/* * Copyright (c) by Jaroslav Kysela * Universal interface for Audio Codec '97 * * For more details look to AC '97 component specification revision 2.2 * by Intel Corporation (http://developer.intel.com). * * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include #include #include #include #include #include #include #include #include #include #include #include #include "ac97_local.h" #include "ac97_id.h" #include "ac97_patch.h" MODULE_AUTHOR("Jaroslav Kysela "); MODULE_DESCRIPTION("Universal interface for Audio Codec '97"); MODULE_LICENSE("GPL"); static int enable_loopback; module_param(enable_loopback, bool, 0444); MODULE_PARM_DESC(enable_loopback, "Enable AC97 ADC/DAC Loopback Control"); /* */ struct ac97_codec_id { unsigned int id; unsigned int mask; const char *name; int (*patch)(struct snd_ac97 *ac97); int (*mpatch)(struct snd_ac97 *ac97); unsigned int flags; }; static const struct ac97_codec_id snd_ac97_codec_id_vendors[] = { { 0x414b4d00, 0xffffff00, "Asahi Kasei", NULL, NULL }, { 0x41445300, 0xffffff00, "Analog Devices", NULL, NULL }, { 0x414c4300, 0xffffff00, "Realtek", NULL, NULL }, { 0x414c4700, 0xffffff00, "Realtek", NULL, NULL }, { 0x434d4900, 0xffffff00, "C-Media Electronics", NULL, NULL }, { 0x43525900, 0xffffff00, "Cirrus Logic", NULL, NULL }, { 0x43585400, 0xffffff00, "Conexant", NULL, NULL }, { 0x44543000, 0xffffff00, "Diamond Technology", NULL, NULL }, { 0x454d4300, 0xffffff00, "eMicro", NULL, NULL }, { 0x45838300, 0xffffff00, "ESS Technology", NULL, NULL }, { 0x48525300, 0xffffff00, "Intersil", NULL, NULL }, { 0x49434500, 0xffffff00, "ICEnsemble", NULL, NULL }, { 0x49544500, 0xffffff00, "ITE Tech.Inc", NULL, NULL }, { 0x4e534300, 0xffffff00, "National Semiconductor", NULL, NULL }, { 0x50534300, 0xffffff00, "Philips", NULL, NULL }, { 0x53494c00, 0xffffff00, "Silicon Laboratory", NULL, NULL }, { 0x54524100, 0xffffff00, "TriTech", NULL, NULL }, { 0x54584e00, 0xffffff00, "Texas Instruments", NULL, NULL }, { 0x56494100, 0xffffff00, "VIA Technologies", NULL, NULL }, { 0x57454300, 0xffffff00, "Winbond", NULL, NULL }, { 0x574d4c00, 0xffffff00, "Wolfson", NULL, NULL }, { 0x594d4800, 0xffffff00, "Yamaha", NULL, NULL }, { 0x83847600, 0xffffff00, "SigmaTel", NULL, NULL }, { 0, 0, NULL, NULL, NULL } }; static const struct ac97_codec_id snd_ac97_codec_ids[] = { { 0x414b4d00, 0xffffffff, "AK4540", NULL, NULL }, { 0x414b4d01, 0xffffffff, "AK4542", NULL, NULL }, { 0x414b4d02, 0xffffffff, "AK4543", NULL, NULL }, { 0x414b4d06, 0xffffffff, "AK4544A", NULL, NULL }, { 0x414b4d07, 0xffffffff, "AK4545", NULL, NULL }, { 0x41445303, 0xffffffff, "AD1819", patch_ad1819, NULL }, { 0x41445340, 0xffffffff, "AD1881", patch_ad1881, NULL }, { 0x41445348, 0xffffffff, "AD1881A", patch_ad1881, NULL }, { 0x41445360, 0xffffffff, "AD1885", patch_ad1885, NULL }, { 0x41445361, 0xffffffff, "AD1886", patch_ad1886, NULL }, { 0x41445362, 0xffffffff, "AD1887", patch_ad1881, NULL }, { 0x41445363, 0xffffffff, "AD1886A", patch_ad1881, NULL }, { 0x41445368, 0xffffffff, "AD1888", patch_ad1888, NULL }, { 0x41445370, 0xffffffff, "AD1980", patch_ad1980, NULL }, { 0x41445372, 0xffffffff, "AD1981A", patch_ad1981a, NULL }, { 0x41445374, 0xffffffff, "AD1981B", patch_ad1981b, NULL }, { 0x41445375, 0xffffffff, "AD1985", patch_ad1985, NULL }, { 0x41445378, 0xffffffff, "AD1986", patch_ad1985, NULL }, { 0x414c4300, 0xffffff00, "ALC100,100P", NULL, NULL }, { 0x414c4710, 0xfffffff0, "ALC200,200P", NULL, NULL }, { 0x414c4721, 0xffffffff, "ALC650D", NULL, NULL }, /* already patched */ { 0x414c4722, 0xffffffff, "ALC650E", NULL, NULL }, /* already patched */ { 0x414c4723, 0xffffffff, "ALC650F", NULL, NULL }, /* already patched */ { 0x414c4720, 0xfffffff0, "ALC650", patch_alc650, NULL }, { 0x414c4760, 0xfffffff0, "ALC655", patch_alc655, NULL }, { 0x414c4781, 0xffffffff, "ALC658D", NULL, NULL }, /* already patched */ { 0x414c4780, 0xfffffff0, "ALC658", patch_alc655, NULL }, { 0x414c4790, 0xfffffff0, "ALC850", patch_alc850, NULL }, { 0x414c4730, 0xffffffff, "ALC101", NULL, NULL }, { 0x414c4740, 0xfffffff0, "ALC202", NULL, NULL }, { 0x414c4750, 0xfffffff0, "ALC250", NULL, NULL }, { 0x414c4770, 0xfffffff0, "ALC203", NULL, NULL }, { 0x434d4941, 0xffffffff, "CMI9738", patch_cm9738, NULL }, { 0x434d4961, 0xffffffff, "CMI9739", patch_cm9739, NULL }, { 0x434d4969, 0xffffffff, "CMI9780", patch_cm9780, NULL }, { 0x434d4978, 0xffffffff, "CMI9761", patch_cm9761, NULL }, { 0x434d4982, 0xffffffff, "CMI9761", patch_cm9761, NULL }, { 0x434d4983, 0xffffffff, "CMI9761", patch_cm9761, NULL }, { 0x43525900, 0xfffffff8, "CS4297", NULL, NULL }, { 0x43525910, 0xfffffff8, "CS4297A", patch_cirrus_spdif, NULL }, { 0x43525920, 0xfffffff8, "CS4298", patch_cirrus_spdif, NULL }, { 0x43525928, 0xfffffff8, "CS4294", NULL, NULL }, { 0x43525930, 0xfffffff8, "CS4299", patch_cirrus_cs4299, NULL }, { 0x43525948, 0xfffffff8, "CS4201", NULL, NULL }, { 0x43525958, 0xfffffff8, "CS4205", patch_cirrus_spdif, NULL }, { 0x43525960, 0xfffffff8, "CS4291", NULL, NULL }, { 0x43525970, 0xfffffff8, "CS4202", NULL, NULL }, { 0x43585421, 0xffffffff, "HSD11246", NULL, NULL }, // SmartMC II { 0x43585428, 0xfffffff8, "Cx20468", patch_conexant, NULL }, // SmartAMC fixme: the mask might be different { 0x44543031, 0xfffffff0, "DT0398", NULL, NULL }, { 0x454d4328, 0xffffffff, "EM28028", NULL, NULL }, // same as TR28028? { 0x45838308, 0xffffffff, "ESS1988", NULL, NULL }, { 0x48525300, 0xffffff00, "HMP9701", NULL, NULL }, { 0x49434501, 0xffffffff, "ICE1230", NULL, NULL }, { 0x49434511, 0xffffffff, "ICE1232", NULL, NULL }, // alias VIA VT1611A? { 0x49434514, 0xffffffff, "ICE1232A", NULL, NULL }, { 0x49434551, 0xffffffff, "VT1616", patch_vt1616, NULL }, { 0x49434552, 0xffffffff, "VT1616i", patch_vt1616, NULL }, // VT1616 compatible (chipset integrated) { 0x49544520, 0xffffffff, "IT2226E", NULL, NULL }, { 0x49544561, 0xffffffff, "IT2646E", patch_it2646, NULL }, { 0x4e534300, 0xffffffff, "LM4540,43,45,46,48", NULL, NULL }, // only guess --jk { 0x4e534331, 0xffffffff, "LM4549", NULL, NULL }, { 0x4e534350, 0xffffffff, "LM4550", patch_lm4550, NULL }, // volume wrap fix { 0x50534304, 0xffffffff, "UCB1400", NULL, NULL }, { 0x53494c20, 0xffffffe0, "Si3036,8", mpatch_si3036, mpatch_si3036, AC97_MODEM_PATCH }, { 0x54524102, 0xffffffff, "TR28022", NULL, NULL }, { 0x54524106, 0xffffffff, "TR28026", NULL, NULL }, { 0x54524108, 0xffffffff, "TR28028", patch_tritech_tr28028, NULL }, // added by xin jin [07/09/99] { 0x54524123, 0xffffffff, "TR28602", NULL, NULL }, // only guess --jk [TR28023 = eMicro EM28023 (new CT1297)] { 0x54584e20, 0xffffffff, "TLC320AD9xC", NULL, NULL }, { 0x56494161, 0xffffffff, "VIA1612A", NULL, NULL }, // modified ICE1232 with S/PDIF { 0x56494170, 0xffffffff, "VIA1617A", patch_vt1617a, NULL }, // modified VT1616 with S/PDIF { 0x56494182, 0xffffffff, "VIA1618", NULL, NULL }, { 0x57454301, 0xffffffff, "W83971D", NULL, NULL }, { 0x574d4c00, 0xffffffff, "WM9701A", NULL, NULL }, { 0x574d4C03, 0xffffffff, "WM9703,WM9707,WM9708,WM9717", patch_wolfson03, NULL}, { 0x574d4C04, 0xffffffff, "WM9704M,WM9704Q", patch_wolfson04, NULL}, { 0x574d4C05, 0xffffffff, "WM9705,WM9710", patch_wolfson05, NULL}, { 0x574d4C09, 0xffffffff, "WM9709", NULL, NULL}, { 0x574d4C12, 0xffffffff, "WM9711,WM9712", patch_wolfson11, NULL}, { 0x574d4c13, 0xffffffff, "WM9713,WM9714", patch_wolfson13, NULL, AC97_DEFAULT_POWER_OFF}, { 0x594d4800, 0xffffffff, "YMF743", NULL, NULL }, { 0x594d4802, 0xffffffff, "YMF752", NULL, NULL }, { 0x594d4803, 0xffffffff, "YMF753", patch_yamaha_ymf753, NULL }, { 0x83847600, 0xffffffff, "STAC9700,83,84", patch_sigmatel_stac9700, NULL }, { 0x83847604, 0xffffffff, "STAC9701,3,4,5", NULL, NULL }, { 0x83847605, 0xffffffff, "STAC9704", NULL, NULL }, { 0x83847608, 0xffffffff, "STAC9708,11", patch_sigmatel_stac9708, NULL }, { 0x83847609, 0xffffffff, "STAC9721,23", patch_sigmatel_stac9721, NULL }, { 0x83847644, 0xffffffff, "STAC9744", patch_sigmatel_stac9744, NULL }, { 0x83847650, 0xffffffff, "STAC9750,51", NULL, NULL }, // patch? { 0x83847652, 0xffffffff, "STAC9752,53", NULL, NULL }, // patch? { 0x83847656, 0xffffffff, "STAC9756,57", patch_sigmatel_stac9756, NULL }, { 0x83847658, 0xffffffff, "STAC9758,59", patch_sigmatel_stac9758, NULL }, { 0x83847666, 0xffffffff, "STAC9766,67", NULL, NULL }, // patch? { 0, 0, NULL, NULL, NULL } }; /* * I/O routines */ static int snd_ac97_valid_reg(struct snd_ac97 *ac97, unsigned short reg) { /* filter some registers for buggy codecs */ switch (ac97->id) { case AC97_ID_AK4540: case AC97_ID_AK4542: if (reg <= 0x1c || reg == 0x20 || reg == 0x26 || reg >= 0x7c) return 1; return 0; case AC97_ID_AD1819: /* AD1819 */ case AC97_ID_AD1881: /* AD1881 */ case AC97_ID_AD1881A: /* AD1881A */ if (reg >= 0x3a && reg <= 0x6e) /* 0x59 */ return 0; return 1; case AC97_ID_AD1885: /* AD1885 */ case AC97_ID_AD1886: /* AD1886 */ case AC97_ID_AD1886A: /* AD1886A - !!verify!! --jk */ case AC97_ID_AD1887: /* AD1887 - !!verify!! --jk */ if (reg == 0x5a) return 1; if (reg >= 0x3c && reg <= 0x6e) /* 0x59 */ return 0; return 1; case AC97_ID_STAC9700: case AC97_ID_STAC9704: case AC97_ID_STAC9705: case AC97_ID_STAC9708: case AC97_ID_STAC9721: case AC97_ID_STAC9744: case AC97_ID_STAC9756: if (reg <= 0x3a || reg >= 0x5a) return 1; return 0; } return 1; } /** * snd_ac97_write - write a value on the given register * @ac97: the ac97 instance * @reg: the register to change * @value: the value to set * * Writes a value on the given register. This will invoke the write * callback directly after the register check. * This function doesn't change the register cache unlike * #snd_ca97_write_cache(), so use this only when you don't want to * reflect the change to the suspend/resume state. */ void snd_ac97_write(struct snd_ac97 *ac97, unsigned short reg, unsigned short value) { if (!snd_ac97_valid_reg(ac97, reg)) return; if ((ac97->id & 0xffffff00) == AC97_ID_ALC100) { /* Fix H/W bug of ALC100/100P */ if (reg == AC97_MASTER || reg == AC97_HEADPHONE) ac97->bus->ops->write(ac97, AC97_RESET, 0); /* reset audio codec */ } ac97->bus->ops->write(ac97, reg, value); } EXPORT_SYMBOL(snd_ac97_write); /** * snd_ac97_read - read a value from the given register * * @ac97: the ac97 instance * @reg: the register to read * * Reads a value from the given