/* * Read-Copy Update mechanism for mutual exclusion * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, you can access it online at * http://www.gnu.org/licenses/gpl-2.0.html. * * Copyright IBM Corporation, 2008 * * Authors: Dipankar Sarma * Manfred Spraul * Paul E. McKenney Hierarchical version * * Based on the original work by Paul McKenney * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. * * For detailed explanation of Read-Copy Update mechanism see - * Documentation/RCU */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "tree.h" #include "rcu.h" #ifdef MODULE_PARAM_PREFIX #undef MODULE_PARAM_PREFIX #endif #define MODULE_PARAM_PREFIX "rcutree." /* Data structures. */ /* * In order to export the rcu_state name to the tracing tools, it * needs to be added in the __tracepoint_string section. * This requires defining a separate variable tp__varname * that points to the string being used, and this will allow * the tracing userspace tools to be able to decipher the string * address to the matching string. */ #ifdef CONFIG_TRACING # define DEFINE_RCU_TPS(sname) \ static char sname##_varname[] = #sname; \ static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; # define RCU_STATE_NAME(sname) sname##_varname #else # define DEFINE_RCU_TPS(sname) # define RCU_STATE_NAME(sname) __stringify(sname) #endif #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \ DEFINE_RCU_TPS(sname) \ static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \ struct rcu_state sname##_state = { \ .level = { &sname##_state.node[0] }, \ .rda = &sname##_data, \ .call = cr, \ .gp_state = RCU_GP_IDLE, \ .gpnum = 0UL - 300UL, \ .completed = 0UL - 300UL, \ .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT, \ .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \ .name = RCU_STATE_NAME(sname), \ .abbr = sabbr, \ .exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \ .exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \ } RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched); RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh); static struct rcu_state *const rcu_state_p; LIST_HEAD(rcu_struct_flavors); /* Dump rcu_node combining tree at boot to verify correct setup. */ static bool dump_tree; module_param(dump_tree, bool, 0444); /* Control rcu_node-tree auto-balancing at boot time. */ static bool rcu_fanout_exact; module_param(rcu_fanout_exact, bool, 0444); /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */ static int rcu_fanout_leaf = RCU_FANOUT_LEAF; module_param(rcu_fanout_leaf, int, 0444); int rcu_num_lvls __read_mostly = RCU_NUM_LVLS; /* Number of rcu_nodes at specified level. */ int num_rcu_lvl[] = NUM_RCU_LVL_INIT; int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */ /* panic() on RCU Stall sysctl. */ int sysctl_panic_on_rcu_stall __read_mostly; /* * The rcu_scheduler_active variable is initialized to the value * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE, * RCU can assume that there is but one task, allowing RCU to (for example) * optimize synchronize_rcu() to a simple barrier(). When this variable * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required * to detect real grace periods. This variable is also used to suppress * boot-time false positives from lockdep-RCU error checking. Finally, it * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU * is fully initialized, including all of its kthreads having been spawned. */ int rcu_scheduler_active __read_mostly; EXPORT_SYMBOL_GPL(rcu_scheduler_active); /* * The rcu_scheduler_fully_active variable transitions from zero to one * during the early_initcall() processing, which is after the scheduler * is capable of creating new tasks. So RCU processing (for example, * creating tasks for RCU priority boosting) must be delayed until after * rcu_scheduler_fully_active transitions from zero to one. We also * currently delay invocation of any RCU callbacks until after this point. * * It might later prove better for people registering RCU callbacks during * early boot to take responsibility for these callbacks, but one step at * a time. */ static int rcu_scheduler_fully_active __read_mostly; static void rcu_init_new_rnp(struct rcu_node *rnp_leaf); static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf); static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu); static void invoke_rcu_core(void); static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp); static void rcu_report_exp_rdp(struct rcu_state *rsp, struct rcu_data *rdp, bool wake); static void sync_sched_exp_online_cleanup(int cpu); /* rcuc/rcub kthread realtime priority */ static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0; module_param(kthread_prio, int, 0644); /* Delay in jiffies for grace-period initialization delays, debug only. */ static int gp_preinit_delay; module_param(gp_preinit_delay, int, 0444); static int gp_init_delay; module_param(gp_init_delay, int, 0444); static int gp_cleanup_delay; module_param(gp_cleanup_delay, int, 0444); /* * Number of grace periods between delays, normalized by the duration of * the delay. The longer the delay, the more the grace periods between * each delay. The reason for this normalization is that it means that, * for non-zero delays, the overall slowdown of grace periods is constant * regardless of the duration of the delay. This arrangement balances * the need for long delays to increase some race probabilities with the * need for fast grace periods to increase other race probabilities. */ #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */ /* * Track the rcutorture test sequence number and the update version * number within a given test. The rcutorture_testseq is incremented * on every rcutorture module load and unload, so has an odd value * when a test is running. The rcutorture_vernum is set to zero * when rcutorture starts and is incremented on each rcutorture update. * These variables enable correlating rcutorture output with the * RCU tracing information. */ unsigned long rcutorture_testseq; unsigned long rcutorture_vernum; /* * Compute the mask of online CPUs for the specified rcu_node structure. * This will not be stable unless the rcu_node structure's ->lock is * held, but the bit corresponding to the current CPU will be stable * in most contexts. */ unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp) { return READ_ONCE(rnp->qsmaskinitnext); } /* * Return true if an RCU grace period is in progress. The READ_ONCE()s * permit this function to be invoked without holding the root rcu_node * structure's ->lock, but of course results can be subject to change. */ static int rcu_gp_in_progress(struct rcu_state *rsp) { return rcu_seq_state(rcu_seq_current(&rsp->gp_seq)); } /* * Note a quiescent state. Because we do not need to know * how many quiescent states passed, just if there was at least * one since the start of the grace period, this just sets a flag. * The caller must have disabled preemption. */ void rcu_sched_qs(void) { RCU_LOCKDEP_WARN(preemptible(), "rcu_sched_qs() invoked with preemption enabled!!!"); if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s)) return; trace_rcu_grace_period(TPS("rcu_sched"), __this_cpu_read(rcu_sched_data.gpnum), TPS("cpuqs")); __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false); if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)) return; __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false); rcu_report_exp_rdp(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data), true); } void rcu_bh_qs(void) { RCU_LOCKDEP_WARN(preemptible(), "rcu_bh_qs() invoked with preemption enabled!!!"); if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) { trace_rcu_grace_period(TPS("rcu_bh"), __this_cpu_read(rcu_bh_data.gpnum), TPS("cpuqs")); __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false); } } /* * Steal a bit from the bottom of ->dynticks for idle entry/exit * control. Initially this is for TLB flushing. */ #define RCU_DYNTICK_CTRL_MASK 0x1 #define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1) #ifndef rcu_eqs_special_exit #define rcu_eqs_special_exit() do { } while (0) #endif static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = { .dynticks_nesting = 1, .dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE, .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR), }; /* * Record entry into an extended quiescent state. This is only to be * called when not already in an extended quiescent state. */ static void rcu_dynticks_eqs_enter(void) { struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); int seq; /* * CPUs seeing atomic_add_return() must see prior RCU read-side * critical sections, and we also must force ordering with the * next idle sojourn. */ seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks); /* Better be in an extended quiescent state! */ WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && (seq & RCU_DYNTICK_CTRL_CTR)); /* Better not have special action (TLB flush) pending! */ WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && (seq & RCU_DYNTICK_CTRL_MASK)); } /* * Record exit from an extended quiescent state. This is only to be * called from an extended quiescent state. */ static void rcu_dynticks_eqs_exit(void) { struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); int seq; /* * CPUs seeing atomic_add_return() must see prior idle sojourns, * and we also must force ordering with the next RCU read-side * critical section. */ seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks); WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !(seq & RCU_DYNTICK_CTRL_CTR)); if (seq & RCU_DYNTICK_CTRL_MASK) { atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdtp->dynticks); smp_mb__after_atomic(); /* _exit after clearing mask. */ /* Prefer duplicate flushes to losing a flush. */ rcu_eqs_special_exit(); } } /* * Reset the current CPU's ->dynticks counter to indicate that the * newly onlined CPU is no longer in an extended quiescent state. * This will either leave the counter unchanged, or increment it * to the next non-quiescent value. * * The non-atomic test/increment sequence works because the upper bits * of the ->dynticks counter are manipulated only by the corresponding CPU, * or when the corresponding CPU is offline. */ static void rcu_dynticks_eqs_online(void) { struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); if (atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR) return; atomic_add(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks); } /* * Is the current CPU in an extended quiescent state? * * No ordering, as we are sampling CPU-local information. */ bool rcu_dynticks_curr_cpu_in_eqs(void) { struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); return !(atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR); } /* * Snapshot the ->dynticks counter with full ordering so as to allow * stable comparison of this counter with past and future snapshots. */ int rcu_dynticks_snap(struct rcu_dynticks *rdtp) { int snap = atomic_add_return(0, &rdtp->dynticks); return snap & ~RCU_DYNTICK_CTRL_MASK; } /* * Return true if the snapshot returned from rcu_dynticks_snap() * indicates that RCU is in an extended quiescent state. */ static bool rcu_dynticks_in_eqs(int snap) { return !(snap & RCU_DYNTICK_CTRL_CTR); } /* * Return true if the CPU corresponding to the specified rcu_dynticks * structure has spent some time in an extended quiescent state since * rcu_dynticks_snap() returned the specified snapshot. */ static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap) { return snap != rcu_dynticks_snap(rdtp); } /* * Do a double-increment of the ->dynticks counter to emulate a * momentary idle-CPU quiescent state. */ static void rcu_dynticks_momentary_idle(void) { struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); int special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks); /* It is illegal to call this from idle state. */ WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR)); } /* * Set the special (bottom) bit of the specified CPU so that it * will take special action (such as flushing its TLB) on the * next exit from an extended quiescent state. Returns true if * the bit was successfully set, or false if the CPU was not in * an extended quiescent state. */ bool rcu_eqs_special_set(int cpu) { int old; int new; struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu); do { old = atomic_read(&rdtp->dynticks); if (old & RCU_DYNTICK_CTRL_CTR) return false; new = old | RCU_DYNTICK_CTRL_MASK; } while (atomic_cmpxchg(&rdtp->dynticks, old, new) != old); return true; } /* * Let the RCU core know that this CPU has gone through the scheduler, * which is a quiescent state. This is called when the need for a * quiescent state is urgent, so we burn an atomic operation and full * memory barriers to let the RCU core know about it, regardless of what * this CPU might (or might not) do in the near future. * * We inform the RCU core by emulating a zero-duration dyntick-idle period. * * The caller must have disabled interrupts. */ static void rcu_momentary_dyntick_idle(void) { raw_cpu_write(rcu_dynticks.rcu_need_heavy_qs, false); rcu_dynticks_momentary_idle(); } /* * Note a context switch. This is a quiescent state for RCU-sched, * and requires special handling for preemptible RCU. * The caller must have disabled interrupts. */ void rcu_note_context_switch(bool preempt) { barrier(); /* Avoid RCU read-side critical sections leaking down. */ trace_rcu_utilization(TPS("Start context switch")); rcu_sched_qs(); rcu_preempt_note_context_switch(preempt); /* Load rcu_urgent_qs before other flags. */ if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) goto out; this_cpu_write(rcu_dynticks.rcu_urgent_qs, false); if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) rcu_momentary_dyntick_idle(); this_cpu_inc(rcu_dynticks.rcu_qs_ctr); if (!preempt) rcu_note_voluntary_context_switch_lite(current); out: trace_rcu_utilization(TPS("End context switch")); barrier(); /* Avoid RCU read-side critical sections leaking up. */ } EXPORT_SYMBOL_GPL(rcu_note_context_switch); /* * Register a quiescent state for all RCU flavors. If there is an * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight * dyntick-idle quiescent state visible to other CPUs (but only for those * RCU flavors in desperate need of a quiescent state, which will normally * be none of them). Either way, do a lightweight quiescent state for * all RCU flavors. * * The barrier() calls are redundant in the common case when this is * called externally, but just in case this is called from within this * file. * */ void rcu_all_qs(void) { unsigned long flags; if (!raw_cpu_read(rcu_dynticks.rcu_urgent_qs)) return; preempt_disable(); /* Load rcu_urgent_qs before other flags. */ if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) { preempt_enable(); return; } this_cpu_write(rcu_dynticks.rcu_urgent_qs, false); barrier(); /* Avoid RCU read-side critical sections leaking down. */ if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) { local_irq_save(flags); rcu_momentary_dyntick_idle(); local_irq_restore(flags); } if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))) rcu_sched_qs(); this_cpu_inc(rcu_dynticks.rcu_qs_ctr); barrier(); /* Avoid RCU read-side critical sections leaking up. */ preempt_enable(); } EXPORT_SYMBOL_GPL(rcu_all_qs); #define