap.c:1540
       vm_mmap_pgoff+0xe8/0x1d0 mm/util.c:552
       ksys_mmap_pgoff+0x1cc/0x278 mm/mmap.c:1586
       __do_sys_mmap arch/arm64/kernel/sys.c:28 [inline]
       __se_sys_mmap arch/arm64/kernel/sys.c:21 [inline]
       __arm64_sys_mmap+0x58/0x6c arch/arm64/kernel/sys.c:21
       __invoke_syscall arch/arm64/kernel/syscall.c:38 [inline]
       invoke_syscall arch/arm64/kernel/syscall.c:52 [inline]
       el0_svc_common+0x138/0x220 arch/arm64/kernel/syscall.c:142
       do_el0_svc+0x48/0x164 arch/arm64/kernel/syscall.c:206
       el0_svc+0x58/0x150 arch/arm64/kernel/entry-common.c:636
       el0t_64_sync_handler+0x84/0xf0 arch/arm64/kernel/entry-common.c:654
       el0t_64_sync+0x18c/0x190 arch/arm64/kernel/entry.S:581

-> #0 (&mm->mmap_lock){++++}-{3:3}:
       check_prev_add kernel/locking/lockdep.c:3095 [inline]
       check_prevs_add kernel/locking/lockdep.c:3214 [inline]
       validate_chain kernel/locking/lockdep.c:3829 [inline]
       __lock_acquire+0x1530/0x30a4 kernel/locking/lockdep.c:5053
       lock_acquire+0x100/0x1f8 kernel/locking/lockdep.c:5666
       __might_fault+0x7c/0xb4 mm/memory.c:5577
       _copy_to_user include/linux/uaccess.h:134 [inline]
       copy_to_user include/linux/uaccess.h:160 [inline]
       btrfs_ioctl_get_subvol_rootref+0x3a8/0x4bc fs/btrfs/ioctl.c:3203
       btrfs_ioctl+0xa08/0xa64 fs/btrfs/ioctl.c:5556
       vfs_ioctl fs/ioctl.c:51 [inline]
       __do_sys_ioctl fs/ioctl.c:870 [inline]
       __se_sys_ioctl fs/ioctl.c:856 [inline]
       __arm64_sys_ioctl+0xd0/0x140 fs/ioctl.c:856
       __invoke_syscall arch/arm64/kernel/syscall.c:38 [inline]
       invoke_syscall arch/arm64/kernel/syscall.c:52 [inline]
       el0_svc_common+0x138/0x220 arch/arm64/kernel/syscall.c:142
       do_el0_svc+0x48/0x164 arch/arm64/kernel/syscall.c:206
       el0_svc+0x58/0x150 arch/arm64/kernel/entry-common.c:636
       el0t_64_sync_handler+0x84/0xf0 arch/arm64/kernel/entry-common.c:654
       el0t_64_sync+0x18c/0x190 arch/arm64/kernel/entry.S:581

other info that might help us debug this:

Chain exists of:
  &mm->mmap_lock --> &fs_info->reloc_mutex --> btrfs-root-00

 Possible unsafe locking scenario:

       CPU0                    CPU1
       ----                    ----
  lock(btrfs-root-00);
                               lock(&fs_info->reloc_mutex);
                               lock(btrfs-root-00);
  lock(&mm->mmap_lock);

 *** DEADLOCK ***

1 lock held by syz-executor307/3029:
 #0: ffff0000c958a608 (btrfs-root-00){++++}-{3:3}, at: __btrfs_tree_read_lock fs/btrfs/locking.c:134 [inline]
 #0: ffff0000c958a608 (btrfs-root-00){++++}-{3:3}, at: btrfs_tree_read_lock fs/btrfs/locking.c:140 [inline]
 #0: ffff0000c958a608 (btrfs-root-00){++++}-{3:3}, at: btrfs_read_lock_root_node+0x13c/0x1c0 fs/btrfs/locking.c:279

stack backtrace:
CPU: 0 PID: 3029 Comm: syz-executor307 Not tainted 6.0.0-rc7-syzkaller-18095-gbbed346d5a96 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/30/2022
Call trace:
 dump_backtrace+0x1c4/0x1f0 arch/arm64/kernel/stacktrace.c:156
 show_stack+0x2c/0x54 arch/arm64/kernel/stacktrace.c:163
 __dump_stack lib/dump_stack.c:88 [inline]
 dump_stack_lvl+0x104/0x16c lib/dump_stack.c:106
 dump_stack+0x1c/0x58 lib/dump_stack.c:113
 print_circular_bug+0x2c4/0x2c8 kernel/locking/lockdep.c:2053
 check_noncircular+0x14c/0x154 kernel/locking/lockdep.c:2175
 check_prev_add kernel/locking/lockdep.c:3095 [inline]
 check_prevs_add kernel/locking/lockdep.c:3214 [inline]
 validate_chain kernel/locking/lockdep.c:3829 [inline]
 __lock_acquire+0x1530/0x30a4 kernel/locking/lockdep.c:5053
 lock_acquire+0x100/0x1f8 kernel/locking/lockdep.c:5666
 __might_fault+0x7c/0xb4 mm/memory.c:5577
 _copy_to_user include/linux/uaccess.h:134 [inline]
 copy_to_user include/linux/uaccess.h:160 [inline]
 btrfs_ioctl_get_subvol_rootref+0x3a8/0x4bc fs/btrfs/ioctl.c:3203
 btrfs_ioctl+0xa08/0xa64 fs/btrfs/ioctl.c:5556
 vfs_ioctl fs/ioctl.c:51 [inline]
 __do_sys_ioctl fs/ioctl.c:870 [inline]
 __se_sys_ioctl fs/ioctl.c:856 [inline]
 __arm64_sys_ioctl+0xd0/0x140 fs/ioctl.c:856
 __invoke_syscall arch/arm64/kernel/syscall.c:38 [inline]
 invoke_syscall arch/arm64/kernel/syscall.c:52 [inline]
 el0_svc_common+0x138/0x220 arch/arm64/kernel/syscall.c:142
 do_el0_svc+0x48/0x164 arch/arm64/kernel/syscall.c:206
 el0_svc+0x58/0x150 arch/arm64/kernel/entry-common.c:636
 el0t_64_sync_handler+0x84/0xf0 arch/arm64/kernel/entry-common.c:654
 el0t_64_sync+0x18c/0x190 arch/arm64/kernel/entry.S:581

We do generally the right thing here, copying the references into a
temporary buffer, however we are still holding the path when we do
copy_to_user from the temporary buffer.  Fix this by freeing the path
before we copy to user space.

Reported-by: syzbot+4ef9e52e464c6ff47d9d@syzkaller.appspotmail.com
CC: stable@vger.kernel.org # 4.19+
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-12-08 11:23:01 +01:00
Chen Zhongjin
ecbde4222e nilfs2: fix nilfs_sufile_mark_dirty() not set segment usage as dirty
commit 512c5ca01a upstream.

When extending segments, nilfs_sufile_alloc() is called to get an
unassigned segment, then mark it as dirty to avoid accidentally allocating
the same segment in the future.

But for some special cases such as a corrupted image it can be unreliable.
If such corruption of the dirty state of the segment occurs, nilfs2 may
reallocate a segment that is in use and pick the same segment for writing
twice at the same time.

This will cause the problem reported by syzkaller:
https://syzkaller.appspot.com/bug?id=c7c4748e11ffcc367cef04f76e02e931833cbd24

This case started with segbuf1.segnum = 3, nextnum = 4 when constructed.
It supposed segment 4 has already been allocated and marked as dirty.

However the dirty state was corrupted and segment 4 usage was not dirty.
For the first time nilfs_segctor_extend_segments() segment 4 was allocated
again, which made segbuf2 and next segbuf3 had same segment 4.

sb_getblk() will get same bh for segbuf2 and segbuf3, and this bh is added
to both buffer lists of two segbuf.  It makes the lists broken which
causes NULL pointer dereference.

Fix the problem by setting usage as dirty every time in
nilfs_sufile_mark_dirty(), which is called during constructing current
segment to be written out and before allocating next segment.

[chenzhongjin@huawei.com: add lock protection per Ryusuke]
  Link: https://lkml.kernel.org/r/20221121091141.214703-1-chenzhongjin@huawei.com
Link: https://lkml.kernel.org/r/20221118063304.140187-1-chenzhongjin@huawei.com
Fixes: 9ff05123e3 ("nilfs2: segment constructor")
Signed-off-by: Chen Zhongjin <chenzhongjin@huawei.com>
Reported-by: <syzbot+77e4f0...@syzkaller.appspotmail.com>
Reported-by: Liu Shixin <liushixin2@huawei.com>
Acked-by: Ryusuke Konishi <konishi.ryusuke@gmail.com>
Tested-by: Ryusuke Konishi <konishi.ryusuke@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-12-08 11:23:00 +01:00
Xiubo Li
cb7495fe95 ceph: avoid putting the realm twice when decoding snaps fails
[ Upstream commit 51884d153f ]

When decoding the snaps fails it maybe leaving the 'first_realm'
and 'realm' pointing to the same snaprealm memory. And then it'll
put it twice and could cause random use-after-free, BUG_ON, etc
issues.

Cc: stable@vger.kernel.org
Link: https://tracker.ceph.com/issues/57686
Signed-off-by: Xiubo Li <xiubli@redhat.com>
Reviewed-by: Ilya Dryomov <idryomov@gmail.com>
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-12-08 11:23:00 +01:00
Xiubo Li
12a93545b2 ceph: do not update snapshot context when there is no new snapshot
[ Upstream commit 2e586641c9 ]

We will only track the uppest parent snapshot realm from which we
need to rebuild the snapshot contexts _downward_ in hierarchy. For
all the others having no new snapshot we will do nothing.

This fix will avoid calling ceph_queue_cap_snap() on some inodes
inappropriately. For example, with the code in mainline, suppose there
are 2 directory hierarchies (with 6 directories total), like this:

/dir_X1/dir_X2/dir_X3/
/dir_Y1/dir_Y2/dir_Y3/

Firstly, make a snapshot under /dir_X1/dir_X2/.snap/snap_X2, then make a
root snapshot under /.snap/root_snap. Every time we make snapshots under
/dir_Y1/..., the kclient will always try to rebuild the snap context for
snap_X2 realm and finally will always try to queue cap snaps for dir_Y2
and dir_Y3, which makes no sense.

That's because the snap_X2's seq is 2 and root_snap's seq is 3. So when
creating a new snapshot under /dir_Y1/... the new seq will be 4, and
the mds will send the kclient a snapshot backtrace in _downward_
order: seqs 4, 3.

When ceph_update_snap_trace() is called, it will always rebuild the from
the last realm, that's the root_snap. So later when rebuilding the snap
context, the current logic will always cause it to rebuild the snap_X2
realm and then try to queue cap snaps for all the inodes related in that
realm, even though it's not necessary.

This is accompanied by a lot of these sorts of dout messages:

    "ceph:  queue_cap_snap 00000000a42b796b nothing dirty|writing"

Fix the logic to avoid this situation.

Also, the 'invalidate' word is not precise here. In actuality, it will
cause a rebuild of the existing snapshot contexts or just build
non-existent ones. Rename it to 'rebuild_snapcs'.

URL: https://tracker.ceph.com/issues/44100
Signed-off-by: Xiubo Li <xiubli@redhat.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Stable-dep-of: 51884d153f ("ceph: avoid putting the realm twice when decoding snaps fails")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-12-08 11:23:00 +01:00
Hawkins Jiawei
b612f924f2 ntfs: check overflow when iterating ATTR_RECORDs
commit 63095f4f3a upstream.

Kernel iterates over ATTR_RECORDs in mft record in ntfs_attr_find().
Because the ATTR_RECORDs are next to each other, kernel can get the next
ATTR_RECORD from end address of current ATTR_RECORD, through current
ATTR_RECORD length field.

The problem is that during iteration, when kernel calculates the end
address of current ATTR_RECORD, kernel may trigger an integer overflow bug
in executing `a = (ATTR_RECORD*)((u8*)a + le32_to_cpu(a->length))`.  This
may wrap, leading to a forever iteration on 32bit systems.

This patch solves it by adding some checks on calculating end address
of current ATTR_RECORD during iteration.

Link: https://lkml.kernel.org/r/20220831160935.3409-4-yin31149@gmail.com
Link: https://lore.kernel.org/all/20220827105842.GM2030@kadam/
Signed-off-by: Hawkins Jiawei <yin31149@gmail.com>
Suggested-by: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Anton Altaparmakov <anton@tuxera.com>
Cc: chenxiaosong (A) <chenxiaosong2@huawei.com>
Cc: syzkaller-bugs <syzkaller-bugs@googlegroups.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-11-25 17:42:22 +01:00
Hawkins Jiawei
0e2ce0954b ntfs: fix out-of-bounds read in ntfs_attr_find()
commit 36a4d82ddd upstream.

Kernel iterates over ATTR_RECORDs in mft record in ntfs_attr_find().  To
ensure access on these ATTR_RECORDs are within bounds, kernel will do some
checking during iteration.

The problem is that during checking whether ATTR_RECORD's name is within
bounds, kernel will dereferences the ATTR_RECORD name_offset field, before
checking this ATTR_RECORD strcture is within bounds.  This problem may
result out-of-bounds read in ntfs_attr_find(), reported by Syzkaller:

==================================================================
BUG: KASAN: use-after-free in ntfs_attr_find+0xc02/0xce0 fs/ntfs/attrib.c:597
Read of size 2 at addr ffff88807e352009 by task syz-executor153/3607

[...]
Call Trace:
 <TASK>
 __dump_stack lib/dump_stack.c:88 [inline]
 dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106
 print_address_description mm/kasan/report.c:317 [inline]
 print_report.cold+0x2ba/0x719 mm/kasan/report.c:433
 kasan_report+0xb1/0x1e0 mm/kasan/report.c:495
 ntfs_attr_find+0xc02/0xce0 fs/ntfs/attrib.c:597
 ntfs_attr_lookup+0x1056/0x2070 fs/ntfs/attrib.c:1193
 ntfs_read_inode_mount+0x89a/0x2580 fs/ntfs/inode.c:1845
 ntfs_fill_super+0x1799/0x9320 fs/ntfs/super.c:2854
 mount_bdev+0x34d/0x410 fs/super.c:1400
 legacy_get_tree+0x105/0x220 fs/fs_context.c:610
 vfs_get_tree+0x89/0x2f0 fs/super.c:1530
 do_new_mount fs/namespace.c:3040 [inline]
 path_mount+0x1326/0x1e20 fs/namespace.c:3370
 do_mount fs/namespace.c:3383 [inline]
 __do_sys_mount fs/namespace.c:3591 [inline]
 __se_sys_mount fs/namespace.c:3568 [inline]
 __x64_sys_mount+0x27f/0x300 fs/namespace.c:3568
 do_syscall_x64 arch/x86/entry/common.c:50 [inline]
 do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
 entry_SYSCALL_64_after_hwframe+0x63/0xcd
 [...]
 </TASK>

The buggy address belongs to the physical page:
page:ffffea0001f8d400 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x7e350
head:ffffea0001f8d400 order:3 compound_mapcount:0 compound_pincount:0
flags: 0xfff00000010200(slab|head|node=0|zone=1|lastcpupid=0x7ff)
raw: 00fff00000010200 0000000000000000 dead000000000122 ffff888011842140
raw: 0000000000000000 0000000000040004 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
 ffff88807e351f00: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
 ffff88807e351f80: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
>ffff88807e352000: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
                      ^
 ffff88807e352080: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
 ffff88807e352100: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
==================================================================

This patch solves it by moving the ATTR_RECORD strcture's bounds checking
earlier, then checking whether ATTR_RECORD's name is within bounds.
What's more, this patch also add some comments to improve its
maintainability.

Link: https://lkml.kernel.org/r/20220831160935.3409-3-yin31149@gmail.com
Link: https://lore.kernel.org/all/1636796c-c85e-7f47-e96f-e074fee3c7d3@huawei.com/
Link: https://groups.google.com/g/syzkaller-bugs/c/t_XdeKPGTR4/m/LECAuIGcBgAJ
Signed-off-by: chenxiaosong (A) <chenxiaosong2@huawei.com>
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Hawkins Jiawei <yin31149@gmail.com>
Reported-by: syzbot+5f8dcabe4a3b2c51c607@syzkaller.appspotmail.com
Tested-by: syzbot+5f8dcabe4a3b2c51c607@syzkaller.appspotmail.com
Cc: Anton Altaparmakov <anton@tuxera.com>
Cc: syzkaller-bugs <syzkaller-bugs@googlegroups.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-11-25 17:42:22 +01:00
Hawkins Jiawei
266bd53062 ntfs: fix use-after-free in ntfs_attr_find()
commit d85a1bec8e upstream.

Patch series "ntfs: fix bugs about Attribute", v2.

This patchset fixes three bugs relative to Attribute in record:

Patch 1 adds a sanity check to ensure that, attrs_offset field in first
mft record loading from disk is within bounds.

Patch 2 moves the ATTR_RECORD's bounds checking earlier, to avoid
dereferencing ATTR_RECORD before checking this ATTR_RECORD is within
bounds.

Patch 3 adds an overflow checking to avoid possible forever loop in
ntfs_attr_find().

Without patch 1 and patch 2, the kernel triggersa KASAN use-after-free
detection as reported by Syzkaller.

Although one of patch 1 or patch 2 can fix this, we still need both of
them.  Because patch 1 fixes the root cause, and patch 2 not only fixes
the direct cause, but also fixes the potential out-of-bounds bug.