register. This will invoke the read * callback directly after the register check. * * Returns the read value. */ unsigned short snd_ac97_read(struct snd_ac97 *ac97, unsigned short reg) { if (!snd_ac97_valid_reg(ac97, reg)) return 0; return ac97->bus->ops->read(ac97, reg); } /* read a register - return the cached value if already read */ static inline unsigned short snd_ac97_read_cache(struct snd_ac97 *ac97, unsigned short reg) { if (! test_bit(reg, ac97->reg_accessed)) { ac97->regs[reg] = ac97->bus->ops->read(ac97, reg); // set_bit(reg, ac97->reg_accessed); } return ac97->regs[reg]; } EXPORT_SYMBOL(snd_ac97_read); /** * snd_ac97_write_cache - write a value on the given register and update the cache * @ac97: the ac97 instance * @reg: the register to change * @value: the value to set * * Writes a value on the given register and updates the register * cache. The cached values are used for the cached-read and the * suspend/resume. */ void snd_ac97_write_cache(struct snd_ac97 *ac97, unsigned short reg, unsigned short value) { if (!snd_ac97_valid_reg(ac97, reg)) return; mutex_lock(&ac97->reg_mutex); ac97->regs[reg] = value; ac97->bus->ops->write(ac97, reg, value); set_bit(reg, ac97->reg_accessed); mutex_unlock(&ac97->reg_mutex); } EXPORT_SYMBOL(snd_ac97_write_cache); /** * snd_ac97_update - update the value on the given register * @ac97: the ac97 instance * @reg: the register to change * @value: the value to set * * Compares the value with the register cache and updates the value * only when the value is changed. * * Returns 1 if the value is changed, 0 if no change, or a negative * code on failure. */ int snd_ac97_update(struct snd_ac97 *ac97, unsigned short reg, unsigned short value) { int change; if (!snd_ac97_valid_reg(ac97, reg)) return -EINVAL; mutex_lock(&ac97->reg_mutex); change = ac97->regs[reg] != value; if (change) { ac97->regs[reg] = value; ac97->bus->ops->write(ac97, reg, value); } set_bit(reg, ac97->reg_accessed); mutex_unlock(&ac97->reg_mutex); return change; } EXPORT_SYMBOL(snd_ac97_update); /** * snd_ac97_update_bits - update the bits on the given register * @ac97: the ac97 instance * @reg: the register to change * @mask: the bit-mask to change * @value: the value to set * * Updates the masked-bits on the given register only when the value * is changed. * * Returns 1 if the bits are changed, 0 if no change, or a negative * code on failure. */ int snd_ac97_update_bits(struct snd_ac97 *ac97, unsigned short reg, unsigned short mask, unsigned short value) { int change; if (!snd_ac97_valid_reg(ac97, reg)) return -EINVAL; mutex_lock(&ac97->reg_mutex); change = snd_ac97_update_bits_nolock(ac97, reg, mask, value); mutex_unlock(&ac97->reg_mutex); return change; } EXPORT_SYMBOL(snd_ac97_update_bits); /* no lock version - see snd_ac97_updat_bits() */ int snd_ac97_update_bits_nolock(struct snd_ac97 *ac97, unsigned short reg, unsigned short mask, unsigned short value) { int change; unsigned short old, new; old = snd_ac97_read_cache(ac97, reg); new = (old & ~mask) | value; change = old != new; if (change) { ac97->regs[reg] = new; ac97->bus->ops->write(ac97, reg, new); } set_bit(reg, ac97->reg_accessed); return change; } static int snd_ac97_ad18xx_update_pcm_bits(struct snd_ac97 *ac97, int codec, unsigned short mask, unsigned short value) { int change; unsigned short old, new, cfg; mutex_lock(&ac97->page_mutex); old = ac97->spec.ad18xx.pcmreg[codec]; new = (old & ~mask) | value; change = old != new; if (change) { mutex_lock(&ac97->reg_mutex); cfg = snd_ac97_read_cache(ac97, AC97_AD_SERIAL_CFG); ac97->spec.ad18xx.pcmreg[codec] = new; /* select single codec */ ac97->bus->ops->write(ac97, AC97_AD_SERIAL_CFG, (cfg & ~0x7000) | ac97->spec.ad18xx.unchained[codec] | ac97->spec.ad18xx.chained[codec]); /* update PCM bits */ ac97->bus->ops->write(ac97, AC97_PCM, new); /* select all codecs */ ac97->bus->ops->write(ac97, AC97_AD_SERIAL_CFG, cfg | 0x7000); mutex_unlock(&ac97->reg_mutex); } mutex_unlock(&ac97->page_mutex); return change; } /* * Controls */ int snd_ac97_info_enum_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { struct ac97_enum *e = (struct ac97_enum *)kcontrol->private_value; uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; uinfo->count = e->shift_l == e->shift_r ? 1 : 2; uinfo->value.enumerated.items = e->mask; if (uinfo->value.enumerated.item > e->mask - 1) uinfo->value.enumerated.item = e->mask - 1; strcpy(uinfo->value.enumerated.name, e->texts[uinfo->value.enumerated.item]); return 0; } int snd_ac97_get_enum_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_ac97 *ac97 = snd_kcontrol_chip(kcontrol); struct ac97_enum *e = (struct ac97_enum *)kcontrol->private_value; unsigned short val, bitmask; for (bitmask = 1; bitmask < e->mask; bitmask <<= 1) ; val = snd_ac97_read_cache(ac97, e->reg); ucontrol->value.enumerated.item[0] = (val >> e->shift_l) & (bitmask - 1); if (e->shift_l != e->shift_r) ucontrol->value.enumerated.item[1] = (val >> e->shift_r) & (bitmask - 1); return 0; } int snd_ac97_put_enum_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_ac97 *ac97 = snd_kcontrol_chip(kcontrol); struct ac97_enum *e = (struct ac97_enum *)kcontrol->private_value; unsigned short val; unsigned short mask, bitmask; for (bitmask = 1; bitmask < e->mask; bitmask <<= 1) ; if (ucontrol->value.enumerated.item[0] > e->mask - 1) return -EINVAL; val = ucontrol->value.enumerated.item[0] << e->shift_l; mask = (bitmask - 1) << e->shift_l; if (e->shift_l != e->shift_r) { if (ucontrol->value.enumerated.item[1] > e->mask - 1) return -EINVAL; val |= ucontrol->value.enumerated.item[1] << e->shift_r; mask |= (bitmask - 1) << e->shift_r; } return snd_ac97_update_bits(ac97, e->reg, mask, val); } /* save/restore ac97 v2.3 paging */ static int snd_ac97_page_save(struct snd_ac97 *ac97, int reg, struct snd_kcontrol *kcontrol) { int page_save = -1; if ((kcontrol->private_value & (1<<25)) && (ac97->ext_id & AC97_EI_REV_MASK) >= AC97_EI_REV_23 && (reg >= 0x60 && reg < 0x70)) { unsigned short page = (kcontrol->private_value >> 26) & 0x0f; mutex_lock(&ac97->page_mutex); /* lock paging */ page_save = snd_ac97_read(ac97, AC97_INT_PAGING) & AC97_PAGE_MASK; snd_ac97_update_bits(ac97, AC97_INT_PAGING, AC97_PAGE_MASK, page); } return page_save; } static void snd_ac97_page_restore(struct snd_ac97 *ac97, int page_save) { if (page_save >= 0) { snd_ac97_update_bits(ac97, AC97_INT_PAGING, AC97_PAGE_MASK, page_save); mutex_unlock(&ac97->page_mutex); /* unlock paging */ } } /* volume and switch controls */ int snd_ac97_info_volsw(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { int mask = (kcontrol->private_value >> 16) & 0xff; int shift = (kcontrol->private_value >> 8) & 0x0f; int rshift = (kcontrol->private_value >> 12) & 0x0f; uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = shift == rshift ? 1 : 2; uinfo->value.integer.min = 0; uinfo->value.integer.max = mask; return 0; } int snd_ac97_get_volsw(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_ac97 *ac97 = snd_kcontrol_chip(kcontrol); int reg = kcontrol->private_value & 0xff; int shift = (kcontrol->private_value >> 8) & 0x0f; int rshift = (kcontrol->private_value >> 12) & 0x0f; int mask = (kcontrol->private_value >> 16) & 0xff; int invert = (kcontrol->private_value >> 24) & 0x01; int page_save; page_save = snd_ac97_page_save(ac97, reg, kcontrol); ucontrol->value.integer.value[0] = (snd_ac97_read_cache(ac97, reg) >> shift) & mask; if (shift != rshift) ucontrol->value.integer.value[1] = (snd_ac97_read_cache(ac97, reg) >> rshift) & mask; if (invert) { ucontrol->value.integer.value[0] = mask - ucontrol->value.integer.value[0]; if (shift != rshift) ucontrol->value.integer.value[1] = mask - ucontrol->value.integer.value[1]; } snd_ac97_page_restore(ac97, page_save); return 0; } int snd_ac97_put_volsw(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_ac97 *ac97 = snd_kcontrol_chip(kcontrol); int reg = kcontrol->private_value & 0xff; int shift = (kcontrol->private_value >> 8) & 0x0f; int rshift = (kcontrol->private_value >> 12) & 0x0f; int mask = (kcontrol->private_value >> 16) & 0xff; int invert = (kcontrol->private_value >> 24) & 0x01; int err, page_save; unsigned short val, val2, val_mask; page_save = snd_ac97_page_save(ac97, reg, kcontrol); val = (ucontrol->value.integer.value[0] & mask); if (invert) val = mask - val; val_mask = mask << shift; val = val << shift; if (shift != rshift) { val2 = (ucontrol->value.integer.value[1] & mask); if (invert) val2 = mask - val2; val_mask |= mask << rshift; val |= val2 << rshift; } err = snd_ac97_update_bits(ac97, reg, val_mask, val); snd_ac97_page_restore(ac97, page_save); return err; } static const struct snd_kcontrol_new snd_ac97_controls_master_mono[2] = { AC97_SINGLE("Master Mono Playback Switch", AC97_MASTER_MONO, 15, 1, 1), AC97_SINGLE("Master Mono Playback Volume", AC97_MASTER_MONO, 0, 31, 1) }; static const struct snd_kcontrol_new snd_ac97_controls_tone[2] = { AC97_SINGLE("Tone Control - Bass", AC97_MASTER_TONE, 8, 15, 1), AC97_SINGLE("Tone Control - Treble", AC97_MASTER_TONE, 0, 15, 1) }; static const struct snd_kcontrol_new snd_ac97_controls_pc_beep[2] = { AC97_SINGLE("PC Speaker Playback Switch", AC97_PC_BEEP, 15, 1, 1), AC97_SINGLE("PC Speaker Playback Volume", AC97_PC_BEEP, 1, 15, 1) }; static const struct snd_kcontrol_new snd_ac97_controls_mic_boost = AC97_SINGLE("Mic Boost (+20dB) Switch", AC97_MIC, 6, 1, 0); static const char* std_rec_sel[] = {"Mic", "CD", "Video", "Aux", "Line", "Mix", "Mix Mono", "Phone"}; static const char* std_3d_path[] = {"pre 3D", "post 3D"}; static const char* std_mix[] = {"Mix", "Mic"}; static const char* std_mic[] = {"Mic1", "Mic2"}; static const struct ac97_enum std_enum[] = { AC97_ENUM_DOUBLE(AC97_REC_SEL, 8, 0, 8, std_rec_sel), AC97_ENUM_SINGLE(AC97_GENERAL_PURPOSE, 15, 2, std_3d_path), AC97_ENUM_SINGLE(AC97_GENERAL_PURPOSE, 9, 2, std_mix), AC97_ENUM_SINGLE(AC97_GENERAL_PURPOSE, 8, 2, std_mic), }; static const struct snd_kcontrol_new snd_ac97_control_capture_src = AC97_ENUM("Capture Source", std_enum[0]); static const struct snd_kcontrol_new snd_ac97_control_capture_vol = AC97_DOUBLE("Capture Volume", AC97_REC_GAIN, 8, 0, 15, 0); static const struct snd_kcontrol_new snd_ac97_controls_mic_capture[2] = { AC97_SINGLE("Mic