DEFAULT_RCU_BLIMIT 10 /* Maximum callbacks per rcu_do_batch. */ static long blimit = DEFAULT_RCU_BLIMIT; #define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */ static long qhimark = DEFAULT_RCU_QHIMARK; #define DEFAULT_RCU_QLOMARK 100 /* Once only this many pending, use blimit. */ static long qlowmark = DEFAULT_RCU_QLOMARK; module_param(blimit, long, 0444); module_param(qhimark, long, 0444); module_param(qlowmark, long, 0444); static ulong jiffies_till_first_fqs = ULONG_MAX; static ulong jiffies_till_next_fqs = ULONG_MAX; static bool rcu_kick_kthreads; module_param(jiffies_till_first_fqs, ulong, 0644); module_param(jiffies_till_next_fqs, ulong, 0644); module_param(rcu_kick_kthreads, bool, 0644); /* * How long the grace period must be before we start recruiting * quiescent-state help from rcu_note_context_switch(). */ static ulong jiffies_till_sched_qs = HZ / 10; module_param(jiffies_till_sched_qs, ulong, 0444); static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp)); static void force_quiescent_state(struct rcu_state *rsp); static int rcu_pending(void); /* * Return the number of RCU GPs completed thus far for debug & stats. */ unsigned long rcu_get_gp_seq(void) { return rcu_seq_ctr(READ_ONCE(rcu_state_p->gp_seq)); } EXPORT_SYMBOL_GPL(rcu_get_gp_seq); /* * Return the number of RCU-sched GPs completed thus far for debug & stats. */ unsigned long rcu_sched_get_gp_seq(void) { return rcu_seq_ctr(READ_ONCE(rcu_sched_state.gp_seq)); } EXPORT_SYMBOL_GPL(rcu_sched_get_gp_seq); /* * Return the number of RCU-bh GPs completed thus far for debug & stats. */ unsigned long rcu_bh_get_gp_seq(void) { return rcu_seq_ctr(READ_ONCE(rcu_bh_state.gp_seq)); } EXPORT_SYMBOL_GPL(rcu_bh_get_gp_seq); /* * Return the number of RCU expedited batches completed thus far for * debug & stats. Odd numbers mean that a batch is in progress, even * numbers mean idle. The value returned will thus be roughly double * the cumulative batches since boot. */ unsigned long rcu_exp_batches_completed(void) { return rcu_state_p->expedited_sequence; } EXPORT_SYMBOL_GPL(rcu_exp_batches_completed); /* * Return the number of RCU-sched expedited batches completed thus far * for debug & stats. Similar to rcu_exp_batches_completed(). */ unsigned long rcu_exp_batches_completed_sched(void) { return rcu_sched_state.expedited_sequence; } EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched); /* * Force a quiescent state. */ void rcu_force_quiescent_state(void) { force_quiescent_state(rcu_state_p); } EXPORT_SYMBOL_GPL(rcu_force_quiescent_state); /* * Force a quiescent state for RCU BH. */ void rcu_bh_force_quiescent_state(void) { force_quiescent_state(&rcu_bh_state); } EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state); /* * Force a quiescent state for RCU-sched. */ void rcu_sched_force_quiescent_state(void) { force_quiescent_state(&rcu_sched_state); } EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state); /* * Show the state of the grace-period kthreads. */ void show_rcu_gp_kthreads(void) { struct rcu_state *rsp; for_each_rcu_flavor(rsp) { pr_info("%s: wait state: %d ->state: %#lx\n", rsp->name, rsp->gp_state, rsp->gp_kthread->state); /* sched_show_task(rsp->gp_kthread); */ } } EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads); /* * Record the number of times rcutorture tests have been initiated and * terminated. This information allows the debugfs tracing stats to be * correlated to the rcutorture messages, even when the rcutorture module * is being repeatedly loaded and unloaded. In other words, we cannot * store this state in rcutorture itself. */ void rcutorture_record_test_transition(void) { rcutorture_testseq++; rcutorture_vernum = 0; } EXPORT_SYMBOL_GPL(rcutorture_record_test_transition); /* * Send along grace-period-related data for rcutorture diagnostics. */ void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, unsigned long *gpnum, unsigned long *completed) { struct rcu_state *rsp = NULL; switch (test_type) { case RCU_FLAVOR: rsp = rcu_state_p; break; case RCU_BH_FLAVOR: rsp = &rcu_bh_state; break; case RCU_SCHED_FLAVOR: rsp = &rcu_sched_state; break; default: break; } if (rsp == NULL) return; *flags = READ_ONCE(rsp->gp_flags); *gpnum = READ_ONCE(rsp->gpnum); *completed = READ_ONCE(rsp->completed); } EXPORT_SYMBOL_GPL(rcutorture_get_gp_data); /* * Record the number of writer passes through the current rcutorture test. * This is also used to correlate debugfs tracing stats with the rcutorture * messages. */ void rcutorture_record_progress(unsigned long vernum) { rcutorture_vernum++; } EXPORT_SYMBOL_GPL(rcutorture_record_progress); /* * Return the root node of the specified rcu_state structure. */ static struct rcu_node *rcu_get_root(struct rcu_state *rsp) { return &rsp->node[0]; } /* * Enter an RCU extended quiescent state, which can be either the * idle loop or adaptive-tickless usermode execution. * * We crowbar the ->dynticks_nmi_nesting field to zero to allow for * the possibility of usermode upcalls having messed up our count * of interrupt nesting level during the prior busy period. */ static void rcu_eqs_enter(bool user) { struct rcu_state *rsp; struct rcu_data *rdp; struct rcu_dynticks *rdtp; rdtp = this_cpu_ptr(&rcu_dynticks); WRITE_ONCE(rdtp->dynticks_nmi_nesting, 0); WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && rdtp->dynticks_nesting == 0); if (rdtp->dynticks_nesting != 1) { rdtp->dynticks_nesting--; return; } lockdep_assert_irqs_disabled(); trace_rcu_dyntick(TPS("Start"), rdtp->dynticks_nesting, 0, rdtp->dynticks); WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current)); for_each_rcu_flavor(rsp) { rdp = this_cpu_ptr(rsp->rda); do_nocb_deferred_wakeup(rdp); } rcu_prepare_for_idle(); WRITE_ONCE(rdtp->dynticks_nesting, 0); /* Avoid irq-access tearing. */ rcu_dynticks_eqs_enter(); rcu_dynticks_task_enter(); } /** * rcu_idle_enter - inform RCU that current CPU is entering idle * * Enter idle mode, in other words, -leave- the mode in which RCU * read-side critical sections can occur. (Though RCU read-side * critical sections can occur in irq handlers in idle, a possibility * handled by irq_enter() and irq_exit().) * * If you add or remove a call to rcu_idle_enter(), be sure to test with * CONFIG_RCU_EQS_DEBUG=y. */ void rcu_idle_enter(void) { lockdep_assert_irqs_disabled(); rcu_eqs_enter(false); } #ifdef CONFIG_NO_HZ_FULL /** * rcu_user_enter - inform RCU that we are resuming userspace. * * Enter RCU idle mode right before resuming userspace. No use of RCU * is permitted between this call and rcu_user_exit(). This way the * CPU doesn't need to maintain the tick for RCU maintenance purposes * when the CPU runs in userspace. * * If you add or remove a call to rcu_user_enter(), be sure to test with * CONFIG_RCU_EQS_DEBUG=y. */ void rcu_user_enter(void) { lockdep_assert_irqs_disabled(); rcu_eqs_enter(true); } #endif /* CONFIG_NO_HZ_FULL */ /** * rcu_nmi_exit - inform RCU of exit from NMI context * * If we are returning from the outermost NMI handler that interrupted an * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting * to let the RCU grace-period handling know that the CPU is back to * being RCU-idle. * * If you add or remove a call to rcu_nmi_exit(), be sure to test * with CONFIG_RCU_EQS_DEBUG=y. */ void rcu_nmi_exit(void) { struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); /* * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks. * (We are exiting an NMI handler, so RCU better be paying attention * to us!) */ WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0); WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs()); /* * If the nesting level is not 1, the CPU wasn't RCU-idle, so * leave it in non-RCU-idle state. */ if (rdtp->dynticks_nmi_nesting != 1) { trace_rcu_dyntick(TPS("--="), rdtp->dynticks_nmi_nesting, rdtp->dynticks_nmi_nesting - 2, rdtp->dynticks); WRITE_ONCE(rdtp->dynticks_nmi_nesting, /* No store tearing. */ rdtp->dynticks_nmi_nesting - 2); return; } /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */ trace_rcu_dyntick(TPS("Startirq"), rdtp->dynticks_nmi_nesting, 0, rdtp->dynticks); WRITE_ONCE(rdtp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */ rcu_dynticks_eqs_enter(); } /** * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle * * Exit from an interrupt handler, which might possibly result in entering * idle mode, in other words, leaving the mode in which read-side critical * sections can occur. The caller must have disabled interrupts. * * This code assumes that the idle loop never does anything that might * result in unbalanced calls to irq_enter() and irq_exit(). If your * architecture's idle loop violates this assumption, RCU will give you what * you deserve, good and hard. But very infrequently and irreproducibly. * * Use things like work queues to work around this limitation. * * You have been warned. * * If you add or remove a call to rcu_irq_exit(), be sure to test with * CONFIG_RCU_EQS_DEBUG=y. */ void rcu_irq_exit(void) { struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); lockdep_assert_irqs_disabled(); if (rdtp->dynticks_nmi_nesting == 1) rcu_prepare_for_idle(); rcu_nmi_exit(); if (rdtp->dynticks_nmi_nesting == 0) rcu_dynticks_task_enter(); } /* * Wrapper for rcu_irq_exit() where interrupts are enabled. * * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test * with CONFIG_RCU_EQS_DEBUG=y. */ void rcu_irq_exit_irqson(void) { unsigned long flags; local_irq_save(flags); rcu_irq_exit(); local_irq_restore(flags); } /* * Exit an RCU extended quiescent state, which can be either the * idle loop or adaptive-tickless usermode execution. * * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to * allow for the possibility of usermode upcalls messing up our count of * interrupt nesting level during the busy period that is just now starting. */ static void rcu_eqs_exit(bool user) { struct rcu_dynticks *rdtp; long oldval; lockdep_assert_irqs_disabled(); rdtp = this_cpu_ptr(&rcu_dynticks); oldval = rdtp->dynticks_nesting; WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0); if (oldval) { rdtp->dynticks_nesting++; return; } rcu_dynticks_task_exit(); rcu_dynticks_eqs_exit(); rcu_cleanup_after_idle(); trace_rcu_dyntick(TPS("End"), rdtp->dynticks_nesting, 1, rdtp->dynticks); WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current)); WRITE_ONCE(rdtp->dynticks_nesting, 1); WRITE_ONCE(rdtp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE); } /** * rcu_idle_exit - inform RCU that current CPU is leaving idle * * Exit idle mode, in other words, -enter- the mode in which RCU * read-side critical sections can occur. * * If you add or remove a call to rcu_idle_exit(), be sure to test with * CONFIG_RCU_EQS_DEBUG=y. */ void rcu_idle_exit(void) { unsigned long flags; local_irq_save(flags); rcu_eqs_exit(false); local_irq_restore(flags); } #ifdef CONFIG_NO_HZ_FULL /** * rcu_user_exit - inform RCU that we are exiting userspace. * * Exit RCU idle mode while entering the kernel because it can * run a RCU read side critical section anytime. * * If you add or remove a call to rcu_user_exit(), be sure to test with * CONFIG_RCU_EQS_DEBUG=y. */ void rcu_user_exit(void) { rcu_eqs_exit(1); } #endif /* CONFIG_NO_HZ_FULL */ /** * rcu_nmi_enter - inform RCU of entry to NMI context * * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know * that the CPU is active. This implementation permits nested NMIs, as * long as the nesting level does not overflow an int. (You will probably * run out of stack space first.) * * If you add or remove a call to rcu_nmi_enter(), be sure to test * with CONFIG_RCU_EQS_DEBUG=y. */ void rcu_nmi_enter(void) { struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); long incby = 2; /* Complain about underflow. */ WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0); /* * If idle from RCU viewpoint, atomically increment ->dynticks * to mark non-idle and increment ->dynticks_nmi_nesting by one. * Otherwise, increment ->dynticks_nmi_nesting by two. This means * if ->dynticks_nmi_nesting is equal to one, we are guaranteed * to be in the outermost NMI handler that interrupted an RCU-idle * period (observation due to Andy Lutomirski). */ if (rcu_dynticks_curr_cpu_in_eqs()) { rcu_dynticks_eqs_exit(); incby = 1; } trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="), rdtp->dynticks_nmi_nesting, rdtp->dynticks_nmi_nesting + incby, rdtp->dynticks); WRITE_ONCE(rdtp->dynticks_nmi_nesting, /* Prevent store tearing. */ rdtp->dynticks_nmi_nesting + incby); barrier(); } /** * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle * * Enter an interrupt handler, which might possibly result in exiting * idle mode, in other words, entering the mode in which read-side critical * sections can occur. The caller must have disabled interrupts. * * Note that the Linux kernel is fully capable of entering an interrupt * handler that it never exits, for example when doing upcalls to user mode! * This code assumes that the idle loop never does upcalls to user mode. * If your architecture's idle loop does do upcalls to user mode (or does * anything else that results in unbalanced calls to the irq_enter() and * irq_exit() functions), RCU will give you what you deserve, good and hard. * But very infrequently and irreproducibly. * * Use things like work queues to work around this limitation. * * You have been warned. * * If you add or remove a call to rcu_irq_enter(), be sure to test with * CONFIG_RCU_EQS_DEBUG=y. */ void rcu_irq_enter(void) { struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks); lockdep_assert_irqs_disabled(); if (rdtp->dynticks_nmi_nesting == 0) rcu_dynticks_task_exit(); rcu_nmi_enter(); if (rdtp->dynticks_nmi_nesting == 1) rcu_cleanup_after_idle(); } /* * Wrapper for rcu_irq_enter() where interrupts are enabled. * * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test * with CONFIG_RCU_EQS_DEBUG=y. */ void rcu_irq_enter_irqson(void) { unsigned long flags; local_irq_save(flags); rcu_irq_enter(); local_irq_restore(flags); } /** * rcu_is_watching - see if RCU thinks that the current CPU is idle * * Return true if RCU is watching the running CPU, which means that this * CPU can safely enter RCU read-side critical sections. In other words, * if the current CPU is in its idle loop and is neither in an interrupt * or NMI handler, return true. */ bool notrace rcu_is_watching(void) { bool ret; preempt_disable_notrace(); ret = !rcu_dynticks_curr_cpu_in_eqs(); preempt_enable_notrace(); return ret; } EXPORT_SYMBOL_GPL(rcu_is_watching); /* * If a holdout task is actually running, request an urgent quiescent * state from its CPU. This is unsynchronized, so migrations can cause * the request to go to the wrong CPU. Which is OK, all that will happen * is that the CPU's next context switch will be a bit slower and next * time around this task will generate another request. */ void rcu_request_urgent_qs_task(struct task_struct *t) { int cpu; barrier(); cpu = task_cpu(t); if (!task_curr(t)) return; /* This task is not running on that CPU. */ smp_store_release(per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, cpu), true); } #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) /* * Is the current CPU online? Disable preemption to avoid false positives * that could otherwise happen due to the current CPU number being sampled, * this task being preempted, its old CPU being