This patch (of 3):

Syzkaller reported use-after-free read as follows:
==================================================================
BUG: KASAN: use-after-free in ntfs_attr_find+0xc02/0xce0 fs/ntfs/attrib.c:597
Read of size 2 at addr ffff88807e352009 by task syz-executor153/3607

[...]
Call Trace:
 <TASK>
 __dump_stack lib/dump_stack.c:88 [inline]
 dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106
 print_address_description mm/kasan/report.c:317 [inline]
 print_report.cold+0x2ba/0x719 mm/kasan/report.c:433
 kasan_report+0xb1/0x1e0 mm/kasan/report.c:495
 ntfs_attr_find+0xc02/0xce0 fs/ntfs/attrib.c:597
 ntfs_attr_lookup+0x1056/0x2070 fs/ntfs/attrib.c:1193
 ntfs_read_inode_mount+0x89a/0x2580 fs/ntfs/inode.c:1845
 ntfs_fill_super+0x1799/0x9320 fs/ntfs/super.c:2854
 mount_bdev+0x34d/0x410 fs/super.c:1400
 legacy_get_tree+0x105/0x220 fs/fs_context.c:610
 vfs_get_tree+0x89/0x2f0 fs/super.c:1530
 do_new_mount fs/namespace.c:3040 [inline]
 path_mount+0x1326/0x1e20 fs/namespace.c:3370
 do_mount fs/namespace.c:3383 [inline]
 __do_sys_mount fs/namespace.c:3591 [inline]
 __se_sys_mount fs/namespace.c:3568 [inline]
 __x64_sys_mount+0x27f/0x300 fs/namespace.c:3568
 do_syscall_x64 arch/x86/entry/common.c:50 [inline]
 do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
 entry_SYSCALL_64_after_hwframe+0x63/0xcd
 [...]
 </TASK>

The buggy address belongs to the physical page:
page:ffffea0001f8d400 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x7e350
head:ffffea0001f8d400 order:3 compound_mapcount:0 compound_pincount:0
flags: 0xfff00000010200(slab|head|node=0|zone=1|lastcpupid=0x7ff)
raw: 00fff00000010200 0000000000000000 dead000000000122 ffff888011842140
raw: 0000000000000000 0000000000040004 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
 ffff88807e351f00: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
 ffff88807e351f80: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
>ffff88807e352000: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
                      ^
 ffff88807e352080: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
 ffff88807e352100: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
==================================================================

Kernel will loads $MFT/$DATA's first mft record in
ntfs_read_inode_mount().

Yet the problem is that after loading, kernel doesn't check whether
attrs_offset field is a valid value.

To be more specific, if attrs_offset field is larger than bytes_allocated
field, then it may trigger the out-of-bounds read bug(reported as
use-after-free bug) in ntfs_attr_find(), when kernel tries to access the
corresponding mft record's attribute.

This patch solves it by adding the sanity check between attrs_offset field
and bytes_allocated field, after loading the first mft record.

Link: https://lkml.kernel.org/r/20220831160935.3409-1-yin31149@gmail.com
Link: https://lkml.kernel.org/r/20220831160935.3409-2-yin31149@gmail.com
Signed-off-by: Hawkins Jiawei <yin31149@gmail.com>
Cc: Anton Altaparmakov <anton@tuxera.com>
Cc: ChenXiaoSong <chenxiaosong2@huawei.com>
Cc: syzkaller-bugs <syzkaller-bugs@googlegroups.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-11-25 17:42:22 +01:00
Alexander Potapenko
ed8b990e89 mm: fs: initialize fsdata passed to write_begin/write_end interface
commit 1468c6f455 upstream.

Functions implementing the a_ops->write_end() interface accept the `void
*fsdata` parameter that is supposed to be initialized by the corresponding
a_ops->write_begin() (which accepts `void **fsdata`).

However not all a_ops->write_begin() implementations initialize `fsdata`
unconditionally, so it may get passed uninitialized to a_ops->write_end(),
resulting in undefined behavior.

Fix this by initializing fsdata with NULL before the call to
write_begin(), rather than doing so in all possible a_ops implementations.

This patch covers only the following cases found by running x86 KMSAN
under syzkaller:

 - generic_perform_write()
 - cont_expand_zero() and generic_cont_expand_simple()
 - page_symlink()

Other cases of passing uninitialized fsdata may persist in the codebase.

Link: https://lkml.kernel.org/r/20220915150417.722975-43-glider@google.com
Signed-off-by: Alexander Potapenko <glider@google.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Eric Biggers <ebiggers@google.com>
Cc: Eric Biggers <ebiggers@kernel.org>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Ilya Leoshkevich <iii@linux.ibm.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Marco Elver <elver@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vegard Nossum <vegard.nossum@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-11-25 17:42:22 +01:00
Andreas Gruenbacher
179236a122 gfs2: Switch from strlcpy to strscpy
commit 204c0300c4 upstream.

Switch from strlcpy to strscpy and make sure that @count is the size of
the smaller of the source and destination buffers.  This prevents
reading beyond the end of the source buffer when the source string isn't
null terminated.

Found by a modified version of syzkaller.

Suggested-by: Wolfram Sang <wsa+renesas@sang-engineering.com>
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-11-25 17:42:22 +01:00
Andrew Price
8b6534c9ae gfs2: Check sb_bsize_shift after reading superblock
commit 670f8ce56d upstream.

Fuzzers like to scribble over sb_bsize_shift but in reality it's very
unlikely that this field would be corrupted on its own. Nevertheless it
should be checked to avoid the possibility of messy mount errors due to
bad calculations. It's always a fixed value based on the block size so
we can just check that it's the expected value.

Tested with:

    mkfs.gfs2 -O -p lock_nolock /dev/vdb
    for i in 0 -1 64 65 32 33; do
        gfs2_edit -p sb field sb_bsize_shift $i /dev/vdb
        mount /dev/vdb /mnt/test && umount /mnt/test
    done

Before this patch we get a withdraw after

[   76.413681] gfs2: fsid=loop0.0: fatal: invalid metadata block
[   76.413681]   bh = 19 (type: exp=5, found=4)
[   76.413681]   function = gfs2_meta_buffer, file = fs/gfs2/meta_io.c, line = 492

and with UBSAN configured we also get complaints like

[   76.373395] UBSAN: shift-out-of-bounds in fs/gfs2/ops_fstype.c:295:19
[   76.373815] shift exponent 4294967287 is too large for 64-bit type 'long unsigned int'

After the patch, these complaints don't appear, mount fails immediately
and we get an explanation in dmesg.

Reported-by: syzbot+dcf33a7aae997956fe06@syzkaller.appspotmail.com
Signed-off-by: Andrew Price <anprice@redhat.com>
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-11-25 17:42:21 +01:00
Anastasia Belova
04e9e5eb45 cifs: add check for returning value of SMB2_set_info_init
[ Upstream commit a51e5d293d ]

If the returning value of SMB2_set_info_init is an error-value,
exit the function.

Found by Linux Verification Center (linuxtesting.org) with SVACE.

Fixes: 0967e54579 ("cifs: use a compound for setting an xattr")

Signed-off-by: Anastasia Belova <abelova@astralinux.ru>
Signed-off-by: Steve French <stfrench@microsoft.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-11-25 17:42:16 +01:00
Zhang Xiaoxu
e6546d5412 cifs: Fix wrong return value checking when GETFLAGS
[ Upstream commit 92bbd67a55 ]

The return value of CIFSGetExtAttr is negative, should be checked
with -EOPNOTSUPP rather than EOPNOTSUPP.

Fixes: 64a5cfa6db ("Allow setting per-file compression via SMB2/3")
Signed-off-by: Zhang Xiaoxu <zhangxiaoxu5@huawei.com>
Signed-off-by: Steve French <stfrench@microsoft.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-11-25 17:42:16 +01:00
Filipe Manana
6fa082ad96 btrfs: remove pointless and double ulist frees in error paths of qgroup tests
[ Upstream commit d0ea17aec1 ]

Several places in the qgroup self tests follow the pattern of freeing the
ulist pointer they passed to btrfs_find_all_roots() if the call to that
function returned an error. That is pointless because that function always
frees the ulist in case it returns an error.

Also In some places like at test_multiple_refs(), after a call to
btrfs_qgroup_account_extent() we also leave "old_roots" and "new_roots"
pointing to ulists that were freed, because btrfs_qgroup_account_extent()
has freed those ulists, and if after that the next call to
btrfs_find_all_roots() fails, we call ulist_free() on the "old_roots"
ulist again, resulting in a double free.

So remove those calls to reduce the code size and avoid double ulist
free in case of an error.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-11-25 17:42:13 +01:00
Benjamin Coddington
18a501e5c7 NFSv4: Retry LOCK on OLD_STATEID during delegation return
[ Upstream commit f5ea16137a ]

There's a small window where a LOCK sent during a delegation return can
race with another OPEN on client, but the open stateid has not yet been
updated.  In this case, the client doesn't handle the OLD_STATEID error
from the server and will lose this lock, emitting:
"NFS: nfs4_handle_delegation_recall_error: unhandled error -10024".

Fix this by sending the task through the nfs4 error handling in
nfs4_lock_done() when we may have to reconcile our stateid with what the
server believes it to be.  For this case, the result is a retry of the
LOCK operation with the updated stateid.

Reported-by: Gonzalo Siero Humet <gsierohu@redhat.com>
Signed-off-by: Benjamin Coddington <bcodding@redhat.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-11-25 17:42:12 +01:00
ZhangPeng
d8971f4107 udf: Fix a slab-out-of-bounds write bug in udf_find_entry()
commit c8af247de3 upstream.

Syzbot reported a slab-out-of-bounds Write bug:

loop0: detected capacity change from 0 to 2048
==================================================================
BUG: KASAN: slab-out-of-bounds in udf_find_entry+0x8a5/0x14f0
fs/udf/namei.c:253
Write of size 105 at addr ffff8880123ff896 by task syz-executor323/3610

CPU: 0 PID: 3610 Comm: syz-executor323 Not tainted
6.1.0-rc2-syzkaller-00105-gb229b6ca5abb #0
Hardware name: Google Compute Engine/Google Compute Engine, BIOS
Google 10/11/2022
Call Trace:
 <TASK>
 __dump_stack lib/dump_stack.c:88 [inline]
 dump_stack_lvl+0x1b1/0x28e lib/dump_stack.c:106
 print_address_description+0x74/0x340 mm/kasan/report.c:284
 print_report+0x107/0x1f0 mm/kasan/report.c:395
 kasan_report+0xcd/0x100 mm/kasan/report.c:495
 kasan_check_range+0x2a7/0x2e0 mm/kasan/generic.c:189
 memcpy+0x3c/0x60 mm/kasan/shadow.c:66
 udf_find_entry+0x8a5/0x14f0 fs/udf/namei.c:253
 udf_lookup+0xef/0x340 fs/udf/namei.c:309
 lookup_open fs/namei.c:3391 [inline]
 open_last_lookups fs/namei.c:3481 [inline]
 path_openat+0x10e6/0x2df0 fs/namei.c:3710
 do_filp_open+0x264/0x4f0 fs/namei.c:3740
 do_sys_openat2+0x124/0x4e0 fs/open.c:1310
 do_sys_open fs/open.c:1326 [inline]
 __do_sys_creat fs/open.c:1402 [inline]
 __se_sys_creat fs/open.c:1396 [inline]
 __x64_sys_creat+0x11f/0x160 fs/open.c:1396
 do_syscall_x64 arch/x86/entry/common.c:50 [inline]
 do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80
 entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x7ffab0d164d9
Code: ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89
f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01
f0 ff ff 73 01 c3 48 c7 c1 c0 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007ffe1a7e6bb8 EFLAGS: 00000246 ORIG_RAX: 0000000000000055
RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007ffab0d164d9
RDX: 00007ffab0d164d9 RSI: 0000000000000000 RDI: 0000000020000180
RBP: 00007ffab0cd5a10 R08: 0000000000000000 R09: 0000000000000000
R10: 00005555573552c0 R11: 0000000000000246 R12: 00007ffab0cd5aa0
R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000
 </TASK>

Allocated by task 3610:
 kasan_save_stack mm/kasan/common.c:45 [inline]
 kasan_set_track+0x3d/0x60 mm/kasan/common.c:52
 ____kasan_kmalloc mm/kasan/common.c:371 [inline]
 __kasan_kmalloc+0x97/0xb0 mm/kasan/common.c:380
 kmalloc include/linux/slab.h:576 [inline]
 udf_find_entry+0x7b6/0x14f0 fs/udf/namei.c:243
 udf_lookup+0xef/0x340 fs/udf/namei.c:309
 lookup_open fs/namei.c:3391 [inline]
 open_last_lookups fs/namei.c:3481 [inline]
 path_openat+0x10e6/0x2df0 fs/namei.c:3710
 do_filp_open+0x264/0x4f0 fs/namei.c:3740
 do_sys_openat2+0x124/0x4e0 fs/open.c:1310
 do_sys_open fs/open.c:1326 [inline]
 __do_sys_creat fs/open.c:1402 [inline]
 __se_sys_creat fs/open.c:1396 [inline]
 __x64_sys_creat+0x11f/0x160 fs/open.c:1396
 do_syscall_x64 arch/x86/entry/common.c:50 [inline]
 do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80
 entry_SYSCALL_64_after_hwframe+0x63/0xcd

The buggy address belongs to the object at ffff8880123ff800
 which belongs to the cache kmalloc-256 of size 256
The buggy address is located 150 bytes inside of
 256-byte region [ffff8880123ff800, ffff8880123ff900)

The buggy address belongs to the physical page:
page:ffffea000048ff80 refcount:1 mapcount:0 mapping:0000000000000000
index:0x0 pfn:0x123fe
head:ffffea000048ff80 order:1 compound_mapcount:0 compound_pincount:0
flags: 0xfff00000010200(slab|head|node=0|zone=1|lastcpupid=0x7ff)
raw: 00fff00000010200 ffffea00004b8500 dead000000000003 ffff888012041b40
raw: 0000000000000000 0000000080100010 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
page_owner tracks the page as allocated
page last allocated via order 0, migratetype Unmovable, gfp_mask 0x0(),
pid 1, tgid 1 (swapper/0), ts 1841222404, free_ts 0
 create_dummy_stack mm/page_owner.c:67 [inline]
 register_early_stack+0x77/0xd0 mm/page_owner.c:83
 init_page_owner+0x3a/0x731 mm/page_owner.c:93
 kernel_init_freeable+0x41c/0x5d5 init/main.c:1629
 kernel_init+0x19/0x2b0 init/main.c:1519
page_owner free stack trace missing

Memory state around the buggy address:
 ffff8880123ff780: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
 ffff8880123ff800: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
>ffff8880123ff880: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 06
                                                                ^
 ffff8880123ff900: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
 ffff8880123ff980: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
==================================================================

Fix this by changing the memory size allocated for copy_name from
UDF_NAME_LEN(254) to UDF_NAME_LEN_CS0(255), because the total length
(lfi) of subsequent memcpy can be up to 255.

CC: stable@vger.kernel.org
Reported-by: syzbot+69c9fdccc6dd08961d34@syzkaller.appspotmail.com
Fixes: 066b9cded0 ("udf: Use separate buffer for copying split names")
Signed-off-by: ZhangPeng <zhangpeng362@huawei.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20221109013542.442790-1-zhangpeng362@huawei.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-11-25 17:42:09 +01:00
Zhang Xiaoxu
c914c56ac0 btrfs: selftests: fix wrong error check in btrfs_free_dummy_root()
commit 9b2f20344d upstream.

The btrfs_alloc_dummy_root() uses ERR_PTR as the error return value
rather than NULL, if error happened, there will be a NULL pointer
dereference:

  BUG: KASAN: null-ptr-deref in btrfs_free_dummy_root+0x21/0x50 [btrfs]
  Read of size 8 at addr 000000000000002c by task insmod/258926

  CPU: 2 PID: 258926 Comm: insmod Tainted: G        W          6.1.0-rc2+ #5
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-1.fc33 04/01/2014
  Call Trace:
   <TASK>
   dump_stack_lvl+0x34/0x44
   kasan_report+0xb7/0x140
   kasan_check_range+0x145/0x1a0
   btrfs_free_dummy_root+0x21/0x50 [btrfs]
   btrfs_test_free_space_cache+0x1a8c/0x1add [btrfs]
   btrfs_run_sanity_tests+0x65/0x80 [btrfs]
   init_btrfs_fs+0xec/0x154 [btrfs]
   do_one_initcall+0x87/0x2a0
   do_init_module+0xdf/0x320
   load_module+0x3006/0x3390
   __do_sys_finit_module+0x113/0x1b0
   do_syscall_64+0x35/0x80
 entry_SYSCALL_64_after_hwframe+0x46/0xb0

Fixes: aaedb55bc0 ("Btrfs: add tests for btrfs_get_extent")
CC: stable@vger.kernel.org # 4.9+
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Zhang Xiaoxu <zhangxiaoxu5@huawei.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-11-25 17:42:09 +01:00
Ryusuke Konishi
9b162e8104 nilfs2: fix use-after-free bug of ns_writer on remount
commit 8cccf05fe8 upstream.

If a nilfs2 filesystem is downgraded to read-only due to metadata
corruption on disk and is remounted read/write, or if emergency read-only
remount is performed, detaching a log writer and synchronizing the
filesystem can be done at the same time.

In these cases, use-after-free of the log writer (hereinafter
nilfs->ns_writer) can happen as shown in the scenario below:

 Task1                               Task2
 --------------------------------    ------------------------------
 nilfs_construct_segment
   nilfs_segctor_sync
     init_wait
     init_waitqueue_entry
     add_wait_queue
     schedule
                                     nilfs_remount (R/W remount case)
				       nilfs_attach_log_writer
                                         nilfs_detach_log_writer
                                           nilfs_segctor_destroy
                                             kfree
     finish_wait
       _raw_spin_lock_irqsave
         __raw_spin_lock_irqsave
           do_raw_spin_lock
             debug_spin_lock_before  <-- use-after-free

While Task1 is sleeping, nilfs->ns_writer is freed by Task2.  After Task1
waked up, Task1 accesses nilfs->ns_writer which is already freed.  This
scenario diagram is based on the Shigeru Yoshida's post [1].

This patch fixes the issue by not detaching nilfs->ns_writer on remount so
that this UAF race doesn't happen.  Along with this change, this patch
also inserts a few necessary read-only checks with superblock instance
where only the ns_writer pointer was used to check if the filesystem is
read-only.

Link: https://syzkaller.appspot.com/bug?id=79a4c002e960419ca173d55e863bd09e8112df8b
Link: https://lkml.kernel.org/r/20221103141759.1836312-1-syoshida@redhat.com [1]
Link: https://lkml.kernel.org/r/20221104142959.28296-1-konishi.ryusuke@gmail.com
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@gmail.com>
Reported-by: syzbot+f816fa82f8783f7a02bb@syzkaller.appspotmail.com
Reported-by: Shigeru Yoshida <syoshida@redhat.com>
Tested-by: Ryusuke Konishi <konishi.ryusuke@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-11-25 17:42:09 +01:00
Ryusuke Konishi
36ff974b03 nilfs2: fix deadlock in nilfs_count_free_blocks()
commit 8ac932a492 upstream.

A semaphore deadlock can occur if nilfs_get_block() detects metadata
corruption while locating data blocks and a superblock writeback occurs at
the same time:

task 1                               task 2
------                               ------
* A file operation *
nilfs_truncate()
  nilfs_get_block()
    down_read(rwsem A) <--
    nilfs_bmap_lookup_contig()
      ...                            generic_shutdown_super()
                                       nilfs_put_super()
                                         * Prepare to write superblock *
                                         down_write(rwsem B) <--
                                         nilfs_cleanup_super()
      * Detect b-tree corruption *         nilfs_set_log_cursor()
      nilfs_bmap_convert_error()             nilfs_count_free_blocks()
        __nilfs_error()                        down_read(rwsem A) <--
          nilfs_set_error()
            down_write(rwsem B) <--

                           *** DEADLOCK ***

Here, nilfs_get_block() readlocks rwsem A (= NILFS_MDT(dat_inode)->mi_sem)
and then calls nilfs_bmap_lookup_contig(), but if it fails due to metadata
corruption, __nilfs_error() is called from nilfs_bmap_convert_error()
inside the lock section.