Capture Switch", AC97_REC_GAIN_MIC, 15, 1, 1), AC97_SINGLE("Mic Capture Volume", AC97_REC_GAIN_MIC, 0, 15, 0) }; enum { AC97_GENERAL_PCM_OUT = 0, AC97_GENERAL_STEREO_ENHANCEMENT, AC97_GENERAL_3D, AC97_GENERAL_LOUDNESS, AC97_GENERAL_MONO, AC97_GENERAL_MIC, AC97_GENERAL_LOOPBACK }; static const struct snd_kcontrol_new snd_ac97_controls_general[7] = { AC97_ENUM("PCM Out Path & Mute", std_enum[1]), AC97_SINGLE("Simulated Stereo Enhancement", AC97_GENERAL_PURPOSE, 14, 1, 0), AC97_SINGLE("3D Control - Switch", AC97_GENERAL_PURPOSE, 13, 1, 0), AC97_SINGLE("Loudness (bass boost)", AC97_GENERAL_PURPOSE, 12, 1, 0), AC97_ENUM("Mono Output Select", std_enum[2]), AC97_ENUM("Mic Select Capture Switch", std_enum[3]), AC97_SINGLE("ADC/DAC Loopback", AC97_GENERAL_PURPOSE, 7, 1, 0) }; const struct snd_kcontrol_new snd_ac97_controls_3d[2] = { AC97_SINGLE("3D Control - Center", AC97_3D_CONTROL, 8, 15, 0), AC97_SINGLE("3D Control - Depth", AC97_3D_CONTROL, 0, 15, 0) }; static const struct snd_kcontrol_new snd_ac97_controls_center[2] = { AC97_SINGLE("Center Playback Switch", AC97_CENTER_LFE_MASTER, 7, 1, 1), AC97_SINGLE("Center Playback Volume", AC97_CENTER_LFE_MASTER, 0, 31, 1) }; static const struct snd_kcontrol_new snd_ac97_controls_lfe[2] = { AC97_SINGLE("LFE Playback Switch", AC97_CENTER_LFE_MASTER, 15, 1, 1), AC97_SINGLE("LFE Playback Volume", AC97_CENTER_LFE_MASTER, 8, 31, 1) }; static const struct snd_kcontrol_new snd_ac97_control_eapd = AC97_SINGLE("External Amplifier", AC97_POWERDOWN, 15, 1, 1); static const struct snd_kcontrol_new snd_ac97_controls_modem_switches[2] = { AC97_SINGLE("Off-hook Switch", AC97_GPIO_STATUS, 0, 1, 0), AC97_SINGLE("Caller ID Switch", AC97_GPIO_STATUS, 2, 1, 0) }; /* change the existing EAPD control as inverted */ static void set_inv_eapd(struct snd_ac97 *ac97, struct snd_kcontrol *kctl) { kctl->private_value = AC97_SINGLE_VALUE(AC97_POWERDOWN, 15, 1, 0); snd_ac97_update_bits(ac97, AC97_POWERDOWN, (1<<15), (1<<15)); /* EAPD up */ ac97->scaps |= AC97_SCAP_INV_EAPD; } static int snd_ac97_spdif_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; uinfo->count = 1; return 0; } static int snd_ac97_spdif_cmask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL | IEC958_AES0_NONAUDIO | IEC958_AES0_CON_EMPHASIS_5015 | IEC958_AES0_CON_NOT_COPYRIGHT; ucontrol->value.iec958.status[1] = IEC958_AES1_CON_CATEGORY | IEC958_AES1_CON_ORIGINAL; ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS; return 0; } static int snd_ac97_spdif_pmask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { /* FIXME: AC'97 spec doesn't say which bits are used for what */ ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL | IEC958_AES0_NONAUDIO | IEC958_AES0_PRO_FS | IEC958_AES0_PRO_EMPHASIS_5015; return 0; } static int snd_ac97_spdif_default_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_ac97 *ac97 = snd_kcontrol_chip(kcontrol); mutex_lock(&ac97->reg_mutex); ucontrol->value.iec958.status[0] = ac97->spdif_status & 0xff; ucontrol->value.iec958.status[1] = (ac97->spdif_status >> 8) & 0xff; ucontrol->value.iec958.status[2] = (ac97->spdif_status >> 16) & 0xff; ucontrol->value.iec958.status[3] = (ac97->spdif_status >> 24) & 0xff; mutex_unlock(&ac97->reg_mutex); return 0; } static int snd_ac97_spdif_default_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_ac97 *ac97 = snd_kcontrol_chip(kcontrol); unsigned int new = 0; unsigned short val = 0; int change; new = val = ucontrol->value.iec958.status[0] & (IEC958_AES0_PROFESSIONAL|IEC958_AES0_NONAUDIO); if (ucontrol->value.iec958.status[0] & IEC958_AES0_PROFESSIONAL) { new |= ucontrol->value.iec958.status[0] & (IEC958_AES0_PRO_FS|IEC958_AES0_PRO_EMPHASIS_5015); switch (new & IEC958_AES0_PRO_FS) { case IEC958_AES0_PRO_FS_44100: val |= 0<<12; break; case IEC958_AES0_PRO_FS_48000: val |= 2<<12; break; case IEC958_AES0_PRO_FS_32000: val |= 3<<12; break; default: val |= 1<<12; break; } if ((new & IEC958_AES0_PRO_EMPHASIS) == IEC958_AES0_PRO_EMPHASIS_5015) val |= 1<<3; } else { new |= ucontrol->value.iec958.status[0] & (IEC958_AES0_CON_EMPHASIS_5015|IEC958_AES0_CON_NOT_COPYRIGHT); new |= ((ucontrol->value.iec958.status[1] & (IEC958_AES1_CON_CATEGORY|IEC958_AES1_CON_ORIGINAL)) << 8); new |= ((ucontrol->value.iec958.status[3] & IEC958_AES3_CON_FS) << 24); if ((new & IEC958_AES0_CON_EMPHASIS) == IEC958_AES0_CON_EMPHASIS_5015) val |= 1<<3; if (!(new & IEC958_AES0_CON_NOT_COPYRIGHT)) val |= 1<<2; val |= ((new >> 8) & 0xff) << 4; // category + original switch ((new >> 24) & 0xff) { case IEC958_AES3_CON_FS_44100: val |= 0<<12; break; case IEC958_AES3_CON_FS_48000: val |= 2<<12; break; case IEC958_AES3_CON_FS_32000: val |= 3<<12; break; default: val |= 1<<12; break; } } mutex_lock(&ac97->reg_mutex); change = ac97->spdif_status != new; ac97->spdif_status = new; if (ac97->flags & AC97_CS_SPDIF) { int x = (val >> 12) & 0x03; switch (x) { case 0: x = 1; break; // 44.1 case 2: x = 0; break; // 48.0 default: x = 0; break; // illegal. } change |= snd_ac97_update_bits_nolock(ac97, AC97_CSR_SPDIF, 0x3fff, ((val & 0xcfff) | (x << 12))); } else if (ac97->flags & AC97_CX_SPDIF) { int v; v = new & (IEC958_AES0_CON_EMPHASIS_5015|IEC958_AES0_CON_NOT_COPYRIGHT) ? 0 : AC97_CXR_COPYRGT; v |= new & IEC958_AES0_NONAUDIO ? AC97_CXR_SPDIF_AC3 : AC97_CXR_SPDIF_PCM; change |= snd_ac97_update_bits_nolock(ac97, AC97_CXR_AUDIO_MISC, AC97_CXR_SPDIF_MASK | AC97_CXR_COPYRGT, v); } else { unsigned short extst = snd_ac97_read_cache(ac97, AC97_EXTENDED_STATUS); snd_ac97_update_bits_nolock(ac97, AC97_EXTENDED_STATUS, AC97_EA_SPDIF, 0); /* turn off */ change |= snd_ac97_update_bits_nolock(ac97, AC97_SPDIF, 0x3fff, val); if (extst & AC97_EA_SPDIF) { snd_ac97_update_bits_nolock(ac97, AC97_EXTENDED_STATUS, AC97_EA_SPDIF, AC97_EA_SPDIF); /* turn on again */ } } mutex_unlock(&ac97->reg_mutex); return change; } static int snd_ac97_put_spsa(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_ac97 *ac97 = snd_kcontrol_chip(kcontrol); int reg = kcontrol->private_value & 0xff; int shift = (kcontrol->private_value >> 8) & 0xff; int mask = (kcontrol->private_value >> 16) & 0xff; // int invert = (kcontrol->private_value >> 24) & 0xff; unsigned short value, old, new; int change; value = (ucontrol->value.integer.value[0] & mask); mutex_lock(&ac97->reg_mutex); mask <<= shift; value <<= shift; old = snd_ac97_read_cache(ac97, reg); new = (old & ~mask) | value; change = old != new; if (change) { unsigned short extst = snd_ac97_read_cache(ac97, AC97_EXTENDED_STATUS); snd_ac97_update_bits_nolock(ac97, AC97_EXTENDED_STATUS, AC97_EA_SPDIF, 0); /* turn off */ change = snd_ac97_update_bits_nolock(ac97, reg, mask, value); if (extst & AC97_EA_SPDIF) snd_ac97_update_bits_nolock(ac97, AC97_EXTENDED_STATUS, AC97_EA_SPDIF, AC97_EA_SPDIF); /* turn on again */ } mutex_unlock(&ac97->reg_mutex); return change; } const struct snd_kcontrol_new snd_ac97_controls_spdif[5] = { { .access = SNDRV_CTL_ELEM_ACCESS_READ, .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK), .info = snd_ac97_spdif_mask_info, .get = snd_ac97_spdif_cmask_get, }, { .access = SNDRV_CTL_ELEM_ACCESS_READ, .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PRO_MASK), .info = snd_ac97_spdif_mask_info, .get = snd_ac97_spdif_pmask_get, }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT), .info = snd_ac97_spdif_mask_info, .get = snd_ac97_spdif_default_get, .put = snd_ac97_spdif_default_put, }, AC97_SINGLE(SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH),AC97_EXTENDED_STATUS, 2, 1, 0), { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,NONE) "AC97-SPSA", .info = snd_ac97_info_volsw, .get = snd_ac97_get_volsw, .put = snd_ac97_put_spsa, .private_value = AC97_SINGLE_VALUE(AC97_EXTENDED_STATUS, 4, 3, 0) }, }; #define AD18XX_PCM_BITS(xname, codec, lshift, rshift, mask) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .info = snd_ac97_ad18xx_pcm_info_bits, \ .get = snd_ac97_ad18xx_pcm_get_bits, .put = snd_ac97_ad18xx_pcm_put_bits, \ .private_value = (codec) | ((lshift) << 8) | ((rshift) << 12) | ((mask) << 16) } static int snd_ac97_ad18xx_pcm_info_bits(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { struct snd_ac97 *ac97 = snd_kcontrol_chip(kcontrol); int mask = (kcontrol->private_value >> 16) & 0x0f; int lshift = (kcontrol->private_value >> 8) & 0x0f; int rshift = (kcontrol->private_value >> 12) & 0x0f; uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER; if (lshift != rshift && (ac97->flags & AC97_STEREO_MUTES)) uinfo->count = 2; else uinfo->count = 1; uinfo->value.integer.min = 0; uinfo->value.integer.max = mask; return 0; } static int snd_ac97_ad18xx_pcm_get_bits(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_ac97 *ac97 = snd_kcontrol_chip(kcontrol); int codec = kcontrol->private_value & 3; int lshift = (kcontrol->private_value >> 8) & 0x0f; int rshift = (kcontrol->private_value >> 12) & 0x0f; int mask = (kcontrol->private_value >> 16) & 0xff; ucontrol->value.integer.value[0] = mask - ((ac97->spec.ad18xx.pcmreg[codec] >> lshift) & mask); if (lshift != rshift && (ac97->flags & AC97_STEREO_MUTES)) ucontrol->value.integer.value[1] = mask - ((ac97->spec.ad18xx.pcmreg[codec] >> rshift) & mask); return 0; } static int snd_ac97_ad18xx_pcm_put_bits(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_ac97 *ac97 = snd_kcontrol_chip(kcontrol); int codec = kcontrol->private_value & 3; int lshift = (kcontrol->private_value >> 8) & 0x0f; int rshift = (kcontrol->private_value >> 12) & 0x0f; int mask = (kcontrol->private_value >> 16) & 0xff; unsigned short val, valmask; val = (mask - (ucontrol->value.integer.value[0] & mask)) << lshift; valmask = mask << lshift; if (lshift != rshift && (ac97->flags & AC97_STEREO_MUTES)) { val |= (mask - (ucontrol->value.integer.value[1] & mask)) << rshift; valmask |= mask << rshift; } return snd_ac97_ad18xx_update_pcm_bits(ac97, codec, valmask, val); } #define AD18XX_PCM_VOLUME(xname, codec) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .info = snd_ac97_ad18xx_pcm_info_volume, \ .get = snd_ac97_ad18xx_pcm_get_volume, .put = snd_ac97_ad18xx_pcm_put_volume, \ .private_value = codec } static int snd_ac97_ad18xx_pcm_info_volume(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 2; uinfo->value.integer.min = 0; uinfo->value.integer.max = 31; return 0; } static int snd_ac97_ad18xx_pcm_get_volume(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_ac97 *ac97 = snd_kcontrol_chip(kcontrol); int codec = kcontrol->private_value & 3; mutex_lock(&ac97->page_mutex); ucontrol->value.integer.value[0] = 31 - ((ac97->spec.ad18xx.pcmreg[codec] >> 0) & 31); ucontrol->value.integer.value[1] = 31 - ((ac97->spec.ad18xx.pcmreg[codec] >> 8) & 31); mutex_unlock(&ac97->page_mutex); return 0; } static int snd_ac97_ad18xx_pcm_put_volume(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_ac97 *ac97 = snd_kcontrol_chip(kcontrol); int codec = kcontrol->private_value & 3; unsigned short val1, val2; val1 = 31 - (ucontrol->value.integer.value[0] & 31); val2 = 31 - (ucontrol->value.integer.value[1] & 31); return snd_ac97_ad18xx_update_pcm_bits(ac97, codec, 0x1f1f, (val1 << 8) | val2); } static const struct snd_kcontrol_new snd_ac97_controls_ad18xx_pcm[2] = { AD18XX_PCM_BITS("PCM Playback Switch", 0, 15, 7, 1), AD18XX_PCM_VOLUME("PCM Playback Volume", 0) }; static const struct snd_kcontrol_new snd_ac97_controls_ad18xx_surround[2] = { AD18XX_PCM_BITS("Surround Playback Switch", 1, 15, 7, 1), AD18XX_PCM_VOLUME("Surround Playback Volume", 1) }; static const struct snd_kcontrol_new snd_ac97_controls_ad18xx_center[2] = { AD18XX_PCM_BITS("Center Playback Switch", 2, 15, 15, 1), AD18XX_PCM_BITS("Center Playback Volume", 2, 8, 8, 31) }; static const struct snd_kcontrol_new snd_ac97_controls_ad18xx_lfe[2] = { AD18XX_PCM_BITS("LFE Playback Switch", 2, 7, 7, 1), AD18XX_PCM_BITS("LFE Playback Volume", 2, 0, 0, 31) }; /* * */ static void snd_ac97_powerdown(struct snd_ac97 *ac97); static int snd_ac97_bus_free(struct snd_ac97_bus *bus) { if (bus) { snd_ac97_bus_proc_done(bus); kfree(bus->pcms); if (bus->private_free) bus->private_free(bus); kfree(bus); } return 0; } static int snd_ac97_bus_dev_free(struct snd_device *device) { struct snd_ac97_bus *bus = device->device_data; return snd_ac97_bus_free(bus); } static int snd_ac97_free(struct snd_ac97 *ac97) { if (ac97) { snd_ac97_proc_done(ac97); if (ac97->bus) ac97->bus->codec[ac97->num] = NULL; if (ac97->private_free) ac97->private_free(ac97); kfree(ac97); } return 0; } static int snd_ac97_dev_free(struct snd_device *device) { struct snd_ac97 *ac97 = device->device_data; snd_ac97_powerdown(ac97); /* for avoiding click noises during shut down */ return snd_ac97_free(ac97); } static int snd_ac97_try_volume_mix(struct snd_ac97 * ac97, int reg) { unsigned short val, mask = 0x8000; if (! snd_ac97_valid_reg(ac97, reg)) return 0; switch (reg) { case AC97_MASTER_TONE: return ac97->caps & 0x04 ? 1 : 0; case AC97_HEADPHONE: return ac97->caps & 0x10 ? 1 : 0; case AC97_REC_GAIN_MIC: return ac97->caps & 0x01 ? 1 : 0; case AC97_3D_CONTROL: if (ac97->caps & 0x7c00) { val = snd_ac97_read(ac97, reg); /* if nonzero - fixed and we can't set it */ return val == 0; } return 0; case AC97_CENTER_LFE_MASTER: /* center */ if ((ac97->ext_id & AC97_EI_CDAC) == 0) return 0; break; case AC97_CENTER_LFE_MASTER+1: /* lfe */ if ((ac97->ext_id & AC97_EI_LDAC) == 0) return 0; reg = AC97_CENTER_LFE_MASTER; mask = 0x0080; break; case AC97_SURROUND_MASTER: if ((ac97->ext_id & AC97_EI_SDAC) == 0) return 0; break; } val = snd_ac97_read(ac97, reg); if (!(val & mask)) { /* nothing seems to be here - mute flag is not set */ /* try another test */ snd_ac97_write_cache(ac97, reg, val | mask); val = snd_ac97_read(ac97, reg); val = snd_ac97_read(ac97, reg); if (!(val & mask)) return 0; /* nothing here */ } return 1; /* success, useable */ } static void check_volume_resolution(struct snd_ac97 *ac97, int reg, unsigned char *lo_max, unsigned char *hi_max) { unsigned short cbit[3] = { 0x20, 0x10, 0x01 }; unsigned char max[3] = { 63, 31, 15 }; int i; /* first look up the static resolution table */ if (ac97->res_table) { const struct snd_ac97_res_table *tbl; for (tbl = ac97->res_table; tbl->reg; tbl++) { if (tbl->reg == reg) { *lo_max = tbl->bits & 0xff; *hi_max = (tbl->bits >> 8) & 0xff; return; } } } *lo_max = *hi_max = 0; for (i = 0 ; i < ARRAY_SIZE(cbit); i++) { unsigned short val; snd_ac97_write(ac97, reg, 0x8080 | cbit[i] | (cbit[i] << 8)); /* Do the read twice due to buffers on some ac97 codecs. * e.g. The STAC9704 returns exactly what you wrote the the register * if you read it immediately. This causes the detect routine to fail. */ val = snd_ac97_read(ac97, reg); val = snd_ac97_read(ac97, reg); if (! *lo_max && (val & 0x7f) == cbit[i]) *lo_max = max[i]; if (! *hi_max && ((val >> 8) & 0x7f) == cbit[i]) *hi_max = max[i]; if (*lo_max && *hi_max) break; } } int snd_ac97_try_bit(struct snd_ac97 * ac97, int reg, int bit) { unsigned short mask, val, orig, res; mask = 1 << bit; orig = snd_ac97_read(ac97, reg); val = orig ^ mask; snd_ac97_write(ac97, reg, val); res = snd_ac97_read(ac97, reg); snd_ac97_write_cache(ac97, reg, orig); return res == val; } /* check the volume resolution of center/lfe */ static void snd_ac97_change_volume_params2(struct snd_ac97 * ac97, int reg, int shift, unsigned char *max) { unsigned short val, val1; *max = 63; val = 0x8080 | (0x20 << shift); snd_ac97_write(ac97, reg, val); val1 = snd_ac97_read(ac97, reg); if (val != val1) { *max = 31; } /* reset volume to zero */ snd_ac97_write_cache(ac97, reg, 0x8080); } static inline int printable(unsigned int x) { x &= 0xff; if (x < ' ' || x >= 0x71) { if (x <= 0x89) return x - 0x71 + 'A'; return '?'; } return x; } struct snd_kcontrol *snd_ac97_cnew(const struct snd_kcontrol_new *_template, struct snd_ac97 * ac97) { struct snd_kcontrol_new template; memcpy(&template, _template, sizeof(template)); template.index = ac97->num; return snd_ctl_new1(&template, ac97); } /* * create mute switch(es) for normal stereo controls */ static int snd_ac97_cmute_new_stereo(struct snd_card *card, char *name, int reg, int check_stereo, struct snd_ac97 *ac97) { struct snd_kcontrol *kctl; int err; unsigned short val, val1, mute_mask; if (! snd_ac97_valid_reg(ac97, reg)) return 0; mute_mask = 0x8000; val = snd_ac97_read(ac97, reg); if (check_stereo || (ac97->flags & AC97_STEREO_MUTES)) { /* check whether both mute bits work */ val1 = val | 0x8080; snd_ac97_write(ac97, reg, val1); if (val1 == snd_ac97_read(ac97, reg)) mute_mask = 0x8080; } if (mute_mask == 0x8080) { struct snd_kcontrol_new tmp = AC97_DOUBLE(name, reg, 15, 7, 1, 1); tmp.index = ac97->num; kctl = snd_ctl_new1(&tmp, ac97); } else { struct snd_kcontrol_new tmp = AC97_SINGLE(name, reg, 15, 1, 1); tmp.index = ac97->num; kctl = snd_ctl_new1(&tmp, ac97); } err = snd_ctl_add(card, kctl); if (err < 0) return err; /* mute as default */ snd_ac97_write_cache(ac97, reg, val | mute_mask); return 0; } /* * create a volume for normal stereo/mono controls */ static int snd_ac97_cvol_new(struct snd_card *card, char *name, int reg, unsigned int lo_max, unsigned int hi_max, struct snd_ac97 *ac97) { int err; struct snd_kcontrol *kctl; if (! snd_ac97_valid_reg(ac97, reg)) return 0; if (hi_max) { /* invert */ struct snd_kcontrol_new tmp = AC97_DOUBLE(name, reg, 8, 0, lo_max, 1); tmp.index = ac97->num; kctl = snd_ctl_new1(&tmp, ac97); } else { /* invert */ struct snd_kcontrol_new tmp = AC97_SINGLE(name, reg, 0, lo_max, 1); tmp.index = ac97->num; kctl = snd_ctl_new1(&tmp, ac97); } err = snd_ctl_add(card, kctl); if (err < 0) return err; snd_ac97_write_cache(ac97, reg, (snd_ac97_read(ac97, reg) & 0x8080) | lo_max | (hi_max << 8)); return 0; } /* * create a mute-switch and a volume for normal stereo/mono controls */ static int snd_ac97_cmix_new_stereo(struct snd_card *card, const char *pfx, int reg, int check_stereo, struct snd_ac97 *ac97) { int err; char name[44]; unsigned char lo_max, hi_max; if (! snd_ac97_valid_reg(ac97, reg)) return 0; if (snd_ac97_try_bit(ac97, reg, 15)) { sprintf(name, "%s Switch", pfx); if ((err = snd_ac97_cmute_new_stereo(card, name, reg, check_stereo, ac97)) < 0) return err; } check_volume_resolution(ac97, reg, &lo_max, &hi_max); if (lo_max) { sprintf(name, "%s Volume", pfx); if ((err = snd_ac97_cvol_new(card, name, reg, lo_max, hi_max, ac97)) < 0) return err; } return 0; } #define snd_ac97_cmix_new(card, pfx, reg, ac97) snd_ac97_cmix_new_stereo(card, pfx, reg, 0, ac97) #define snd_ac97_cmute_new(card, name, reg, ac97) snd_ac97_cmute_new_stereo(card, name, reg, 0, ac97) static unsigned int snd_ac97_determine_spdif_rates(struct snd_ac97 *ac97); static int snd_ac97_mixer_build(struct snd_ac97 * ac97) { struct snd_card *card = ac97->bus->card; struct snd_kcontrol *kctl; int err; unsigned int idx; unsigned char max; /* build master controls */ /* AD claims to remove this control from AD1887, although spec v2.2 does not allow this */ if (snd_ac97_try_volume_mix(ac97, AC97_MASTER)) { if (ac97->flags & AC97_HAS_NO_MASTER_VOL) err = snd_ac97_cmute_new(card, "Master Playback Switch", AC97_MASTER, ac97); else err = snd_ac97_cmix_new(card, "Master Playback", AC97_MASTER, ac97); if (err < 0) return err; } ac97->regs[AC97_CENTER_LFE_MASTER] = 0x8080; /* build center controls */ if ((snd_ac97_try_volume_mix(ac97, AC97_CENTER_LFE_MASTER)) && !(ac97->flags & AC97_AD_MULTI)) { if ((err = snd_ctl_add(card, snd_ac97_cnew(&snd_ac97_controls_center[0], ac97))) < 0) return err; if ((err = snd_ctl_add(card, kctl = snd_ac97_cnew(&snd_ac97_controls_center[1], ac97))) < 0) return err; snd_ac97_change_volume_params2(ac97, AC97_CENTER_LFE_MASTER, 0, &max); kctl->private_value &= ~(0xff << 16); kctl->private_value |= (int)max << 16; snd_ac97_write_cache(ac97, AC97_CENTER_LFE_MASTER, ac97->regs[AC97_CENTER_LFE_MASTER] | max); } /* build LFE controls */ if ((snd_ac97_try_volume_mix(ac97, AC97_CENTER_LFE_MASTER+1)) && !(ac97->flags & AC97_AD_MULTI)) { if ((err = snd_ctl_add(card, snd_ac97_cnew(&snd_ac97_controls_lfe[0], ac97))) < 0) return err; if ((err = snd_ctl_add(card, kctl = snd_ac97_cnew(&snd_ac97_controls_lfe[1], ac97))) < 0) return err; snd_ac97_change_volume_params2(ac97, AC97_CENTER_LFE_MASTER, 8, &max); kctl->private_value &= ~(0xff << 16); kctl->private_value |= (int)max << 16; snd_ac97_write_cache(ac97, AC97_CENTER_LFE_MASTER, ac97->regs[AC97_CENTER_LFE_MASTER] | max << 8); } /* build surround controls */ if ((snd_ac97_try_volume_mix(ac97, AC97_SURROUND_MASTER)) && !