taken offline, resuming * on some other CPU, then determining that its old CPU is now offline. * It is OK to use RCU on an offline processor during initial boot, hence * the check for rcu_scheduler_fully_active. Note also that it is OK * for a CPU coming online to use RCU for one jiffy prior to marking itself * online in the cpu_online_mask. Similarly, it is OK for a CPU going * offline to continue to use RCU for one jiffy after marking itself * offline in the cpu_online_mask. This leniency is necessary given the * non-atomic nature of the online and offline processing, for example, * the fact that a CPU enters the scheduler after completing the teardown * of the CPU. * * This is also why RCU internally marks CPUs online during in the * preparation phase and offline after the CPU has been taken down. * * Disable checking if in an NMI handler because we cannot safely report * errors from NMI handlers anyway. */ bool rcu_lockdep_current_cpu_online(void) { struct rcu_data *rdp; struct rcu_node *rnp; bool ret; if (in_nmi()) return true; preempt_disable(); rdp = this_cpu_ptr(&rcu_sched_data); rnp = rdp->mynode; ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) || !rcu_scheduler_fully_active; preempt_enable(); return ret; } EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online); #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */ /** * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle * * If the current CPU is idle or running at a first-level (not nested) * interrupt from idle, return true. The caller must have at least * disabled preemption. */ static int rcu_is_cpu_rrupt_from_idle(void) { return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 0 && __this_cpu_read(rcu_dynticks.dynticks_nmi_nesting) <= 1; } /* * We are reporting a quiescent state on behalf of some other CPU, so * it is our responsibility to check for and handle potential overflow * of the rcu_node ->gp_seq counter with respect to the rcu_data counters. * After all, the CPU might be in deep idle state, and thus executing no * code whatsoever. */ static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp) { raw_lockdep_assert_held_rcu_node(rnp); if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4, rnp->gp_seq)) WRITE_ONCE(rdp->gpwrap, true); if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq)) rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4; } /* * Snapshot the specified CPU's dynticks counter so that we can later * credit them with an implicit quiescent state. Return 1 if this CPU * is in dynticks idle mode, which is an extended quiescent state. */ static int dyntick_save_progress_counter(struct rcu_data *rdp) { rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks); if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) { trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti")); rcu_gpnum_ovf(rdp->mynode, rdp); return 1; } return 0; } /* * Handler for the irq_work request posted when a grace period has * gone on for too long, but not yet long enough for an RCU CPU * stall warning. Set state appropriately, but just complain if * there is unexpected state on entry. */ static void rcu_iw_handler(struct irq_work *iwp) { struct rcu_data *rdp; struct rcu_node *rnp; rdp = container_of(iwp, struct rcu_data, rcu_iw); rnp = rdp->mynode; raw_spin_lock_rcu_node(rnp); if (!WARN_ON_ONCE(!rdp->rcu_iw_pending)) { rdp->rcu_iw_gp_seq = rnp->gp_seq; rdp->rcu_iw_pending = false; } raw_spin_unlock_rcu_node(rnp); } /* * Return true if the specified CPU has passed through a quiescent * state by virtue of being in or having passed through an dynticks * idle state since the last call to dyntick_save_progress_counter() * for this same CPU, or by virtue of having been offline. */ static int rcu_implicit_dynticks_qs(struct rcu_data *rdp) { unsigned long jtsq; bool *rnhqp; bool *ruqp; struct rcu_node *rnp = rdp->mynode; /* * If the CPU passed through or entered a dynticks idle phase with * no active irq/NMI handlers, then we can safely pretend that the CPU * already acknowledged the request to pass through a quiescent * state. Either way, that CPU cannot possibly be in an RCU * read-side critical section that started before the beginning * of the current RCU grace period. */ if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) { trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti")); rdp->dynticks_fqs++; rcu_gpnum_ovf(rnp, rdp); return 1; } /* * Has this CPU encountered a cond_resched() since the beginning * of the grace period? For this to be the case, the CPU has to * have noticed the current grace period. This might not be the * case for nohz_full CPUs looping in the kernel. */ jtsq = jiffies_till_sched_qs; ruqp = per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, rdp->cpu); if (time_after(jiffies, rdp->rsp->gp_start + jtsq) && READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_dynticks.rcu_qs_ctr, rdp->cpu) && rcu_seq_current(&rdp->gp_seq) == rnp->gp_seq && !rdp->gpwrap) { trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("rqc")); rcu_gpnum_ovf(rnp, rdp); return 1; } else if (time_after(jiffies, rdp->rsp->gp_start + jtsq)) { /* Load rcu_qs_ctr before store to rcu_urgent_qs. */ smp_store_release(ruqp, true); } /* Check for the CPU being offline. */ if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp))) { trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl")); rdp->offline_fqs++; rcu_gpnum_ovf(rnp, rdp); return 1; } /* * A CPU running for an extended time within the kernel can * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode, * even context-switching back and forth between a pair of * in-kernel CPU-bound tasks cannot advance grace periods. * So if the grace period is old enough, make the CPU pay attention. * Note that the unsynchronized assignments to the per-CPU * rcu_need_heavy_qs variable are safe. Yes, setting of * bits can be lost, but they will be set again on the next * force-quiescent-state pass. So lost bit sets do not result * in incorrect behavior, merely in a grace period lasting * a few jiffies longer than it might otherwise. Because * there are at most four threads involved, and because the * updates are only once every few jiffies, the probability of * lossage (and thus of slight grace-period extension) is * quite low. */ rnhqp = &per_cpu(rcu_dynticks.rcu_need_heavy_qs, rdp->cpu); if (!READ_ONCE(*rnhqp) && (time_after(jiffies, rdp->rsp->gp_start + jtsq) || time_after(jiffies, rdp->rsp->jiffies_resched))) { WRITE_ONCE(*rnhqp, true); /* Store rcu_need_heavy_qs before rcu_urgent_qs. */ smp_store_release(ruqp, true); rdp->rsp->jiffies_resched += jtsq; /* Re-enable beating. */ } /* * If more than halfway to RCU CPU stall-warning time, do a * resched_cpu() to try to loosen things up a bit. Also check to * see if the CPU is getting hammered with interrupts, but only * once per grace period, just to keep the IPIs down to a dull roar. */ if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2) { resched_cpu(rdp->cpu); if (IS_ENABLED(CONFIG_IRQ_WORK) && !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq && (rnp->ffmask & rdp->grpmask)) { init_irq_work(&rdp->rcu_iw, rcu_iw_handler); rdp->rcu_iw_pending = true; rdp->rcu_iw_gp_seq = rnp->gp_seq; irq_work_queue_on(&rdp->rcu_iw, rdp->cpu); } } return 0; } static void record_gp_stall_check_time(struct rcu_state *rsp) { unsigned long j = jiffies; unsigned long j1; rsp->gp_start = j; smp_wmb(); /* Record start time before stall time. */ j1 = rcu_jiffies_till_stall_check(); WRITE_ONCE(rsp->jiffies_stall, j + j1); rsp->jiffies_resched = j + j1 / 2; rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs); } /* * Convert a ->gp_state value to a character string. */ static const char *gp_state_getname(short gs) { if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names)) return "???"; return gp_state_names[gs]; } /* * Complain about starvation of grace-period kthread. */ static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp) { unsigned long gpa; unsigned long j; j = jiffies; gpa = READ_ONCE(rsp->gp_activity); if (j - gpa > 2 * HZ) { pr_err("%s kthread starved for %ld jiffies! g%ld f%#x %s(%d) ->state=%#lx ->cpu=%d\n", rsp->name, j - gpa, (long)rcu_seq_current(&rsp->gp_seq), rsp->gp_flags, gp_state_getname(rsp->gp_state), rsp->gp_state, rsp->gp_kthread ? rsp->gp_kthread->state : ~0, rsp->gp_kthread ? task_cpu(rsp->gp_kthread) : -1); if (rsp->gp_kthread) { pr_err("RCU grace-period kthread stack dump:\n"); sched_show_task(rsp->gp_kthread); wake_up_process(rsp->gp_kthread); } } } /* * Dump stacks of all tasks running on stalled CPUs. First try using * NMIs, but fall back to manual remote stack tracing on architectures * that don't support NMI-based stack dumps. The NMI-triggered stack * traces are more accurate because they are printed by the target CPU. */ static void rcu_dump_cpu_stacks(struct rcu_state *rsp) { int cpu; unsigned long flags; struct rcu_node *rnp; rcu_for_each_leaf_node(rsp, rnp) { raw_spin_lock_irqsave_rcu_node(rnp, flags); for_each_leaf_node_possible_cpu(rnp, cpu) if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) if (!trigger_single_cpu_backtrace(cpu)) dump_cpu_task(cpu); raw_spin_unlock_irqrestore_rcu_node(rnp, flags); } } /* * If too much time has passed in the current grace period, and if * so configured, go kick the relevant kthreads. */ static void rcu_stall_kick_kthreads(struct rcu_state *rsp) { unsigned long j; if (!rcu_kick_kthreads) return; j = READ_ONCE(rsp->jiffies_kick_kthreads); if (time_after(jiffies, j) && rsp->gp_kthread && (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) { WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name); rcu_ftrace_dump(DUMP_ALL); wake_up_process(rsp->gp_kthread); WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ); } } static inline void panic_on_rcu_stall(void) { if (sysctl_panic_on_rcu_stall) panic("RCU Stall\n"); } static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gp_seq) { int cpu; unsigned long flags; unsigned long gpa; unsigned long j; int ndetected = 0; struct rcu_node *rnp = rcu_get_root(rsp); long totqlen = 0; WARN_ON_ONCE(gp_seq & 0x2); /* Remove when ->gpnum removed. */ /* Kick and suppress, if so configured. */ rcu_stall_kick_kthreads(rsp); if (rcu_cpu_stall_suppress) return; /* * OK, time to rat on our buddy... * See Documentation/RCU/stallwarn.txt for info on how to debug * RCU CPU stall warnings. */ pr_err("INFO: %s detected stalls on CPUs/tasks:", rsp->name); print_cpu_stall_info_begin(); rcu_for_each_leaf_node(rsp, rnp) { raw_spin_lock_irqsave_rcu_node(rnp, flags); ndetected += rcu_print_task_stall(rnp); if (rnp->qsmask != 0) { for_each_leaf_node_possible_cpu(rnp, cpu) if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) { print_cpu_stall_info(rsp, cpu); ndetected++; } } raw_spin_unlock_irqrestore_rcu_node(rnp, flags); } print_cpu_stall_info_end(); for_each_possible_cpu(cpu) totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda, cpu)->cblist); pr_cont("(detected by %d, t=%ld jiffies, g=%ld, q=%lu)\n", smp_processor_id(), (long)(jiffies - rsp->gp_start), (long)rcu_seq_current(&rsp->gp_seq), totqlen); if (ndetected) { rcu_dump_cpu_stacks(rsp); /* Complain about tasks blocking the grace period. */ rcu_print_detail_task_stall(rsp); } else { if (rcu_seq_current(&rsp->gp_seq) != gp_seq) { pr_err("INFO: Stall ended before state dump start\n"); } else { j = jiffies; gpa = READ_ONCE(rsp->gp_activity); pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n", rsp->name, j - gpa, j, gpa, jiffies_till_next_fqs, rcu_get_root(rsp)->qsmask); /* In this case, the current CPU might be at fault. */ sched_show_task(current); } } /* Rewrite if needed in case of slow consoles. */ if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall))) WRITE_ONCE(rsp->jiffies_stall, jiffies + 3 * rcu_jiffies_till_stall_check() + 3); rcu_check_gp_kthread_starvation(rsp); panic_on_rcu_stall(); force_quiescent_state(rsp); /* Kick them all. */ } static void print_cpu_stall(struct rcu_state *rsp) { int cpu; unsigned long flags; struct rcu_data *rdp = this_cpu_ptr(rsp->rda); struct rcu_node *rnp = rcu_get_root(rsp); long totqlen = 0; /* Kick and suppress, if so configured. */ rcu_stall_kick_kthreads(rsp); if (rcu_cpu_stall_suppress) return; /* * OK, time to rat on ourselves... * See Documentation/RCU/stallwarn.txt for info on how to debug * RCU CPU stall warnings. */ pr_err("INFO: %s self-detected stall on CPU", rsp->name); print_cpu_stall_info_begin(); raw_spin_lock_irqsave_rcu_node(rdp->mynode, flags); print_cpu_stall_info(rsp, smp_processor_id()); raw_spin_unlock_irqrestore_rcu_node(rdp->mynode, flags); print_cpu_stall_info_end(); for_each_possible_cpu(cpu) totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda, cpu)->cblist); pr_cont(" (t=%lu jiffies g=%ld q=%lu)\n", jiffies - rsp->gp_start, (long)rcu_seq_current(&rsp->gp_seq), totqlen); rcu_check_gp_kthread_starvation(rsp); rcu_dump_cpu_stacks(rsp); raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Rewrite if needed in case of slow consoles. */ if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall))) WRITE_ONCE(rsp->jiffies_stall, jiffies + 3 * rcu_jiffies_till_stall_check() + 3); raw_spin_unlock_irqrestore_rcu_node(rnp, flags); panic_on_rcu_stall(); /* * Attempt to revive the RCU machinery by forcing a context switch. * * A context switch would normally allow the RCU state machine to make * progress and it could be we're stuck in kernel space without context * switches for an entirely unreasonable amount of time. */ resched_cpu(smp_processor_id()); } static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp) { unsigned long gs1; unsigned long gs2; unsigned long gps; unsigned long j; unsigned long jn; unsigned long js; struct rcu_node *rnp; if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) || !rcu_gp_in_progress(rsp)) return; rcu_stall_kick_kthreads(rsp); j = jiffies; /* * Lots of memory barriers to reject false positives. * * The idea is to pick up rsp->gp_seq, then rsp->jiffies_stall, * then rsp->gp_start, and finally another copy of rsp->gp_seq. * These values are updated in the opposite order with memory * barriers (or equivalent) during grace-period initialization * and cleanup. Now, a false positive can occur if we get an new * value of rsp->gp_start and a old value of rsp->jiffies_stall. * But given the memory barriers, the only way that this can happen * is if one grace period ends and another starts between these * two fetches. This is detected by comparing the second fetch * of rsp->gp_seq with the previous fetch from rsp->gp_seq. * * Given this check, comparisons of jiffies, rsp->jiffies_stall, * and rsp->gp_start suffice to forestall false positives. */ gs1 = READ_ONCE(rsp->gp_seq); smp_rmb(); /* Pick up ->gp_seq first... */ js = READ_ONCE(rsp->jiffies_stall); smp_rmb(); /* ...then ->jiffies_stall before the rest... */ gps = READ_ONCE(rsp->gp_start); smp_rmb(); /* ...and finally ->gp_start before ->gp_seq again. */ gs2 = READ_ONCE(rsp->gp_seq); if (gs1 != gs2 || ULONG_CMP_LT(j, js) || ULONG_CMP_GE(gps, js)) return; /* No stall or GP completed since entering function. */ rnp = rdp->mynode; jn = jiffies + 3 * rcu_jiffies_till_stall_check() + 3; if (rcu_gp_in_progress(rsp) && (READ_ONCE(rnp->qsmask) & rdp->grpmask) && cmpxchg(&rsp->jiffies_stall, js, jn) == js) { /* We haven't checked in, so go dump stack. */ print_cpu_stall(rsp); } else if (rcu_gp_in_progress(rsp) && ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY) && cmpxchg(&rsp->jiffies_stall, js, jn) == js) { /* They had a few time units to dump stack, so complain. */ print_other_cpu_stall(rsp, gs2); } } /** * rcu_cpu_stall_reset - prevent further stall warnings in current grace period * * Set the stall-warning timeout way off into the future, thus preventing * any RCU CPU stall-warning messages from appearing in the current set of * RCU grace periods. * * The caller must disable hard irqs. */ void rcu_cpu_stall_reset(void) { struct rcu_state *rsp; for_each_rcu_flavor(rsp) WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2); } /* Trace-event wrapper function for trace_rcu_future_grace_period. */ static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp, unsigned long c, const char *s) { trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum, rnp->completed, c, rnp->level, rnp->grplo, rnp->grphi, s); } /* * Start the specified grace period, as needed to handle newly arrived * callbacks. The required future grace periods are recorded in each * rcu_node structure's ->need_future_gp[] field. Returns true if there * is reason to awaken the grace-period kthread. * * The caller must hold the specified rcu_node structure's ->lock, which * is why the caller is responsible for waking the grace-period kthread. */ static bool rcu_start_this_gp(struct rcu_node *rnp, struct rcu_data *rdp, unsigned long c) { bool ret = false; struct rcu_state *rsp = rdp->rsp; struct rcu_node *rnp_root; /* * Use funnel locking to either acquire the root rcu_node * structure's lock or bail out if the need for this grace period * has already been recorded -- or has already started. If there * is already a grace period in progress in a non-leaf node, no * recording is needed because the end of the grace period will * scan the leaf rcu_node structures. Note that rnp->lock must * not be released. */ raw_lockdep_assert_held_rcu_node(rnp); WARN_ON_ONCE(c & 0x2); /* Catch any lingering use of ->gpnum. */ WARN_ON_ONCE(((rnp->completed << RCU_SEQ_CTR_SHIFT) >> RCU_SEQ_CTR_SHIFT) != rcu_seq_ctr(rnp->gp_seq)); /* Catch any ->completed/->gp_seq mismatches. */ trace_rcu_this_gp(rnp, rdp, c, TPS("Startleaf")); for (rnp_root = rnp; 1; rnp_root = rnp_root->parent) { if (rnp_root != rnp) raw_spin_lock_rcu_node(rnp_root); if (need_future_gp_element(rnp_root, c) || rcu_seq_done(&rnp_root->gp_seq, c) || (rnp != rnp_root && rcu_seq_state(rcu_seq_current(&rnp_root->gp_seq)))) { trace_rcu_this_gp(rnp_root, rdp, c, TPS("Prestarted")); goto unlock_out; } need_future_gp_element(rnp_root, c) = true; if (rnp_root != rnp && rnp_root->parent != NULL) raw_spin_unlock_rcu_node(rnp_root); if (!rnp_root->parent) break; /* At root, and perhaps also leaf. */ } /* If GP already in progress, just leave, otherwise start one. */ if (rcu_gp_in_progress(rsp)) { trace_rcu_this_gp(rnp_root, rdp, c, TPS("Startedleafroot")); goto unlock_out; } trace_rcu_this_gp(rnp_root, rdp, c, TPS("Startedroot")); WRITE_ONCE(rsp->gp_flags, rsp->gp_flags | RCU_GP_FLAG_INIT); rsp->gp_req_activity = jiffies; if (!rsp->gp_kthread) { trace_rcu_this_gp(rnp_root, rdp, c, TPS("NoGPkthread")); goto unlock_out; } trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum), TPS("newreq")); ret = true; /* Caller must wake GP kthread. */ unlock_out: if (rnp != rnp_root) raw_spin_unlock_rcu_node(rnp_root); return ret; } /* * Clean up any old requests for the just-ended grace period. Also return * whether any additional grace periods have been requested. */ static bool rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp) { unsigned long c = rnp->gp_seq; bool needmore; struct rcu_data *rdp = this_cpu_ptr(rsp->rda); need_future_gp_element(rnp, c) = false; needmore = need_any_future_gp(rnp); trace_rcu_this_gp(rnp, rdp, c, needmore ? TPS("CleanupMore") : TPS("Cleanup")); return needmore; } /* * Awaken the grace-period kthread for the specified flavor of RCU. * Don't do a self-awaken, and don't bother awakening when there is * nothing for the grace-period kthread to do (as in several CPUs * raced to awaken, and we lost), and finally don't try to awaken * a kthread that has not yet been created. */ static void rcu_gp_kthread_wake(struct rcu_state *rsp) { if (current == rsp->gp_kthread || !READ_ONCE(rsp->gp_flags) || !rsp->gp_kthread) return; swake_up(&rsp->gp_wq); } /* * If there is room, assign a ->gp_seq number to any callbacks on this * CPU that have not already been assigned. Also accelerate any callbacks * that were previously assigned a ->gp_seq number that has since proven * to be too conservative, which can happen if callbacks get assigned a * ->gp_seq number while RCU is idle, but with reference to a non-root * rcu_node structure. This function is idempotent, so it does not hurt * to call it repeatedly. Returns an flag saying that we should awaken * the RCU grace-period kthread. * * The caller must hold rnp->lock with interrupts disabled. */ static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp) { unsigned long c; bool ret = false; raw_lockdep_assert_held_rcu_node(rnp); /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ if (!rcu_segcblist_pend_cbs(&rdp->cblist)) return false; /* * Callbacks are often registered with incomplete grace-period * information. Something about the fact that getting exact * information requires acquiring a global lock... RCU therefore * makes a conservative estimate of the grace period number at which * a given callback will become ready to invoke. The following * code checks this estimate and improves it when possible, thus * accelerating callback invocation to an earlier grace-period * number. */ c = rcu_seq_snap(&rsp->gp_seq); if (rcu_segcblist_accelerate(&rdp->cblist, c)) ret = rcu_start_this_gp(rnp, rdp, c); /* Trace depending on how much we were able to accelerate. */ if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL)) trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB")); else trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB")); return ret; } /* * Move any callbacks whose grace period has completed to the * RCU_DONE_TAIL sublist, then compact the remaining sublists and * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL * sublist. This function is idempotent, so it does not hurt to * invoke it repeatedly. As long as it is not invoked -too- often... * Returns true if the RCU grace-period kthread needs to be awakened. * * The caller must hold rnp->lock with interrupts disabled. */ static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp) { raw_lockdep_assert_held_rcu_node(rnp); /* If no pending (not yet ready to invoke) callbacks, nothing to do. */ if (!rcu_segcblist_pend_cbs(&rdp->cblist)) return false; /* * Find all callbacks whose ->gp_seq numbers indicate that they * are ready to invoke, and put them into the RCU_DONE_TAIL sublist. */ rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq); /* Classify any remaining callbacks. */ return rcu_accelerate_cbs(rsp, rnp, rdp); } /* * Update CPU-local rcu_data state to record the beginnings and ends of * grace periods. The caller must hold the ->lock of the leaf rcu_node * structure corresponding to the current CPU, and must have irqs disabled. * Returns true if the grace-period kthread needs to be awakened. */ static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp) { bool ret; bool need_gp; raw_lockdep_assert_held_rcu_node(rnp); if (rdp->gp_seq == rnp->gp_seq) return false; /* Nothing to do. */ /* Handle the ends of any preceding grace periods first. */ if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) || unlikely(READ_ONCE(rdp->gpwrap))) { ret = rcu_advance_cbs(rsp, rnp, rdp); /* Advance callbacks. */ /* Remember that we saw this grace-period completion. */ rdp->completed = rnp->completed; trace_rcu_grace_period(rsp->name, rdp->gp_seq, TPS("cpuend")); } else { ret = rcu_accelerate_cbs(rsp, rnp, rdp); /* Recent callbacks. */ } /* Now handle the beginnings of any new-to-this-CPU grace periods. */ if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) || unlikely(READ_ONCE(rdp->gpwrap))) { /* * If the current grace period is waiting for this CPU, * set up to detect a quiescent state, otherwise don't * go looking for one. */ rdp->gpnum = rnp->gpnum; trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart")); need_gp = !!(rnp->qsmask & rdp->grpmask); rdp->cpu_no_qs.b.norm = need_gp; rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr); rdp->core_needs_qs = need_gp; zero_cpu_stall_ticks(rdp); WRITE_ONCE(rdp->gpwrap, false); rcu_gpnum_ovf(rnp, rdp); } rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */ return ret; } static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp) { unsigned long flags; bool needwake; struct rcu_node *rnp; local_irq_save(flags); rnp = rdp->mynode; if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) && !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */ !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */ local_irq_restore(flags); return; } needwake = __note_gp_changes(rsp, rnp, rdp); raw_spin_unlock_irqrestore_rcu_node(rnp, flags); if (needwake) rcu_gp_kthread_wake(rsp); } static void rcu_gp_slow(struct rcu_state *rsp, int delay) { if (delay > 0 && !(rcu_seq_ctr(rsp->gp_seq) % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay))) schedule_timeout_uninterruptible(delay); } /* * Initialize a new grace period. Return false if no grace period required. */ static bool rcu_gp_init(struct rcu_state *rsp) { unsigned long oldmask; struct rcu_data *rdp; struct rcu_node *rnp = rcu_get_root(rsp); WRITE_ONCE(rsp->gp_activity, jiffies); raw_spin_lock_irq_rcu_node(rnp); if (!READ_ONCE(rsp->gp_flags)) { /* Spurious wakeup, tell caller to go back to sleep. */ raw_spin_unlock_irq_rcu_node(rnp); return false; } WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */ if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) { /* * Grace period already in progress, don't start another. * Not supposed to be able to happen. */ raw_spin_unlock_irq_rcu_node(rnp); return false; } /* Advance to a new grace period and initialize state. */ record_gp_stall_check_time(rsp); /* Record GP times before starting GP, hence smp_store_release(). */ WARN_ON_ONCE(rsp->gpnum << RCU_SEQ_CTR_SHIFT != rsp->gp_seq); smp_store_release(&rsp->gpnum, rsp->gpnum + 1); smp_mb(); /* Pairs with barriers in stall-warning code. */ rcu_seq_start(&rsp->gp_seq); if (WARN_ON_ONCE(((rnp->completed << RCU_SEQ_CTR_SHIFT) >> RCU_SEQ_CTR_SHIFT) != rcu_seq_ctr(rnp->gp_seq))) /* Catch any ->completed/->gp_seq mismatches. */ pr_info("%s ->completed: %#lx (%#lx) ->gp_seq %#lx (%#lx)\n", __func__, rnp->completed, (rnp->completed << RCU_SEQ_CTR_SHIFT) >> RCU_SEQ_CTR_SHIFT, rnp->gp_seq, rcu_seq_ctr(rnp->gp_seq)); trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start")); raw_spin_unlock_irq_rcu_node(rnp); /* * Apply per-leaf buffered online and offline operations to the * rcu_node tree. Note that this new grace period need not wait * for subsequent online CPUs, and that quiescent-state forcing * will handle subsequent offline CPUs. */ rcu_for_each_leaf_node(rsp, rnp) { rcu_gp_slow(rsp, gp_preinit_delay); raw_spin_lock_irq_rcu_node(rnp); if (rnp->qsmaskinit == rnp->qsmaskinitnext && !rnp->wait_blkd_tasks) { /* Nothing to do on this leaf rcu_node structure. */ raw_spin_unlock_irq_rcu_node(rnp); continue; } /* Record old state, apply changes to ->qsmaskinit field. */ oldmask = rnp->qsmaskinit; rnp->qsmaskinit = rnp->qsmaskinitnext; /* If zero-ness of ->qsmaskinit changed, propagate up tree. */ if (!oldmask != !rnp->qsmaskinit) { if (!oldmask) /* First online CPU for this rcu_node. */ rcu_init_new_rnp(rnp); else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */ rnp->wait_blkd_tasks = true; else /* Last offline CPU and can propagate. */ rcu_cleanup_dead_rnp(rnp); } /* * If all waited-on tasks from prior grace period are * done, and if all this rcu_node structure's CPUs are * still offline, propagate up the rcu_node tree and * clear ->wait_blkd_tasks. Otherwise, if one of this * rcu_node structure's CPUs has since come back online, * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp() * checks for this, so just call it unconditionally). */ if (rnp->wait_blkd_tasks && (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) { rnp->wait_blkd_tasks = false; rcu_cleanup_dead_rnp(rnp); } raw_spin_unlock_irq_rcu_node(rnp); } /* * Set the quiescent-state-needed bits in all the rcu_node * structures for all currently online CPUs in breadth-first order, * starting from the root rcu_node structure, relying on the layout * of the tree within the rsp->node[] array. Note that other CPUs * will access only the leaves of the hierarchy, thus seeing that no * grace period is in progress, at least until the corresponding * leaf node has been initialized. * * The grace period cannot complete until the initialization * process finishes, because this kthread handles both. */ rcu_for_each_node_breadth_first(rsp, rnp) { rcu_gp_slow(rsp, gp_init_delay); raw_spin_lock_irq_rcu_node(rnp); rdp = this_cpu_ptr(rsp->rda); rcu_preempt_check_blocked_tasks(rnp); rnp->qsmask = rnp->qsmaskinit; WRITE_ONCE(rnp->gpnum, rsp->gpnum); if (WARN_ON_ONCE(rnp->completed != rsp->completed)) WRITE_ONCE(rnp->completed, rsp->completed); WRITE_ONCE(rnp->gp_seq, rsp->gp_seq); if (rnp == rdp->mynode) (void)__note_gp_changes(rsp, rnp, rdp); rcu_preempt_boost_start_gp(rnp); trace_rcu_grace_period_init(rsp->name, rnp->gpnum, rnp->level, rnp->grplo, rnp->grphi, rnp->qsmask); raw_spin_unlock_irq_rcu_node(rnp); cond_resched_tasks_rcu_qs(); WRITE_ONCE(rsp->gp_activity, jiffies); } return true; } /* * Helper function for swait_event_idle() wakeup at force-quiescent-state * time. */ static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp) { struct rcu_node *rnp = rcu_get_root(rsp); /* Someone like call_rcu() requested a force-quiescent-state scan. */ *gfp = READ_ONCE(rsp->gp_flags); if (*gfp & RCU_GP_FLAG_FQS) return true; /* The current grace period has completed. */ if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp)) return true; return false; } /* * Do one round of quiescent-state forcing. */ static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time) { struct rcu_node *rnp = rcu_get_root(rsp); WRITE_ONCE(rsp->gp_activity, jiffies); rsp->n_force_qs++; if (first_time) { /* Collect dyntick-idle snapshots. */ force_qs_rnp(rsp, dyntick_save_progress_counter); } else { /* Handle dyntick-idle and offline CPUs. */ force_qs_rnp(rsp, rcu_implicit_dynticks_qs); } /* Clear flag to prevent immediate re-entry. */ if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) { raw_spin_lock_irq_rcu_node(rnp); WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS); raw_spin_unlock_irq_rcu_node(rnp); } } /* * Clean up after the old grace period. */ static void rcu_gp_cleanup(struct rcu_state *rsp) { unsigned long gp_duration; bool needgp = false; unsigned long new_gp_seq; struct rcu_data *rdp; struct rcu_node *rnp = rcu_get_root(rsp); struct swait_queue_head *sq; WRITE_ONCE(rsp->gp_activity, jiffies); raw_spin_lock_irq_rcu_node(rnp); gp_duration = jiffies - rsp->gp_start; if (gp_duration > rsp->gp_max) rsp->gp_max = gp_duration; /* * We know the grace period is complete, but to everyone else * it appears to still be ongoing. But it is also the case * that