Since __nilfs_error() calls nilfs_set_error() unless the filesystem is
read-only and nilfs_set_error() attempts to writelock rwsem B (=
nilfs->ns_sem) to write back superblock exclusively, hierarchical lock
acquisition occurs in the order rwsem A -> rwsem B.

Now, if another task starts updating the superblock, it may writelock
rwsem B during the lock sequence above, and can deadlock trying to
readlock rwsem A in nilfs_count_free_blocks().

However, there is actually no need to take rwsem A in
nilfs_count_free_blocks() because it, within the lock section, only reads
a single integer data on a shared struct with
nilfs_sufile_get_ncleansegs().  This has been the case after commit
aa474a2201 ("nilfs2: add local variable to cache the number of clean
segments"), that is, even before this bug was introduced.

So, this resolves the deadlock problem by just not taking the semaphore in
nilfs_count_free_blocks().

Link: https://lkml.kernel.org/r/20221029044912.9139-1-konishi.ryusuke@gmail.com
Fixes: e828949e5b ("nilfs2: call nilfs_error inside bmap routines")
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@gmail.com>
Reported-by: syzbot+45d6ce7b7ad7ef455d03@syzkaller.appspotmail.com
Tested-by: Ryusuke Konishi <konishi.ryusuke@gmail.com>
Cc: <stable@vger.kernel.org>	[2.6.38+
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-11-25 17:42:09 +01:00
Brian Foster
45a841719f xfs: drain the buf delwri queue before xfsaild idles
commit f376b45e86 upstream.

xfsaild is racy with respect to transaction abort and shutdown in
that the task can idle or exit with an empty AIL but buffers still
on the delwri queue. This was partly addressed by cancelling the
delwri queue before the task exits to prevent memory leaks, but it's
also possible for xfsaild to empty and idle with buffers on the
delwri queue. For example, a transaction that pins a buffer that
also happens to sit on the AIL delwri queue will explicitly remove
the associated log item from the AIL if the transaction aborts. The
side effect of this is an unmount hang in xfs_wait_buftarg() as the
associated buffers remain held by the delwri queue indefinitely.
This is reproduced on repeated runs of generic/531 with an fs format
(-mrmapbt=1 -bsize=1k) that happens to also reproduce transaction
aborts.

Update xfsaild to not idle until both the AIL and associated delwri
queue are empty and update the push code to continue delwri queue
submission attempts even when the AIL is empty. This allows the AIL
to eventually release aborted buffers stranded on the delwri queue
when they are unlocked by the associated transaction. This should
have no significant effect on normal runtime behavior because the
xfsaild currently idles only when the AIL is empty and in practice
the AIL is rarely empty with a populated delwri queue. The items
must be AIL resident to land in the queue in the first place and
generally aren't removed until writeback completes.

Note that the pre-existing delwri queue cancel logic in the exit
path is retained because task stop is external, could technically
come at any point, and xfsaild is still responsible to release its
buffer references before it exits.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-11-25 17:42:03 +01:00
Eric Sandeen
e107e953d2 xfs: preserve inode versioning across remounts
commit 4750a171c3 upstream.

[ For 5.4.y, SB_I_VERSION should be set in xfs_fs_remount() ]

The MS_I_VERSION mount flag is exposed via the VFS, as documented
in the mount manpages etc; see the iversion and noiversion mount
options in mount(8).

As a result, mount -o remount looks for this option in /proc/mounts
and will only send the I_VERSION flag back in during remount it it
is present.  Since it's not there, a remount will /remove/ the
I_VERSION flag at the vfs level, and iversion functionality is lost.

xfs v5 superblocks intend to always have i_version enabled; it is
set as a default at mount time, but is lost during remount for the
reasons above.

The generic fix would be to expose this documented option in
/proc/mounts, but since that was rejected, fix it up again in the
xfs remount path instead, so that at least xfs won't suffer from
this misbehavior.

Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-11-25 17:42:03 +01:00
Dave Chinner
7d57979052 xfs: use MMAPLOCK around filemap_map_pages()
commit cd647d5651 upstream.

The page faultround path ->map_pages is implemented in XFS via
filemap_map_pages(). This function checks that pages found in page
cache lookups have not raced with truncate based invalidation by
checking page->mapping is correct and page->index is within EOF.

However, we've known for a long time that this is not sufficient to
protect against races with invalidations done by operations that do
not change EOF. e.g. hole punching and other fallocate() based
direct extent manipulations. The way we protect against these
races is we wrap the page fault operations in a XFS_MMAPLOCK_SHARED
lock so they serialise against fallocate and truncate before calling
into the filemap function that processes the fault.

Do the same for XFS's ->map_pages implementation to close this
potential data corruption issue.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-11-25 17:42:03 +01:00
Darrick J. Wong
8b27e684a6 xfs: redesign the reflink remap loop to fix blkres depletion crash
commit 00fd1d56dd upstream.

The existing reflink remapping loop has some structural problems that
need addressing:

The biggest problem is that we create one transaction for each extent in
the source file without accounting for the number of mappings there are
for the same range in the destination file.  In other words, we don't
know the number of remap operations that will be necessary and we
therefore cannot guess the block reservation required.  On highly
fragmented filesystems (e.g. ones with active dedupe) we guess wrong,
run out of block reservation, and fail.

The second problem is that we don't actually use the bmap intents to
their full potential -- instead of calling bunmapi directly and having
to deal with its backwards operation, we could call the deferred ops
xfs_bmap_unmap_extent and xfs_refcount_decrease_extent instead.  This
makes the frontend loop much simpler.

Solve all of these problems by refactoring the remapping loops so that
we only perform one remapping operation per transaction, and each
operation only tries to remap a single extent from source to dest.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reported-by: Edwin Török <edwin@etorok.net>
Tested-by: Edwin Török <edwin@etorok.net>
Acked-by: Darrick J. Wong <djwong@kernel.org>
[backported to 5.4.y - Tested-by above does not refer to the backport]
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-11-25 17:42:03 +01:00
Darrick J. Wong
ece1eb9957 xfs: rename xfs_bmap_is_real_extent to is_written_extent
commit 877f58f536 upstream.

[ Slightly modify fs/xfs/libxfs/xfs_rtbitmap.c & fs/xfs/xfs_reflink.c to
  resolve merge conflict ]

The name of this predicate is a little misleading -- it decides if the
extent mapping is allocated and written.  Change the name to be more
direct, as we're going to add a new predicate in the next patch.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-11-25 17:42:03 +01:00
Brian Foster
d304fafb97 xfs: preserve rmapbt swapext block reservation from freed blocks
commit f74681ba20 upstream.

[Slightly modify xfs_trans_alloc() to fix a merge conflict due to missing
 "atomic_inc(&mp->m_active_trans)" statement in v5.9 kernel]

The rmapbt extent swap algorithm remaps individual extents between
the source inode and the target to trigger reverse mapping metadata
updates. If either inode straddles a format or other bmap allocation
boundary, the individual unmap and map cycles can trigger repeated
bmap block allocations and frees as the extent count bounces back
and forth across the boundary. While net block usage is bound across
the swap operation, this behavior can prematurely exhaust the
transaction block reservation because it continuously drains as the
transaction rolls. Each allocation accounts against the reservation
and each free returns to global free space on transaction roll.

The previous workaround to this problem attempted to detect this
boundary condition and provide surplus block reservation to
acommodate it. This is insufficient because more remaps can occur
than implied by the extent counts; if start offset boundaries are
not aligned between the two inodes, for example.

To address this problem more generically and dynamically, add a
transaction accounting mode that returns freed blocks to the
transaction reservation instead of the superblock counters on
transaction roll and use it when the rmapbt based algorithm is
active. This allows the chain of remap transactions to preserve the
block reservation based own its own frees and prevent premature
exhaustion regardless of the remap pattern. Note that this is only
safe for superblocks with lazy sb accounting, but the latter is
required for v5 supers and the rmap feature depends on v5.

Fixes: b3fed43482 ("xfs: account format bouncing into rmapbt swapext tx reservation")
Root-caused-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-11-25 17:42:03 +01:00
Luís Henriques
2fa24d0274 ext4: fix BUG_ON() when directory entry has invalid rec_len
commit 17a0bc9bd6 upstream.

The rec_len field in the directory entry has to be a multiple of 4.  A
corrupted filesystem image can be used to hit a BUG() in
ext4_rec_len_to_disk(), called from make_indexed_dir().

 ------------[ cut here ]------------
 kernel BUG at fs/ext4/ext4.h:2413!
 ...
 RIP: 0010:make_indexed_dir+0x53f/0x5f0
 ...
 Call Trace:
  <TASK>
  ? add_dirent_to_buf+0x1b2/0x200
  ext4_add_entry+0x36e/0x480
  ext4_add_nondir+0x2b/0xc0
  ext4_create+0x163/0x200
  path_openat+0x635/0xe90
  do_filp_open+0xb4/0x160
  ? __create_object.isra.0+0x1de/0x3b0
  ? _raw_spin_unlock+0x12/0x30
  do_sys_openat2+0x91/0x150
  __x64_sys_open+0x6c/0xa0
  do_syscall_64+0x3c/0x80
  entry_SYSCALL_64_after_hwframe+0x46/0xb0

The fix simply adds a call to ext4_check_dir_entry() to validate the
directory entry, returning -EFSCORRUPTED if the entry is invalid.

CC: stable@kernel.org
Link: https://bugzilla.kernel.org/show_bug.cgi?id=216540
Signed-off-by: Luís Henriques <lhenriques@suse.de>
Link: https://lore.kernel.org/r/20221012131330.32456-1-lhenriques@suse.de
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-11-10 17:57:56 +01:00
Ye Bin
72743d5598 ext4: fix warning in 'ext4_da_release_space'
commit 1b8f787ef5 upstream.

Syzkaller report issue as follows:
EXT4-fs (loop0): Free/Dirty block details
EXT4-fs (loop0): free_blocks=0
EXT4-fs (loop0): dirty_blocks=0
EXT4-fs (loop0): Block reservation details
EXT4-fs (loop0): i_reserved_data_blocks=0
EXT4-fs warning (device loop0): ext4_da_release_space:1527: ext4_da_release_space: ino 18, to_free 1 with only 0 reserved data blocks
------------[ cut here ]------------
WARNING: CPU: 0 PID: 92 at fs/ext4/inode.c:1528 ext4_da_release_space+0x25e/0x370 fs/ext4/inode.c:1524
Modules linked in:
CPU: 0 PID: 92 Comm: kworker/u4:4 Not tainted 6.0.0-syzkaller-09423-g493ffd6605b2 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/22/2022
Workqueue: writeback wb_workfn (flush-7:0)
RIP: 0010:ext4_da_release_space+0x25e/0x370 fs/ext4/inode.c:1528
RSP: 0018:ffffc900015f6c90 EFLAGS: 00010296
RAX: 42215896cd52ea00 RBX: 0000000000000000 RCX: 42215896cd52ea00
RDX: 0000000000000000 RSI: 0000000080000001 RDI: 0000000000000000
RBP: 1ffff1100e907d96 R08: ffffffff816aa79d R09: fffff520002bece5
R10: fffff520002bece5 R11: 1ffff920002bece4 R12: ffff888021fd2000
R13: ffff88807483ecb0 R14: 0000000000000001 R15: ffff88807483e740
FS:  0000000000000000(0000) GS:ffff8880b9a00000(0000) knlGS:0000000000000000
CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00005555569ba628 CR3: 000000000c88e000 CR4: 00000000003506f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
 <TASK>
 ext4_es_remove_extent+0x1ab/0x260 fs/ext4/extents_status.c:1461
 mpage_release_unused_pages+0x24d/0xef0 fs/ext4/inode.c:1589
 ext4_writepages+0x12eb/0x3be0 fs/ext4/inode.c:2852
 do_writepages+0x3c3/0x680 mm/page-writeback.c:2469
 __writeback_single_inode+0xd1/0x670 fs/fs-writeback.c:1587
 writeback_sb_inodes+0xb3b/0x18f0 fs/fs-writeback.c:1870
 wb_writeback+0x41f/0x7b0 fs/fs-writeback.c:2044
 wb_do_writeback fs/fs-writeback.c:2187 [inline]
 wb_workfn+0x3cb/0xef0 fs/fs-writeback.c:2227
 process_one_work+0x877/0xdb0 kernel/workqueue.c:2289
 worker_thread+0xb14/0x1330 kernel/workqueue.c:2436
 kthread+0x266/0x300 kernel/kthread.c:376
 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:306
 </TASK>

Above issue may happens as follows:
ext4_da_write_begin
  ext4_create_inline_data
    ext4_clear_inode_flag(inode, EXT4_INODE_EXTENTS);
    ext4_set_inode_flag(inode, EXT4_INODE_INLINE_DATA);
__ext4_ioctl
  ext4_ext_migrate -> will lead to eh->eh_entries not zero, and set extent flag
ext4_da_write_begin
  ext4_da_convert_inline_data_to_extent
    ext4_da_write_inline_data_begin
      ext4_da_map_blocks
        ext4_insert_delayed_block
	  if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk))
	    if (!ext4_es_scan_clu(inode, &ext4_es_is_mapped, lblk))
	      ext4_clu_mapped(inode, EXT4_B2C(sbi, lblk)); -> will return 1
	       allocated = true;
          ext4_es_insert_delayed_block(inode, lblk, allocated);
ext4_writepages
  mpage_map_and_submit_extent(handle, &mpd, &give_up_on_write); -> return -ENOSPC
  mpage_release_unused_pages(&mpd, give_up_on_write); -> give_up_on_write == 1
    ext4_es_remove_extent
      ext4_da_release_space(inode, reserved);
        if (unlikely(to_free > ei->i_reserved_data_blocks))
	  -> to_free == 1  but ei->i_reserved_data_blocks == 0
	  -> then trigger warning as above

To solve above issue, forbid inode do migrate which has inline data.

Cc: stable@kernel.org
Reported-by: syzbot+c740bb18df70ad00952e@syzkaller.appspotmail.com
Signed-off-by: Ye Bin <yebin10@huawei.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20221018022701.683489-1-yebin10@huawei.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-11-10 17:57:56 +01:00
Miklos Szeredi
0c72757434 fuse: add file_modified() to fallocate
commit 4a6f278d48 upstream.

Add missing file_modified() call to fuse_file_fallocate().  Without this
fallocate on fuse failed to clear privileges.

Fixes: 05ba1f0823 ("fuse: add FALLOCATE operation")
Cc: <stable@vger.kernel.org>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-11-10 17:57:55 +01:00
David Sterba
4ae03c869c btrfs: fix type of parameter generation in btrfs_get_dentry
commit 2398091f9c upstream.

The type of parameter generation has been u32 since the beginning,
however all callers pass a u64 generation, so unify the types to prevent
potential loss.

CC: stable@vger.kernel.org # 4.9+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-11-10 17:57:55 +01:00
Chuhong Yuan
ad18f624e3 xfs: Add the missed xfs_perag_put() for xfs_ifree_cluster()
commit 8cc0072469 upstream.

xfs_ifree_cluster() calls xfs_perag_get() at the beginning, but forgets to
call xfs_perag_put() in one failed path.
Add the missed function call to fix it.

Fixes: ce92464c18 ("xfs: make xfs_trans_get_buf return an error code")
Signed-off-by: Chuhong Yuan <hslester96@gmail.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-11-10 17:57:54 +01:00
Darrick J. Wong
0802130a4d xfs: don't fail unwritten extent conversion on writeback due to edquot
commit 1edd2c055d upstream.

During writeback, it's possible for the quota block reservation in
xfs_iomap_write_unwritten to fail with EDQUOT because we hit the quota
limit.  This causes writeback errors for data that was already written
to disk, when it's not even guaranteed that the bmbt will expand to
exceed the quota limit.  Irritatingly, this condition is reported to
userspace as EIO by fsync, which is confusing.

We wrote the data, so allow the reservation.  That might put us slightly
above the hard limit, but it's better than losing data after a write.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-11-10 17:57:54 +01:00
Eric Sandeen
fef141f9e4 xfs: group quota should return EDQUOT when prj quota enabled
commit c8d329f311 upstream.

Long ago, group & project quota were mutually exclusive, and so
when we turned on XFS_QMOPT_ENOSPC ("return ENOSPC if project quota
is exceeded") when project quota was enabled, we only needed to
disable it again for user quota.

When group & project quota got separated, this got missed, and as a
result if project quota is enabled and group quota is exceeded, the
error code returned is incorrectly returned as ENOSPC not EDQUOT.

Fix this by stripping XFS_QMOPT_ENOSPC out of flags for group
quota when we try to reserve the space.

Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-11-10 17:57:54 +01:00
Dave Chinner
4267433dd3 xfs: gut error handling in xfs_trans_unreserve_and_mod_sb()
commit dc3ffbb140 upstream.

The error handling in xfs_trans_unreserve_and_mod_sb() is largely
incorrect - rolling back the changes in the transaction if only one
counter underruns makes all the other counters incorrect. We still
allow the change to proceed and committing the transaction, except
now we have multiple incorrect counters instead of a single
underflow.

Further, we don't actually report the error to the caller, so this
is completely silent except on debug kernels that will assert on
failure before we even get to the rollback code.  Hence this error
handling is broken, untested, and largely unnecessary complexity.

Just remove it.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-11-10 17:57:54 +01:00
Darrick J. Wong
24e7e39353 xfs: use ordered buffers to initialize dquot buffers during quotacheck
commit 78bba5c812 upstream.

While QAing the new xfs_repair quotacheck code, I uncovered a quota
corruption bug resulting from a bad interaction between dquot buffer
initialization and quotacheck.  The bug can be reproduced with the
following sequence:

# mkfs.xfs -f /dev/sdf
# mount /dev/sdf /opt -o usrquota
# su nobody -s /bin/bash -c 'touch /opt/barf'
# sync
# xfs_quota -x -c 'report -ahi' /opt
User quota on /opt (/dev/sdf)
                        Inodes
User ID      Used   Soft   Hard Warn/Grace
---------- ---------------------------------
root            3      0      0  00 [------]
nobody          1      0      0  00 [------]

# xfs_io -x -c 'shutdown' /opt
# umount /opt
# mount /dev/sdf /opt -o usrquota
# touch /opt/man2
# xfs_quota -x -c 'report -ahi' /opt
User quota on /opt (/dev/sdf)
                        Inodes
User ID      Used   Soft   Hard Warn/Grace
---------- ---------------------------------
root            1      0      0  00 [------]
nobody          1      0      0  00 [------]

# umount /opt

Notice how the initial quotacheck set the root dquot icount to 3
(rootino, rbmino, rsumino), but after shutdown -> remount -> recovery,
xfs_quota reports that the root dquot has only 1 icount.  We haven't
deleted anything from the filesystem, which means that quota is now
under-counting.  This behavior is not limited to icount or the root
dquot, but this is the shortest reproducer.