(ac97->flags & AC97_AD_MULTI)) { /* Surround Master (0x38) is with stereo mutes */ if ((err = snd_ac97_cmix_new_stereo(card, "Surround Playback", AC97_SURROUND_MASTER, 1, ac97)) < 0) return err; } /* build headphone controls */ if (snd_ac97_try_volume_mix(ac97, AC97_HEADPHONE)) { if ((err = snd_ac97_cmix_new(card, "Headphone Playback", AC97_HEADPHONE, ac97)) < 0) return err; } /* build master mono controls */ if (snd_ac97_try_volume_mix(ac97, AC97_MASTER_MONO)) { if ((err = snd_ac97_cmix_new(card, "Master Mono Playback", AC97_MASTER_MONO, ac97)) < 0) return err; } /* build master tone controls */ if (!(ac97->flags & AC97_HAS_NO_TONE)) { if (snd_ac97_try_volume_mix(ac97, AC97_MASTER_TONE)) { for (idx = 0; idx < 2; idx++) { if ((err = snd_ctl_add(card, kctl = snd_ac97_cnew(&snd_ac97_controls_tone[idx], ac97))) < 0) return err; if (ac97->id == AC97_ID_YMF753) { kctl->private_value &= ~(0xff << 16); kctl->private_value |= 7 << 16; } } snd_ac97_write_cache(ac97, AC97_MASTER_TONE, 0x0f0f); } } /* build PC Speaker controls */ if (!(ac97->flags & AC97_HAS_NO_PC_BEEP) && ((ac97->flags & AC97_HAS_PC_BEEP) || snd_ac97_try_volume_mix(ac97, AC97_PC_BEEP))) { for (idx = 0; idx < 2; idx++) if ((err = snd_ctl_add(card, snd_ac97_cnew(&snd_ac97_controls_pc_beep[idx], ac97))) < 0) return err; snd_ac97_write_cache(ac97, AC97_PC_BEEP, snd_ac97_read(ac97, AC97_PC_BEEP) | 0x801e); } /* build Phone controls */ if (!(ac97->flags & AC97_HAS_NO_PHONE)) { if (snd_ac97_try_volume_mix(ac97, AC97_PHONE)) { if ((err = snd_ac97_cmix_new(card, "Phone Playback", AC97_PHONE, ac97)) < 0) return err; } } /* build MIC controls */ if (!(ac97->flags & AC97_HAS_NO_MIC)) { if (snd_ac97_try_volume_mix(ac97, AC97_MIC)) { if ((err = snd_ac97_cmix_new(card, "Mic Playback", AC97_MIC, ac97)) < 0) return err; if ((err = snd_ctl_add(card, snd_ac97_cnew(&snd_ac97_controls_mic_boost, ac97))) < 0) return err; } } /* build Line controls */ if (snd_ac97_try_volume_mix(ac97, AC97_LINE)) { if ((err = snd_ac97_cmix_new(card, "Line Playback", AC97_LINE, ac97)) < 0) return err; } /* build CD controls */ if (!(ac97->flags & AC97_HAS_NO_CD)) { if (snd_ac97_try_volume_mix(ac97, AC97_CD)) { if ((err = snd_ac97_cmix_new(card, "CD Playback", AC97_CD, ac97)) < 0) return err; } } /* build Video controls */ if (!(ac97->flags & AC97_HAS_NO_VIDEO)) { if (snd_ac97_try_volume_mix(ac97, AC97_VIDEO)) { if ((err = snd_ac97_cmix_new(card, "Video Playback", AC97_VIDEO, ac97)) < 0) return err; } } /* build Aux controls */ if (snd_ac97_try_volume_mix(ac97, AC97_AUX)) { if ((err = snd_ac97_cmix_new(card, "Aux Playback", AC97_AUX, ac97)) < 0) return err; } /* build PCM controls */ if (ac97->flags & AC97_AD_MULTI) { unsigned short init_val; if (ac97->flags & AC97_STEREO_MUTES) init_val = 0x9f9f; else init_val = 0x9f1f; for (idx = 0; idx < 2; idx++) if ((err = snd_ctl_add(card, snd_ac97_cnew(&snd_ac97_controls_ad18xx_pcm[idx], ac97))) < 0) return err; ac97->spec.ad18xx.pcmreg[0] = init_val; if (ac97->scaps & AC97_SCAP_SURROUND_DAC) { for (idx = 0; idx < 2; idx++) if ((err = snd_ctl_add(card, snd_ac97_cnew(&snd_ac97_controls_ad18xx_surround[idx], ac97))) < 0) return err; ac97->spec.ad18xx.pcmreg[1] = init_val; } if (ac97->scaps & AC97_SCAP_CENTER_LFE_DAC) { for (idx = 0; idx < 2; idx++) if ((err = snd_ctl_add(card, snd_ac97_cnew(&snd_ac97_controls_ad18xx_center[idx], ac97))) < 0) return err; for (idx = 0; idx < 2; idx++) if ((err = snd_ctl_add(card, snd_ac97_cnew(&snd_ac97_controls_ad18xx_lfe[idx], ac97))) < 0) return err; ac97->spec.ad18xx.pcmreg[2] = init_val; } snd_ac97_write_cache(ac97, AC97_PCM, init_val); } else { if (!(ac97->flags & AC97_HAS_NO_STD_PCM)) { if (ac97->flags & AC97_HAS_NO_PCM_VOL) err = snd_ac97_cmute_new(card, "PCM Playback Switch", AC97_PCM, ac97); else err = snd_ac97_cmix_new(card, "PCM Playback", AC97_PCM, ac97); if (err < 0) return err; } } /* build Capture controls */ if (!(ac97->flags & AC97_HAS_NO_REC_GAIN)) { if ((err = snd_ctl_add(card, snd_ac97_cnew(&snd_ac97_control_capture_src, ac97))) < 0) return err; if (snd_ac97_try_bit(ac97, AC97_REC_GAIN, 15)) { if ((err = snd_ac97_cmute_new(card, "Capture Switch", AC97_REC_GAIN, ac97)) < 0) return err; } if ((err = snd_ctl_add(card, snd_ac97_cnew(&snd_ac97_control_capture_vol, ac97))) < 0) return err; snd_ac97_write_cache(ac97, AC97_REC_SEL, 0x0000); snd_ac97_write_cache(ac97, AC97_REC_GAIN, 0x0000); } /* build MIC Capture controls */ if (snd_ac97_try_volume_mix(ac97, AC97_REC_GAIN_MIC)) { for (idx = 0; idx < 2; idx++) if ((err = snd_ctl_add(card, snd_ac97_cnew(&snd_ac97_controls_mic_capture[idx], ac97))) < 0) return err; snd_ac97_write_cache(ac97, AC97_REC_GAIN_MIC, 0x0000); } /* build PCM out path & mute control */ if (snd_ac97_try_bit(ac97, AC97_GENERAL_PURPOSE, 15)) { if ((err = snd_ctl_add(card, snd_ac97_cnew(&snd_ac97_controls_general[AC97_GENERAL_PCM_OUT], ac97))) < 0) return err; } /* build Simulated Stereo Enhancement control */ if (ac97->caps & 0x0008) { if ((err = snd_ctl_add(card, snd_ac97_cnew(&snd_ac97_controls_general[AC97_GENERAL_STEREO_ENHANCEMENT], ac97))) < 0) return err; } /* build 3D Stereo Enhancement control */ if (snd_ac97_try_bit(ac97, AC97_GENERAL_PURPOSE, 13)) { if ((err = snd_ctl_add(card, snd_ac97_cnew(&snd_ac97_controls_general[AC97_GENERAL_3D], ac97))) < 0) return err; } /* build Loudness control */ if (ac97->caps & 0x0020) { if ((err = snd_ctl_add(card, snd_ac97_cnew(&snd_ac97_controls_general[AC97_GENERAL_LOUDNESS], ac97))) < 0) return err; } /* build Mono output select control */ if (snd_ac97_try_bit(ac97, AC97_GENERAL_PURPOSE, 9)) { if ((err = snd_ctl_add(card, snd_ac97_cnew(&snd_ac97_controls_general[AC97_GENERAL_MONO], ac97))) < 0) return err; } /* build Mic select control */ if (snd_ac97_try_bit(ac97, AC97_GENERAL_PURPOSE, 8)) { if ((err = snd_ctl_add(card, snd_ac97_cnew(&snd_ac97_controls_general[AC97_GENERAL_MIC], ac97))) < 0) return err; } /* build ADC/DAC loopback control */ if (enable_loopback && snd_ac97_try_bit(ac97, AC97_GENERAL_PURPOSE, 7)) { if ((err = snd_ctl_add(card, snd_ac97_cnew(&snd_ac97_controls_general[AC97_GENERAL_LOOPBACK], ac97))) < 0) return err; } snd_ac97_update_bits(ac97, AC97_GENERAL_PURPOSE, ~AC97_GP_DRSS_MASK, 0x0000); /* build 3D controls */ if (ac97->build_ops->build_3d) { ac97->build_ops->build_3d(ac97); } else { if (snd_ac97_try_volume_mix(ac97, AC97_3D_CONTROL)) { unsigned short val; val = 0x0707; snd_ac97_write(ac97, AC97_3D_CONTROL, val); val = snd_ac97_read(ac97, AC97_3D_CONTROL); val = val == 0x0606; if ((err = snd_ctl_add(card, kctl = snd_ac97_cnew(&snd_ac97_controls_3d[0], ac97))) < 0) return err; if (val) kctl->private_value = AC97_3D_CONTROL | (9 << 8) | (7 << 16); if ((err = snd_ctl_add(card, kctl = snd_ac97_cnew(&snd_ac97_controls_3d[1], ac97))) < 0) return err; if (val) kctl->private_value = AC97_3D_CONTROL | (1 << 8) | (7 << 16); snd_ac97_write_cache(ac97, AC97_3D_CONTROL, 0x0000); } } /* build S/PDIF controls */ if ((ac97->ext_id & AC97_EI_SPDIF) && !(ac97->scaps & AC97_SCAP_NO_SPDIF)) { if (ac97->build_ops->build_spdif) { if ((err = ac97->build_ops->build_spdif(ac97)) < 0) return err; } else { for (idx = 0; idx < 5; idx++) if ((err = snd_ctl_add(card, snd_ac97_cnew(&snd_ac97_controls_spdif[idx], ac97))) < 0) return err; if (ac97->build_ops->build_post_spdif) { if ((err = ac97->build_ops->build_post_spdif(ac97)) < 0) return err; } /* set default PCM S/PDIF params */ /* consumer,PCM audio,no copyright,no preemphasis,PCM coder,original,48000Hz */ snd_ac97_write_cache(ac97, AC97_SPDIF, 0x2a20); ac97->rates[AC97_RATES_SPDIF] = snd_ac97_determine_spdif_rates(ac97); } ac97->spdif_status = SNDRV_PCM_DEFAULT_CON_SPDIF; } /* build chip specific controls */ if (ac97->build_ops->build_specific) if ((err = ac97->build_ops->build_specific(ac97)) < 0) return err; if (snd_ac97_try_bit(ac97, AC97_POWERDOWN, 15)) { kctl = snd_ac97_cnew(&snd_ac97_control_eapd, ac97); if (! kctl) return -ENOMEM; if (ac97->scaps & AC97_SCAP_INV_EAPD) set_inv_eapd(ac97, kctl); if ((err = snd_ctl_add(card, kctl)) < 0) return err; } return 0; } static int snd_ac97_modem_build(struct snd_card *card, struct snd_ac97 * ac97) { int err, idx; //printk("AC97_GPIO_CFG = %x\n",snd_ac97_read(ac97,AC97_GPIO_CFG)); snd_ac97_write(ac97, AC97_GPIO_CFG, 0xffff & ~(AC97_GPIO_LINE1_OH)); snd_ac97_write(ac97, AC97_GPIO_POLARITY, 0xffff & ~(AC97_GPIO_LINE1_OH)); snd_ac97_write(ac97, AC97_GPIO_STICKY, 0xffff); snd_ac97_write(ac97, AC97_GPIO_WAKEUP, 0x0); snd_ac97_write(ac97, AC97_MISC_AFE, 0x0); /* build modem switches */ for (idx = 0; idx < ARRAY_SIZE(snd_ac97_controls_modem_switches); idx++) if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_ac97_controls_modem_switches[idx], ac97))) < 0) return err; /* build chip specific controls */ if (ac97->build_ops->build_specific) if ((err = ac97->build_ops->build_specific(ac97)) < 0) return err; return 0; } static int snd_ac97_test_rate(struct snd_ac97 *ac97, int reg, int shadow_reg, int rate) { unsigned short val; unsigned int tmp; tmp = ((unsigned int)rate * ac97->bus->clock) / 48000; snd_ac97_write_cache(ac97, reg, tmp & 0xffff); if (shadow_reg) snd_ac97_write_cache(ac97, shadow_reg, tmp & 0xffff); val = snd_ac97_read(ac97, reg); return val == (tmp & 0xffff); } static void snd_ac97_determine_rates(struct snd_ac97 *ac97, int reg, int shadow_reg, unsigned int *r_result) { unsigned int result = 0; unsigned short saved; if (ac97->bus->no_vra) { *r_result = SNDRV_PCM_RATE_48000; if ((ac97->flags & AC97_DOUBLE_RATE) && reg == AC97_PCM_FRONT_DAC_RATE) *r_result |= SNDRV_PCM_RATE_96000; return; } saved = snd_ac97_read(ac97, reg); if ((ac97->ext_id & AC97_EI_DRA) && reg == AC97_PCM_FRONT_DAC_RATE) snd_ac97_update_bits(ac97, AC97_EXTENDED_STATUS, AC97_EA_DRA, 0); /* test a non-standard rate */ if (snd_ac97_test_rate(ac97, reg, shadow_reg, 11000)) result |= SNDRV_PCM_RATE_CONTINUOUS; /* let's try to obtain standard rates */ if (snd_ac97_test_rate(ac97, reg, shadow_reg, 8000)) result |= SNDRV_PCM_RATE_8000; if (snd_ac97_test_rate(ac97, reg, shadow_reg, 11025)) result |= SNDRV_PCM_RATE_11025; if (snd_ac97_test_rate(ac97, reg, shadow_reg, 16000)) result |= SNDRV_PCM_RATE_16000; if (snd_ac97_test_rate(ac97, reg, shadow_reg, 22050)) result |= SNDRV_PCM_RATE_22050; if (snd_ac97_test_rate(ac97, reg, shadow_reg, 32000)) result |= SNDRV_PCM_RATE_32000; if (snd_ac97_test_rate(ac97, reg, shadow_reg, 44100)) result |= SNDRV_PCM_RATE_44100; if (snd_ac97_test_rate(ac97, reg, shadow_reg, 48000)) result |= SNDRV_PCM_RATE_48000; if ((ac97->flags & AC97_DOUBLE_RATE) && reg == AC97_PCM_FRONT_DAC_RATE) { /* test standard double rates */ snd_ac97_update_bits(ac97, AC97_EXTENDED_STATUS, AC97_EA_DRA, AC97_EA_DRA); if (snd_ac97_test_rate(ac97, reg, shadow_reg, 64000 / 2)) result |= SNDRV_PCM_RATE_64000; if (snd_ac97_test_rate(ac97, reg, shadow_reg, 88200 / 2)) result |= SNDRV_PCM_RATE_88200; if (snd_ac97_test_rate(ac97, reg, shadow_reg, 96000 / 2)) result |= SNDRV_PCM_RATE_96000; /* some codecs don't support variable double rates */ if (!snd_ac97_test_rate(ac97, reg, shadow_reg, 76100 / 2)) result &= ~SNDRV_PCM_RATE_CONTINUOUS; snd_ac97_update_bits(ac97, AC97_EXTENDED_STATUS, AC97_EA_DRA, 0); } /* restore the default value */ snd_ac97_write_cache(ac97, reg, saved); if (shadow_reg) snd_ac97_write_cache(ac97, shadow_reg, saved); *r_result = result; } /* check AC97_SPDIF register to accept which sample rates */ static unsigned int snd_ac97_determine_spdif_rates(struct snd_ac97 *ac97) { unsigned int result = 0; int i; static unsigned short ctl_bits[] = { AC97_SC_SPSR_44K, AC97_SC_SPSR_32K, AC97_SC_SPSR_48K }; static unsigned int rate_bits[] = { SNDRV_PCM_RATE_44100, SNDRV_PCM_RATE_32000, SNDRV_PCM_RATE_48000 }; for (i = 0; i < (int)ARRAY_SIZE(ctl_bits); i++) { snd_ac97_update_bits(ac97, AC97_SPDIF, AC97_SC_SPSR_MASK, ctl_bits[i]); if ((snd_ac97_read(ac97, AC97_SPDIF) & AC97_SC_SPSR_MASK) == ctl_bits[i]) result |= rate_bits[i]; } return result; } /* look for the codec id table matching with the given id */ static const struct ac97_codec_id *look_for_codec_id(const struct ac97_codec_id *table, unsigned int id) { const struct ac97_codec_id *pid; for (pid = table; pid->id; pid++) if (pid->id == (id & pid->mask)) return pid; return NULL; } void snd_ac97_get_name(struct snd_ac97 *ac97, unsigned int id, char *name, int modem) { const struct ac97_codec_id *pid; sprintf(name, "0x%x %c%c%c", id, printable(id >> 24), printable(id >> 16), printable(id >> 8)); pid = look_for_codec_id(snd_ac97_codec_id_vendors, id); if (! pid) return; strcpy(name, pid->name); if (ac97 && pid->patch) { if ((modem && (pid->flags & AC97_MODEM_PATCH)) || (! modem && ! (pid->flags & AC97_MODEM_PATCH))) pid->patch(ac97); } pid = look_for_codec_id(snd_ac97_codec_ids, id); if (pid) { strcat(name, " "); strcat(name, pid->name); if (pid->mask != 0xffffffff) sprintf(name + strlen(name), " rev %d", id & ~pid->mask); if (ac97 && pid->patch) { if ((modem && (pid->flags & AC97_MODEM_PATCH)) || (! modem && ! (pid->flags & AC97_MODEM_PATCH))) pid->patch(ac97); } } else sprintf(name + strlen(name), " id %x", id & 0xff); } /** * snd_ac97_get_short_name - retrieve codec name * @ac97: the codec instance * * Returns the short identifying name of the codec. */ const char *snd_ac97_get_short_name(struct snd_ac97 *ac97) { const struct ac97_codec_id *pid; for (pid = snd_ac97_codec_ids; pid->id; pid++) if (pid->id == (ac97->id & pid->mask)) return pid->name; return "unknown codec"; } EXPORT_SYMBOL(snd_ac97_get_short_name); /* wait for a while until registers are accessible after RESET * return 0 if ok, negative not ready */ static int ac97_reset_wait(struct snd_ac97 *ac97, int timeout, int with_modem) { unsigned long end_time; unsigned short val; end_time = jiffies + timeout; do { /* use preliminary reads to settle the communication */ snd_ac97_read(ac97, AC97_RESET); snd_ac97_read(ac97, AC97_VENDOR_ID1); snd_ac97_read(ac97, AC97_VENDOR_ID2); /* modem? */ if (with_modem) { val = snd_ac97_read(ac97, AC97_EXTENDED_MID); if (val != 0xffff && (val & 1) != 0) return 0; } if (ac97->scaps & AC97_SCAP_DETECT_BY_VENDOR) { /* probably only Xbox issue - all registers are read as zero */ val = snd_ac97_read(ac97, AC97_VENDOR_ID1); if (val != 0 && val != 0xffff) return 0; } else { /* because the PCM or MASTER volume registers can be modified, * the REC_GAIN register is used for tests */ /* test if we can write to the record gain volume register */ snd_ac97_write_cache(ac97, AC97_REC_GAIN, 0x8a05); if ((snd_ac97_read(ac97, AC97_REC_GAIN) & 0x7fff) == 0x0a05) return 0; } schedule_timeout_uninterruptible(1); } while (time_after_eq(end_time, jiffies)); return -ENODEV; } /** * snd_ac97_bus - create an AC97 bus component * @card: the card instance * @num: the bus number * @ops: the bus callbacks table * @private_data: private data pointer for the new instance * @rbus: the pointer to store the new AC97 bus instance. * * Creates an AC97 bus component. An struct snd_ac97_bus instance is newly * allocated and initialized. * * The ops table must include valid callbacks (at least read and * write). The other callbacks, wait and reset, are not mandatory. * * The clock is set to 48000. If another clock is needed, set * (*rbus)->clock manually. * * The AC97 bus instance is registered as a low-level device, so you don't * have to release it manually. * * Returns zero if successful, or a negative error code on failure. */ int snd_ac97_bus(struct snd_card *card, int num, struct snd_ac97_bus_ops *ops, void *private_data, struct snd_ac97_bus **rbus) { int err; struct snd_ac97_bus *bus; static struct snd_device_ops dev_ops = { .dev_free = snd_ac97_bus_dev_free, }; snd_assert(card != NULL, return -EINVAL); snd_assert(rbus != NULL, return -EINVAL); bus = kzalloc(sizeof(*bus), GFP_KERNEL); if (bus == NULL) return -ENOMEM; bus->card = card; bus->num = num; bus->ops = ops; bus->private_data = private_data; bus->clock = 48000; spin_lock_init(&bus->bus_lock); snd_ac97_bus_proc_init(bus); if ((err = snd_device_new(card, SNDRV_DEV_BUS, bus, &dev_ops)) < 0) { snd_ac97_bus_free(bus); return err; } *rbus = bus; return 0; } EXPORT_SYMBOL(snd_ac97_bus); /* stop no dev release warning */ static void ac97_device_release(struct device * dev) { } /* register ac97 codec to bus */ static int snd_ac97_dev_register(struct snd_device *device) { struct snd_ac97 *ac97 = device->device_data; int err; ac97->dev.bus = &ac97_bus_type; ac97->dev.parent = ac97->bus->card->dev; ac97->dev.release = ac97_device_release; snprintf(ac97->dev.bus_id, BUS_ID_SIZE, "%d-%d:%s", ac97->bus->card->number, ac97->num, snd_ac97_get_short_name(ac97)); if ((err = device_register(&ac97->dev)) < 0) { snd_printk(KERN_ERR "Can't register ac97 bus\n"); ac97->dev.bus = NULL; return err; } return 0; } /* unregister ac97 codec */ static int snd_ac97_dev_unregister(struct snd_device *device) { struct snd_ac97 *ac97 = device->device_data; if (ac97->dev.bus) device_unregister(&ac97->dev); return snd_ac97_free(ac97); } /* build_ops to do nothing */ static struct snd_ac97_build_ops null_build_ops; /** * snd_ac97_mixer - create an Codec97 component * @bus: the AC97 bus which codec is attached to * @template: the template of ac97, including index, callbacks and * the private data. * @rac97: the pointer to store the new ac97 instance. * * Creates an Codec97 component. An struct snd_ac97 instance is newly * allocated and initialized from the template. The codec * is then initialized by the standard procedure. * * The template must include the codec number (num) and address (addr), * and the private data (private_data). * * The ac97 instance is registered as a low-level device, so you don't * have to release it manually. * * Returns zero if successful, or a negative error code on failure. */ int snd_ac97_mixer(struct snd_ac97_bus *bus, struct snd_ac97_template *template, struct snd_ac97 **rac97) { int err; struct snd_ac97 *ac97; struct snd_card *card; char name[64]; unsigned long end_time; unsigned int reg; const struct ac97_codec_id *pid; static struct snd_device_ops ops = { .dev_free = snd_ac97_dev_free, .dev_register = snd_ac97_dev_register, .dev_unregister = snd_ac97_dev_unregister, }; snd_assert(rac97 != NULL, return -EINVAL); *rac97 = NULL; snd_assert(bus != NULL && template != NULL, return -EINVAL); snd_assert(template->num < 4 && bus->codec[template->num] == NULL, return -EINVAL); card = bus->card; ac97 = kzalloc(sizeof(*ac97), GFP_KERNEL); if (ac97 == NULL) return -ENOMEM; ac97->private_data = template->private_data; ac97->private_free = template->private_free; ac97->bus = bus; ac97->pci = template->pci; ac97->num = template->num; ac97->addr = template->addr; ac97->scaps = template->scaps; ac97->res_table = template->res_table; bus->codec[ac97->num] = ac97; mutex_init(&ac97->reg_mutex); mutex_init(&ac97->page_mutex); #ifdef CONFIG_PCI if (ac97->pci) { pci_read_config_word(ac97->pci, PCI_SUBSYSTEM_VENDOR_ID, &ac97->subsystem_vendor); pci_read_config_word(ac97->pci, PCI_SUBSYSTEM_ID, &ac97->subsystem_device); } #endif if (bus->ops->reset) { bus->ops->reset(ac97); goto __access_ok; } ac97->id = snd_ac97_read(ac97, AC97_VENDOR_ID1) << 16; ac97->id |= snd_ac97_read(ac97, AC97_VENDOR_ID2); if (ac97->id && ac97->id != (unsigned int)-1) { pid = look_for_codec_id(snd_ac97_codec_ids, ac97->id); if (pid && (pid->flags & AC97_DEFAULT_POWER_OFF)) goto __access_ok; } /* reset to defaults */ if (!(ac97->scaps & AC97_SCAP_SKIP_AUDIO)) snd_ac97_write(ac97, AC97_RESET, 0); if (!(ac97->scaps & AC97_SCAP_SKIP_MODEM)) snd_ac97_write(ac97, AC97_EXTENDED_MID, 0); if (bus->ops->wait) bus->ops->wait(ac97); else { udelay(50); if (ac97->scaps & AC97_SCAP_SKIP_AUDIO) err = ac97_reset_wait(ac97, HZ/2, 1); else { err = ac97_reset_wait(ac97, HZ/2, 0); if (err < 0) err = ac97_reset_wait(ac97, HZ/2, 1); } if (err < 0) { snd_printk(KERN_WARNING "AC'97 %d does not respond - RESET\n", ac97->num); /* proceed anyway - it's often non-critical */ } } __access_ok: ac97->id = snd_ac97_read(ac97, AC97_VENDOR_ID1) << 16; ac97->id |= snd_ac97_read(ac97, AC97_VENDOR_ID2); if (! (ac97->scaps & AC97_SCAP_DETECT_BY_VENDOR) && (ac97->id == 0x00000000 || ac97->id == 0xffffffff)) { snd_printk(KERN_ERR "AC'97 %d access is not valid [0x%x], removing mixer.\n", ac97->num, ac97->id); snd_ac97_free(ac97); return -EIO; } pid = look_for_codec_id(snd_ac97_codec_ids, ac97->id); if (pid) ac97->flags |= pid->flags; /* test for AC'97 */ if (!(ac97->scaps & AC97_SCAP_SKIP_AUDIO) && !