to everyone else it looks like there is nothing that * they can do to advance the grace period. It is therefore * safe for us to drop the lock in order to mark the grace * period as completed in all of the rcu_node structures. */ raw_spin_unlock_irq_rcu_node(rnp); /* * Propagate new ->completed value to rcu_node structures so * that other CPUs don't have to wait until the start of the next * grace period to process their callbacks. This also avoids * some nasty RCU grace-period initialization races by forcing * the end of the current grace period to be completely recorded in * all of the rcu_node structures before the beginning of the next * grace period is recorded in any of the rcu_node structures. */ new_gp_seq = rsp->gp_seq; rcu_seq_end(&new_gp_seq); rcu_for_each_node_breadth_first(rsp, rnp) { raw_spin_lock_irq_rcu_node(rnp); if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp))) dump_blkd_tasks(rnp, 10); WARN_ON_ONCE(rnp->qsmask); WRITE_ONCE(rnp->completed, rsp->gpnum); WRITE_ONCE(rnp->gp_seq, new_gp_seq); rdp = this_cpu_ptr(rsp->rda); if (rnp == rdp->mynode) needgp = __note_gp_changes(rsp, rnp, rdp) || needgp; /* smp_mb() provided by prior unlock-lock pair. */ needgp = rcu_future_gp_cleanup(rsp, rnp) || needgp; sq = rcu_nocb_gp_get(rnp); raw_spin_unlock_irq_rcu_node(rnp); rcu_nocb_gp_cleanup(sq); cond_resched_tasks_rcu_qs(); WRITE_ONCE(rsp->gp_activity, jiffies); rcu_gp_slow(rsp, gp_cleanup_delay); } rnp = rcu_get_root(rsp); raw_spin_lock_irq_rcu_node(rnp); /* GP before rsp->gp_seq update. */ /* Declare grace period done. */ WRITE_ONCE(rsp->completed, rsp->gpnum); rcu_seq_end(&rsp->gp_seq); trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end")); rsp->gp_state = RCU_GP_IDLE; /* Check for GP requests since above loop. */ rdp = this_cpu_ptr(rsp->rda); if (need_any_future_gp(rnp)) { trace_rcu_this_gp(rnp, rdp, rsp->completed - 1, TPS("CleanupMore")); needgp = true; } /* Advance CBs to reduce false positives below. */ if (!rcu_accelerate_cbs(rsp, rnp, rdp) && needgp) { WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT); rsp->gp_req_activity = jiffies; trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum), TPS("newreq")); } else { WRITE_ONCE(rsp->gp_flags, rsp->gp_flags & RCU_GP_FLAG_INIT); } raw_spin_unlock_irq_rcu_node(rnp); } /* * Body of kthread that handles grace periods. */ static int __noreturn rcu_gp_kthread(void *arg) { bool first_gp_fqs; int gf; unsigned long j; int ret; struct rcu_state *rsp = arg; struct rcu_node *rnp = rcu_get_root(rsp); rcu_bind_gp_kthread(); for (;;) { /* Handle grace-period start. */ for (;;) { trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum), TPS("reqwait")); rsp->gp_state = RCU_GP_WAIT_GPS; swait_event_idle(rsp->gp_wq, READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_INIT); rsp->gp_state = RCU_GP_DONE_GPS; /* Locking provides needed memory barrier. */ if (rcu_gp_init(rsp)) break; cond_resched_tasks_rcu_qs(); WRITE_ONCE(rsp->gp_activity, jiffies); WARN_ON(signal_pending(current)); trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum), TPS("reqwaitsig")); } /* Handle quiescent-state forcing. */ first_gp_fqs = true; j = jiffies_till_first_fqs; if (j > HZ) { j = HZ; jiffies_till_first_fqs = HZ; } ret = 0; for (;;) { if (!ret) { rsp->jiffies_force_qs = jiffies + j; WRITE_ONCE(rsp->jiffies_kick_kthreads, jiffies + 3 * j); } trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum), TPS("fqswait")); rsp->gp_state = RCU_GP_WAIT_FQS; ret = swait_event_idle_timeout(rsp->gp_wq, rcu_gp_fqs_check_wake(rsp, &gf), j); rsp->gp_state = RCU_GP_DOING_FQS; /* Locking provides needed memory barriers. */ /* If grace period done, leave loop. */ if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp)) break; /* If time for quiescent-state forcing, do it. */ if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) || (gf & RCU_GP_FLAG_FQS)) { trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum), TPS("fqsstart")); rcu_gp_fqs(rsp, first_gp_fqs); first_gp_fqs = false; trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum), TPS("fqsend")); cond_resched_tasks_rcu_qs(); WRITE_ONCE(rsp->gp_activity, jiffies); ret = 0; /* Force full wait till next FQS. */ j = jiffies_till_next_fqs; if (j > HZ) { j = HZ; jiffies_till_next_fqs = HZ; } else if (j < 1) { j = 1; jiffies_till_next_fqs = 1; } } else { /* Deal with stray signal. */ cond_resched_tasks_rcu_qs(); WRITE_ONCE(rsp->gp_activity, jiffies); WARN_ON(signal_pending(current)); trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum), TPS("fqswaitsig")); ret = 1; /* Keep old FQS timing. */ j = jiffies; if (time_after(jiffies, rsp->jiffies_force_qs)) j = 1; else j = rsp->jiffies_force_qs - j; } } /* Handle grace-period end. */ rsp->gp_state = RCU_GP_CLEANUP; rcu_gp_cleanup(rsp); rsp->gp_state = RCU_GP_CLEANED; } } /* * Report a full set of quiescent states to the specified rcu_state data * structure. Invoke rcu_gp_kthread_wake() to awaken the grace-period * kthread if another grace period is required. Whether we wake * the grace-period kthread or it awakens itself for the next round * of quiescent-state forcing, that kthread will clean up after the * just-completed grace period. Note that the caller must hold rnp->lock, * which is released before return. */ static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags) __releases(rcu_get_root(rsp)->lock) { raw_lockdep_assert_held_rcu_node(rcu_get_root(rsp)); WARN_ON_ONCE(!rcu_gp_in_progress(rsp)); WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS); raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags); rcu_gp_kthread_wake(rsp); } /* * Similar to rcu_report_qs_rdp(), for which it is a helper function. * Allows quiescent states for a group of CPUs to be reported at one go * to the specified rcu_node structure, though all the CPUs in the group * must be represented by the same rcu_node structure (which need not be a * leaf rcu_node structure, though it often will be). The gps parameter * is the grace-period snapshot, which means that the quiescent states * are valid only if rnp->gp_seq is equal to gps. That structure's lock * must be held upon entry, and it is released before return. */ static void rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp, struct rcu_node *rnp, unsigned long gps, unsigned long flags) __releases(rnp->lock) { unsigned long oldmask = 0; struct rcu_node *rnp_c; raw_lockdep_assert_held_rcu_node(rnp); /* Walk up the rcu_node hierarchy. */ for (;;) { if (!(rnp->qsmask & mask) || rnp->gp_seq != gps) { /* * Our bit has already been cleared, or the * relevant grace period is already over, so done. */ raw_spin_unlock_irqrestore_rcu_node(rnp, flags); return; } WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */ WARN_ON_ONCE(!rcu_is_leaf_node(rnp) && rcu_preempt_blocked_readers_cgp(rnp)); rnp->qsmask &= ~mask; trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum, mask, rnp->qsmask, rnp->level, rnp->grplo, rnp->grphi, !!rnp->gp_tasks); if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { /* Other bits still set at this level, so done. */ raw_spin_unlock_irqrestore_rcu_node(rnp, flags); return; } rnp->completedqs = rnp->gp_seq; mask = rnp->grpmask; if (rnp->parent == NULL) { /* No more levels. Exit loop holding root lock. */ break; } raw_spin_unlock_irqrestore_rcu_node(rnp, flags); rnp_c = rnp; rnp = rnp->parent; raw_spin_lock_irqsave_rcu_node(rnp, flags); oldmask = rnp_c->qsmask; } /* * Get here if we are the last CPU to pass through a quiescent * state for this grace period. Invoke rcu_report_qs_rsp() * to clean up and start the next grace period if one is needed. */ rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */ } /* * Record a quiescent state for all tasks that were previously queued * on the specified rcu_node structure and that were blocking the current * RCU grace period. The caller must hold the specified rnp->lock with * irqs disabled, and this lock is released upon return, but irqs remain * disabled. */ static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp, struct rcu_node *rnp, unsigned long flags) __releases(rnp->lock) { unsigned long gps; unsigned long mask; struct rcu_node *rnp_p; raw_lockdep_assert_held_rcu_node(rnp); if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p || rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) { raw_spin_unlock_irqrestore_rcu_node(rnp, flags); return; /* Still need more quiescent states! */ } rnp_p = rnp->parent; if (rnp_p == NULL) { /* * Only one rcu_node structure in the tree, so don't * try to report up to its nonexistent parent! */ rcu_report_qs_rsp(rsp, flags); return; } /* Report up the rest of the hierarchy, tracking current ->gp_seq. */ gps = rnp->gp_seq; mask = rnp->grpmask; raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */ rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags); } /* * Record a quiescent state for the specified CPU to that CPU's rcu_data * structure. This must be called from the specified CPU. */ static void rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp) { unsigned long flags; unsigned long mask; bool needwake; struct rcu_node *rnp; rnp = rdp->mynode; raw_spin_lock_irqsave_rcu_node(rnp, flags); if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq || rdp->gpwrap) { /* * The grace period in which this quiescent state was * recorded has ended, so don't report it upwards. * We will instead need a new quiescent state that lies * within the current grace period. */ rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */ rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr); raw_spin_unlock_irqrestore_rcu_node(rnp, flags); return; } mask = rdp->grpmask; if ((rnp->qsmask & mask) == 0) { raw_spin_unlock_irqrestore_rcu_node(rnp, flags); } else { rdp->core_needs_qs = false; /* * This GP can't end until cpu checks in, so all of our * callbacks can be processed during the next GP. */ needwake = rcu_accelerate_cbs(rsp, rnp, rdp); rcu_report_qs_rnp(mask, rsp, rnp, rnp->gp_seq, flags); /* ^^^ Released rnp->lock */ if (needwake) rcu_gp_kthread_wake(rsp); } } /* * Check to see if there is a new grace period of which this CPU * is not yet aware, and if so, set up local rcu_data state for it. * Otherwise, see if this CPU has just passed through its first * quiescent state for this grace period, and record that fact if so. */ static void rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp) { /* Check for grace-period ends and beginnings. */ note_gp_changes(rsp, rdp); /* * Does this CPU still need to do its part for current grace period? * If no, return and let the other CPUs do their part as well. */ if (!rdp->core_needs_qs) return; /* * Was there a quiescent state since the beginning of the grace * period? If no, then exit and wait for the next call. */ if (rdp->cpu_no_qs.b.norm) return; /* * Tell RCU we are done (but rcu_report_qs_rdp() will be the * judge of that). */ rcu_report_qs_rdp(rdp->cpu, rsp, rdp); } /* * Trace the fact that this CPU is going offline. */ static void rcu_cleanup_dying_cpu(struct rcu_state *rsp) { RCU_TRACE(unsigned long mask;) RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda);) RCU_TRACE(struct rcu_node *rnp = rdp->mynode;) if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) return; RCU_TRACE(mask = rdp->grpmask;) trace_rcu_grace_period(rsp->name, rnp->gpnum + 1 - !!(rnp->qsmask & mask), TPS("cpuofl")); } /* * All CPUs for the specified rcu_node structure have gone offline, * and all tasks that were preempted within an RCU read-side critical * section while running on one of those CPUs have since exited their RCU * read-side critical section. Some other CPU is reporting this fact with * the specified rcu_node structure's ->lock held and interrupts disabled. * This function therefore goes up the tree of rcu_node structures, * clearing the corresponding bits in the ->qsmaskinit fields. Note that * the leaf rcu_node structure's ->qsmaskinit field has already been * updated * * This function does check that the specified rcu_node structure has * all CPUs offline and no blocked tasks, so it is OK to invoke it * prematurely. That said, invoking it after the fact will cost you * a needless lock acquisition. So once it has done its work, don't * invoke it again. */ static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf) { long mask; struct rcu_node *rnp = rnp_leaf; raw_lockdep_assert_held_rcu_node(rnp); if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rnp->qsmaskinit || rcu_preempt_has_tasks(rnp)) return; for (;;) { mask = rnp->grpmask; rnp = rnp->parent; if (!rnp) break; raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ rnp->qsmaskinit &= ~mask; rnp->qsmask &= ~mask; if (rnp->qsmaskinit) { raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ return; } raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ } } /* * The CPU has been completely removed, and some other CPU is reporting * this fact from process context. Do the remainder of the cleanup. * There can only be one CPU hotplug operation at a time, so no need for * explicit locking. */ static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp) { struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) return; /* Adjust any no-longer-needed kthreads. */ rcu_boost_kthread_setaffinity(rnp, -1); } /* * Invoke any RCU callbacks that have made it to the end of their grace * period. Thottle as specified by rdp->blimit. */ static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp) { unsigned long flags; struct rcu_head *rhp; struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl); long bl, count; /* If no callbacks are ready, just return. */ if (!rcu_segcblist_ready_cbs(&rdp->cblist)) { trace_rcu_batch_start(rsp->name, rcu_segcblist_n_lazy_cbs(&rdp->cblist), rcu_segcblist_n_cbs(&rdp->cblist), 0); trace_rcu_batch_end(rsp->name, 0, !rcu_segcblist_empty(&rdp->cblist), need_resched(), is_idle_task(current), rcu_is_callbacks_kthread()); return; } /* * Extract the list of ready callbacks, disabling to prevent * races with call_rcu() from interrupt handlers. Leave the * callback counts, as rcu_barrier() needs to be conservative. */ local_irq_save(flags); WARN_ON_ONCE(cpu_is_offline(smp_processor_id())); bl = rdp->blimit; trace_rcu_batch_start(rsp->name, rcu_segcblist_n_lazy_cbs(&rdp->cblist), rcu_segcblist_n_cbs(&rdp->cblist), bl); rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl); local_irq_restore(flags); /* Invoke callbacks. */ rhp = rcu_cblist_dequeue(&rcl); for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) { debug_rcu_head_unqueue(rhp); if (__rcu_reclaim(rsp->name, rhp)) rcu_cblist_dequeued_lazy(&rcl); /* * Stop only if limit reached and CPU has something to do. * Note: The rcl structure counts down from zero. */ if (-rcl.len >= bl && (need_resched() || (!is_idle_task(current) && !rcu_is_callbacks_kthread()))) break; } local_irq_save(flags); count = -rcl.len; trace_rcu_batch_end(rsp->name, count, !!rcl.head, need_resched(), is_idle_task(current), rcu_is_callbacks_kthread()); /* Update counts and requeue any remaining callbacks. */ rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl); smp_mb(); /* List handling before counting for rcu_barrier(). */ rcu_segcblist_insert_count(&rdp->cblist, &rcl); /* Reinstate batch limit if we have worked down the excess. */ count = rcu_segcblist_n_cbs(&rdp->cblist); if (rdp->blimit == LONG_MAX && count <= qlowmark) rdp->blimit = blimit; /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */ if (count == 0 && rdp->qlen_last_fqs_check != 0) { rdp->qlen_last_fqs_check = 0; rdp->n_force_qs_snap = rsp->n_force_qs; } else if (count < rdp->qlen_last_fqs_check - qhimark) rdp->qlen_last_fqs_check = count; /* * The following usually indicates a double call_rcu(). To track * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y. */ WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0)); local_irq_restore(flags); /* Re-invoke RCU core processing if there are callbacks remaining. */ if (rcu_segcblist_ready_cbs(&rdp->cblist)) invoke_rcu_core(); } /* * Check to see if this CPU is in a non-context-switch quiescent state * (user mode or idle loop for rcu, non-softirq execution for rcu_bh). * Also schedule RCU core processing. * * This function must be called from hardirq context. It is normally * invoked from the scheduling-clock interrupt. */ void rcu_check_callbacks(int user) { trace_rcu_utilization(TPS("Start scheduler-tick")); increment_cpu_stall_ticks(); if (user || rcu_is_cpu_rrupt_from_idle()) { /* * Get here if this CPU took its interrupt from user * mode or from the idle loop, and if this is not a * nested interrupt. In this case, the CPU is in * a quiescent state, so note it. * * No memory barrier is required here because both * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local * variables that other CPUs neither access nor modify, * at least not while the corresponding CPU is online. */ rcu_sched_qs(); rcu_bh_qs(); } else if (!in_softirq()) { /* * Get here if this CPU did not take its interrupt from * softirq, in other words, if it is not interrupting * a rcu_bh read-side critical section. This is an _bh * critical section, so note it. */ rcu_bh_qs(); } rcu_preempt_check_callbacks(); if (rcu_pending()) invoke_rcu_core(); if (user) rcu_note_voluntary_context_switch(current); trace_rcu_utilization(TPS("End scheduler-tick")); } /* * Scan the leaf rcu_node structures, processing dyntick state for any that * have not yet encountered a quiescent state, using the function specified. * Also initiate boosting for any threads blocked on the root rcu_node. * * The caller must have suppressed start of new grace periods. */ static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp)) { int cpu; unsigned long flags; unsigned long mask; struct rcu_node *rnp; rcu_for_each_leaf_node(rsp, rnp) { cond_resched_tasks_rcu_qs(); mask = 0; raw_spin_lock_irqsave_rcu_node(rnp, flags); if (rnp->qsmask == 0) { if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p || rcu_preempt_blocked_readers_cgp(rnp)) { /* * No point in scanning bits because they * are all zero. But we might need to * priority-boost blocked readers. */ rcu_initiate_boost(rnp, flags); /* rcu_initiate_boost() releases rnp->lock */ continue; } if (rnp->parent && (rnp->parent->qsmask & rnp->grpmask)) { /* * Race between grace-period * initialization and task exiting RCU * read-side critical section: Report. */ rcu_report_unblock_qs_rnp(rsp, rnp, flags); /* rcu_report_unblock_qs_rnp() rlses ->lock */ continue; } } for_each_leaf_node_possible_cpu(rnp, cpu) { unsigned long bit = leaf_node_cpu_bit(rnp, cpu); if ((rnp->qsmask & bit) != 0) { if (f(per_cpu_ptr(rsp->rda, cpu))) mask |= bit; } } if (mask != 0) { /* Idle/offline CPUs, report (releases rnp->lock). */ rcu_report_qs_rnp(mask, rsp, rnp, rnp->gp_seq, flags); } else { /* Nothing to do here, so just drop the lock. */ raw_spin_unlock_irqrestore_rcu_node(rnp, flags); } } } /* * Force quiescent states on reluctant CPUs, and also detect which * CPUs are in dyntick-idle mode. */ static void force_quiescent_state(struct rcu_state *rsp) { unsigned long flags; bool ret; struct rcu_node *rnp; struct rcu_node *rnp_old = NULL; /* Funnel through hierarchy to reduce memory contention. */ rnp = __this_cpu_read(rsp->rda->mynode); for (; rnp != NULL; rnp = rnp->parent) { ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) || !raw_spin_trylock(&rnp->fqslock); if (rnp_old != NULL) raw_spin_unlock(&rnp_old->fqslock); if (ret) return; rnp_old = rnp; } /* rnp_old == rcu_get_root(rsp), rnp == NULL. */ /* Reached the root of the rcu_node tree, acquire lock. */ raw_spin_lock_irqsave_rcu_node(rnp_old, flags); raw_spin_unlock(&rnp_old->fqslock); if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) { raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); return; /* Someone beat us to it. */ } WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS); raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags); rcu_gp_kthread_wake(rsp); } /* * This function checks for grace-period requests that fail to motivate * RCU to come out of its idle mode. */ static void rcu_check_gp_start_stall(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp) { unsigned long flags; unsigned long j; struct rcu_node *rnp_root = rcu_get_root(rsp); static atomic_t warned = ATOMIC_INIT(0); if (!IS_ENABLED(CONFIG_PROVE_RCU) || rcu_gp_in_progress(rsp) || !need_any_future_gp(rcu_get_root(rsp))) return; j = jiffies; /* Expensive access, and in common case don't get here. */ if (time_before(j, READ_ONCE(rsp->gp_req_activity) + HZ) || time_before(j, READ_ONCE(rsp->gp_activity) + HZ) || atomic_read(&warned)) return; raw_spin_lock_irqsave_rcu_node(rnp, flags); j = jiffies; if (rcu_gp_in_progress(rsp) || !need_any_future_gp(rcu_get_root(rsp)) || time_before(j, READ_ONCE(rsp->gp_req_activity) + HZ) || time_before(j, READ_ONCE(rsp->gp_activity) + HZ) || atomic_read(&warned)) { raw_spin_unlock_irqrestore_rcu_node(rnp, flags); return; } /* Hold onto the leaf lock to make others see warned==1. */ if (rnp_root != rnp) raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */ j = jiffies; if (rcu_gp_in_progress(rsp) || !need_any_future_gp(rcu_get_root(rsp)) || time_before(j, rsp->gp_req_activity + HZ) || time_before(j, rsp->gp_activity + HZ) || atomic_xchg(&warned, 1)) { raw_spin_unlock_rcu_node(rnp_root); /* irqs remain disabled. */ raw_spin_unlock_irqrestore_rcu_node(rnp, flags); return; } pr_alert("%s: g%lu %d%d%d%d gar:%lu ga:%lu f%#x %s->state:%#lx\n", __func__, READ_ONCE(rsp->gpnum), need_future_gp_element(rcu_get_root(rsp), 0), need_future_gp_element(rcu_get_root(rsp), 1), need_future_gp_element(rcu_get_root(rsp), 2), need_future_gp_element(rcu_get_root(rsp), 3), j - rsp->gp_req_activity, j - rsp->gp_activity, rsp->gp_flags, rsp->name, rsp->gp_kthread ? rsp->gp_kthread->state : 0x1ffffL); WARN_ON(1); if (rnp_root != rnp) raw_spin_unlock_rcu_node(rnp_root); raw_spin_unlock_irqrestore_rcu_node(rnp, flags); } /* * This does the RCU core processing work for the specified rcu_state * and rcu_data structures. This may be called only from the CPU to * whom the rdp belongs. */ static void __rcu_process_callbacks(struct rcu_state *rsp) { unsigned long flags; bool needwake; struct rcu_data *rdp = raw_cpu_ptr(rsp->rda); struct rcu_node *rnp = rdp->mynode; WARN_ON_ONCE(!rdp->beenonline); /* Update RCU state based on any recent quiescent states. */ rcu_check_quiescent_state(rsp, rdp); /* No grace period and unregistered callbacks? */ if (!rcu_gp_in_progress(rsp) && rcu_segcblist_is_enabled(&rdp->cblist)) { local_irq_save(flags); if (rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) { local_irq_restore(flags); } else { raw_spin_lock_rcu_node(rnp); /* irqs disabled. */ needwake = rcu_accelerate_cbs(rsp, rnp, rdp); raw_spin_unlock_irqrestore_rcu_node(rnp, flags); if (needwake) rcu_gp_kthread_wake(rsp); } } rcu_check_gp_start_stall(rsp, rnp, rdp); /* If there are callbacks ready, invoke them. */ if (rcu_segcblist_ready_cbs(&rdp->cblist)) invoke_rcu_callbacks(rsp, rdp); /* Do any needed deferred wakeups of rcuo kthreads. */ do_nocb_deferred_wakeup(rdp); } /* * Do RCU core processing for the current CPU. */ static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused) { struct rcu_state *rsp; if (cpu_is_offline(smp_processor_id())) return; trace_rcu_utilization(TPS("Start RCU core")); for_each_rcu_flavor(rsp) __rcu_process_callbacks(rsp); trace_rcu_utilization(TPS("End RCU core")); } /* * Schedule RCU callback invocation. If the specified type of RCU * does not support RCU priority boosting, just do a direct call, * otherwise wake up the per-CPU kernel kthread. Note that because we * are running on the current CPU with softirqs disabled, the * rcu_cpu_kthread_task cannot disappear out from under us. */ static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp) { if (unlikely(!READ_ONCE(rcu_scheduler_fully_active))) return; if (likely(!rsp->boost)) { rcu_do_batch(rsp, rdp); return; } invoke_rcu_callbacks_kthread(); } static void invoke_rcu_core(void) { if (cpu_online(smp_processor_id())) raise_softirq(RCU_SOFTIRQ); } /* * Handle any core-RCU processing required by a call_rcu() invocation. */ static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp, struct rcu_head *head, unsigned long flags) { bool needwake; /* * If called from an extended quiescent state, invoke the RCU * core in order to force a re-evaluation of RCU's idleness. */ if (!rcu_is_watching()) invoke_rcu_core(); /* If interrupts were disabled or CPU offline, don't invoke RCU core. */ if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id())) return; /* * Force the grace period if too many callbacks or too long waiting. * Enforce hysteresis, and don't invoke force_quiescent_state() * if some other CPU has recently done so. Also, don't bother * invoking force_quiescent_state() if the newly enqueued callback * is the only one waiting for a grace period to complete. */ if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) > rdp->qlen_last_fqs_check + qhimark)) { /* Are we ignoring a completed grace period? */ note_gp_changes(rsp, rdp); /* Start a new grace period if one not already started. */ if (!rcu_gp_in_progress(rsp)) { struct rcu_node *rnp = rdp->mynode; raw_spin_lock_rcu_node(rnp); needwake = rcu_accelerate_cbs(rsp, rnp, rdp); raw_spin_unlock_rcu_node(rnp); if (needwake) rcu_gp_kthread_wake(rsp); } else { /* Give the grace period a kick. */ rdp->blimit = LONG_MAX; if (rsp->n_force_qs == rdp->n_force_qs_snap && rcu_segcblist_first_pend_cb(&rdp->cblist) != head) force_quiescent_state(rsp); rdp->n_force_qs_snap = rsp->n_force_qs; rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist); } } } /* * RCU callback function to leak a callback. */ static void rcu_leak_callback(struct rcu_head *rhp) { } /* * Helper function for call_rcu() and friends. The cpu argument will * normally be -1, indicating "currently running CPU". It may specify * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier() * is expected to specify a CPU. */ static void __call_rcu(struct rcu_head *head, rcu_callback_t func, struct rcu_state *rsp, int cpu, bool lazy) { unsigned long flags; struct rcu_data *rdp; /* Misaligned rcu_head! */ WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1)); if (debug_rcu_head_queue(head)) { /* * Probable double call_rcu(), so leak the callback. * Use rcu:rcu_callback trace event to find the previous * time callback was passed to __call_rcu(). */ WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pF()!!!\n", head, head->func); WRITE_ONCE(head->func, rcu_leak_callback); return; } head->func = func; head->next = NULL; local_irq_save(flags); rdp = this_cpu_ptr(rsp->rda); /* Add the callback to our list. */ if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) { int offline; if (cpu != -1) rdp = per_cpu_ptr(rsp->rda, cpu); if (likely(rdp->mynode)) { /* Post-boot, so this should be for a no-CBs CPU. */ offline = !__call_rcu_nocb(rdp, head, lazy, flags); WARN_ON_ONCE(offline); /* Offline CPU, _call_rcu() illegal, leak callback. */ local_irq_restore(flags); return; } /* * Very early boot, before rcu_init(). Initialize if needed * and then drop through to queue the callback. */ BUG_ON(cpu != -1); WARN_ON_ONCE(!rcu_is_watching()); if (rcu_segcblist_empty(&rdp->cblist)) rcu_segcblist_init(&rdp->cblist); } rcu_segcblist_enqueue(&rdp->cblist, head, lazy); if (!lazy) rcu_idle_count_callbacks_posted(); if (__is_kfree_rcu_offset((unsigned long)func)) trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func, rcu_segcblist_n_lazy_cbs(&rdp->cblist), rcu_segcblist_n_cbs(&rdp->cblist)); else trace_rcu_callback(rsp->name, head, rcu_segcblist_n_lazy_cbs(&rdp->cblist), rcu_segcblist_n_cbs(&rdp->cblist)); /* Go handle any RCU core processing required. */ __call_rcu_core(rsp, rdp, head, flags); local_irq_restore(flags); } /** * call_rcu_sched() - Queue an RCU for invocation after sched grace period. * @head: structure to be used for queueing the RCU updates. * @func: actual callback function to be invoked after the grace period * * The callback function will be invoked some time after a full grace * period elapses, in other words after all currently executing RCU * read-side critical sections have completed. call_rcu_sched() assumes * that the read-side critical sections end on enabling of preemption * or on voluntary preemption. * RCU read-side critical sections are delimited by: * * - rcu_read_lock_sched() and rcu_read_unlock_sched(), OR * - anything that disables preemption. * * These may be nested. * * See the description of call_rcu() for more detailed information on * memory ordering guarantees. */ void call_rcu_sched(struct rcu_head *head, rcu_callback_t func) { __call_rcu(head, func, &rcu_sched_state, -1, 0); } EXPORT_SYMBOL_GPL(call_rcu_sched); /** * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period. * @head: structure to be used for queueing the RCU updates. * @func: actual callback function to be invoked after the grace period * * The callback function will be invoked some time after a full grace * period elapses, in other words after all currently executing RCU * read-side critical sections have completed. call_rcu_bh() assumes * that the read-side critical sections end on completion of a softirq * handler. This means that read-side critical sections in process * context must not be interrupted by softirqs. This interface is to be * used when most of the read-side critical sections are in softirq context. * RCU read-side critical sections are delimited by: * * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context, OR * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context. * * These may be nested. * * See the description of call_rcu() for more detailed information on * memory ordering guarantees. */ void call_rcu_bh(struct rcu_head *head, rcu_callback_t func) { __call_rcu(head, func, &rcu_bh_state, -1, 0); } EXPORT_SYMBOL_GPL(call_rcu_bh); /* * Queue an RCU callback for lazy invocation after a grace period. * This will likely be later named something like "call_rcu_lazy()", * but this change will require some way of tagging the lazy RCU * callbacks in the list of pending callbacks. Until then, this * function may only be called from __kfree_rcu(). */ void kfree_call_rcu(struct rcu_head *head, rcu_callback_t func) { __call_rcu(head, func, rcu_state_p, -1, 1); } EXPORT_SYMBOL_GPL(kfree_call_rcu); /* * Because a context switch is a grace period for RCU-sched and RCU-bh, * any blocking grace-period wait automatically implies a grace period * if there is only one CPU online at any point time during execution * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to * occasionally incorrectly indicate that there are multiple CPUs online * when there was in