I traced the cause of this discrepancy to the way that we handle ondisk
dquot updates during quotacheck vs. regular fs activity.  Normally, when
we allocate a disk block for a dquot, we log the buffer as a regular
(dquot) buffer.  Subsequent updates to the dquots backed by that block
are done via separate dquot log item updates, which means that they
depend on the logged buffer update being written to disk before the
dquot items.  Because individual dquots have their own LSN fields, that
initial dquot buffer must always be recovered.

However, the story changes for quotacheck, which can cause dquot block
allocations but persists the final dquot counter values via a delwri
list.  Because recovery doesn't gate dquot buffer replay on an LSN, this
means that the initial dquot buffer can be replayed over the (newer)
contents that were delwritten at the end of quotacheck.  In effect, this
re-initializes the dquot counters after they've been updated.  If the
log does not contain any other dquot items to recover, the obsolete
dquot contents will not be corrected by log recovery.

Because quotacheck uses a transaction to log the setting of the CHKD
flags in the superblock, we skip quotacheck during the second mount
call, which allows the incorrect icount to remain.

Fix this by changing the ondisk dquot initialization function to use
ordered buffers to write out fresh dquot blocks if it detects that we're
running quotacheck.  If the system goes down before quotacheck can
complete, the CHKD flags will not be set in the superblock and the next
mount will run quotacheck again, which can fix uninitialized dquot
buffers.  This requires amending the defer code to maintaine ordered
buffer state across defer rolls for the sake of the dquot allocation
code.

For regular operations we preserve the current behavior since the dquot
items require properly initialized ondisk dquot records.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-11-10 17:57:53 +01:00
Brian Foster
52802e9a03 xfs: don't fail verifier on empty attr3 leaf block
commit f28cef9e4d upstream.

The attr fork can transition from shortform to leaf format while
empty if the first xattr doesn't fit in shortform. While this empty
leaf block state is intended to be transient, it is technically not
due to the transactional implementation of the xattr set operation.

We historically have a couple of bandaids to work around this
problem. The first is to hold the buffer after the format conversion
to prevent premature writeback of the empty leaf buffer and the
second is to bypass the xattr count check in the verifier during
recovery. The latter assumes that the xattr set is also in the log
and will be recovered into the buffer soon after the empty leaf
buffer is reconstructed. This is not guaranteed, however.

If the filesystem crashes after the format conversion but before the
xattr set that induced it, only the format conversion may exist in
the log. When recovered, this creates a latent corrupted state on
the inode as any subsequent attempts to read the buffer fail due to
verifier failure. This includes further attempts to set xattrs on
the inode or attempts to destroy the attr fork, which prevents the
inode from ever being removed from the unlinked list.

To avoid this condition, accept that an empty attr leaf block is a
valid state and remove the count check from the verifier. This means
that on rare occasions an attr fork might exist in an unexpected
state, but is otherwise consistent and functional. Note that we
retain the logic to avoid racing with metadata writeback to reduce
the window where this can occur.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-11-10 17:57:53 +01:00
Filipe Manana
5d1a47ebf8 btrfs: fix ulist leaks in error paths of qgroup self tests
[ Upstream commit d37de92b38 ]

In the test_no_shared_qgroup() and test_multiple_refs() qgroup self tests,
if we fail to add the tree ref, remove the extent item or remove the
extent ref, we are returning from the test function without freeing the
"old_roots" ulist that was allocated by the previous calls to
btrfs_find_all_roots(). Fix that by calling ulist_free() before returning.

Fixes: 442244c963 ("btrfs: qgroup: Switch self test to extent-oriented qgroup mechanism.")
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-11-10 17:57:52 +01:00
Filipe Manana
6a6731a0df btrfs: fix inode list leak during backref walking at find_parent_nodes()
[ Upstream commit 92876eec38 ]

During backref walking, at find_parent_nodes(), if we are dealing with a
data extent and we get an error while resolving the indirect backrefs, at
resolve_indirect_refs(), or in the while loop that iterates over the refs
in the direct refs rbtree, we end up leaking the inode lists attached to
the direct refs we have in the direct refs rbtree that were not yet added
to the refs ulist passed as argument to find_parent_nodes(). Since they
were not yet added to the refs ulist and prelim_release() does not free
the lists, on error the caller can only free the lists attached to the
refs that were added to the refs ulist, all the remaining refs get their
inode lists never freed, therefore leaking their memory.

Fix this by having prelim_release() always free any attached inode list
to each ref found in the rbtree, and have find_parent_nodes() set the
ref's inode list to NULL once it transfers ownership of the inode list
to a ref added to the refs ulist passed to find_parent_nodes().

Fixes: 86d5f99442 ("btrfs: convert prelimary reference tracking to use rbtrees")
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-11-10 17:57:52 +01:00
Filipe Manana
2c0329406b btrfs: fix inode list leak during backref walking at resolve_indirect_refs()
[ Upstream commit 5614dc3a47 ]

During backref walking, at resolve_indirect_refs(), if we get an error
we jump to the 'out' label and call ulist_free() on the 'parents' ulist,
which frees all the elements in the ulist - however that does not free
any inode lists that may be attached to elements, through the 'aux' field
of a ulist node, so we end up leaking lists if we have any attached to
the unodes.

Fix this by calling free_leaf_list() instead of ulist_free() when we exit
from resolve_indirect_refs(). The static function free_leaf_list() is
moved up for this to be possible and it's slightly simplified by removing
unnecessary code.

Fixes: 3301958b7c ("Btrfs: add inodes before dropping the extent lock in find_all_leafs")
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-11-10 17:57:51 +01:00
Zhang Xiaoxu
925cb538bd nfs4: Fix kmemleak when allocate slot failed
[ Upstream commit 7e8436728e ]

If one of the slot allocate failed, should cleanup all the other
allocated slots, otherwise, the allocated slots will leak:

  unreferenced object 0xffff8881115aa100 (size 64):
    comm ""mount.nfs"", pid 679, jiffies 4294744957 (age 115.037s)
    hex dump (first 32 bytes):
      00 cc 19 73 81 88 ff ff 00 a0 5a 11 81 88 ff ff  ...s......Z.....
      00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
    backtrace:
      [<000000007a4c434a>] nfs4_find_or_create_slot+0x8e/0x130
      [<000000005472a39c>] nfs4_realloc_slot_table+0x23f/0x270
      [<00000000cd8ca0eb>] nfs40_init_client+0x4a/0x90
      [<00000000128486db>] nfs4_init_client+0xce/0x270
      [<000000008d2cacad>] nfs4_set_client+0x1a2/0x2b0
      [<000000000e593b52>] nfs4_create_server+0x300/0x5f0
      [<00000000e4425dd2>] nfs4_try_get_tree+0x65/0x110
      [<00000000d3a6176f>] vfs_get_tree+0x41/0xf0
      [<0000000016b5ad4c>] path_mount+0x9b3/0xdd0
      [<00000000494cae71>] __x64_sys_mount+0x190/0x1d0
      [<000000005d56bdec>] do_syscall_64+0x35/0x80
      [<00000000687c9ae4>] entry_SYSCALL_64_after_hwframe+0x46/0xb0

Fixes: abf79bb341 ("NFS: Add a slot table to struct nfs_client for NFSv4.0 transport blocking")
Signed-off-by: Zhang Xiaoxu <zhangxiaoxu5@huawei.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-11-10 17:57:49 +01:00
Trond Myklebust
0bc335d010 NFSv4.1: We must always send RECLAIM_COMPLETE after a reboot
[ Upstream commit e59679f2b7 ]

Currently, we are only guaranteed to send RECLAIM_COMPLETE if we have
open state to recover. Fix the client to always send RECLAIM_COMPLETE
after setting up the lease.

Fixes: fce5c838e1 ("nfs41: RECLAIM_COMPLETE functionality")
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-11-10 17:57:49 +01:00
Trond Myklebust
405309d860 NFSv4.1: Handle RECLAIM_COMPLETE trunking errors
[ Upstream commit 5d917cba32 ]

If RECLAIM_COMPLETE sets the NFS4CLNT_BIND_CONN_TO_SESSION flag, then we
need to loop back in order to handle it.

Fixes: 0048fdd066 ("NFSv4.1: RECLAIM_COMPLETE must handle NFS4ERR_CONN_NOT_BOUND_TO_SESSION")
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-11-10 17:57:49 +01:00
Chandan Babu R
f45ee20384 xfs: force the log after remapping a synchronous-writes file
From: "Darrick J. Wong" <darrick.wong@oracle.com>

commit 5ffce3cc22 upstream.

Commit 5833112df7 tried to make it so that a remap operation would
force the log out to disk if the filesystem is mounted with mandatory
synchronous writes.  Unfortunately, that commit failed to handle the
case where the inode or the file descriptor require mandatory
synchronous writes.

Refactor the check into into a helper that will look for all three
conditions, and now we can treat reflink just like any other synchronous
write.

Fixes: 5833112df7 ("xfs: reflink should force the log out if mounted with wsync")
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-11-03 23:56:54 +09:00
Chandan Babu R
102de7717d xfs: clear XFS_DQ_FREEING if we can't lock the dquot buffer to flush
From: "Darrick J. Wong" <darrick.wong@oracle.com>

commit c97738a960 upstream.

In commit 8d3d7e2b35, we changed xfs_qm_dqpurge to bail out if we
can't lock the dquot buf to flush the dquot.  This prevents the AIL from
blocking on the dquot, but it also forgets to clear the FREEING flag on
its way out.  A subsequent purge attempt will see the FREEING flag is
set and bail out, which leads to dqpurge_all failing to purge all the
dquots.

(copy-pasting from Dave Chinner's identical patch)

This was found by inspection after having xfs/305 hang 1 in ~50
iterations in a quotaoff operation:

[ 8872.301115] xfs_quota       D13888 92262  91813 0x00004002
[ 8872.302538] Call Trace:
[ 8872.303193]  __schedule+0x2d2/0x780
[ 8872.304108]  ? do_raw_spin_unlock+0x57/0xd0
[ 8872.305198]  schedule+0x6e/0xe0
[ 8872.306021]  schedule_timeout+0x14d/0x300
[ 8872.307060]  ? __next_timer_interrupt+0xe0/0xe0
[ 8872.308231]  ? xfs_qm_dqusage_adjust+0x200/0x200
[ 8872.309422]  schedule_timeout_uninterruptible+0x2a/0x30
[ 8872.310759]  xfs_qm_dquot_walk.isra.0+0x15a/0x1b0
[ 8872.311971]  xfs_qm_dqpurge_all+0x7f/0x90
[ 8872.313022]  xfs_qm_scall_quotaoff+0x18d/0x2b0
[ 8872.314163]  xfs_quota_disable+0x3a/0x60
[ 8872.315179]  kernel_quotactl+0x7e2/0x8d0
[ 8872.316196]  ? __do_sys_newstat+0x51/0x80
[ 8872.317238]  __x64_sys_quotactl+0x1e/0x30
[ 8872.318266]  do_syscall_64+0x46/0x90
[ 8872.319193]  entry_SYSCALL_64_after_hwframe+0x44/0xa9
[ 8872.320490] RIP: 0033:0x7f46b5490f2a
[ 8872.321414] Code: Bad RIP value.

Returning -EAGAIN from xfs_qm_dqpurge() without clearing the
XFS_DQ_FREEING flag means the xfs_qm_dqpurge_all() code can never
free the dquot, and we loop forever waiting for the XFS_DQ_FREEING
flag to go away on the dquot that leaked it via -EAGAIN.

Fixes: 8d3d7e2b35 ("xfs: trylock underlying buffer on dquot flush")
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-11-03 23:56:54 +09:00
Chandan Babu R
03b449a880 xfs: finish dfops on every insert range shift iteration
From: Brian Foster <bfoster@redhat.com>

commit 9c516e0e45 upstream.

The recent change to make insert range an atomic operation used the
incorrect transaction rolling mechanism. The explicit transaction
roll does not finish deferred operations. This means that intents
for rmapbt updates caused by extent shifts are not logged until the
final transaction commits. Thus if a crash occurs during an insert
range, log recovery might leave the rmapbt in an inconsistent state.
This was discovered by repeated runs of generic/455.

Update insert range to finish dfops on every shift iteration. This
is similar to collapse range and ensures that intents are logged
with the transactions that make associated changes.

Fixes: dd87f87d87 ("xfs: rework insert range into an atomic operation")
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-11-03 23:56:54 +09:00
Christian A. Ehrhardt
c78b0dc6fb kernfs: fix use-after-free in __kernfs_remove
commit 4abc996528 upstream.

Syzkaller managed to trigger concurrent calls to
kernfs_remove_by_name_ns() for the same file resulting in
a KASAN detected use-after-free. The race occurs when the root
node is freed during kernfs_drain().

To prevent this acquire an additional reference for the root
of the tree that is removed before calling __kernfs_remove().

Found by syzkaller with the following reproducer (slab_nomerge is
required):

syz_mount_image$ext4(0x0, &(0x7f0000000100)='./file0\x00', 0x100000, 0x0, 0x0, 0x0, 0x0)
r0 = openat(0xffffffffffffff9c, &(0x7f0000000080)='/proc/self/exe\x00', 0x0, 0x0)
close(r0)
pipe2(&(0x7f0000000140)={0xffffffffffffffff, <r1=>0xffffffffffffffff}, 0x800)
mount$9p_fd(0x0, &(0x7f0000000040)='./file0\x00', &(0x7f00000000c0), 0x408, &(0x7f0000000280)={'trans=fd,', {'rfdno', 0x3d, r0}, 0x2c, {'wfdno', 0x3d, r1}, 0x2c, {[{@cache_loose}, {@mmap}, {@loose}, {@loose}, {@mmap}], [{@mask={'mask', 0x3d, '^MAY_EXEC'}}, {@fsmagic={'fsmagic', 0x3d, 0x10001}}, {@dont_hash}]}})

Sample report:

==================================================================
BUG: KASAN: use-after-free in kernfs_type include/linux/kernfs.h:335 [inline]
BUG: KASAN: use-after-free in kernfs_leftmost_descendant fs/kernfs/dir.c:1261 [inline]
BUG: KASAN: use-after-free in __kernfs_remove.part.0+0x843/0x960 fs/kernfs/dir.c:1369
Read of size 2 at addr ffff8880088807f0 by task syz-executor.2/857

CPU: 0 PID: 857 Comm: syz-executor.2 Not tainted 6.0.0-rc3-00363-g7726d4c3e60b #5
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
Call Trace:
 <TASK>
 __dump_stack lib/dump_stack.c:88 [inline]
 dump_stack_lvl+0x6e/0x91 lib/dump_stack.c:106
 print_address_description mm/kasan/report.c:317 [inline]
 print_report.cold+0x5e/0x5e5 mm/kasan/report.c:433
 kasan_report+0xa3/0x130 mm/kasan/report.c:495
 kernfs_type include/linux/kernfs.h:335 [inline]
 kernfs_leftmost_descendant fs/kernfs/dir.c:1261 [inline]
 __kernfs_remove.part.0+0x843/0x960 fs/kernfs/dir.c:1369
 __kernfs_remove fs/kernfs/dir.c:1356 [inline]
 kernfs_remove_by_name_ns+0x108/0x190 fs/kernfs/dir.c:1589
 sysfs_slab_add+0x133/0x1e0 mm/slub.c:5943
 __kmem_cache_create+0x3e0/0x550 mm/slub.c:4899
 create_cache mm/slab_common.c:229 [inline]
 kmem_cache_create_usercopy+0x167/0x2a0 mm/slab_common.c:335
 p9_client_create+0xd4d/0x1190 net/9p/client.c:993
 v9fs_session_init+0x1e6/0x13c0 fs/9p/v9fs.c:408
 v9fs_mount+0xb9/0xbd0 fs/9p/vfs_super.c:126
 legacy_get_tree+0xf1/0x200 fs/fs_context.c:610
 vfs_get_tree+0x85/0x2e0 fs/super.c:1530
 do_new_mount fs/namespace.c:3040 [inline]
 path_mount+0x675/0x1d00 fs/namespace.c:3370
 do_mount fs/namespace.c:3383 [inline]
 __do_sys_mount fs/namespace.c:3591 [inline]
 __se_sys_mount fs/namespace.c:3568 [inline]
 __x64_sys_mount+0x282/0x300 fs/namespace.c:3568
 do_syscall_x64 arch/x86/entry/common.c:50 [inline]
 do_syscall_64+0x38/0x90 arch/x86/entry/common.c:80
 entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x7f725f983aed
Code: 02 b8 ff ff ff ff c3 66 0f 1f 44 00 00 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b0 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007f725f0f7028 EFLAGS: 00000246 ORIG_RAX: 00000000000000a5
RAX: ffffffffffffffda RBX: 00007f725faa3f80 RCX: 00007f725f983aed
RDX: 00000000200000c0 RSI: 0000000020000040 RDI: 0000000000000000
RBP: 00007f725f9f419c R08: 0000000020000280 R09: 0000000000000000
R10: 0000000000000408 R11: 0000000000000246 R12: 0000000000000000
R13: 0000000000000006 R14: 00007f725faa3f80 R15: 00007f725f0d7000
 </TASK>

