// SPDX-License-Identifier: GPL-2.0 #ifndef NO_BCACHEFS_FS #include "bcachefs.h" #include "btree_update.h" #include "buckets.h" #include "clock.h" #include "error.h" #include "extents.h" #include "fs.h" #include "fs-io.h" #include "fsck.h" #include "inode.h" #include "journal.h" #include "io.h" #include "keylist.h" #include "quota.h" #include "trace.h" #include #include #include #include #include #include #include #include #include #include #include struct quota_res { u64 sectors; }; struct i_sectors_hook { struct extent_insert_hook hook; struct bch_inode_info *inode; struct quota_res quota_res; s64 sectors; u64 new_i_size; unsigned flags; unsigned appending:1; }; struct bchfs_write_op { struct bch_inode_info *inode; s64 sectors_added; bool is_dio; bool unalloc; u64 new_i_size; /* must be last: */ struct bch_write_op op; }; struct bch_writepage_io { struct closure cl; u64 new_sectors; /* must be last: */ struct bchfs_write_op op; }; struct dio_write { struct closure cl; struct kiocb *req; struct task_struct *task; unsigned loop:1, sync:1, free_iov:1; struct quota_res quota_res; struct iov_iter iter; struct iovec inline_vecs[2]; /* must be last: */ struct bchfs_write_op iop; }; struct dio_read { struct closure cl; struct kiocb *req; long ret; struct bch_read_bio rbio; }; /* pagecache_block must be held */ static int write_invalidate_inode_pages_range(struct address_space *mapping, loff_t start, loff_t end) { int ret; /* * XXX: the way this is currently implemented, we can spin if a process * is continually redirtying a specific page */ do { if (!mapping->nrpages) return 0; ret = filemap_write_and_wait_range(mapping, start, end); if (ret) break; if (!mapping->nrpages) return 0; ret = invalidate_inode_pages2_range(mapping, start >> PAGE_SHIFT, end >> PAGE_SHIFT); } while (ret == -EBUSY); return ret; } /* quotas */ #ifdef CONFIG_BCACHEFS_QUOTA static void bch2_quota_reservation_put(struct bch_fs *c, struct bch_inode_info *inode, struct quota_res *res) { if (!res->sectors) return; mutex_lock(&inode->ei_quota_lock); BUG_ON(res->sectors > inode->ei_quota_reserved); bch2_quota_acct(c, inode->ei_qid, Q_SPC, -((s64) res->sectors), BCH_QUOTA_PREALLOC); inode->ei_quota_reserved -= res->sectors; mutex_unlock(&inode->ei_quota_lock); res->sectors = 0; } static int bch2_quota_reservation_add(struct bch_fs *c, struct bch_inode_info *inode, struct quota_res *res, unsigned sectors, bool check_enospc) { int ret; mutex_lock(&inode->ei_quota_lock); ret = bch2_quota_acct(c, inode->ei_qid, Q_SPC, sectors, check_enospc ? BCH_QUOTA_PREALLOC : BCH_QUOTA_NOCHECK); if (likely(!ret)) { inode->ei_quota_reserved += sectors; res->sectors += sectors; } mutex_unlock(&inode->ei_quota_lock); return ret; } #else static void bch2_quota_reservation_put(struct bch_fs *c, struct bch_inode_info *inode, struct quota_res *res) { } static int bch2_quota_reservation_add(struct bch_fs *c, struct bch_inode_info *inode, struct quota_res *res, unsigned sectors, bool check_enospc) { return 0; } #endif /* i_size updates: */ struct inode_new_size { loff_t new_size; u64 now; unsigned fields; }; static int inode_set_size(struct bch_inode_info *inode, struct bch_inode_unpacked *bi, void *p) { struct inode_new_size *s = p; bi->bi_size = s->new_size; if (s->fields & ATTR_ATIME) bi->bi_atime = s->now; if (s->fields & ATTR_MTIME) bi->bi_mtime = s->now; if (s->fields & ATTR_CTIME) bi->bi_ctime = s->now; return 0; } static int __must_check