(ac97->scaps & AC97_SCAP_AUDIO)) { /* test if we can write to the record gain volume register */ snd_ac97_write_cache(ac97, AC97_REC_GAIN, 0x8a06); if (((err = snd_ac97_read(ac97, AC97_REC_GAIN)) & 0x7fff) == 0x0a06) ac97->scaps |= AC97_SCAP_AUDIO; } if (ac97->scaps & AC97_SCAP_AUDIO) { ac97->caps = snd_ac97_read(ac97, AC97_RESET); ac97->ext_id = snd_ac97_read(ac97, AC97_EXTENDED_ID); if (ac97->ext_id == 0xffff) /* invalid combination */ ac97->ext_id = 0; } /* test for MC'97 */ if (!(ac97->scaps & AC97_SCAP_SKIP_MODEM) && !(ac97->scaps & AC97_SCAP_MODEM)) { ac97->ext_mid = snd_ac97_read(ac97, AC97_EXTENDED_MID); if (ac97->ext_mid == 0xffff) /* invalid combination */ ac97->ext_mid = 0; if (ac97->ext_mid & 1) ac97->scaps |= AC97_SCAP_MODEM; } if (!ac97_is_audio(ac97) && !ac97_is_modem(ac97)) { if (!(ac97->scaps & (AC97_SCAP_SKIP_AUDIO|AC97_SCAP_SKIP_MODEM))) snd_printk(KERN_ERR "AC'97 %d access error (not audio or modem codec)\n", ac97->num); snd_ac97_free(ac97); return -EACCES; } if (bus->ops->reset) // FIXME: always skipping? goto __ready_ok; /* FIXME: add powerdown control */ if (ac97_is_audio(ac97)) { /* nothing should be in powerdown mode */ snd_ac97_write_cache(ac97, AC97_POWERDOWN, 0); if (! (ac97->flags & AC97_DEFAULT_POWER_OFF)) { snd_ac97_write_cache(ac97, AC97_RESET, 0); /* reset to defaults */ udelay(100); snd_ac97_write_cache(ac97, AC97_POWERDOWN, 0); } /* nothing should be in powerdown mode */ snd_ac97_write_cache(ac97, AC97_GENERAL_PURPOSE, 0); end_time = jiffies + (HZ / 10); do { if ((snd_ac97_read(ac97, AC97_POWERDOWN) & 0x0f) == 0x0f) goto __ready_ok; schedule_timeout_uninterruptible(1); } while (time_after_eq(end_time, jiffies)); snd_printk(KERN_WARNING "AC'97 %d analog subsections not ready\n", ac97->num); } /* FIXME: add powerdown control */ if (ac97_is_modem(ac97)) { unsigned char tmp; /* nothing should be in powerdown mode */ /* note: it's important to set the rate at first */ tmp = AC97_MEA_GPIO; if (ac97->ext_mid & AC97_MEI_LINE1) { snd_ac97_write_cache(ac97, AC97_LINE1_RATE, 8000); tmp |= AC97_MEA_ADC1 | AC97_MEA_DAC1; } if (ac97->ext_mid & AC97_MEI_LINE2) { snd_ac97_write_cache(ac97, AC97_LINE2_RATE, 8000); tmp |= AC97_MEA_ADC2 | AC97_MEA_DAC2; } if (ac97->ext_mid & AC97_MEI_HANDSET) { snd_ac97_write_cache(ac97, AC97_HANDSET_RATE, 8000); tmp |= AC97_MEA_HADC | AC97_MEA_HDAC; } snd_ac97_write_cache(ac97, AC97_EXTENDED_MSTATUS, 0); udelay(100); /* nothing should be in powerdown mode */ snd_ac97_write_cache(ac97, AC97_EXTENDED_MSTATUS, 0); end_time = jiffies + (HZ / 10); do { if ((snd_ac97_read(ac97, AC97_EXTENDED_MSTATUS) & tmp) == tmp) goto __ready_ok; schedule_timeout_uninterruptible(1); } while (time_after_eq(end_time, jiffies)); snd_printk(KERN_WARNING "MC'97 %d converters and GPIO not ready (0x%x)\n", ac97->num, snd_ac97_read(ac97, AC97_EXTENDED_MSTATUS)); } __ready_ok: if (ac97_is_audio(ac97)) ac97->addr = (ac97->ext_id & AC97_EI_ADDR_MASK) >> AC97_EI_ADDR_SHIFT; else ac97->addr = (ac97->ext_mid & AC97_MEI_ADDR_MASK) >> AC97_MEI_ADDR_SHIFT; if (ac97->ext_id & 0x01c9) { /* L/R, MIC, SDAC, LDAC VRA support */ reg = snd_ac97_read(ac97, AC97_EXTENDED_STATUS); reg |= ac97->ext_id & 0x01c0; /* LDAC/SDAC/CDAC */ if (! bus->no_vra) reg |= ac97->ext_id & 0x0009; /* VRA/VRM */ snd_ac97_write_cache(ac97, AC97_EXTENDED_STATUS, reg); } if ((ac97->ext_id & AC97_EI_DRA) && bus->dra) { /* Intel controllers require double rate data to be put in * slots 7+8, so let's hope the codec supports it. */ snd_ac97_update_bits(ac97, AC97_GENERAL_PURPOSE, AC97_GP_DRSS_MASK, AC97_GP_DRSS_78); if ((snd_ac97_read(ac97, AC97_GENERAL_PURPOSE) & AC97_GP_DRSS_MASK) == AC97_GP_DRSS_78) ac97->flags |= AC97_DOUBLE_RATE; /* restore to slots 10/11 to avoid the confliction with surrounds */ snd_ac97_update_bits(ac97, AC97_GENERAL_PURPOSE, AC97_GP_DRSS_MASK, 0); } if (ac97->ext_id & AC97_EI_VRA) { /* VRA support */ snd_ac97_determine_rates(ac97, AC97_PCM_FRONT_DAC_RATE, 0, &ac97->rates[AC97_RATES_FRONT_DAC]); snd_ac97_determine_rates(ac97, AC97_PCM_LR_ADC_RATE, 0, &ac97->rates[AC97_RATES_ADC]); } else { ac97->rates[AC97_RATES_FRONT_DAC] = SNDRV_PCM_RATE_48000; if (ac97->flags & AC97_DOUBLE_RATE) ac97->rates[AC97_RATES_FRONT_DAC] |= SNDRV_PCM_RATE_96000; ac97->rates[AC97_RATES_ADC] = SNDRV_PCM_RATE_48000; } if (ac97->ext_id & AC97_EI_SPDIF) { /* codec specific code (patch) should override these values */ ac97->rates[AC97_RATES_SPDIF] = SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_32000; } if (ac97->ext_id & AC97_EI_VRM) { /* MIC VRA support */ snd_ac97_determine_rates(ac97, AC97_PCM_MIC_ADC_RATE, 0, &ac97->rates[AC97_RATES_MIC_ADC]); } else { ac97->rates[AC97_RATES_MIC_ADC] = SNDRV_PCM_RATE_48000; } if (ac97->ext_id & AC97_EI_SDAC) { /* SDAC support */ snd_ac97_determine_rates(ac97, AC97_PCM_SURR_DAC_RATE, AC97_PCM_FRONT_DAC_RATE, &ac97->rates[AC97_RATES_SURR_DAC]); ac97->scaps |= AC97_SCAP_SURROUND_DAC; } if (ac97->ext_id & AC97_EI_LDAC) { /* LDAC support */ snd_ac97_determine_rates(ac97, AC97_PCM_LFE_DAC_RATE, AC97_PCM_FRONT_DAC_RATE, &ac97->rates[AC97_RATES_LFE_DAC]); ac97->scaps |= AC97_SCAP_CENTER_LFE_DAC; } /* additional initializations */ if (bus->ops->init) bus->ops->init(ac97); snd_ac97_get_name(ac97, ac97->id, name, !ac97_is_audio(ac97)); snd_ac97_get_name(NULL, ac97->id, name, !ac97_is_audio(ac97)); // ac97->id might be changed in the special setup code if (! ac97->build_ops) ac97->build_ops = &null_build_ops; if (ac97_is_audio(ac97)) { char comp[16]; if (card->mixername[0] == '\0') { strcpy(card->mixername, name); } else { if (strlen(card->mixername) + 1 + strlen(name) + 1 <= sizeof(card->mixername)) { strcat(card->mixername, ","); strcat(card->mixername, name); } } sprintf(comp, "AC97a:%08x", ac97->id); if ((err = snd_component_add(card, comp)) < 0) { snd_ac97_free(ac97); return err; } if (snd_ac97_mixer_build(ac97) < 0) { snd_ac97_free(ac97); return -ENOMEM; } } if (ac97_is_modem(ac97)) { char comp[16]; if (card->mixername[0] == '\0') { strcpy(card->mixername, name); } else { if (strlen(card->mixername) + 1 + strlen(name) + 1 <= sizeof(card->mixername)) { strcat(card->mixername, ","); strcat(card->mixername, name); } } sprintf(comp, "AC97m:%08x", ac97->id); if ((err = snd_component_add(card, comp)) < 0) { snd_ac97_free(ac97); return err; } if (snd_ac97_modem_build(card, ac97) < 0) { snd_ac97_free(ac97); return -ENOMEM; } } /* make sure the proper powerdown bits are cleared */ if (ac97->scaps && ac97_is_audio(ac97)) { reg = snd_ac97_read(ac97, AC97_EXTENDED_STATUS); if (ac97->scaps & AC97_SCAP_SURROUND_DAC) reg &= ~AC97_EA_PRJ; if (ac97->scaps & AC97_SCAP_CENTER_LFE_DAC) reg &= ~(AC97_EA_PRI | AC97_EA_PRK); snd_ac97_write_cache(ac97, AC97_EXTENDED_STATUS, reg); } snd_ac97_proc_init(ac97); if ((err = snd_device_new(card, SNDRV_DEV_CODEC, ac97, &ops)) < 0) { snd_ac97_free(ac97); return err; } *rac97 = ac97; return 0; } EXPORT_SYMBOL(snd_ac97_mixer); /* * Power down the chip. * * MASTER and HEADPHONE registers are muted but the register cache values * are not changed, so that the values can be restored in snd_ac97_resume(). */ static void snd_ac97_powerdown(struct snd_ac97 *ac97) { unsigned short power; if (ac97_is_audio(ac97)) { /* some codecs have stereo mute bits */ snd_ac97_write(ac97, AC97_MASTER, 0x9f9f); snd_ac97_write(ac97, AC97_HEADPHONE, 0x9f9f); } power = ac97->regs[AC97_POWERDOWN] | 0x8000; /* EAPD */ power |= 0x4000; /* Headphone amplifier powerdown */ power |= 0x0300; /* ADC & DAC powerdown */ snd_ac97_write(ac97, AC97_POWERDOWN, power); udelay(100); power |= 0x0400; /* Analog Mixer powerdown (Vref on) */ snd_ac97_write(ac97, AC97_POWERDOWN, power); udelay(100); #if 0 /* FIXME: this causes click noises on some boards at resume */ power |= 0x3800; /* AC-link powerdown, internal Clk disable */ snd_ac97_write(ac97, AC97_POWERDOWN, power); #endif } #ifdef CONFIG_PM /** * snd_ac97_suspend - General suspend function for AC97 codec * @ac97: the ac97 instance * * Suspends the codec, power down the chip. */ void snd_ac97_suspend(struct snd_ac97 *ac97) { if (! ac97) return; if (ac97->build_ops->suspend) ac97->build_ops->suspend(ac97); snd_ac97_powerdown(ac97); } EXPORT_SYMBOL(snd_ac97_suspend); /* * restore ac97 status */ void snd_ac97_restore_status(struct snd_ac97 *ac97) { int i; for (i = 2; i < 0x7c ; i += 2) { if (i == AC97_POWERDOWN || i == AC97_EXTENDED_ID) continue; /* restore only accessible registers * some chip (e.g. nm256) may hang up when unsupported registers * are accessed..! */ if (test_bit(i, ac97->reg_accessed)) { snd_ac97_write(ac97, i, ac97->regs[i]); snd_ac97_read(ac97, i); } } } /* * restore IEC958 status */ void snd_ac97_restore_iec958(struct snd_ac97 *ac97) { if (ac97->ext_id & AC97_EI_SPDIF) { if (ac97->regs[AC97_EXTENDED_STATUS] & AC97_EA_SPDIF) { /* reset spdif status */ snd_ac97_update_bits(ac97, AC97_EXTENDED_STATUS, AC97_EA_SPDIF, 0); snd_ac97_write(ac97, AC97_EXTENDED_STATUS, ac97->regs[AC97_EXTENDED_STATUS]); if (ac97->flags & AC97_CS_SPDIF) snd_ac97_write(ac97, AC97_CSR_SPDIF, ac97->regs[AC97_CSR_SPDIF]); else snd_ac97_write(ac97, AC97_SPDIF, ac97->regs[AC97_SPDIF]); snd_ac97_update_bits(ac97, AC97_EXTENDED_STATUS, AC97_EA_SPDIF, AC97_EA_SPDIF); /* turn on again */ } } } /** * snd_ac97_resume - General resume function for AC97 codec * @ac97: the ac97 instance * * Do the standard resume procedure, power up and restoring the * old register values. */ void snd_ac97_resume(struct snd_ac97 *ac97) { unsigned long end_time; if (! ac97) return; if (ac97->bus->ops->reset) { ac97->bus->ops->reset(ac97); goto __reset_ready; } snd_ac97_write(ac97, AC97_POWERDOWN, 0); if (! (ac97->flags & AC97_DEFAULT_POWER_OFF)) { snd_ac97_write(ac97, AC97_RESET, 0); udelay(100); snd_ac97_write(ac97, AC97_POWERDOWN, 0); } snd_ac97_write(ac97, AC97_GENERAL_PURPOSE, 0); snd_ac97_write(ac97, AC97_POWERDOWN, ac97->regs[AC97_POWERDOWN]); if (ac97_is_audio(ac97)) { ac97->bus->ops->write(ac97, AC97_MASTER, 0x8101); end_time = jiffies + msecs_to_jiffies(100); do { if (snd_ac97_read(ac97, AC97_MASTER) == 0x8101) break; schedule_timeout_uninterruptible(1); } while (time_after_eq(end_time, jiffies)); /* FIXME: extra delay */ ac97->bus->ops->write(ac97, AC97_MASTER, 0x8000); if (snd_ac97_read(ac97, AC97_MASTER) != 