Allocated by task 855:
 kasan_save_stack+0x1e/0x40 mm/kasan/common.c:38
 kasan_set_track mm/kasan/common.c:45 [inline]
 set_alloc_info mm/kasan/common.c:437 [inline]
 __kasan_slab_alloc+0x66/0x80 mm/kasan/common.c:470
 kasan_slab_alloc include/linux/kasan.h:224 [inline]
 slab_post_alloc_hook mm/slab.h:727 [inline]
 slab_alloc_node mm/slub.c:3243 [inline]
 slab_alloc mm/slub.c:3251 [inline]
 __kmem_cache_alloc_lru mm/slub.c:3258 [inline]
 kmem_cache_alloc+0xbf/0x200 mm/slub.c:3268
 kmem_cache_zalloc include/linux/slab.h:723 [inline]
 __kernfs_new_node+0xd4/0x680 fs/kernfs/dir.c:593
 kernfs_new_node fs/kernfs/dir.c:655 [inline]
 kernfs_create_dir_ns+0x9c/0x220 fs/kernfs/dir.c:1010
 sysfs_create_dir_ns+0x127/0x290 fs/sysfs/dir.c:59
 create_dir lib/kobject.c:63 [inline]
 kobject_add_internal+0x24a/0x8d0 lib/kobject.c:223
 kobject_add_varg lib/kobject.c:358 [inline]
 kobject_init_and_add+0x101/0x160 lib/kobject.c:441
 sysfs_slab_add+0x156/0x1e0 mm/slub.c:5954
 __kmem_cache_create+0x3e0/0x550 mm/slub.c:4899
 create_cache mm/slab_common.c:229 [inline]
 kmem_cache_create_usercopy+0x167/0x2a0 mm/slab_common.c:335
 p9_client_create+0xd4d/0x1190 net/9p/client.c:993
 v9fs_session_init+0x1e6/0x13c0 fs/9p/v9fs.c:408
 v9fs_mount+0xb9/0xbd0 fs/9p/vfs_super.c:126
 legacy_get_tree+0xf1/0x200 fs/fs_context.c:610
 vfs_get_tree+0x85/0x2e0 fs/super.c:1530
 do_new_mount fs/namespace.c:3040 [inline]
 path_mount+0x675/0x1d00 fs/namespace.c:3370
 do_mount fs/namespace.c:3383 [inline]
 __do_sys_mount fs/namespace.c:3591 [inline]
 __se_sys_mount fs/namespace.c:3568 [inline]
 __x64_sys_mount+0x282/0x300 fs/namespace.c:3568
 do_syscall_x64 arch/x86/entry/common.c:50 [inline]
 do_syscall_64+0x38/0x90 arch/x86/entry/common.c:80
 entry_SYSCALL_64_after_hwframe+0x63/0xcd

Freed by task 857:
 kasan_save_stack+0x1e/0x40 mm/kasan/common.c:38
 kasan_set_track+0x21/0x30 mm/kasan/common.c:45
 kasan_set_free_info+0x20/0x40 mm/kasan/generic.c:370
 ____kasan_slab_free mm/kasan/common.c:367 [inline]
 ____kasan_slab_free mm/kasan/common.c:329 [inline]
 __kasan_slab_free+0x108/0x190 mm/kasan/common.c:375
 kasan_slab_free include/linux/kasan.h:200 [inline]
 slab_free_hook mm/slub.c:1754 [inline]
 slab_free_freelist_hook mm/slub.c:1780 [inline]
 slab_free mm/slub.c:3534 [inline]
 kmem_cache_free+0x9c/0x340 mm/slub.c:3551
 kernfs_put.part.0+0x2b2/0x520 fs/kernfs/dir.c:547
 kernfs_put+0x42/0x50 fs/kernfs/dir.c:521
 __kernfs_remove.part.0+0x72d/0x960 fs/kernfs/dir.c:1407
 __kernfs_remove fs/kernfs/dir.c:1356 [inline]
 kernfs_remove_by_name_ns+0x108/0x190 fs/kernfs/dir.c:1589
 sysfs_slab_add+0x133/0x1e0 mm/slub.c:5943
 __kmem_cache_create+0x3e0/0x550 mm/slub.c:4899
 create_cache mm/slab_common.c:229 [inline]
 kmem_cache_create_usercopy+0x167/0x2a0 mm/slab_common.c:335
 p9_client_create+0xd4d/0x1190 net/9p/client.c:993
 v9fs_session_init+0x1e6/0x13c0 fs/9p/v9fs.c:408
 v9fs_mount+0xb9/0xbd0 fs/9p/vfs_super.c:126
 legacy_get_tree+0xf1/0x200 fs/fs_context.c:610
 vfs_get_tree+0x85/0x2e0 fs/super.c:1530
 do_new_mount fs/namespace.c:3040 [inline]
 path_mount+0x675/0x1d00 fs/namespace.c:3370
 do_mount fs/namespace.c:3383 [inline]
 __do_sys_mount fs/namespace.c:3591 [inline]
 __se_sys_mount fs/namespace.c:3568 [inline]
 __x64_sys_mount+0x282/0x300 fs/namespace.c:3568
 do_syscall_x64 arch/x86/entry/common.c:50 [inline]
 do_syscall_64+0x38/0x90 arch/x86/entry/common.c:80
 entry_SYSCALL_64_after_hwframe+0x63/0xcd

The buggy address belongs to the object at ffff888008880780
 which belongs to the cache kernfs_node_cache of size 128
The buggy address is located 112 bytes inside of
 128-byte region [ffff888008880780, ffff888008880800)

The buggy address belongs to the physical page:
page:00000000732833f8 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x8880
flags: 0x100000000000200(slab|node=0|zone=1)
raw: 0100000000000200 0000000000000000 dead000000000122 ffff888001147280
raw: 0000000000000000 0000000000150015 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected

Memory state around the buggy address:
 ffff888008880680: fc fc fc fc fc fc fc fc fa fb fb fb fb fb fb fb
 ffff888008880700: fb fb fb fb fb fb fb fb fc fc fc fc fc fc fc fc
>ffff888008880780: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
                                                             ^
 ffff888008880800: fc fc fc fc fc fc fc fc fa fb fb fb fb fb fb fb
 ffff888008880880: fb fb fb fb fb fb fb fb fc fc fc fc fc fc fc fc
==================================================================

Acked-by: Tejun Heo <tj@kernel.org>
Cc: stable <stable@kernel.org> # -rc3
Signed-off-by: Christian A. Ehrhardt <lk@c--e.de>
Link: https://lore.kernel.org/r/20220913121723.691454-1-lk@c--e.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-11-03 23:56:54 +09:00
Seth Jenkins
6bb8769326 mm: /proc/pid/smaps_rollup: fix no vma's null-deref
Commit 258f669e7e ("mm: /proc/pid/smaps_rollup: convert to single value
seq_file") introduced a null-deref if there are no vma's in the task in
show_smaps_rollup.

Fixes: 258f669e7e ("mm: /proc/pid/smaps_rollup: convert to single value seq_file")
Signed-off-by: Seth Jenkins <sethjenkins@google.com>
Reviewed-by: Alexey Dobriyan <adobriyan@gmail.com>
Tested-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-29 10:20:36 +02:00
Filipe Manana
13a2719ec8 btrfs: fix processing of delayed tree block refs during backref walking
[ Upstream commit 943553ef9b ]

During backref walking, when processing a delayed reference with a type of
BTRFS_TREE_BLOCK_REF_KEY, we have two bugs there:

1) We are accessing the delayed references extent_op, and its key, without
   the protection of the delayed ref head's lock;

2) If there's no extent op for the delayed ref head, we end up with an
   uninitialized key in the stack, variable 'tmp_op_key', and then pass
   it to add_indirect_ref(), which adds the reference to the indirect
   refs rb tree.

   This is wrong, because indirect references should have a NULL key
   when we don't have access to the key, and in that case they should be
   added to the indirect_missing_keys rb tree and not to the indirect rb
   tree.

   This means that if have BTRFS_TREE_BLOCK_REF_KEY delayed ref resulting
   from freeing an extent buffer, therefore with a count of -1, it will
   not cancel out the corresponding reference we have in the extent tree
   (with a count of 1), since both references end up in different rb
   trees.

   When using fiemap, where we often need to check if extents are shared
   through shared subtrees resulting from snapshots, it means we can
   incorrectly report an extent as shared when it's no longer shared.
   However this is temporary because after the transaction is committed
   the extent is no longer reported as shared, as running the delayed
   reference results in deleting the tree block reference from the extent
   tree.

   Outside the fiemap context, the result is unpredictable, as the key was
   not initialized but it's used when navigating the rb trees to insert
   and search for references (prelim_ref_compare()), and we expect all
   references in the indirect rb tree to have valid keys.

The following reproducer triggers the second bug:

   $ cat test.sh
   #!/bin/bash

   DEV=/dev/sdj
   MNT=/mnt/sdj

   mkfs.btrfs -f $DEV
   mount -o compress $DEV $MNT

   # With a compressed 128M file we get a tree height of 2 (level 1 root).
   xfs_io -f -c "pwrite -b 1M 0 128M" $MNT/foo

   btrfs subvolume snapshot $MNT $MNT/snap

   # Fiemap should output 0x2008 in the flags column.
   # 0x2000 means shared extent
   # 0x8 means encoded extent (because it's compressed)
   echo
   echo "fiemap after snapshot, range [120M, 120M + 128K):"
   xfs_io -c "fiemap -v 120M 128K" $MNT/foo
   echo

   # Overwrite one extent and fsync to flush delalloc and COW a new path
   # in the snapshot's tree.
   #
   # After this we have a BTRFS_DROP_DELAYED_REF delayed ref of type
   # BTRFS_TREE_BLOCK_REF_KEY with a count of -1 for every COWed extent
   # buffer in the path.
   #
   # In the extent tree we have inline references of type
   # BTRFS_TREE_BLOCK_REF_KEY, with a count of 1, for the same extent
   # buffers, so they should cancel each other, and the extent buffers in
   # the fs tree should no longer be considered as shared.
   #
   echo "Overwriting file range [120M, 120M + 128K)..."
   xfs_io -c "pwrite -b 128K 120M 128K" $MNT/snap/foo
   xfs_io -c "fsync" $MNT/snap/foo

   # Fiemap should output 0x8 in the flags column. The extent in the range
   # [120M, 120M + 128K) is no longer shared, it's now exclusive to the fs
   # tree.
   echo
   echo "fiemap after overwrite range [120M, 120M + 128K):"
   xfs_io -c "fiemap -v 120M 128K" $MNT/foo
   echo

   umount $MNT

Running it before this patch:

   $ ./test.sh
   (...)
   wrote 134217728/134217728 bytes at offset 0
   128 MiB, 128 ops; 0.1152 sec (1.085 GiB/sec and 1110.5809 ops/sec)
   Create a snapshot of '/mnt/sdj' in '/mnt/sdj/snap'

   fiemap after snapshot, range [120M, 120M + 128K):
   /mnt/sdj/foo:
    EXT: FILE-OFFSET      BLOCK-RANGE      TOTAL FLAGS
      0: [245760..246015]: 34304..34559       256 0x2008

   Overwriting file range [120M, 120M + 128K)...
   wrote 131072/131072 bytes at offset 125829120
   128 KiB, 1 ops; 0.0001 sec (683.060 MiB/sec and 5464.4809 ops/sec)

   fiemap after overwrite range [120M, 120M + 128K):
   /mnt/sdj/foo:
    EXT: FILE-OFFSET      BLOCK-RANGE      TOTAL FLAGS
      0: [245760..246015]: 34304..34559       256 0x2008

The extent in the range [120M, 120M + 128K) is still reported as shared
(0x2000 bit set) after overwriting that range and flushing delalloc, which
is not correct - an entire path was COWed in the snapshot's tree and the
extent is now only referenced by the original fs tree.

Running it after this patch:

   $ ./test.sh
   (...)
   wrote 134217728/134217728 bytes at offset 0
   128 MiB, 128 ops; 0.1198 sec (1.043 GiB/sec and 1068.2067 ops/sec)
   Create a snapshot of '/mnt/sdj' in '/mnt/sdj/snap'

   fiemap after snapshot, range [120M, 120M + 128K):
   /mnt/sdj/foo:
    EXT: FILE-OFFSET      BLOCK-RANGE      TOTAL FLAGS
      0: [245760..246015]: 34304..34559       256 0x2008

   Overwriting file range [120M, 120M + 128K)...
   wrote 131072/131072 bytes at offset 125829120
   128 KiB, 1 ops; 0.0001 sec (694.444 MiB/sec and 5555.5556 ops/sec)

   fiemap after overwrite range [120M, 120M + 128K):
   /mnt/sdj/foo:
    EXT: FILE-OFFSET      BLOCK-RANGE      TOTAL FLAGS
      0: [245760..246015]: 34304..34559       256   0x8

Now the extent is not reported as shared anymore.

So fix this by passing a NULL key pointer to add_indirect_ref() when
processing a delayed reference for a tree block if there's no extent op
for our delayed ref head with a defined key. Also access the extent op
only after locking the delayed ref head's lock.

The reproducer will be converted later to a test case for fstests.

Fixes: 86d5f99442 ("btrfs: convert prelimary reference tracking to use rbtrees")
Fixes: a6dbceafb9 ("btrfs: Remove unused op_key var from add_delayed_refs")
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-10-29 10:20:35 +02:00
Filipe Manana
b397ce3477 btrfs: fix processing of delayed data refs during backref walking
[ Upstream commit 4fc7b57228 ]

When processing delayed data references during backref walking and we are
using a share context (we are being called through fiemap), whenever we
find a delayed data reference for an inode different from the one we are
interested in, then we immediately exit and consider the data extent as
shared. This is wrong, because:

1) This might be a DROP reference that will cancel out a reference in the
   extent tree;

2) Even if it's an ADD reference, it may be followed by a DROP reference
   that cancels it out.

In either case we should not exit immediately.

Fix this by never exiting when we find a delayed data reference for
another inode - instead add the reference and if it does not cancel out
other delayed reference, we will exit early when we call
extent_is_shared() after processing all delayed references. If we find
a drop reference, then signal the code that processes references from
the extent tree (add_inline_refs() and add_keyed_refs()) to not exit
immediately if it finds there a reference for another inode, since we
have delayed drop references that may cancel it out. In this later case
we exit once we don't have references in the rb trees that cancel out
each other and have two references for different inodes.

Example reproducer for case 1):

   $ cat test-1.sh
   #!/bin/bash

   DEV=/dev/sdj
   MNT=/mnt/sdj

   mkfs.btrfs -f $DEV
   mount $DEV $MNT

   xfs_io -f -c "pwrite 0 64K" $MNT/foo
   cp --reflink=always $MNT/foo $MNT/bar

   echo
   echo "fiemap after cloning:"
   xfs_io -c "fiemap -v" $MNT/foo

   rm -f $MNT/bar
   echo
   echo "fiemap after removing file bar:"
   xfs_io -c "fiemap -v" $MNT/foo

   umount $MNT

Running it before this patch, the extent is still listed as shared, it has
the flag 0x2000 (FIEMAP_EXTENT_SHARED) set:

   $ ./test-1.sh
   fiemap after cloning:
   /mnt/sdj/foo:
    EXT: FILE-OFFSET      BLOCK-RANGE      TOTAL FLAGS
      0: [0..127]:        26624..26751       128 0x2001

   fiemap after removing file bar:
   /mnt/sdj/foo:
    EXT: FILE-OFFSET      BLOCK-RANGE      TOTAL FLAGS
      0: [0..127]:        26624..26751       128 0x2001

Example reproducer for case 2):

   $ cat test-2.sh
   #!/bin/bash

   DEV=/dev/sdj
   MNT=/mnt/sdj

   mkfs.btrfs -f $DEV
   mount $DEV $MNT

   xfs_io -f -c "pwrite 0 64K" $MNT/foo
   cp --reflink=always $MNT/foo $MNT/bar

   # Flush delayed references to the extent tree and commit current
   # transaction.
   sync

   echo
   echo "fiemap after cloning:"
   xfs_io -c "fiemap -v" $MNT/foo

   rm -f $MNT/bar
   echo
   echo "fiemap after removing file bar:"
   xfs_io -c "fiemap -v" $MNT/foo

   umount $MNT

Running it before this patch, the extent is still listed as shared, it has
the flag 0x2000 (FIEMAP_EXTENT_SHARED) set:

   $ ./test-2.sh
   fiemap after cloning:
   /mnt/sdj/foo:
    EXT: FILE-OFFSET      BLOCK-RANGE      TOTAL FLAGS
      0: [0..127]:        26624..26751       128 0x2001

   fiemap after removing file bar:
   /mnt/sdj/foo:
    EXT: FILE-OFFSET      BLOCK-RANGE      TOTAL FLAGS
      0: [0..127]:        26624..26751       128 0x2001

After this patch, after deleting bar in both tests, the extent is not
reported with the 0x2000 flag anymore, it gets only the flag 0x1
(which is FIEMAP_EXTENT_LAST):

   $ ./test-1.sh
   fiemap after cloning:
   /mnt/sdj/foo:
    EXT: FILE-OFFSET      BLOCK-RANGE      TOTAL FLAGS
      0: [0..127]:        26624..26751       128 0x2001

   fiemap after removing file bar:
   /mnt/sdj/foo:
    EXT: FILE-OFFSET      BLOCK-RANGE      TOTAL FLAGS
      0: [0..127]:        26624..26751       128   0x1

   $ ./test-2.sh
   fiemap after cloning:
   /mnt/sdj/foo:
    EXT: FILE-OFFSET      BLOCK-RANGE      TOTAL FLAGS
      0: [0..127]:        26624..26751       128 0x2001

   fiemap after removing file bar:
   /mnt/sdj/foo:
    EXT: FILE-OFFSET      BLOCK-RANGE      TOTAL FLAGS
      0: [0..127]:        26624..26751       128   0x1

These tests will later be converted to a test case for fstests.

Fixes: dc046b10c8 ("Btrfs: make fiemap not blow when you have lots of snapshots")
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-10-29 10:20:35 +02:00
Joseph Qi
3064c74198 ocfs2: fix BUG when iput after ocfs2_mknod fails
commit 759a7c6126 upstream.

Commit b1529a41f7 "ocfs2: should reclaim the inode if
'__ocfs2_mknod_locked' returns an error" tried to reclaim the claimed
inode if __ocfs2_mknod_locked() fails later.  But this introduce a race,
the freed bit may be reused immediately by another thread, which will
update dinode, e.g.  i_generation.  Then iput this inode will lead to BUG:
inode->i_generation != le32_to_cpu(fe->i_generation)

We could make this inode as bad, but we did want to do operations like
wipe in some cases.  Since the claimed inode bit can only affect that an
dinode is missing and will return back after fsck, it seems not a big
problem.  So just leave it as is by revert the reclaim logic.

Link: https://lkml.kernel.org/r/20221017130227.234480-1-joseph.qi@linux.alibaba.com
Fixes: b1529a41f7 ("ocfs2: should reclaim the inode if '__ocfs2_mknod_locked' returns an error")
Signed-off-by: Joseph Qi <joseph.qi@linux.alibaba.com>
Reported-by: Yan Wang <wangyan122@huawei.com>
Cc: Mark Fasheh <mark@fasheh.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Changwei Ge <gechangwei@live.cn>
Cc: Gang He <ghe@suse.com>
Cc: Jun Piao <piaojun@huawei.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-29 10:20:34 +02:00
Joseph Qi
c2489774a2 ocfs2: clear dinode links count in case of error
commit 28f4821b1b upstream.