bch2_write_inode_size(struct bch_fs *c, struct bch_inode_info *inode, loff_t new_size, unsigned fields) { struct inode_new_size s = { .new_size = new_size, .now = bch2_current_time(c), .fields = fields, }; return bch2_write_inode(c, inode, inode_set_size, &s, fields); } static void i_sectors_acct(struct bch_fs *c, struct bch_inode_info *inode, struct quota_res *quota_res, int sectors) { mutex_lock(&inode->ei_quota_lock); #ifdef CONFIG_BCACHEFS_QUOTA if (quota_res && sectors > 0) { BUG_ON(sectors > quota_res->sectors); BUG_ON(sectors > inode->ei_quota_reserved); quota_res->sectors -= sectors; inode->ei_quota_reserved -= sectors; } else { bch2_quota_acct(c, inode->ei_qid, Q_SPC, sectors, BCH_QUOTA_WARN); } #endif inode->v.i_blocks += sectors; mutex_unlock(&inode->ei_quota_lock); } /* i_sectors accounting: */ static enum btree_insert_ret i_sectors_hook_fn(struct extent_insert_hook *hook, struct bpos committed_pos, struct bpos next_pos, struct bkey_s_c k, const struct bkey_i *insert) { struct i_sectors_hook *h = container_of(hook, struct i_sectors_hook, hook); s64 sectors = next_pos.offset - committed_pos.offset; int sign = bkey_extent_is_allocation(&insert->k) - (k.k && bkey_extent_is_allocation(k.k)); EBUG_ON(!(h->inode->ei_inode.bi_flags & BCH_INODE_I_SECTORS_DIRTY)); h->sectors += sectors * sign; return BTREE_INSERT_OK; } static int i_sectors_dirty_finish_fn(struct bch_inode_info *inode, struct bch_inode_unpacked *bi, void *p) { struct bch_fs *c = inode->v.i_sb->s_fs_info; struct i_sectors_hook *h = p; if (h->new_i_size != U64_MAX && (!h->appending || h->new_i_size > bi->bi_size)) bi->bi_size = h->new_i_size; bi->bi_sectors += h->sectors; bi->bi_flags &= ~h->flags; bi->bi_mtime = bi->bi_ctime = bch2_current_time(c); return 0; } static int i_sectors_dirty_finish(struct bch_fs *c, struct i_sectors_hook *h) { int ret; mutex_lock(&h->inode->ei_update_lock); i_sectors_acct(c, h->inode, &h->quota_res, h->sectors); ret = bch2_write_inode(c, h->inode, i_sectors_dirty_finish_fn, h, ATTR_MTIME|ATTR_CTIME); if (!ret && h->new_i_size != U64_MAX) i_size_write(&h->inode->v, h->new_i_size); mutex_unlock(&h->inode->ei_update_lock); bch2_quota_reservation_put(c, h->inode, &h->quota_res); h->sectors = 0; return ret; } static int i_sectors_dirty_start_fn(struct bch_inode_info *inode, struct bch_inode_unpacked *bi, void *p) { struct i_sectors_hook *h = p; if (h->flags & BCH_INODE_I_SIZE_DIRTY) bi->bi_size = h->new_i_size; bi->bi_flags |= h->flags; return 0; } static int i_sectors_dirty_start(struct bch_fs *c, struct i_sectors_hook *h) { int ret; mutex_lock(&h->inode->ei_update_lock); ret = bch2_write_inode(c, h->inode, i_sectors_dirty_start_fn, h, 0); mutex_unlock(&h->inode->ei_update_lock); return ret; } static inline struct i_sectors_hook i_sectors_hook_init(struct bch_inode_info *inode, unsigned flags) { return (struct i_sectors_hook) { .hook.fn = i_sectors_hook_fn, .inode = inode, .sectors = 0, .new_i_size = U64_MAX, .flags = flags|BCH_INODE_I_SECTORS_DIRTY, }; } /* normal i_size/i_sectors update machinery: */ static s64 sum_sector_overwrites(struct bkey_i *new, struct btree_iter *_iter, bool *allocating) { struct btree_iter iter; struct bkey_s_c old; s64 delta = 0; bch2_btree_iter_init(&iter, _iter->c, BTREE_ID_EXTENTS, POS_MIN, BTREE_ITER_SLOTS); bch2_btree_iter_link(_iter, &iter); bch2_btree_iter_copy(&iter, _iter); for_each_btree_key_continue(&iter, BTREE_ITER_SLOTS, old) { if (bkey_cmp(new->k.p, bkey_start_pos(old.k)) <= 