fact only one the whole time, as this just adds * some overhead: RCU still operates correctly. */ static inline int rcu_blocking_is_gp(void) { int ret; might_sleep(); /* Check for RCU read-side critical section. */ preempt_disable(); ret = num_online_cpus() <= 1; preempt_enable(); return ret; } /** * synchronize_sched - wait until an rcu-sched grace period has elapsed. * * Control will return to the caller some time after a full rcu-sched * grace period has elapsed, in other words after all currently executing * rcu-sched read-side critical sections have completed. These read-side * critical sections are delimited by rcu_read_lock_sched() and * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(), * local_irq_disable(), and so on may be used in place of * rcu_read_lock_sched(). * * This means that all preempt_disable code sequences, including NMI and * non-threaded hardware-interrupt handlers, in progress on entry will * have completed before this primitive returns. However, this does not * guarantee that softirq handlers will have completed, since in some * kernels, these handlers can run in process context, and can block. * * Note that this guarantee implies further memory-ordering guarantees. * On systems with more than one CPU, when synchronize_sched() returns, * each CPU is guaranteed to have executed a full memory barrier since the * end of its last RCU-sched read-side critical section whose beginning * preceded the call to synchronize_sched(). In addition, each CPU having * an RCU read-side critical section that extends beyond the return from * synchronize_sched() is guaranteed to have executed a full memory barrier * after the beginning of synchronize_sched() and before the beginning of * that RCU read-side critical section. Note that these guarantees include * CPUs that are offline, idle, or executing in user mode, as well as CPUs * that are executing in the kernel. * * Furthermore, if CPU A invoked synchronize_sched(), which returned * to its caller on CPU B, then both CPU A and CPU B are guaranteed * to have executed a full memory barrier during the execution of * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but * again only if the system has more than one CPU). */ void synchronize_sched(void) { RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || lock_is_held(&rcu_lock_map) || lock_is_held(&rcu_sched_lock_map), "Illegal synchronize_sched() in RCU-sched read-side critical section"); if (rcu_blocking_is_gp()) return; if (rcu_gp_is_expedited()) synchronize_sched_expedited(); else wait_rcu_gp(call_rcu_sched); } EXPORT_SYMBOL_GPL(synchronize_sched); /** * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed. * * Control will return to the caller some time after a full rcu_bh grace * period has elapsed, in other words after all currently executing rcu_bh * read-side critical sections have completed. RCU read-side critical * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(), * and may be nested. * * See the description of synchronize_sched() for more detailed information * on memory ordering guarantees. */ void synchronize_rcu_bh(void) { RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) || lock_is_held(&rcu_lock_map) || lock_is_held(&rcu_sched_lock_map), "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section"); if (rcu_blocking_is_gp()) return; if (rcu_gp_is_expedited()) synchronize_rcu_bh_expedited(); else wait_rcu_gp(call_rcu_bh); } EXPORT_SYMBOL_GPL(synchronize_rcu_bh); /** * get_state_synchronize_rcu - Snapshot current RCU state * * Returns a cookie that is used by a later call to cond_synchronize_rcu() * to determine whether or not a full grace period has elapsed in the * meantime. */ unsigned long get_state_synchronize_rcu(void) { /* * Any prior manipulation of RCU-protected data must happen * before the load from ->gp_seq. */ smp_mb(); /* ^^^ */ return rcu_seq_snap(&rcu_state_p->gp_seq); } EXPORT_SYMBOL_GPL(get_state_synchronize_rcu); /** * cond_synchronize_rcu - Conditionally wait for an RCU grace period * * @oldstate: return value from earlier call to get_state_synchronize_rcu() * * If a full RCU grace period has elapsed since the earlier call to * get_state_synchronize_rcu(), just return. Otherwise, invoke * synchronize_rcu() to wait for a full grace period. * * Yes, this function does not take counter wrap into account. But * counter wrap is harmless. If the counter wraps, we have waited for * more than 2 billion grace periods (and way more on a 64-bit system!), * so waiting for one additional grace period should be just fine. */ void cond_synchronize_rcu(unsigned long oldstate) { if (!rcu_seq_done(&rcu_state_p->gp_seq, oldstate)) synchronize_rcu(); else smp_mb(); /* Ensure GP ends before subsequent accesses. */ } EXPORT_SYMBOL_GPL(cond_synchronize_rcu); /** * get_state_synchronize_sched - Snapshot current RCU-sched state * * Returns a cookie that is used by a later call to cond_synchronize_sched() * to determine whether or not a full grace period has elapsed in the * meantime. */ unsigned long get_state_synchronize_sched(void) { /* * Any prior manipulation of RCU-protected data must happen * before the load from ->gp_seq. */ smp_mb(); /* ^^^ */ return rcu_seq_snap(&rcu_sched_state.gp_seq); } EXPORT_SYMBOL_GPL(get_state_synchronize_sched); /** * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period * * @oldstate: return value from earlier call to get_state_synchronize_sched() * * If a full RCU-sched grace period has elapsed since the earlier call to * get_state_synchronize_sched(), just return. Otherwise, invoke * synchronize_sched() to wait for a full grace period. * * Yes, this function does not take counter wrap into account. But * counter wrap is harmless. If the counter wraps, we have waited for * more than 2 billion grace periods (and way more on a 64-bit system!), * so waiting for one additional grace period should be just fine. */ void cond_synchronize_sched(unsigned long oldstate) { if (!rcu_seq_done(&rcu_sched_state.gp_seq, oldstate)) synchronize_sched(); else smp_mb(); /* Ensure GP ends before subsequent accesses. */ } EXPORT_SYMBOL_GPL(cond_synchronize_sched); /* * Check to see if there is any immediate RCU-related work to be done * by the current CPU, for the specified type of RCU, returning 1 if so. * The checks are in order of increasing expense: checks that can be * carried out against CPU-local state are performed first. However, * we must check for CPU stalls first, else we might not get a chance. */ static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp) { struct rcu_node *rnp = rdp->mynode; /* Check for CPU stalls, if enabled. */ check_cpu_stall(rsp, rdp); /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */ if (rcu_nohz_full_cpu(rsp)) return 0; /* Is the RCU core waiting for a quiescent state from this CPU? */ if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm) return 1; /* Does this CPU have callbacks ready to invoke? */ if (rcu_segcblist_ready_cbs(&rdp->cblist)) return 1; /* Has RCU gone idle with this CPU needing another grace period? */ if (!rcu_gp_in_progress(rsp) && rcu_segcblist_is_enabled(&rdp->cblist) && !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) return 1; /* Have RCU grace period completed or started? */ if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq || unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */ return 1; /* Does this CPU need a deferred NOCB wakeup? */ if (rcu_nocb_need_deferred_wakeup(rdp)) return 1; /* nothing to do */ return 0; } /* * Check to see if there is any immediate RCU-related work to be done * by the current CPU, returning 1 if so. This function is part of the * RCU implementation; it is -not- an exported member of the RCU API. */ static int rcu_pending(void) { struct rcu_state *rsp; for_each_rcu_flavor(rsp) if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda))) return 1; return 0; } /* * Return true if the specified CPU has any callback. If all_lazy is * non-NULL, store an indication of whether all callbacks are lazy. * (If there are no callbacks, all of them are deemed to be lazy.) */ static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy) { bool al = true; bool hc = false; struct rcu_data *rdp; struct rcu_state *rsp; for_each_rcu_flavor(rsp) { rdp = this_cpu_ptr(rsp->rda); if (rcu_segcblist_empty(&rdp->cblist)) continue; hc = true; if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist) || !all_lazy) { al = false; break; } } if (all_lazy) *all_lazy = al; return hc; } /* * Helper function for _rcu_barrier() tracing. If tracing is disabled, * the compiler is expected to optimize this away. */ static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s, int cpu, unsigned long done) { trace_rcu_barrier(rsp->name, s, cpu, atomic_read(&rsp->barrier_cpu_count), done); } /* * RCU callback function for _rcu_barrier(). If we are last, wake * up the task executing _rcu_barrier(). */ static void rcu_barrier_callback(struct rcu_head *rhp) { struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head); struct rcu_state *rsp = rdp->rsp; if (atomic_dec_and_test(&rsp->barrier_cpu_count)) { _rcu_barrier_trace(rsp, TPS("LastCB"), -1, rsp->barrier_sequence); complete(&rsp->barrier_completion); } else { _rcu_barrier_trace(rsp, TPS("CB"), -1, rsp->barrier_sequence); } } /* * Called with preemption disabled, and from cross-cpu IRQ context. */ static void rcu_barrier_func(void *type) { struct rcu_state *rsp = type; struct rcu_data *rdp = raw_cpu_ptr(rsp->rda); _rcu_barrier_trace(rsp, TPS("IRQ"), -1, rsp->barrier_sequence); rdp->barrier_head.func = rcu_barrier_callback; debug_rcu_head_queue(&rdp->barrier_head); if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) { atomic_inc(&rsp->barrier_cpu_count); } else { debug_rcu_head_unqueue(&rdp->barrier_head); _rcu_barrier_trace(rsp, TPS("IRQNQ"), -1, rsp->barrier_sequence); } } /* * Orchestrate the specified type of RCU barrier, waiting for all * RCU callbacks of the specified type to complete. */ static void _rcu_barrier(struct rcu_state *rsp) { int cpu; struct rcu_data *rdp; unsigned long s = rcu_seq_snap(&rsp->barrier_sequence); _rcu_barrier_trace(rsp, TPS("Begin"), -1, s); /* Take mutex to serialize concurrent rcu_barrier() requests. */ mutex_lock(&rsp->barrier_mutex); /* Did someone else do our work for us? */ if (rcu_seq_done(&rsp->barrier_sequence, s)) { _rcu_barrier_trace(rsp, TPS("EarlyExit"), -1, rsp->barrier_sequence); smp_mb(); /* caller's subsequent code after above check. */ mutex_unlock(&rsp->barrier_mutex); return; } /* Mark the start of the barrier operation. */ rcu_seq_start(&rsp->barrier_sequence); _rcu_barrier_trace(rsp, TPS("Inc1"), -1, rsp->barrier_sequence); /* * Initialize the count to one rather than to zero in order to * avoid a too-soon return to zero in case of a short grace period * (or preemption of this task). Exclude CPU-hotplug operations * to ensure that no offline CPU has callbacks queued. */ init_completion(&rsp->barrier_completion); atomic_set(&rsp->barrier_cpu_count, 1); get_online_cpus(); /* * Force each CPU with callbacks to register a new callback. * When that callback is invoked, we will know that all of the * corresponding CPU's preceding callbacks have been invoked. */ for_each_possible_cpu(cpu) { if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu)) continue; rdp = per_cpu_ptr(rsp->rda, cpu); if (rcu_is_nocb_cpu(cpu)) { if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) { _rcu_barrier_trace(rsp, TPS("OfflineNoCB"), cpu, rsp->barrier_sequence); } else { _rcu_barrier_trace(rsp, TPS("OnlineNoCB"), cpu, rsp->barrier_sequence); smp_mb__before_atomic(); atomic_inc(&rsp->barrier_cpu_count); __call_rcu(&rdp->barrier_head, rcu_barrier_callback, rsp, cpu, 0); } } else if (rcu_segcblist_n_cbs(&rdp->cblist)) { _rcu_barrier_trace(rsp, TPS("OnlineQ"), cpu, rsp->barrier_sequence); smp_call_function_single(cpu, rcu_barrier_func, rsp, 1); } else { _rcu_barrier_trace(rsp, TPS("OnlineNQ"), cpu, rsp->barrier_sequence); } } put_online_cpus(); /* * Now that we have an rcu_barrier_callback() callback on each * CPU, and thus each counted, remove the initial count. */ if (atomic_dec_and_test(&rsp->barrier_cpu_count)) complete(&rsp->barrier_completion); /* Wait for all rcu_barrier_callback() callbacks to be invoked. */ wait_for_completion(&rsp->barrier_completion); /* Mark the end of the barrier operation. */ _rcu_barrier_trace(rsp, TPS("Inc2"), -1, rsp->barrier_sequence); rcu_seq_end(&rsp->barrier_sequence); /* Other rcu_barrier() invocations can now safely proceed. */ mutex_unlock(&rsp->barrier_mutex); } /** * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete. */ void rcu_barrier_bh(void) { _rcu_barrier(&rcu_bh_state); } EXPORT_SYMBOL_GPL(rcu_barrier_bh); /** * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks. */ void rcu_barrier_sched(void) { _rcu_barrier(&rcu_sched_state); } EXPORT_SYMBOL_GPL(rcu_barrier_sched); /* * Propagate ->qsinitmask bits up the rcu_node tree to account for the * first CPU in a given leaf rcu_node structure coming online. The caller * must hold the corresponding leaf rcu_node ->lock with interrrupts * disabled. */ static void rcu_init_new_rnp(struct rcu_node *rnp_leaf) { long mask; struct rcu_node *rnp = rnp_leaf; raw_lockdep_assert_held_rcu_node(rnp); for (;;) { mask = rnp->grpmask; rnp = rnp->parent; if (rnp == NULL) return; raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */ rnp->qsmaskinit |= mask; raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */ } } /* * Do boot-time initialization of a CPU's per-CPU RCU data. */ static void __init rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp) { struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); /* Set up local state, ensuring consistent view of global state. */ rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu); rdp->dynticks = &per_cpu(rcu_dynticks, cpu); WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != 1); WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks))); rdp->cpu = cpu; rdp->rsp = rsp; rcu_boot_init_nocb_percpu_data(rdp); } /* * Initialize a CPU's per-CPU RCU data. Note that only one online or * offline event can be happening at a given time. Note also that we * can accept some slop in the rsp->completed access due to the fact * that this CPU cannot possibly have any RCU callbacks in flight yet. */ static void rcu_init_percpu_data(int cpu, struct rcu_state *rsp) { unsigned long flags; struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); struct rcu_node *rnp = rcu_get_root(rsp); /* Set up local state, ensuring consistent view of global state. */ raw_spin_lock_irqsave_rcu_node(rnp, flags); rdp->qlen_last_fqs_check = 0; rdp->n_force_qs_snap = rsp->n_force_qs; rdp->blimit = blimit; if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */ !init_nocb_callback_list(rdp)) rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */ rdp->dynticks->dynticks_nesting = 1; /* CPU not up, no tearing. */ rcu_dynticks_eqs_online(); raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */ /* * Add CPU to leaf rcu_node pending-online bitmask. Any needed * propagation up the rcu_node tree will happen at the beginning * of the next grace period. */ rnp = rdp->mynode; raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */ rdp->beenonline = true; /* We have now been online. */ rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */ rdp->completed = rnp->completed; rdp->gp_seq = rnp->gp_seq; rdp->cpu_no_qs.b.norm = true; rdp->rcu_qs_ctr_snap = per_cpu(rcu_dynticks.rcu_qs_ctr, cpu); rdp->core_needs_qs = false; rdp->rcu_iw_pending = false; rdp->rcu_iw_gp_seq = rnp->gp_seq - 1; trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl")); raw_spin_unlock_irqrestore_rcu_node(rnp, flags); } /* * Invoked early in the CPU-online process, when pretty much all * services are available. The incoming CPU is not present. */ int rcutree_prepare_cpu(unsigned int cpu) { struct rcu_state *rsp; for_each_rcu_flavor(rsp) rcu_init_percpu_data(cpu, rsp); rcu_prepare_kthreads(cpu); rcu_spawn_all_nocb_kthreads(cpu); return 0; } /* * Update RCU priority boot kthread affinity for CPU-hotplug changes. */ static void rcutree_affinity_setting(unsigned int cpu, int outgoing) { struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu); rcu_boost_kthread_setaffinity(rdp->mynode, outgoing); } /* * Near the end of the CPU-online process. Pretty much all services * enabled, and the CPU is now very much alive. */ int rcutree_online_cpu(unsigned int cpu) { unsigned long flags; struct rcu_data *rdp; struct rcu_node *rnp; struct rcu_state *rsp; for_each_rcu_flavor(rsp) { rdp = per_cpu_ptr(rsp->rda, cpu); rnp = rdp->mynode; raw_spin_lock_irqsave_rcu_node(rnp, flags); rnp->ffmask |= rdp->grpmask; raw_spin_unlock_irqrestore_rcu_node(rnp, flags); } if (IS_ENABLED(CONFIG_TREE_SRCU)) srcu_online_cpu(cpu); if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE) return 0; /* Too early in boot for scheduler work. */ sync_sched_exp_online_cleanup(cpu); rcutree_affinity_setting(cpu, -1); return 0; } /* * Near the beginning of the process. The CPU is still very much alive * with pretty much all services enabled. */ int rcutree_offline_cpu(unsigned int cpu) { unsigned long flags; struct rcu_data *rdp; struct rcu_node *rnp; struct rcu_state *rsp; for_each_rcu_flavor(rsp) { rdp = per_cpu_ptr(rsp->rda, cpu); rnp = rdp->mynode; raw_spin_lock_irqsave_rcu_node(rnp, flags); rnp->ffmask &= ~rdp->grpmask; raw_spin_unlock_irqrestore_rcu_node(rnp, flags); } rcutree_affinity_setting(cpu, cpu); if (IS_ENABLED(CONFIG_TREE_SRCU)) srcu_offline_cpu(cpu); return 0; } /* * Near the end of the offline process. We do only tracing here. */ int rcutree_dying_cpu(unsigned int cpu) { struct rcu_state *rsp; for_each_rcu_flavor(rsp) rcu_cleanup_dying_cpu(rsp); return 0; } /* * The outgoing CPU is gone and we are running elsewhere. */ int rcutree_dead_cpu(unsigned int cpu) { struct rcu_state *rsp; for_each_rcu_flavor(rsp) { rcu_cleanup_dead_cpu(cpu, rsp); do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu)); } return 0; } static DEFINE_PER_CPU(int, rcu_cpu_started); /* * Mark the specified CPU as being online so that subsequent grace periods * (both expedited and normal) will wait on it. Note that this means that * incoming CPUs are not allowed to use RCU read-side critical sections * until this function is called. Failing to observe this restriction * will result in lockdep splats. * * Note that this function is special in that it is invoked directly * from the incoming CPU rather than from the cpuhp_step mechanism. * This is because this function must be invoked at a precise location. */ void rcu_cpu_starting(unsigned int cpu) { unsigned long flags; unsigned long mask; int nbits; unsigned long oldmask; struct rcu_data *rdp; struct rcu_node *rnp; struct rcu_state *rsp; if (per_cpu(rcu_cpu_started, cpu)) return; per_cpu(rcu_cpu_started, cpu) = 1; for_each_rcu_flavor(rsp) { rdp = per_cpu_ptr(rsp->rda, cpu); rnp = rdp->mynode; mask = rdp->grpmask; raw_spin_lock_irqsave_rcu_node(rnp, flags); rnp->qsmaskinitnext |= mask; oldmask = rnp->expmaskinitnext; rnp->expmaskinitnext |= mask; oldmask ^= rnp->expmaskinitnext; nbits = bitmap_weight(&oldmask, BITS_PER_LONG); /* Allow lockless access for expedited grace periods. */ smp_store_release(&rsp->ncpus, rsp->ncpus + nbits); /* ^^^ */ raw_spin_unlock_irqrestore_rcu_node(rnp, flags); } smp_mb(); /* Ensure RCU read-side usage follows above initialization. */ } #ifdef CONFIG_HOTPLUG_CPU /* * The CPU is exiting the idle loop into the arch_cpu_idle_dead() * function. We now remove it from the rcu_node tree's ->qsmaskinit * bit masks. */ static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp) { unsigned long flags; unsigned long mask; struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */ /* Remove outgoing CPU from mask in the leaf rcu_node structure. */ mask = rdp->grpmask; raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */ rnp->qsmaskinitnext &= ~mask; raw_spin_unlock_irqrestore_rcu_node(rnp, flags); } /* * The outgoing function has no further need of RCU, so remove it from * the list of CPUs that RCU must track. * * Note that this function is special in that it is invoked directly * from the outgoing CPU rather than from the cpuhp_step mechanism. * This is because this function must be invoked at a precise location. */ void rcu_report_dead(unsigned int cpu) { struct rcu_state *rsp; /* QS for any half-done expedited RCU-sched GP. */ preempt_disable(); rcu_report_exp_rdp(&rcu_sched_state, this_cpu_ptr(rcu_sched_state.rda), true); preempt_enable(); for_each_rcu_flavor(rsp) rcu_cleanup_dying_idle_cpu(cpu, rsp); per_cpu(rcu_cpu_started, cpu) = 0; } /* Migrate the dead CPU's callbacks to the current CPU. */ static void rcu_migrate_callbacks(int cpu, struct rcu_state *rsp) { unsigned long flags; struct rcu_data *my_rdp; struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu); struct rcu_node *rnp_root = rcu_get_root(rdp->rsp); bool needwake; if (rcu_is_nocb_cpu(cpu) || rcu_segcblist_empty(&rdp->cblist)) return; /* No callbacks to migrate. */ local_irq_save(flags); my_rdp = this_cpu_ptr(rsp->rda); if (rcu_nocb_adopt_orphan_cbs(my_rdp, rdp, flags)) { local_irq_restore(flags); return; } raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */ /* Leverage recent GPs and set GP for new callbacks. */ needwake = rcu_advance_cbs(rsp, rnp_root, rdp) || rcu_advance_cbs(rsp, rnp_root, my_rdp); rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist); WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != !rcu_segcblist_n_cbs(&my_rdp->cblist)); raw_spin_unlock_irqrestore_rcu_node(rnp_root, flags); if (needwake) rcu_gp_kthread_wake(rsp); WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 || !rcu_segcblist_empty(&rdp->cblist), "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n", cpu, rcu_segcblist_n_cbs(&rdp->cblist), rcu_segcblist_first_cb(&rdp->cblist)); } /* * The outgoing CPU has just passed through the dying-idle state, * and we are being invoked from the CPU that was IPIed to continue the * offline operation. We need to migrate the outgoing CPU's callbacks. */ void rcutree_migrate_callbacks(int cpu) { struct rcu_state *rsp; for_each_rcu_flavor(rsp) rcu_migrate_callbacks(cpu, rsp); } #endif /* * On non-huge systems, use expedited RCU grace periods to make suspend * and hibernation run faster. */ static int rcu_pm_notify(struct notifier_block *self, unsigned long action, void *hcpu) { switch (action) { case PM_HIBERNATION_PREPARE: case PM_SUSPEND_PREPARE: if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */ rcu_expedite_gp(); break; case PM_POST_HIBERNATION: case PM_POST_SUSPEND: if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */ rcu_unexpedite_gp(); break; default: break; } return NOTIFY_OK; } /* * Spawn the kthreads that handle each RCU flavor's grace periods. */ static int __init rcu_spawn_gp_kthread(void) { unsigned long flags; int kthread_prio_in = kthread_prio; struct rcu_node *rnp; struct rcu_state *rsp; struct sched_param sp; struct task_struct *t; /* Force priority into range. */ if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1) kthread_prio = 1; else if (kthread_prio < 0) kthread_prio = 0; else if (kthread_prio > 99) kthread_prio = 99; if (kthread_prio != kthread_prio_in) pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n", kthread_prio, kthread_prio_in); rcu_scheduler_fully_active = 1; for_each_rcu_flavor(rsp) { t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name); BUG_ON(IS_ERR(t)); rnp = rcu_get_root(rsp); raw_spin_lock_irqsave_rcu_node(rnp, flags); rsp->gp_kthread = t; if (kthread_prio) { sp.sched_priority = kthread_prio; sched_setscheduler_nocheck(t, SCHED_FIFO, &sp); } raw_spin_unlock_irqrestore_rcu_node(rnp, flags); wake_up_process(t); } rcu_spawn_nocb_kthreads(); rcu_spawn_boost_kthreads(); return 0; } early_initcall(rcu_spawn_gp_kthread); /* * This function is invoked towards the end of the scheduler's * initialization process. Before this is called, the idle task might * contain synchronous grace-period primitives (during which time, this idle * task is booting the system, and such primitives are no-ops). After this * function is called, any synchronous grace-period primitives are run as * expedited, with the requesting task driving the grace period forward. * A later core_initcall() rcu_set_runtime_mode() will switch to full * runtime RCU functionality. */ void rcu_scheduler_starting(void) { WARN_ON(num_online_cpus() != 1); WARN_ON(nr_context_switches() > 0); rcu_test_sync_prims(); rcu_scheduler_active = RCU_SCHEDULER_INIT; rcu_test_sync_prims(); } /* * Helper function for rcu_init() that initializes one rcu_state structure. */ static void __init rcu_init_one(struct rcu_state *rsp) { static const char * const buf[] = RCU_NODE_NAME_INIT; static const char * const fqs[] = RCU_FQS_NAME_INIT; static struct lock_class_key rcu_node_class[RCU_NUM_LVLS]; static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS]; int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */ int cpustride = 1; int i; int j; struct rcu_node *rnp; BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */ /* Silence gcc 4.8 false positive about array index out of range. */ if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS) panic("rcu_init_one: rcu_num_lvls out of range"); /* Initialize the level-tracking arrays. */ for (i = 1; i < rcu_num_lvls; i++) rsp->level[i] = rsp->level[i - 1] + num_rcu_lvl[i - 1]; rcu_init_levelspread(levelspread, num_rcu_lvl); /* Initialize the elements themselves, starting from the leaves. */ for (i = rcu_num_lvls - 1; i >= 0; i--) { cpustride *= levelspread[i]; rnp = rsp->level[i]; for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) { raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock)); lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock), &rcu_node_class[i], buf[i]); raw_spin_lock_init(&rnp->fqslock); lockdep_set_class_and_name(&rnp->fqslock, &rcu_fqs_class[i], fqs[i]); rnp->gpnum = rsp->gpnum; rnp->completed = rsp->completed; rnp->gp_seq = rsp->gp_seq; rnp->completedqs = rsp->gp_seq; rnp->qsmask = 0; rnp->qsmaskinit = 0; rnp->grplo = j * cpustride; rnp->grphi = (j + 1) * cpustride - 1; if (rnp->grphi >= nr_cpu_ids) rnp->grphi = nr_cpu_ids - 1; if (i == 0) { rnp->grpnum = 0; rnp->grpmask = 0; rnp->parent = NULL; } else { rnp->grpnum = j % levelspread[i - 1]; rnp->grpmask = 1UL << rnp->grpnum; rnp->parent = rsp->level[i - 1] + j / levelspread[i - 1]; } rnp->level = i; INIT_LIST_HEAD(&rnp->blkd_tasks); rcu_init_one_nocb(rnp); init_waitqueue_head(&rnp->exp_wq[0]); init_waitqueue_head(&rnp->exp_wq[1]); init_waitqueue_head(&rnp->exp_wq[2]); init_waitqueue_head(&rnp->exp_wq[3]); spin_lock_init(&rnp->exp_lock); } } init_swait_queue_head(&rsp->gp_wq); init_swait_queue_head(&rsp->expedited_wq); rnp = rcu_first_leaf_node(rsp); for_each_possible_cpu(i) { while (i > rnp->grphi) rnp++; per_cpu_ptr(rsp->rda, i)->mynode = rnp; rcu_boot_init_percpu_data(i, rsp); } list_add(&rsp->flavors, &rcu_struct_flavors); } /* * Compute the rcu_node tree geometry from kernel parameters. This cannot * replace the definitions in tree.h because those are needed to size * the ->node array in the rcu_state structure. */ static void __init rcu_init_geometry(void) { ulong d; int i; int rcu_capacity[RCU_NUM_LVLS]; /* * Initialize any unspecified boot parameters. * The default values of jiffies_till_first_fqs and * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS * value, which is a function of HZ, then adding one for each * RCU_JIFFIES_FQS_DIV CPUs that might be on the system. */ d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV; if (jiffies_till_first_fqs == ULONG_MAX) jiffies_till_first_fqs = d; if (jiffies_till_next_fqs == ULONG_MAX) jiffies_till_next_fqs = d; /* If the compile-time values are accurate, just leave. */ if (rcu_fanout_leaf == RCU_FANOUT_LEAF && nr_cpu_ids == NR_CPUS) return; pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n", rcu_fanout_leaf, nr_cpu_ids); /* * The boot-time rcu_fanout_leaf parameter must be at least two * and cannot exceed the number of bits in the rcu_node masks. * Complain and fall back to the compile-time values if this * limit is exceeded. */ if (rcu_fanout_leaf < 2 || rcu_fanout_leaf > sizeof(unsigned long) * 8) { rcu_fanout_leaf = RCU_FANOUT_LEAF; WARN_ON(1); return; } /* * Compute number of nodes that can be handled an rcu_node tree * with the given number of levels. */ rcu_capacity[0] = rcu_fanout_leaf; for (i = 1; i < RCU_NUM_LVLS; i++) rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT; /* * The tree must be able to accommodate the configured number of CPUs. * If this limit is exceeded, fall back to the compile-time values. */ if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) { rcu_fanout_leaf = RCU_FANOUT_LEAF; WARN_ON(1); return; } /* Calculate the number of levels in the tree. */ for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) { } rcu_num_lvls = i + 1; /* Calculate the number of rcu_nodes at each level of the tree. */ for (i = 0; i < rcu_num_lvls; i++) { int cap = rcu_capacity[(rcu_num_lvls - 1) - i]; num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap); } /* Calculate the total number of rcu_node structures. */ rcu_num_nodes = 0; for (i = 0; i < rcu_num_lvls; i++) rcu_num_nodes += num_rcu_lvl[i]; } /* * Dump out the structure of the rcu_node combining tree associated * with the rcu_state structure referenced by rsp. */ static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp) { int level = 0; struct rcu_node *rnp; pr_info("rcu_node tree layout dump\n"); pr_info(" "); rcu_for_each_node_breadth_first(rsp, rnp) { if (rnp->level != level) { pr_cont("\n"); pr_info(" "); level = rnp->level; } pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum); } pr_cont("\n"); } struct workqueue_struct *rcu_gp_wq; struct workqueue_struct *rcu_par_gp_wq; void __init rcu_init(void) { int cpu; rcu_early_boot_tests(); rcu_bootup_announce(); rcu_init_geometry(); rcu_init_one(&rcu_bh_state); rcu_init_one(&rcu_sched_state); if (dump_tree) rcu_dump_rcu_node_tree(&rcu_sched_state); __rcu_init_preempt(); open_softirq(RCU_SOFTIRQ, rcu_process_callbacks); /* * We don't need protection against CPU-hotplug here because * this is called early in boot, before either interrupts * or the scheduler are operational. */ pm_notifier(rcu_pm_notify, 0); for_each_online_cpu(cpu) { rcutree_prepare_cpu(cpu); rcu_cpu_starting(cpu); rcutree_online_cpu(cpu); } /* Create workqueue for expedited GPs and for Tree SRCU. */ rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0); WARN_ON(!rcu_gp_wq); rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0); WARN_ON(!rcu_par_gp_wq); } #include "tree_exp.h" #include "tree_plugin.h"