In ocfs2_mknod(), if error occurs after dinode successfully allocated,
ocfs2 i_links_count will not be 0.

So even though we clear inode i_nlink before iput in error handling, it
still won't wipe inode since we'll refresh inode from dinode during inode
lock.  So just like clear inode i_nlink, we clear ocfs2 i_links_count as
well.  Also do the same change for ocfs2_symlink().

Link: https://lkml.kernel.org/r/20221017130227.234480-2-joseph.qi@linux.alibaba.com
Signed-off-by: Joseph Qi <joseph.qi@linux.alibaba.com>
Reported-by: Yan Wang <wangyan122@huawei.com>
Cc: Mark Fasheh <mark@fasheh.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Changwei Ge <gechangwei@live.cn>
Cc: Gang He <ghe@suse.com>
Cc: Jun Piao <piaojun@huawei.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-29 10:20:34 +02:00
Dave Chinner
6391ed32b1 xfs: fix use-after-free on CIL context on shutdown
commit c7f87f3984 upstream.

xlog_wait() on the CIL context can reference a freed context if the
waiter doesn't get scheduled before the CIL context is freed. This
can happen when a task is on the hard throttle and the CIL push
aborts due to a shutdown. This was detected by generic/019:

thread 1			thread 2

__xfs_trans_commit
 xfs_log_commit_cil
  <CIL size over hard throttle limit>
  xlog_wait
   schedule
				xlog_cil_push_work
				wake_up_all
				<shutdown aborts commit>
				xlog_cil_committed
				kmem_free

   remove_wait_queue
    spin_lock_irqsave --> UAF

Fix it by moving the wait queue to the CIL rather than keeping it in
in the CIL context that gets freed on push completion. Because the
wait queue is now independent of the CIL context and we might have
multiple contexts in flight at once, only wake the waiters on the
push throttle when the context we are pushing is over the hard
throttle size threshold.

Fixes: 0e7ab7efe7 ("xfs: Throttle commits on delayed background CIL push")
Reported-by: Yu Kuai <yukuai3@huawei.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-29 10:20:34 +02:00
Darrick J. Wong
ac055fee25 xfs: move inode flush to the sync workqueue
commit f0f7a674d4 upstream.

[ Modify fs/xfs/xfs_super.c to include the changes at locations suitable for
 5.4-lts kernel ]

Move the inode dirty data flushing to a workqueue so that multiple
threads can take advantage of a single thread's flushing work.  The
ratelimiting technique used in bdd4ee4 was not successful, because
threads that skipped the inode flush scan due to ratelimiting would
ENOSPC early, which caused occasional (but noticeable) changes in
behavior and sporadic fstest regressions.

Therefore, make all the writer threads wait on a single inode flush,
which eliminates both the stampeding hordes of flushers and the small
window in which a write could fail with ENOSPC because it lost the
ratelimit race after even another thread freed space.

Fixes: c6425702f2 ("xfs: ratelimit inode flush on buffered write ENOSPC")
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-29 10:20:34 +02:00
Christoph Hellwig
d3eb14b8ea xfs: reflink should force the log out if mounted with wsync
commit 5833112df7 upstream.

Reflink should force the log out to disk if the filesystem was mounted
with wsync, the same as most other operations in xfs.

[Note: XFS_MOUNT_WSYNC is set when the admin mounts the filesystem
with either the 'wsync' or 'sync' mount options, which effectively means
that we're classifying reflink/dedupe as IO operations and making them
synchronous when required.]

Fixes: 3fc9f5e409 ("xfs: remove xfs_reflink_remap_range")
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
[darrick: add more to the changelog]
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-29 10:20:34 +02:00
Christoph Hellwig
05e2b279ea xfs: factor out a new xfs_log_force_inode helper
commit 54fbdd1035 upstream.

Create a new helper to force the log up to the last LSN touching an
inode.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-29 10:20:34 +02:00
Brian Foster
f1172b08bb xfs: trylock underlying buffer on dquot flush
commit 8d3d7e2b35 upstream.

A dquot flush currently blocks on the buffer lock for the underlying
dquot buffer. In turn, this causes xfsaild to block rather than
continue processing other items in the meantime. Update
xfs_qm_dqflush() to trylock the buffer, similar to how inode buffers
are handled, and return -EAGAIN if the lock fails. Fix up any
callers that don't currently handle the error properly.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-29 10:20:34 +02:00
Darrick J. Wong
890d7dfff7 xfs: don't write a corrupt unmount record to force summary counter recalc
commit 5cc3c006eb upstream.

[ Modify fs/xfs/xfs_log.c to include the changes at locations suitable for
  5.4-lts kernel ]

In commit f467cad95f, I added the ability to force a recalculation of
the filesystem summary counters if they seemed incorrect.  This was done
(not entirely correctly) by tweaking the log code to write an unmount
record without the UMOUNT_TRANS flag set.  At next mount, the log
recovery code will fail to find the unmount record and go into recovery,
which triggers the recalculation.

What actually gets written to the log is what ought to be an unmount
record, but without any flags set to indicate what kind of record it
actually is.  This worked to trigger the recalculation, but we shouldn't
write bogus log records when we could simply write nothing.

Fixes: f467cad95f ("xfs: force summary counter recalc at next mount")
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-29 10:20:34 +02:00
Dave Chinner
8ebd3ba932 xfs: tail updates only need to occur when LSN changes
commit 8eb807bd83 upstream.

We currently wake anything waiting on the log tail to move whenever
the log item at the tail of the log is removed. Historically this
was fine behaviour because there were very few items at any given
LSN. But with delayed logging, there may be thousands of items at
any given LSN, and we can't move the tail until they are all gone.

Hence if we are removing them in near tail-first order, we might be
waking up processes waiting on the tail LSN to change (e.g. log
space waiters) repeatedly without them being able to make progress.
This also occurs with the new sync push waiters, and can result in
thousands of spurious wakeups every second when under heavy direct
reclaim pressure.

To fix this, check that the tail LSN has actually changed on the
AIL before triggering wakeups. This will reduce the number of
spurious wakeups when doing bulk AIL removal and make this code much
more efficient.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-29 10:20:34 +02:00
Dave Chinner
87b8a7fb62 xfs: factor common AIL item deletion code
commit 4165994ac9 upstream.

Factor the common AIL deletion code that does all the wakeups into a
helper so we only have one copy of this somewhat tricky code to
interface with all the wakeups necessary when the LSN of the log
tail changes.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-29 10:20:34 +02:00
Dave Chinner
4202b103d3 xfs: Throttle commits on delayed background CIL push
commit 0e7ab7efe7 upstream.

In certain situations the background CIL push can be indefinitely
delayed. While we have workarounds from the obvious cases now, it
doesn't solve the underlying issue. This issue is that there is no
upper limit on the CIL where we will either force or wait for
a background push to start, hence allowing the CIL to grow without
bound until it consumes all log space.

To fix this, add a new wait queue to the CIL which allows background
pushes to wait for the CIL context to be switched out. This happens
when the push starts, so it will allow us to block incoming
transaction commit completion until the push has started. This will
only affect processes that are running modifications, and only when
the CIL threshold has been significantly overrun.

This has no apparent impact on performance, and doesn't even trigger
until over 45 million inodes had been created in a 16-way fsmark
test on a 2GB log. That was limiting at 64MB of log space used, so
the active CIL size is only about 3% of the total log in that case.
The concurrent removal of those files did not trigger the background
sleep at all.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-29 10:20:34 +02:00
Dave Chinner
7a8f95bfb9 xfs: Lower CIL flush limit for large logs
commit 108a42358a upstream.

The current CIL size aggregation limit is 1/8th the log size. This
means for large logs we might be aggregating at least 250MB of dirty objects
in memory before the CIL is flushed to the journal. With CIL shadow
buffers sitting around, this means the CIL is often consuming >500MB
of temporary memory that is all allocated under GFP_NOFS conditions.

Flushing the CIL can take some time to do if there is other IO
ongoing, and can introduce substantial log force latency by itself.
It also pins the memory until the objects are in the AIL and can be
written back and reclaimed by shrinkers. Hence this threshold also
tends to determine the minimum amount of memory XFS can operate in
under heavy modification without triggering the OOM killer.

Modify the CIL space limit to prevent such huge amounts of pinned
metadata from aggregating. We can have 2MB of log IO in flight at
once, so limit aggregation to 16x this size. This threshold was
chosen as it little impact on performance (on 16-way fsmark) or log
traffic but pins a lot less memory on large logs especially under
heavy memory pressure.  An aggregation limit of 8x had 5-10%
performance degradation and a 50% increase in log throughput for
the same workload, so clearly that was too small for highly
concurrent workloads on large logs.

This was found via trace analysis of AIL behaviour. e.g. insertion
from a single CIL flush:

xfs_ail_insert: old lsn 0/0 new lsn 1/3033090 type XFS_LI_INODE flags IN_AIL

$ grep xfs_ail_insert /mnt/scratch/s.t |grep "new lsn 1/3033090" |wc -l
1721823
$

So there were 1.7 million objects inserted into the AIL from this
CIL checkpoint, the first at 2323.392108, the last at 2325.667566 which
was the end of the trace (i.e. it hadn't finished). Clearly a major
problem.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-29 10:20:34 +02:00
Darrick J. Wong
f43ff28b01 xfs: preserve default grace interval during quotacheck
commit 5885539f0a upstream.

When quotacheck runs, it zeroes all the timer fields in every dquot.
Unfortunately, it also does this to the root dquot, which erases any
preconfigured grace intervals and warning limits that the administrator
may have set.  Worse yet, the incore copies of those variables remain
set.  This cache coherence problem manifests itself as the grace
interval mysteriously being reset back to the defaults at the /next/
mount.

Fix it by not resetting the root disk dquot's timer and warning fields.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-29 10:20:33 +02:00
Brian Foster
553e5c8031 xfs: fix unmount hang and memory leak on shutdown during quotaoff
commit 8a62714313 upstream.

AIL removal of the quotaoff start intent and free of both quotaoff
intents is currently limited to the ->iop_committed() handler of the
end intent. This executes when the end intent is committed to the
on-disk log and marks the completion of the operation. The problem
with this is it assumes the success of the operation. If a shutdown
or other error occurs during the quotaoff, it's possible for the
quotaoff task to exit without removing the start intent from the
AIL. This results in an unmount hang as the AIL cannot be emptied.
Further, no other codepath frees the intents and so this is also a
memory leak vector.

First, update the high level quotaoff error path to directly remove
and free the quotaoff start intent if it still exists in the AIL at
the time of the error. Next, update both of the start and end
quotaoff intents with an ->iop_release() callback to properly handle
transaction abort.

This means that If the quotaoff start transaction aborts, it frees
the start intent in the transaction commit path. If the filesystem
shuts down before the end transaction allocates, the quotaoff
sequence removes and frees the start intent. If the end transaction
aborts, it removes the start intent and frees both. This ensures
that a shutdown does not result in a hung unmount and that memory is
not leaked regardless of when a quotaoff error occurs.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-29 10:20:33 +02:00
Brian Foster
835306dd3f xfs: factor out quotaoff intent AIL removal and memory free
commit 854f82b1f6 upstream.

AIL removal of the quotaoff start intent and free of both intents is
hardcoded to the ->iop_committed() handler of the end intent. Factor
out the start intent handling code so it can be used in a future
patch to properly handle quotaoff errors. Use xfs_trans_ail_remove()
instead of the _delete() variant to acquire the AIL lock and also
handle cases where an intent might not reside in the AIL at the
time of a failure.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-29 10:20:33 +02:00
Pavel Reichl
a1e03f1600 xfs: Replace function declaration by actual definition
commit 1cc95e6f0d upstream.

Signed-off-by: Pavel Reichl <preichl@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
[darrick: fix typo in subject line]
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-29 10:20:33 +02:00
Pavel Reichl
fdce40c8fd xfs: remove the xfs_qoff_logitem_t typedef
commit d0bdfb1069 upstream.

Signed-off-by: Pavel Reichl <preichl@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
[darrick: fix a comment]
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-29 10:20:33 +02:00
Pavel Reichl
926ddf7846 xfs: remove the xfs_dq_logitem_t typedef
commit fd8b81dbbb upstream.

Signed-off-by: Pavel Reichl <preichl@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-29 10:20:33 +02:00
Pavel Reichl
80f78aa76a xfs: remove the xfs_disk_dquot_t and xfs_dquot_t
commit aefe69a45d upstream.

Signed-off-by: Pavel Reichl <preichl@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
[darrick: fix some of the comments]
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-29 10:20:33 +02:00
Takashi Iwai
4776ae328c xfs: Use scnprintf() for avoiding potential buffer overflow
commit 17bb60b741 upstream.

Since snprintf() returns the would-be-output size instead of the
actual output size, the succeeding calls may go beyond the given
buffer limit.  Fix it by replacing with scnprintf().

Signed-off-by: Takashi Iwai <tiwai@suse.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-29 10:20:33 +02:00
Darrick J. Wong
2f55a03891 xfs: check owner of dir3 blocks
commit 1b2c1a63b6 upstream.

Check the owner field of dir3 block headers.  If it's corrupt, release
the buffer and return EFSCORRUPTED.  All callers handle this properly.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-29 10:20:33 +02:00
Darrick J. Wong
15b0651f38 xfs: check owner of dir3 data blocks
commit a10c21ed5d upstream.

[Slightly edit xfs_dir3_data_read() to work with existing mapped_bno argument instead
of flag values introduced in later kernels]

Check the owner field of dir3 data block headers.  If it's corrupt,
release the buffer and return EFSCORRUPTED.  All callers handle this
properly.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-29 10:20:33 +02:00
Darrick J. Wong
bc013efdcf xfs: fix buffer corruption reporting when xfs_dir3_free_header_check fails
commit ce99494c96 upstream.

xfs_verifier_error is supposed to be called on a corrupt metadata buffer
from within a buffer verifier function, whereas xfs_buf_mark_corrupt
is the function to be called when a piece of code has read a buffer and
catches something that a read verifier cannot.  The first function sets
b_error anticipating that the low level buffer handling code will see
the nonzero b_error and clear XBF_DONE on the buffer, whereas the second
function does not.

Since xfs_dir3_free_header_check examines fields in the dir free block
header that require more context than can be provided to read verifiers,
we must call xfs_buf_mark_corrupt when it finds a problem.

Switching the calls has a secondary effect that we no longer corrupt the
buffer state by setting b_error and leaving XBF_DONE set.  When /that/
happens, we'll trip over various state assertions (most commonly the
b_error check in xfs_buf_reverify) on a subsequent attempt to read the
buffer.

Fixes: bc1a09b8e3 ("xfs: refactor verifier callers to print address of failing check")
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-29 10:20:33 +02:00
Darrick J. Wong
6e204b9e67 xfs: xfs_buf_corruption_error should take __this_address
commit e83cf875d6 upstream.

Add a xfs_failaddr_t parameter to this function so that callers can
potentially pass in (and therefore report) the exact point in the code
where we decided that a metadata buffer was corrupt.  This enables us to
wire it up to checking functions that have to run outside of verifiers.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-29 10:20:33 +02:00
Darrick J. Wong
0213ee5f4c xfs: add a function to deal with corrupt buffers post-verifiers
commit 8d57c21600 upstream.

Add a helper function to get rid of buffers that we have decided are
corrupt after the verifiers have run.  This function is intended to
handle metadata checks that can't happen in the verifiers, such as
inter-block relationship checking.  Note that we now mark the buffer
stale so that it will not end up on any LRU and will be purged on
release.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-29 10:20:33 +02:00
Brian Foster
3c88c3c00c xfs: rework collapse range into an atomic operation
commit 211683b21d upstream.

The collapse range operation uses a unique transaction and ilock
cycle for the hole punch and each extent shift iteration of the
overall operation. While the hole punch is safe as a separate
operation due to the iolock, cycling the ilock after each extent
shift is risky w.r.t. concurrent operations, similar to insert range.

To avoid this problem, make collapse range atomic with respect to
ilock. Hold the ilock across the entire operation, replace the
individual transactions with a single rolling transaction sequence
and finish dfops on each iteration to perform pending frees and roll
the transaction. Remove the unnecessary quota reservation as
collapse range can only ever merge extents (and thus remove extent
records and potentially free bmap blocks). The dfops call
automatically relogs the inode to keep it moving in the log. This
guarantees that nothing else can change the extent mapping of an
inode while a collapse range operation is in progress.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-29 10:20:33 +02:00
Brian Foster
3602df3f1f xfs: rework insert range into an atomic operation
commit dd87f87d87 upstream.

The insert range operation uses a unique transaction and ilock cycle
for the extent split and each extent shift iteration of the overall
operation. While this works, it is risks racing with other
operations in subtle ways such as COW writeback modifying an extent
tree in the middle of a shift operation.

To avoid this problem, make insert range atomic with respect to
ilock. Hold the ilock across the entire operation, replace the
individual transactions with a single rolling transaction sequence
and relog the inode to keep it moving in the log. This guarantees
that nothing else can change the extent mapping of an inode while
an insert range operation is in progress.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-29 10:20:32 +02:00
Brian Foster
7cd181cb23 xfs: open code insert range extent split helper
commit b73df17e4c upstream.

The insert range operation currently splits the extent at the target
offset in a separate transaction and lock cycle from the one that
shifts extents. In preparation for reworking insert range into an
atomic operation, lift the code into the caller so it can be easily
condensed to a single rolling transaction and lock cycle and
eliminate the helper. No functional changes.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-29 10:20:32 +02:00
Jerry Lee 李修賢
8b766dd707 ext4: continue to expand file system when the target size doesn't reach
commit df3cb754d1 upstream.

When expanding a file system from (16TiB-2MiB) to 18TiB, the operation
exits early which leads to result inconsistency between resize2fs and
Ext4 kernel driver.

=== before ===
○ → resize2fs /dev/mapper/thin
resize2fs 1.45.5 (07-Jan-2020)
Filesystem at /dev/mapper/thin is mounted on /mnt/test; on-line resizing required
old_desc_blocks = 2048, new_desc_blocks = 2304
The filesystem on /dev/mapper/thin is now 4831837696 (4k) blocks long.