0) break; if (allocating && !bch2_extent_is_fully_allocated(old)) *allocating = true; delta += (min(new->k.p.offset, old.k->p.offset) - max(bkey_start_offset(&new->k), bkey_start_offset(old.k))) * (bkey_extent_is_allocation(&new->k) - bkey_extent_is_allocation(old.k)); } bch2_btree_iter_unlink(&iter); return delta; } static int bch2_extent_update(struct btree_trans *trans, struct bch_inode_info *inode, struct disk_reservation *disk_res, struct quota_res *quota_res, struct btree_iter *extent_iter, struct bkey_i *k, u64 new_i_size, bool may_allocate, bool direct, s64 *total_delta) { struct btree_iter *inode_iter = NULL; struct bch_inode_unpacked inode_u; struct bkey_inode_buf inode_p; bool allocating = false; bool extended = false; s64 i_sectors_delta; int ret; bch2_trans_begin_updates(trans); ret = bch2_btree_iter_traverse(extent_iter); if (ret) return ret; bch2_extent_trim_atomic(k, extent_iter); i_sectors_delta = sum_sector_overwrites(k, extent_iter, &allocating); if (!may_allocate && allocating) return -ENOSPC; bch2_trans_update(trans, BTREE_INSERT_ENTRY(extent_iter, k)); new_i_size = min(k->k.p.offset << 9, new_i_size); /* XXX: inode->i_size locking */ if (i_sectors_delta || new_i_size > inode->ei_inode.bi_size) { inode_iter = bch2_trans_get_iter(trans, BTREE_ID_INODES, POS(k->k.p.inode, 0), BTREE_ITER_SLOTS|BTREE_ITER_INTENT); if (IS_ERR(inode_iter)) return PTR_ERR(inode_iter); ret = bch2_btree_iter_traverse(inode_iter); if (ret) goto err; inode_u = inode->ei_inode; inode_u.bi_sectors += i_sectors_delta; /* XXX: this is slightly suspect */ if (!(inode_u.bi_flags & BCH_INODE_I_SIZE_DIRTY) && new_i_size > inode_u.bi_size) { inode_u.bi_size = new_i_size; extended = true; } bch2_inode_pack(&inode_p, &inode_u); bch2_trans_update(trans, BTREE_INSERT_ENTRY(inode_iter, &inode_p.inode.k_i)); } ret = bch2_trans_commit(trans, disk_res, NULL, &inode->ei_journal_seq, BTREE_INSERT_NOFAIL| BTREE_INSERT_ATOMIC| BTREE_INSERT_NOUNLOCK| BTREE_INSERT_USE_RESERVE); if (ret) goto err; inode->ei_inode.bi_sectors += i_sectors_delta; EBUG_ON(i_sectors_delta && inode->ei_inode.bi_sectors != inode_u.bi_sectors); if (extended) { inode->ei_inode.bi_size = new_i_size; if (direct) { spin_lock(&inode->v.i_lock); if (new_i_size > inode->v.i_size) i_size_write(&inode->v, new_i_size); spin_unlock(&inode->v.i_lock); } } if (direct) i_sectors_acct(trans->c, inode, quota_res, i_sectors_delta); if (total_delta) *total_delta += i_sectors_delta; err: if (!IS_ERR_OR_NULL(inode_iter)) bch2_trans_iter_put(trans, inode_iter); return ret; } static int bchfs_write_index_update(struct bch_write_op *wop) { struct bchfs_write_op *op = container_of(wop, struct bchfs_write_op, op); struct quota_res *quota_res = op->is_dio ? &container_of(op, struct dio_write, iop)->quota_res : NULL; struct bch_inode_info *inode = op->inode; struct keylist *keys = &op->op.insert_keys; struct bkey_i *k = bch2_keylist_front(keys); struct btree_trans trans; struct btree_iter *iter; int ret; BUG_ON(k->k.p.inode != inode->v.i_ino); bch2_trans_init(&trans, wop->c); bch2_trans_preload_iters(&trans); iter = bch2_trans_get_iter(&trans, BTREE_ID_EXTENTS, bkey_start_pos(&k->k), BTREE_ITER_INTENT); do { BKEY_PADDED(k) tmp; bkey_copy(&tmp.k, bch2_keylist_front(keys)); ret = bch2_extent_update(&trans, inode, &wop->res, quota_res, iter, &tmp.k, op->new_i_size, !op->unalloc, op->is_dio, &op->sectors_added); if (ret == -EINTR) continue; if (ret) break; if (bkey_cmp(iter->pos, bch2_keylist_front(keys)->k.p) < 0) bch2_cut_front(iter->pos, bch2_keylist_front(keys)); else bch2_keylist_pop_front(keys); } while (!bch2_keylist_empty(keys)); bch2_trans_exit(&trans); return ret; } static inline void bch2_fswrite_op_init(struct bchfs_write_op *op, struct bch_fs *c, struct bch_inode_info *inode, struct bch_io_opts opts, bool is_dio) { op->inode = inode; op->sectors_added = 0; op->is_dio = is_dio; op->unalloc = false; op->new_i_size = U64_MAX; bch2_write_op_init(&op->op, c, opts); op->op.target = opts.foreground_target; op->op.index_update_fn = bchfs_write_index_update; op_journal_seq_set(&op->op, &inode->ei_journal_seq); } static inline struct bch_io_opts io_opts(struct bch_fs *c, struct bch_inode_info *inode) { struct bch_io_opts opts = bch2_opts_to_inode_opts(c->opts); bch2_io_opts_apply(&opts, bch2_inode_opts_get(&inode->ei_inode)); return opts; } /* page state: */ /* stored in page->private: */ /* * bch_page_state has to (unfortunately) be manipulated with cmpxchg - we could * almost protected it with the page lock, except that bch2_writepage_io_done has * to update the sector counts (and from interrupt/bottom half context). */ struct bch_page_state { union { struct { /* existing data: */ unsigned sectors:PAGE_SECTOR_SHIFT + 1; unsigned nr_replicas:4; unsigned compressed:1; /* Owns PAGE_SECTORS sized reservation: */ unsigned reserved:1; unsigned reservation_replicas:4; /* Owns PAGE_SECTORS sized quota reservation: */ unsigned quota_reserved:1; /* * Number of sectors on disk - for i_blocks * Uncompressed size, not compressed size: */ unsigned dirty_sectors:PAGE_SECTOR_SHIFT + 1; }; /* for cmpxchg: */ unsigned long v; }; }; #define page_state_cmpxchg(_ptr, _new, _expr) \ ({ \ unsigned long _v = READ_ONCE((_ptr)->v); \ struct bch_page_state _old; \ \ do { \ _old.v = _new.v = _v; \ _expr; \ \ EBUG_ON(_new.sectors + _new.dirty_sectors > PAGE_SECTORS);\ } while (_old.v != _new.v && \ (_v = cmpxchg(&(_ptr)->v, _old.v, _new.v)) != _old.v); \ \ _old; \ }) static inline struct bch_page_state *page_state(struct page *page) { struct bch_page_state *s = (void *) &page->private; BUILD_BUG_ON(sizeof(*s) > sizeof(page->private)); if (!PagePrivate(page)) SetPagePrivate(page); return s; } static inline unsigned page_res_sectors(struct bch_page_state s) { return s.reserved ? s.reservation_replicas * PAGE_SECTORS : 0; } static void __bch2_put_page_reservation(struct bch_fs *c, struct bch_inode_info *inode, struct bch_page_state s) { struct disk_reservation res = { .sectors = page_res_sectors(s) }; struct quota_res quota_res = { .sectors = s.quota_reserved ? PAGE_SECTORS : 0 }; bch2_quota_reservation_put(c, inode, "a_res); bch2_disk_reservation_put(c, &res); } static void bch2_put_page_reservation(struct bch_fs *c, struct bch_inode_info *inode, struct page *page) { struct bch_page_state s; s = page_state_cmpxchg(page_state(page), s, { s.reserved = 0; s.quota_reserved = 0; }); __bch2_put_page_reservation(c, inode, s); } static int bch2_get_page_reservation(struct bch_fs *c, struct bch_inode_info *inode, struct page *page, bool check_enospc) { struct bch_page_state *s = page_state(page), new, old; /* XXX: this should not be open coded */ unsigned nr_replicas = inode->ei_inode.bi_data_replicas ? inode->ei_inode.bi_data_replicas - 1 : c->opts.data_replicas; struct disk_reservation disk_res = bch2_disk_reservation_init(c, nr_replicas); struct quota_res quota_res = { 0 }; int ret = 