0x8000) msleep(250); } else { end_time = jiffies + msecs_to_jiffies(100); do { unsigned short val = snd_ac97_read(ac97, AC97_EXTENDED_MID); if (val != 0xffff && (val & 1) != 0) break; schedule_timeout_uninterruptible(1); } while (time_after_eq(end_time, jiffies)); } __reset_ready: if (ac97->bus->ops->init) ac97->bus->ops->init(ac97); if (ac97->build_ops->resume) ac97->build_ops->resume(ac97); else { snd_ac97_restore_status(ac97); snd_ac97_restore_iec958(ac97); } } EXPORT_SYMBOL(snd_ac97_resume); #endif /* * Hardware tuning */ static void set_ctl_name(char *dst, const char *src, const char *suffix) { if (suffix) sprintf(dst, "%s %s", src, suffix); else strcpy(dst, src); } /* remove the control with the given name and optional suffix */ int snd_ac97_remove_ctl(struct snd_ac97 *ac97, const char *name, const char *suffix) { struct snd_ctl_elem_id id; memset(&id, 0, sizeof(id)); set_ctl_name(id.name, name, suffix); id.iface = SNDRV_CTL_ELEM_IFACE_MIXER; return snd_ctl_remove_id(ac97->bus->card, &id); } static struct snd_kcontrol *ctl_find(struct snd_ac97 *ac97, const char *name, const char *suffix) { struct snd_ctl_elem_id sid; memset(&sid, 0, sizeof(sid)); set_ctl_name(sid.name, name, suffix); sid.iface = SNDRV_CTL_ELEM_IFACE_MIXER; return snd_ctl_find_id(ac97->bus->card, &sid); } /* rename the control with the given name and optional suffix */ int snd_ac97_rename_ctl(struct snd_ac97 *ac97, const char *src, const char *dst, const char *suffix) { struct snd_kcontrol *kctl = ctl_find(ac97, src, suffix); if (kctl) { set_ctl_name(kctl->id.name, dst, suffix); return 0; } return -ENOENT; } /* rename both Volume and Switch controls - don't check the return value */ void snd_ac97_rename_vol_ctl(struct snd_ac97 *ac97, const char *src, const char *dst) { snd_ac97_rename_ctl(ac97, src, dst, "Switch"); snd_ac97_rename_ctl(ac97, src, dst, "Volume"); } /* swap controls */ int snd_ac97_swap_ctl(struct snd_ac97 *ac97, const char *s1, const char *s2, const char *suffix) { struct snd_kcontrol *kctl1, *kctl2; kctl1 = ctl_find(ac97, s1, suffix); kctl2 = ctl_find(ac97, s2, suffix); if (kctl1 && kctl2) { set_ctl_name(kctl1->id.name, s2, suffix); set_ctl_name(kctl2->id.name, s1, suffix); return 0; } return -ENOENT; } #if 1 /* bind hp and master controls instead of using only hp control */ static int bind_hp_volsw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { int err = snd_ac97_put_volsw(kcontrol, ucontrol); if (err > 0) { unsigned long priv_saved = kcontrol->private_value; kcontrol->private_value = (kcontrol->private_value & ~0xff) | AC97_HEADPHONE; snd_ac97_put_volsw(kcontrol, ucontrol); kcontrol->private_value = priv_saved; } return err; } /* ac97 tune: bind Master and Headphone controls */ static int tune_hp_only(struct snd_ac97 *ac97) { struct snd_kcontrol *msw = ctl_find(ac97, "Master Playback Switch", NULL); struct snd_kcontrol *mvol = ctl_find(ac97, "Master Playback Volume", NULL); if (! msw || ! mvol) return -ENOENT; msw->put = bind_hp_volsw_put; mvol->put = bind_hp_volsw_put; snd_ac97_remove_ctl(ac97, "Headphone Playback", "Switch"); snd_ac97_remove_ctl(ac97, "Headphone Playback", "Volume"); return 0; } #else /* ac97 tune: use Headphone control as master */ static int tune_hp_only(struct snd_ac97 *ac97) { if (ctl_find(ac97, "Headphone Playback Switch", NULL) == NULL) return -ENOENT; snd_ac97_remove_ctl(ac97, "Master Playback", "Switch"); snd_ac97_remove_ctl(ac97, "Master Playback", "Volume"); snd_ac97_rename_vol_ctl(ac97, "Headphone Playback", "Master Playback"); return 0; } #endif /* ac97 tune: swap Headphone and Master controls */ static int tune_swap_hp(struct snd_ac97 *ac97) { if (ctl_find(ac97, "Headphone Playback Switch", NULL) == NULL) return -ENOENT; snd_ac97_rename_vol_ctl(ac97, "Master Playback", "Line-Out Playback"); snd_ac97_rename_vol_ctl(ac97, "Headphone Playback", "Master Playback"); return 0; } /* ac97 tune: swap Surround and Master controls */ static int tune_swap_surround(struct snd_ac97 *ac97) { if (snd_ac97_swap_ctl(ac97, "Master Playback", "Surround Playback", "Switch") || snd_ac97_swap_ctl(ac97, "Master Playback", "Surround Playback", "Volume")) return -ENOENT; return 0; } /* ac97 tune: set up mic sharing for AD codecs */ static int tune_ad_sharing(struct snd_ac97 *ac97) { unsigned short scfg; if ((ac97->id & 0xffffff00) != 0x41445300) { snd_printk(KERN_ERR "ac97_quirk AD_SHARING is only for AD codecs\n"); return -EINVAL; } /* Turn on OMS bit to route microphone to back panel */ scfg = snd_ac97_read(ac97, AC97_AD_SERIAL_CFG); snd_ac97_write_cache(ac97, AC97_AD_SERIAL_CFG, scfg | 0x0200); return 0; } static const struct snd_kcontrol_new snd_ac97_alc_jack_detect = AC97_SINGLE("Jack Detect", AC97_ALC650_CLOCK, 5, 1, 0); /* ac97 tune: set up ALC jack-select */ static int tune_alc_jack(struct snd_ac97 *ac97) { if ((ac97->id & 0xffffff00) != 0x414c4700) { snd_printk(KERN_ERR "ac97_quirk ALC_JACK is only for Realtek codecs\n"); return -EINVAL; } snd_ac97_update_bits(ac97, 0x7a, 0x20, 0x20); /* select jack detect function */ snd_ac97_update_bits(ac97, 0x7a, 0x01, 0x01); /* Line-out auto mute */ if (ac97->id == AC97_ID_ALC658D) snd_ac97_update_bits(ac97, 0x74, 0x0800, 0x0800); return snd_ctl_add(ac97->bus->card, snd_ac97_cnew(&snd_ac97_alc_jack_detect, ac97)); } /* ac97 tune: inversed EAPD bit */ static int tune_inv_eapd(struct snd_ac97 *ac97) { struct snd_kcontrol *kctl = ctl_find(ac97, "External Amplifier", NULL); if (! kctl) return -ENOENT; set_inv_eapd(ac97, kctl); return 0; } static int master_mute_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { int err = snd_ac97_put_volsw(kcontrol, ucontrol); if (err > 0) { struct snd_ac97 *ac97 = snd_kcontrol_chip(kcontrol); int shift = (kcontrol->private_value >> 8) & 0x0f; int rshift = (kcontrol->private_value >> 12) & 0x0f; unsigned short mask; if (shift != rshift) mask = 0x8080; else mask = 0x8000; snd_ac97_update_bits(ac97, AC97_POWERDOWN, 0x8000, (ac97->regs[AC97_MASTER] & mask) == mask ? 0x8000 : 0); } return err; } /* ac97 tune: EAPD controls mute LED bound with the master mute */ static int tune_mute_led(struct snd_ac97 *ac97) { struct snd_kcontrol *msw = ctl_find(ac97, "Master Playback Switch", NULL); if (! msw) return -ENOENT; msw->put = master_mute_sw_put; snd_ac97_remove_ctl(ac97, "External Amplifier", NULL); snd_ac97_update_bits(ac97, AC97_POWERDOWN, 0x8000, 0x8000); /* mute LED on */ return 0; } static int hp_master_mute_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { int err = bind_hp_volsw_put(kcontrol, ucontrol); if (err > 0) { struct snd_ac97 *ac97 = snd_kcontrol_chip(kcontrol); int shift = (kcontrol->private_value >> 8) & 0x0f; int rshift = (kcontrol->private_value >> 12) & 0x0f; unsigned short mask; if (shift != rshift) mask = 0x8080; else mask = 0x8000; snd_ac97_update_bits(ac97, AC97_POWERDOWN, 0x8000, (ac97->regs[AC97_MASTER] & mask) == mask ? 0x8000 : 0); } return err; } static int tune_hp_mute_led(struct snd_ac97 *ac97) { struct snd_kcontrol *msw = ctl_find(ac97, "Master Playback Switch", NULL); struct snd_kcontrol *mvol = ctl_find(ac97, "Master Playback Volume", NULL); if (! msw || ! mvol) return -ENOENT; msw->put = hp_master_mute_sw_put; mvol->put = bind_hp_volsw_put; snd_ac97_remove_ctl(ac97, "External Amplifier", NULL); snd_ac97_remove_ctl(ac97, "Headphone Playback", "Switch"); snd_ac97_remove_ctl(ac97, "Headphone Playback", "Volume"); snd_ac97_update_bits(ac97, AC97_POWERDOWN, 0x8000, 0x8000); /* mute LED on */ return 0; } struct quirk_table { const char *name; int (*func)(struct snd_ac97 *); }; static struct quirk_table applicable_quirks[] = { { "none", NULL }, { "hp_only", tune_hp_only }, { "swap_hp", tune_swap_hp }, { "swap_surround", tune_swap_surround }, { "ad_sharing", tune_ad_sharing }, { "alc_jack", tune_alc_jack }, { "inv_eapd", tune_inv_eapd }, { "mute_led", tune_mute_led }, { "hp_mute_led", tune_hp_mute_led }, }; /* apply the quirk with the given type */ static int apply_quirk(struct snd_ac97 *ac97, int type) { if (type <= 0) return 0; else if (type >= ARRAY_SIZE(applicable_quirks)) return -EINVAL; if (applicable_quirks[type].func) return applicable_quirks[type].func(ac97); return 0; } /* apply the quirk with the given name */ static int apply_quirk_str(struct snd_ac97 *ac97, const char *typestr) { int i; struct quirk_table *q; for (i = 0; i < ARRAY_SIZE(applicable_quirks); i++) { q = &applicable_quirks[i]; if (q->name && ! strcmp(typestr, q->name)) return apply_quirk(ac97, i); } /* for compatibility, accept the numbers, too */ if (*typestr >= '0' && *typestr <= '9') return apply_quirk(ac97, (int)simple_strtoul(typestr, NULL, 10)); return -EINVAL; } /** * snd_ac97_tune_hardware - tune up the hardware * @ac97: the ac97 instance * @quirk: quirk list * @override: explicit quirk value (overrides the list if non-NULL) * * Do some workaround for each pci device, such as renaming of the * headphone (true line-out) control as "Master". * The quirk-list must be terminated with a zero-filled entry. * * Returns zero if successful, or a negative error code on failure. */ int snd_ac97_tune_hardware(struct snd_ac97 *ac97, struct ac97_quirk *quirk, const char *override) { int result; /* quirk overriden? */ if (override && strcmp(override, "-1") && strcmp(override, "default")) { result = apply_quirk_str(ac97, override); if (result < 0) snd_printk(KERN_ERR "applying quirk type %s failed (%d)\n", override, result); return result; } if (! quirk) return -EINVAL; for (; quirk->subvendor; quirk++) { if (quirk->subvendor != ac97->subsystem_vendor) continue; if ((! quirk->mask && quirk->subdevice == ac97->subsystem_device) || quirk->subdevice == (quirk->mask & ac97->subsystem_device)) { if (quirk->codec_id && quirk->codec_id != ac97->id) continue; snd_printdd("ac97 quirk for %s (%04x:%04x)\n", quirk->name, ac97->subsystem_vendor, ac97->subsystem_device); result = apply_quirk(ac97, quirk->type); if (result < 0) snd_printk(KERN_ERR "applying quirk type %d for %s failed (%d)\n", quirk->type, quirk->name, result); return result; } } return 0; } EXPORT_SYMBOL(snd_ac97_tune_hardware); /* * INIT part */ static int __init alsa_ac97_init(void) { return 0; } static void __exit alsa_ac97_exit(void) { } module_init(alsa_ac97_init) module_exit(alsa_ac97_exit)