[  865.186308] EXT4-fs (dm-5): mounted filesystem with ordered data mode. Opts: (null). Quota mode: none.
[  912.091502] dm-4: detected capacity change from 34359738368 to 38654705664
[  970.030550] dm-5: detected capacity change from 34359734272 to 38654701568
[ 1000.012751] EXT4-fs (dm-5): resizing filesystem from 4294966784 to 4831837696 blocks
[ 1000.012878] EXT4-fs (dm-5): resized filesystem to 4294967296

=== after ===
[  129.104898] EXT4-fs (dm-5): mounted filesystem with ordered data mode. Opts: (null). Quota mode: none.
[  143.773630] dm-4: detected capacity change from 34359738368 to 38654705664
[  198.203246] dm-5: detected capacity change from 34359734272 to 38654701568
[  207.918603] EXT4-fs (dm-5): resizing filesystem from 4294966784 to 4831837696 blocks
[  207.918754] EXT4-fs (dm-5): resizing filesystem from 4294967296 to 4831837696 blocks
[  207.918758] EXT4-fs (dm-5): Converting file system to meta_bg
[  207.918790] EXT4-fs (dm-5): resizing filesystem from 4294967296 to 4831837696 blocks
[  221.454050] EXT4-fs (dm-5): resized to 4658298880 blocks
[  227.634613] EXT4-fs (dm-5): resized filesystem to 4831837696

Signed-off-by: Jerry Lee <jerrylee@qnap.com>
Link: https://lore.kernel.org/r/PU1PR04MB22635E739BD21150DC182AC6A18C9@PU1PR04MB2263.apcprd04.prod.outlook.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-26 13:23:00 +02:00
Pavel Begunkov
04df9719df io_uring/af_unix: defer registered files gc to io_uring release
[ upstream commit 0091bfc817 ]

Instead of putting io_uring's registered files in unix_gc() we want it
to be done by io_uring itself. The trick here is to consider io_uring
registered files for cycle detection but not actually putting them down.
Because io_uring can't register other ring instances, this will remove
all refs to the ring file triggering the ->release path and clean up
with io_ring_ctx_free().

Cc: stable@vger.kernel.org
Fixes: 6b06314c47 ("io_uring: add file set registration")
Reported-and-tested-by: David Bouman <dbouman03@gmail.com>
Signed-off-by: Pavel Begunkov <asml.silence@gmail.com>
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
[axboe: add kerneldoc comment to skb, fold in skb leak fix]
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-26 13:22:59 +02:00
Qu Wenruo
715fe15785 btrfs: scrub: try to fix super block errors
[ Upstream commit f9eab5f0bb ]

[BUG]
The following script shows that, although scrub can detect super block
errors, it never tries to fix it:

	mkfs.btrfs -f -d raid1 -m raid1 $dev1 $dev2
	xfs_io -c "pwrite 67108864 4k" $dev2

	mount $dev1 $mnt
	btrfs scrub start -B $dev2
	btrfs scrub start -Br $dev2
	umount $mnt

The first scrub reports the super error correctly:

  scrub done for f3289218-abd3-41ac-a630-202f766c0859
  Scrub started:    Tue Aug  2 14:44:11 2022
  Status:           finished
  Duration:         0:00:00
  Total to scrub:   1.26GiB
  Rate:             0.00B/s
  Error summary:    super=1
    Corrected:      0
    Uncorrectable:  0
    Unverified:     0

But the second read-only scrub still reports the same super error:

  Scrub started:    Tue Aug  2 14:44:11 2022
  Status:           finished
  Duration:         0:00:00
  Total to scrub:   1.26GiB
  Rate:             0.00B/s
  Error summary:    super=1
    Corrected:      0
    Uncorrectable:  0
    Unverified:     0

[CAUSE]
The comments already shows that super block can be easily fixed by
committing a transaction:

	/*
	 * If we find an error in a super block, we just report it.
	 * They will get written with the next transaction commit
	 * anyway
	 */

But the truth is, such assumption is not always true, and since scrub
should try to repair every error it found (except for read-only scrub),
we should really actively commit a transaction to fix this.

[FIX]
Just commit a transaction if we found any super block errors, after
everything else is done.

We cannot do this just after scrub_supers(), as
btrfs_commit_transaction() will try to pause and wait for the running
scrub, thus we can not call it with scrub_lock hold.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-10-26 13:22:55 +02:00
Anna Schumaker
38ca9ece96 NFSD: Return nfserr_serverfault if splice_ok but buf->pages have data
[ Upstream commit 06981d5606 ]

This was discussed with Chuck as part of this patch set. Returning
nfserr_resource was decided to not be the best error message here, and
he suggested changing to nfserr_serverfault instead.

Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Link: https://lore.kernel.org/linux-nfs/20220907195259.926736-1-anna@kernel.org/T/#t
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-10-26 13:22:47 +02:00
Zhang Qilong
c5ed3a3789 f2fs: fix race condition on setting FI_NO_EXTENT flag
[ Upstream commit 07725adc55 ]

The following scenarios exist.
process A:               process B:
->f2fs_drop_extent_tree  ->f2fs_update_extent_cache_range
                          ->f2fs_update_extent_tree_range
                           ->write_lock
 ->set_inode_flag
                           ->is_inode_flag_set
                           ->__free_extent_tree // Shouldn't
                                                // have been
                                                // cleaned up
                                                // here
  ->write_lock

In this case, the "FI_NO_EXTENT" flag is set between
f2fs_update_extent_tree_range and is_inode_flag_set
by other process. it leads to clearing the whole exten
tree which should not have happened. And we fix it by
move the setting it to the range of write_lock.

Fixes:5f281fab9b9a3 ("f2fs: disable extent_cache for fcollapse/finsert inodes")
Signed-off-by: Zhang Qilong <zhangqilong3@huawei.com>
Reviewed-by: Chao Yu <chao@kernel.org>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-10-26 13:22:46 +02:00
Christophe JAILLET
acc393aecd nfsd: Fix a memory leak in an error handling path
[ Upstream commit fd1ef88049 ]

If this memdup_user() call fails, the memory allocated in a previous call
a few lines above should be freed. Otherwise it leaks.

Fixes: 6ee95d1c89 ("nfsd: add support for upcall version 2")
Signed-off-by: Christophe JAILLET <christophe.jaillet@wanadoo.fr>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-10-26 13:22:22 +02:00
Ondrej Mosnacek
c0f4be8303 userfaultfd: open userfaultfds with O_RDONLY
[ Upstream commit abec3d015f ]

Since userfaultfd doesn't implement a write operation, it is more
appropriate to open it read-only.

When userfaultfds are opened read-write like it is now, and such fd is
passed from one process to another, SELinux will check both read and
write permissions for the target process, even though it can't actually
do any write operation on the fd later.

Inspired by the following bug report, which has hit the SELinux scenario
described above:
https://bugzilla.redhat.com/show_bug.cgi?id=1974559

Reported-by: Robert O'Callahan <roc@ocallahan.org>
Fixes: 86039bd3b4 ("userfaultfd: add new syscall to provide memory externalization")
Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com>
Acked-by: Peter Xu <peterx@redhat.com>
Acked-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Signed-off-by: Paul Moore <paul@paul-moore.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-10-26 13:22:21 +02:00
Jinke Han
1211121f0e ext4: place buffer head allocation before handle start
commit d1052d236e upstream.

In our product environment, we encounter some jbd hung waiting handles to
stop while several writters were doing memory reclaim for buffer head
allocation in delay alloc write path. Ext4 do buffer head allocation with
holding transaction handle which may be blocked too long if the reclaim
works not so smooth. According to our bcc trace, the reclaim time in
buffer head allocation can reach 258s and the jbd transaction commit also
take almost the same time meanwhile. Except for these extreme cases,
we often see several seconds delays for cgroup memory reclaim on our
servers. This is more likely to happen considering docker environment.

One thing to note, the allocation of buffer heads is as often as page
allocation or more often when blocksize less than page size. Just like
page cache allocation, we should also place the buffer head allocation
before startting the handle.

Cc: stable@kernel.org
Signed-off-by: Jinke Han <hanjinke.666@bytedance.com>
Link: https://lore.kernel.org/r/20220903012429.22555-1-hanjinke.666@bytedance.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-26 13:22:18 +02:00
Lalith Rajendran
52c7b8d3b7 ext4: make ext4_lazyinit_thread freezable
commit 3b575495ab upstream.

ext4_lazyinit_thread is not set freezable. Hence when the thread calls
try_to_freeze it doesn't freeze during suspend and continues to send
requests to the storage during suspend, resulting in suspend failures.

Cc: stable@kernel.org
Signed-off-by: Lalith Rajendran <lalithkraj@google.com>
Link: https://lore.kernel.org/r/20220818214049.1519544-1-lalithkraj@google.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-26 13:22:18 +02:00
Baokun Li
3638aa1c7d ext4: fix null-ptr-deref in ext4_write_info
commit f9c1f24860 upstream.

I caught a null-ptr-deref bug as follows:
==================================================================
KASAN: null-ptr-deref in range [0x0000000000000068-0x000000000000006f]
CPU: 1 PID: 1589 Comm: umount Not tainted 5.10.0-02219-dirty #339
RIP: 0010:ext4_write_info+0x53/0x1b0
[...]
Call Trace:
 dquot_writeback_dquots+0x341/0x9a0
 ext4_sync_fs+0x19e/0x800
 __sync_filesystem+0x83/0x100
 sync_filesystem+0x89/0xf0
 generic_shutdown_super+0x79/0x3e0
 kill_block_super+0xa1/0x110
 deactivate_locked_super+0xac/0x130
 deactivate_super+0xb6/0xd0
 cleanup_mnt+0x289/0x400
 __cleanup_mnt+0x16/0x20
 task_work_run+0x11c/0x1c0
 exit_to_user_mode_prepare+0x203/0x210
 syscall_exit_to_user_mode+0x5b/0x3a0
 do_syscall_64+0x59/0x70
 entry_SYSCALL_64_after_hwframe+0x44/0xa9
 ==================================================================

Above issue may happen as follows:
-------------------------------------
exit_to_user_mode_prepare
 task_work_run
  __cleanup_mnt
   cleanup_mnt
    deactivate_super
     deactivate_locked_super
      kill_block_super
       generic_shutdown_super
        shrink_dcache_for_umount
         dentry = sb->s_root
         sb->s_root = NULL              <--- Here set NULL
        sync_filesystem
         __sync_filesystem
          sb->s_op->sync_fs > ext4_sync_fs
           dquot_writeback_dquots
            sb->dq_op->write_info > ext4_write_info
             ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2)
              d_inode(sb->s_root)
               s_root->d_inode          <--- Null pointer dereference

To solve this problem, we use ext4_journal_start_sb directly
to avoid s_root being used.

Cc: stable@kernel.org
Signed-off-by: Baokun Li <libaokun1@huawei.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20220805123947.565152-1-libaokun1@huawei.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-26 13:22:18 +02:00
Jan Kara
a22f52d883 ext4: avoid crash when inline data creation follows DIO write
commit 4bb26f2885 upstream.

When inode is created and written to using direct IO, there is nothing
to clear the EXT4_STATE_MAY_INLINE_DATA flag. Thus when inode gets
truncated later to say 1 byte and written using normal write, we will
try to store the data as inline data. This confuses the code later
because the inode now has both normal block and inline data allocated
and the confusion manifests for example as:

kernel BUG at fs/ext4/inode.c:2721!
invalid opcode: 0000 [#1] PREEMPT SMP KASAN
CPU: 0 PID: 359 Comm: repro Not tainted 5.19.0-rc8-00001-g31ba1e3b8305-dirty #15
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.0-1.fc36 04/01/2014
RIP: 0010:ext4_writepages+0x363d/0x3660
RSP: 0018:ffffc90000ccf260 EFLAGS: 00010293
RAX: ffffffff81e1abcd RBX: 0000008000000000 RCX: ffff88810842a180
RDX: 0000000000000000 RSI: 0000008000000000 RDI: 0000000000000000
RBP: ffffc90000ccf650 R08: ffffffff81e17d58 R09: ffffed10222c680b
R10: dfffe910222c680c R11: 1ffff110222c680a R12: ffff888111634128
R13: ffffc90000ccf880 R14: 0000008410000000 R15: 0000000000000001
FS:  00007f72635d2640(0000) GS:ffff88811b000000(0000) knlGS:0000000000000000
CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000565243379180 CR3: 000000010aa74000 CR4: 0000000000150eb0
Call Trace:
 <TASK>
 do_writepages+0x397/0x640
 filemap_fdatawrite_wbc+0x151/0x1b0
 file_write_and_wait_range+0x1c9/0x2b0
 ext4_sync_file+0x19e/0xa00
 vfs_fsync_range+0x17b/0x190
 ext4_buffered_write_iter+0x488/0x530
 ext4_file_write_iter+0x449/0x1b90
 vfs_write+0xbcd/0xf40
 ksys_write+0x198/0x2c0
 __x64_sys_write+0x7b/0x90
 do_syscall_64+0x3d/0x90
 entry_SYSCALL_64_after_hwframe+0x63/0xcd
 </TASK>

Fix the problem by clearing EXT4_STATE_MAY_INLINE_DATA when we are doing
direct IO write to a file.

Cc: stable@kernel.org
Reported-by: Tadeusz Struk <tadeusz.struk@linaro.org>
Reported-by: syzbot+bd13648a53ed6933ca49@syzkaller.appspotmail.com
Link: https://syzkaller.appspot.com/bug?id=a1e89d09bbbcbd5c4cb45db230ee28c822953984
Signed-off-by: Jan Kara <jack@suse.cz>
Reviewed-by: Lukas Czerner <lczerner@redhat.com>
Tested-by: Tadeusz Struk<tadeusz.struk@linaro.org>
Link: https://lore.kernel.org/r/20220727155753.13969-1-jack@suse.cz
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-26 13:22:18 +02:00
Andrew Perepechko
21ea616f1e jbd2: wake up journal waiters in FIFO order, not LIFO
commit 34fc8768ec upstream.

LIFO wakeup order is unfair and sometimes leads to a journal
user not being able to get a journal handle for hundreds of
transactions in a row.

FIFO wakeup can make things more fair.

Cc: stable@kernel.org
Signed-off-by: Alexey Lyashkov <alexey.lyashkov@gmail.com>
Reviewed-by: Ritesh Harjani (IBM) <ritesh.list@gmail.com>
Link: https://lore.kernel.org/r/20220907165959.1137482-1-alexey.lyashkov@gmail.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-26 13:22:17 +02:00
Ryusuke Konishi
d1c2d820a2 nilfs2: fix use-after-free bug of struct nilfs_root
commit d325dc6eb7 upstream.

If the beginning of the inode bitmap area is corrupted on disk, an inode
with the same inode number as the root inode can be allocated and fail
soon after.  In this case, the subsequent call to nilfs_clear_inode() on
that bogus root inode will wrongly decrement the reference counter of
struct nilfs_root, and this will erroneously free struct nilfs_root,
causing kernel oopses.

This fixes the problem by changing nilfs_new_inode() to skip reserved
inode numbers while repairing the inode bitmap.

Link: https://lkml.kernel.org/r/20221003150519.39789-1-konishi.ryusuke@gmail.com
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@gmail.com>
Reported-by: syzbot+b8c672b0e22615c80fe0@syzkaller.appspotmail.com
Reported-by: Khalid Masum <khalid.masum.92@gmail.com>
Tested-by: Ryusuke Konishi <konishi.ryusuke@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-26 13:22:17 +02:00
Chao Yu
c99860f9a7 f2fs: fix to do sanity check on summary info
commit c6ad7fd166 upstream.

As Wenqing Liu reported in bugzilla:

https://bugzilla.kernel.org/show_bug.cgi?id=216456

BUG: KASAN: use-after-free in recover_data+0x63ae/0x6ae0 [f2fs]
Read of size 4 at addr ffff8881464dcd80 by task mount/1013

CPU: 3 PID: 1013 Comm: mount Tainted: G        W          6.0.0-rc4 #1
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.15.0-1 04/01/2014
Call Trace:
 dump_stack_lvl+0x45/0x5e
 print_report.cold+0xf3/0x68d
 kasan_report+0xa8/0x130
 recover_data+0x63ae/0x6ae0 [f2fs]
 f2fs_recover_fsync_data+0x120d/0x1fc0 [f2fs]
 f2fs_fill_super+0x4665/0x61e0 [f2fs]
 mount_bdev+0x2cf/0x3b0
 legacy_get_tree+0xed/0x1d0
 vfs_get_tree+0x81/0x2b0
 path_mount+0x47e/0x19d0
 do_mount+0xce/0xf0
 __x64_sys_mount+0x12c/0x1a0
 do_syscall_64+0x38/0x90
 entry_SYSCALL_64_after_hwframe+0x63/0xcd

The root cause is: in fuzzed image, SSA table is corrupted: ofs_in_node
is larger than ADDRS_PER_PAGE(), result in out-of-range access on 4k-size
page.

- recover_data
 - do_recover_data
  - check_index_in_prev_nodes
   - f2fs_data_blkaddr

This patch adds sanity check on summary info in recovery and GC flow
in where the flows rely on them.

After patch:
[   29.310883] F2FS-fs (loop0): Inconsistent ofs_in_node:65286 in summary, ino:0, nid:6, max:1018

Cc: stable@vger.kernel.org
Reported-by: Wenqing Liu <wenqingliu0120@gmail.com>
Signed-off-by: Chao Yu <chao@kernel.org>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-26 13:22:17 +02:00
Chao Yu
68b1e60755 f2fs: fix to do sanity check on destination blkaddr during recovery
commit 0ef4ca04a3 upstream.

As Wenqing Liu reported in bugzilla:

https://bugzilla.kernel.org/show_bug.cgi?id=216456

loop5: detected capacity change from 0 to 131072
F2FS-fs (loop5): recover_inode: ino = 6, name = hln, inline = 1
F2FS-fs (loop5): recover_data: ino = 6 (i_size: recover) err = 0
F2FS-fs (loop5): recover_inode: ino = 6, name = hln, inline = 1
F2FS-fs (loop5): recover_data: ino = 6 (i_size: recover) err = 0
F2FS-fs (loop5): recover_inode: ino = 6, name = hln, inline = 1
F2FS-fs (loop5): recover_data: ino = 6 (i_size: recover) err = 0
F2FS-fs (loop5): Bitmap was wrongly set, blk:5634
------------[ cut here ]------------
WARNING: CPU: 3 PID: 1013 at fs/f2fs/segment.c:2198
RIP: 0010:update_sit_entry+0xa55/0x10b0 [f2fs]
Call Trace:
 <TASK>
 f2fs_do_replace_block+0xa98/0x1890 [f2fs]
 f2fs_replace_block+0xeb/0x180 [f2fs]
 recover_data+0x1a69/0x6ae0 [f2fs]
 f2fs_recover_fsync_data+0x120d/0x1fc0 [f2fs]
 f2fs_fill_super+0x4665/0x61e0 [f2fs]
 mount_bdev+0x2cf/0x3b0
 legacy_get_tree+0xed/0x1d0
 vfs_get_tree+0x81/0x2b0
 path_mount+0x47e/0x19d0
 do_mount+0xce/0xf0
 __x64_sys_mount+0x12c/0x1a0
 do_syscall_64+0x38/0x90
 entry_SYSCALL_64_after_hwframe+0x63/0xcd

If we enable CONFIG_F2FS_CHECK_FS config, it will trigger a kernel panic
instead of warning.

The root cause is: in fuzzed image, SIT table is inconsistent with inode
mapping table, result in triggering such warning during SIT table update.

This patch introduces a new flag DATA_GENERIC_ENHANCE_UPDATE, w/ this
flag, data block recovery flow can check destination blkaddr's validation
in SIT table, and skip f2fs_replace_block() to avoid inconsistent status.

Cc: stable@vger.kernel.org
Reported-by: Wenqing Liu <wenqingliu0120@gmail.com>
Signed-off-by: Chao Yu <chao@kernel.org>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-26 13:22:17 +02:00
Jaegeuk Kim
c5d8198ce8 f2fs: increase the limit for reserve_root
commit da35fe96d1 upstream.

This patch increases the threshold that limits the reserved root space from 0.2%
to 12.5% by using simple shift operation.

Typically Android sets 128MB, but if the storage capacity is 32GB, 0.2% which is
around 64MB becomes too small. Let's relax it.

Cc: stable@vger.kernel.org
Reported-by: Aran Dalton <arda@allwinnertech.com>
Reviewed-by: Chao Yu <chao@kernel.org>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-26 13:22:17 +02:00
Filipe Manana
26b7c0ac49 btrfs: fix race between quota enable and quota rescan ioctl
commit 331cd94614 upstream.

When enabling quotas, at btrfs_quota_enable(), after committing the
transaction, we change fs_info->quota_root to point to the quota root we
created and set BTRFS_FS_QUOTA_ENABLED at fs_info->flags. Then we try
to start the qgroup rescan worker, first by initializing it with a call
to qgroup_rescan_init() - however if that fails we end up freeing the
quota root but we leave fs_info->quota_root still pointing to it, this
can later result in a use-after-free somewhere else.

We have previously set the flags BTRFS_FS_QUOTA_ENABLED and
BTRFS_QGROUP_STATUS_FLAG_ON, so we can only fail with -EINPROGRESS at
btrfs_quota_enable(), which is possible if someone already called the
quota rescan ioctl, and therefore started the rescan worker.

So fix this by ignoring an -EINPROGRESS and asserting we can't get any
other error.

Reported-by: Ye Bin <yebin10@huawei.com>
Link: https://lore.kernel.org/linux-btrfs/20220823015931.421355-1-yebin10@huawei.com/
CC: stable@vger.kernel.org # 4.19+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-26 13:22:16 +02:00
Zhihao Cheng
6927ee818f quota: Check next/prev free block number after reading from quota file
commit 6c8ea8b8cd upstream.

Following process:
 Init: v2_read_file_info: <3> dqi_free_blk 0 dqi_free_entry 5 dqi_blks 6

 Step 1. chown bin f_a -> dquot_acquire -> v2_write_dquot:
  qtree_write_dquot
   do_insert_tree
    find_free_dqentry
     get_free_dqblk
      write_blk(info->dqi_blocks) // info->dqi_blocks = 6, failure. The
	   content in physical block (corresponding to blk 6) is random.

 Step 2. chown root f_a -> dquot_transfer -> dqput_all -> dqput ->
         ext4_release_dquot -> v2_release_dquot -> qtree_delete_dquot:
  dquot_release
   remove_tree
    free_dqentry
     put_free_dqblk(6)
      info->dqi_free_blk = blk    // info->dqi_free_blk = 6

 Step 3. drop cache (buffer head for block 6 is released)

 Step 4. chown bin f_b -> dquot_acquire -> commit_dqblk -> v2_write_dquot:
  qtree_write_dquot
   do_insert_tree
    find_free_dqentry
     get_free_dqblk
      dh = (struct qt_disk_dqdbheader *)buf
      blk = info->dqi_free_blk     // 6
      ret = read_blk(info, blk, buf)  // The content of buf is random
      info->dqi_free_blk = le32_to_cpu(dh->dqdh_next_free)  // random blk

 Step 5. chown bin f_c -> notify_change -> ext4_setattr -> dquot_transfer:
  dquot = dqget -> acquire_dquot -> ext4_acquire_dquot -> dquot_acquire ->
          commit_dqblk -> v2_write_dquot -> dq_insert_tree:
   do_insert_tree
    find_free_dqentry
     get_free_dqblk
      blk = info->dqi_free_blk    // If blk < 0 and blk is not an error
				     code, it will be returned as dquot

  transfer_to[USRQUOTA] = dquot  // A random negative value
  __dquot_transfer(transfer_to)
   dquot_add_inodes(transfer_to[cnt])
    spin_lock(&dquot->dq_dqb_lock)  // page fault

, which will lead to kernel page fault:
 Quota error (device sda): qtree_write_dquot: Error -8000 occurred
 while creating quota
 BUG: unable to handle page fault for address: ffffffffffffe120
 #PF: supervisor write access in kernel mode
 #PF: error_code(0x0002) - not-present page
 Oops: 0002 [#1] PREEMPT SMP
 CPU: 0 PID: 5974 Comm: chown Not tainted 6.0.0-rc1-00004
 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996)
 RIP: 0010:_raw_spin_lock+0x3a/0x90
 Call Trace:
  dquot_add_inodes+0x28/0x270
  __dquot_transfer+0x377/0x840
  dquot_transfer+0xde/0x540
  ext4_setattr+0x405/0x14d0
  notify_change+0x68e/0x9f0
  chown_common+0x300/0x430
  __x64_sys_fchownat+0x29/0x40

In order to avoid accessing invalid quota memory address, this patch adds
block number checking of next/prev free block read from quota file.

Fetch a reproducer in [Link].

Link: https://bugzilla.kernel.org/show_bug.cgi?id=216372
Fixes: 1da177e4c3 ("Linux-2.6.12-rc2")
CC: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20220923134555.2623931-2-chengzhihao1@huawei.com
Signed-off-by: Zhihao Cheng <chengzhihao1@huawei.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-26 13:22:14 +02:00
Alexander Aring
477ac1d57f fs: dlm: handle -EBUSY first in lock arg validation
commit 44637ca41d upstream.

During lock arg validation, first check for -EBUSY cases, then for
-EINVAL cases. The -EINVAL checks look at lkb state variables
which are not stable when an lkb is busy and would cause an
-EBUSY result, e.g. lkb->lkb_grmode.

Cc: stable@vger.kernel.org
Signed-off-by: Alexander Aring <aahringo@redhat.com>
Signed-off-by: David Teigland <teigland@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-26 13:22:14 +02:00
Alexander Aring
d3961f732d fs: dlm: fix race between test_bit() and queue_work()
commit eef6ec9bf3 upstream.

This patch fixes a race by using ls_cb_mutex around the bit
operations and conditional code blocks for LSFL_CB_DELAY.

The function dlm_callback_stop() expects to stop all callbacks and
flush all currently queued onces. The set_bit() is not enough because
there can still be queue_work() after the workqueue was flushed.
To avoid queue_work() after set_bit(), surround both by ls_cb_mutex.

Cc: stable@vger.kernel.org
Signed-off-by: Alexander Aring <aahringo@redhat.com>
Signed-off-by: David Teigland <teigland@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-26 13:22:14 +02:00
Zhang Xiaoxu
d0050ec3eb cifs: Fix the error length of VALIDATE_NEGOTIATE_INFO message
commit e98ecc6e94 upstream.

Commit d5c7076b77 ("smb3: add smb3.1.1 to default dialect list")
extend the dialects from 3 to 4, but forget to decrease the extended
length when specific the dialect, then the message length is larger
than expected.

This maybe leak some info through network because not initialize the
message body.

After apply this patch, the VALIDATE_NEGOTIATE_INFO message length is
reduced from 28 bytes to 26 bytes.

Fixes: d5c7076b77 ("smb3: add smb3.1.1 to default dialect list")
Signed-off-by: Zhang Xiaoxu <zhangxiaoxu5@huawei.com>
Cc: <stable@vger.kernel.org>
Acked-by: Paulo Alcantara (SUSE) <pc@cjr.nz>
Reviewed-by: Tom Talpey <tom@talpey.com>
Signed-off-by: Steve French <stfrench@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-26 13:22:12 +02:00
Ronnie Sahlberg
bd09adde67 cifs: destage dirty pages before re-reading them for cache=none
commit bb44c31cdc upstream.

This is the opposite case of kernel bugzilla 216301.
If we mmap a file using cache=none and then proceed to update the mmapped
area these updates are not reflected in a later pread() of that part of the
file.
To fix this we must first destage any dirty pages in the range before
we allow the pread() to proceed.

Cc: stable@vger.kernel.org
Reviewed-by: Paulo Alcantara (SUSE) <pc@cjr.nz>
Reviewed-by: Enzo Matsumiya <ematsumiya@suse.de>
Signed-off-by: Ronnie Sahlberg <lsahlber@redhat.com>
Signed-off-by: Steve French <stfrench@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-26 13:22:11 +02:00
Sasha Levin
c248c3330d Revert "fs: check FMODE_LSEEK to control internal pipe splicing"
This reverts commit fd0a6e99b6.

Which was upstream commit 97ef77c52b.

The commit is missing dependencies and breaks NFS tests, remove it for
now.

Reported-by: Saeed Mirzamohammadi <saeed.mirzamohammadi@oracle.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-10-17 17:24:32 +02:00
Hu Weiwen
194f59391d ceph: don't truncate file in atomic_open
commit 7cb9994754 upstream.

Clear O_TRUNC from the flags sent in the MDS create request.

`atomic_open' is called before permission check. We should not do any
modification to the file here. The caller will do the truncation
afterward.

Fixes: 124e68e740 ("ceph: file operations")
Signed-off-by: Hu Weiwen <sehuww@mail.scut.edu.cn>
Reviewed-by: Xiubo Li <xiubli@redhat.com>
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
[Xiubo: fixed a trivial conflict for 5.10 backport]
Signed-off-by: Xiubo Li <xiubli@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-15 07:54:39 +02:00
Ryusuke Konishi
259c0f6816 nilfs2: replace WARN_ONs by nilfs_error for checkpoint acquisition failure
commit 723ac75120 upstream.

If creation or finalization of a checkpoint fails due to anomalies in the
checkpoint metadata on disk, a kernel warning is generated.

This patch replaces the WARN_ONs by nilfs_error, so that a kernel, booted
with panic_on_warn, does not panic.  A nilfs_error is appropriate here to
handle the abnormal filesystem condition.

This also replaces the detected error codes with an I/O error so that
neither of the internal error codes is returned to callers.

Link: https://lkml.kernel.org/r/20220929123330.19658-1-konishi.ryusuke@gmail.com
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@gmail.com>
Reported-by: syzbot+fbb3e0b24e8dae5a16ee@syzkaller.appspotmail.com
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-15 07:54:39 +02:00
Ryusuke Konishi
b7e409d11d nilfs2: fix leak of nilfs_root in case of writer thread creation failure
commit d0d51a9706 upstream.

If nilfs_attach_log_writer() failed to create a log writer thread, it
frees a data structure of the log writer without any cleanup.  After
commit e912a5b668 ("nilfs2: use root object to get ifile"), this causes
a leak of struct nilfs_root, which started to leak an ifile metadata inode
and a kobject on that struct.

In addition, if the kernel is booted with panic_on_warn, the above
ifile metadata inode leak will cause the following panic when the
nilfs2 kernel module is removed:

  kmem_cache_destroy nilfs2_inode_cache: Slab cache still has objects when
  called from nilfs_destroy_cachep+0x16/0x3a [nilfs2]
  WARNING: CPU: 8 PID: 1464 at mm/slab_common.c:494 kmem_cache_destroy+0x138/0x140
  ...
  RIP: 0010:kmem_cache_destroy+0x138/0x140
  Code: 00 20 00 00 e8 a9 55 d8 ff e9 76 ff ff ff 48 8b 53 60 48 c7 c6 20 70 65 86 48 c7 c7 d8 69 9c 86 48 8b 4c 24 28 e8 ef 71 c7 00 <0f> 0b e9 53 ff ff ff c3 48 81 ff ff 0f 00 00 77 03 31 c0 c3 53 48
  ...
  Call Trace:
   <TASK>
   ? nilfs_palloc_freev.cold.24+0x58/0x58 [nilfs2]
   nilfs_destroy_cachep+0x16/0x3a [nilfs2]
   exit_nilfs_fs+0xa/0x1b [nilfs2]
    __x64_sys_delete_module+0x1d9/0x3a0
   ? __sanitizer_cov_trace_pc+0x1a/0x50
   ? syscall_trace_enter.isra.19+0x119/0x190
   do_syscall_64+0x34/0x80
   entry_SYSCALL_64_after_hwframe+0x63/0xcd
   ...
   </TASK>
  Kernel panic - not syncing: panic_on_warn set ...

This patch fixes these issues by calling nilfs_detach_log_writer() cleanup
function if spawning the log writer thread fails.

Link: https://lkml.kernel.org/r/20221007085226.57667-1-konishi.ryusuke@gmail.com
Fixes: e912a5b668 ("nilfs2: use root object to get ifile")
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@gmail.com>
Reported-by: syzbot+7381dc4ad60658ca4c05@syzkaller.appspotmail.com
Tested-by: Ryusuke Konishi <konishi.ryusuke@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-15 07:54:39 +02:00
Ryusuke Konishi
792211333a nilfs2: fix NULL pointer dereference at nilfs_bmap_lookup_at_level()
commit 21a87d88c2 upstream.

If the i_mode field in inode of metadata files is corrupted on disk, it
can cause the initialization of bmap structure, which should have been
called from nilfs_read_inode_common(), not to be called.  This causes a
lockdep warning followed by a NULL pointer dereference at
nilfs_bmap_lookup_at_level().

This patch fixes these issues by adding a missing sanitiy check for the
i_mode field of metadata file's inode.

Link: https://lkml.kernel.org/r/20221002030804.29978-1-konishi.ryusuke@gmail.com
Signed-off-by: Ryusuke Konishi <konishi.ryusuke@gmail.com>
Reported-by: syzbot+2b32eb36c1a825b7a74c@syzkaller.appspotmail.com
Reported-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Tested-by: Ryusuke Konishi <konishi.ryusuke@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-15 07:54:38 +02:00
Dongliang Mu
70e4f70d54 fs: fix UAF/GPF bug in nilfs_mdt_destroy
commit 2e488f1375 upstream.

In alloc_inode, inode_init_always() could return -ENOMEM if
security_inode_alloc() fails, which causes inode->i_private
uninitialized. Then nilfs_is_metadata_file_inode() returns
true and nilfs_free_inode() wrongly calls nilfs_mdt_destroy(),
which frees the uninitialized inode->i_private
and leads to crashes(e.g., UAF/GPF).

Fix this by moving security_inode_alloc just prior to
this_cpu_inc(nr_inodes)

Link: https://lkml.kernel.org/r/CAFcO6XOcf1Jj2SeGt=jJV59wmhESeSKpfR0omdFRq+J9nD1vfQ@mail.gmail.com
Reported-by: butt3rflyh4ck <butterflyhuangxx@gmail.com>
Reported-by: Hao Sun <sunhao.th@gmail.com>
Reported-by: Jiacheng Xu <stitch@zju.edu.cn>
Reviewed-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Signed-off-by: Dongliang Mu <mudongliangabcd@gmail.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: stable@vger.kernel.org
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-15 07:54:36 +02:00
YueHaibing
ae19c3c76d xfs: remove unused variable 'done'
commit b3531f5fc1 upstream.

fs/xfs/xfs_inode.c: In function 'xfs_itruncate_extents_flags':
fs/xfs/xfs_inode.c:1523:8: warning: unused variable 'done' [-Wunused-variable]

commit 4bbb04abb4 ("xfs: truncate should remove
all blocks, not just to the end of the page cache")
left behind this, so remove it.

Fixes: 4bbb04abb4 ("xfs: truncate should remove all blocks, not just to the end of the page cache")
Reported-by: Hulk Robot <hulkci@huawei.com>
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-07 09:16:57 +02:00
Darrick J. Wong
538657def7 xfs: fix uninitialized variable in xfs_attr3_leaf_inactive
commit 54027a4993 upstream.

Dan Carpenter pointed out that error is uninitialized.  While there
never should be an attr leaf block with zero entries, let's not leave
that logic bomb there.

Fixes: 0bb9d159bd ("xfs: streamline xfs_attr3_leaf_inactive")
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Allison Collins <allison.henderson@oracle.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-07 09:16:57 +02:00
Darrick J. Wong
9ff41b8d71 xfs: streamline xfs_attr3_leaf_inactive
commit 0bb9d159bd upstream.

Now that we know we don't have to take a transaction to stale the incore
buffers for a remote value, get rid of the unnecessary memory allocation
in the leaf walker and call the rmt_stale function directly.  Flatten
the loop while we're at it.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-07 09:16:57 +02:00
Christoph Hellwig
c893fedaf1 xfs: move incore structures out of xfs_da_format.h
commit a39f089a25 upstream.

Move the abstract in-memory version of various btree block headers
out of xfs_da_format.h as they aren't on-disk formats.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-07 09:16:57 +02:00
Darrick J. Wong
5e13ad940a xfs: fix memory corruption during remote attr value buffer invalidation
commit e8db2aafce upstream.

[Replaced XFS_IS_CORRUPT() calls with ASSERT() for 5.4.y backport]

While running generic/103, I observed what looks like memory corruption
and (with slub debugging turned on) a slub redzone warning on i386 when
inactivating an inode with a 64k remote attr value.

On a v5 filesystem, maximally sized remote attr values require one block
more than 64k worth of space to hold both the remote attribute value
header (64 bytes).  On a 4k block filesystem this results in a 68k
buffer; on a 64k block filesystem, this would be a 128k buffer.  Note
that even though we'll never use more than 65,600 bytes of this buffer,
XFS_MAX_BLOCKSIZE is 64k.

This is a problem because the definition of struct xfs_buf_log_format
allows for XFS_MAX_BLOCKSIZE worth of dirty bitmap (64k).  On i386 when we
invalidate a remote attribute, xfs_trans_binval zeroes all 68k worth of
the dirty map, writing right off the end of the log item and corrupting
memory.  We've gotten away with this on x86_64 for years because the
compiler inserts a u32 padding on the end of struct xfs_buf_log_format.

Fortunately for us, remote attribute values are written to disk with
xfs_bwrite(), which is to say that they are not logged.  Fix the problem
by removing all places where we could end up creating a buffer log item
for a remote attribute value and leave a note explaining why.  Next,
replace the open-coded buffer invalidation with a call to the helper we
created in the previous patch that does better checking for bad metadata
before marking the buffer stale.

Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandan.babu@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-07 09:16:57 +02:00