0; /* * XXX: this could likely be quite a bit simpler, page reservations * _should_ only be manipulated with page locked: */ old = page_state_cmpxchg(s, new, { if (new.reserved ? (new.reservation_replicas < disk_res.nr_replicas) : (new.sectors < PAGE_SECTORS || new.nr_replicas < disk_res.nr_replicas || new.compressed)) { int sectors = (disk_res.nr_replicas * PAGE_SECTORS - page_res_sectors(new) - disk_res.sectors); if (sectors > 0) { ret = bch2_disk_reservation_add(c, &disk_res, sectors, !check_enospc ? BCH_DISK_RESERVATION_NOFAIL : 0); if (unlikely(ret)) goto err; } new.reserved = 1; new.reservation_replicas = disk_res.nr_replicas; } if (!new.quota_reserved && new.sectors + new.dirty_sectors < PAGE_SECTORS) { ret = bch2_quota_reservation_add(c, inode, "a_res, PAGE_SECTORS - quota_res.sectors, check_enospc); if (unlikely(ret)) goto err; new.quota_reserved = 1; } }); quota_res.sectors -= (new.quota_reserved - old.quota_reserved) * PAGE_SECTORS; disk_res.sectors -= page_res_sectors(new) - page_res_sectors(old); err: bch2_quota_reservation_put(c, inode, "a_res); bch2_disk_reservation_put(c, &disk_res); return ret; } static void bch2_clear_page_bits(struct page *page) { struct bch_inode_info *inode = to_bch_ei(page->mapping->host); struct bch_fs *c = inode->v.i_sb->s_fs_info; struct bch_page_state s; if (!PagePrivate(page)) return; s.v = xchg(&page_state(page)->v, 0); ClearPagePrivate(page); if (s.dirty_sectors) i_sectors_acct(c, inode, NULL, -s.dirty_sectors); __bch2_put_page_reservation(c, inode, s); } bool bch2_dirty_folio(struct address_space *mapping, struct folio *folio) { struct bch_inode_info *inode = to_bch_ei(mapping->host); struct bch_fs *c = inode->v.i_sb->s_fs_info; struct quota_res quota_res = { 0 }; struct bch_page_state old, new; old = page_state_cmpxchg(page_state(&folio->page), new, new.dirty_sectors = PAGE_SECTORS - new.sectors; new.quota_reserved = 0; ); quota_res.sectors += old.quota_reserved * PAGE_SECTORS; if (old.dirty_sectors != new.dirty_sectors) i_sectors_acct(c, inode, "a_res, new.dirty_sectors - old.dirty_sectors); bch2_quota_reservation_put(c, inode, "a_res); return filemap_dirty_folio(mapping, folio); } vm_fault_t bch2_page_fault(struct vm_fault *vmf) { struct file *file = vmf->vma->vm_file; struct bch_inode_info *inode = file_bch_inode(file); int ret; bch2_pagecache_add_get(&inode->ei_pagecache_lock); ret = filemap_fault(vmf); bch2_pagecache_add_put(&inode->ei_pagecache_lock); return ret; } vm_fault_t bch2_page_mkwrite(struct vm_fault *vmf) { struct page *page = vmf->page; struct file *file = vmf->vma->vm_file; struct bch_inode_info *inode = file_bch_inode(file); struct address_space *mapping = file->f_mapping; struct bch_fs *c = inode->v.i_sb->s_fs_info; int ret = VM_FAULT_LOCKED; sb_start_pagefault(inode->v.i_sb); file_update_time(file); /* * Not strictly necessary, but helps avoid dio writes livelocking in * write_invalidate_inode_pages_range() - can drop this if/when we get * a write_invalidate_inode_pages_range() that works without dropping * page lock before invalidating page */ bch2_pagecache_add_get(&inode->ei_pagecache_lock); lock_page(page); if (page->mapping != mapping || page_offset(page) > i_size_read(&inode->v)) { unlock_page(page); ret = VM_FAULT_NOPAGE; goto out; } if (bch2_get_page_reservation(c, inode, page, true)) { unlock_page(page); ret = VM_FAULT_SIGBUS; goto out; } if (!PageDirty(page)) set_page_dirty(page); wait_for_stable_page(page); out: bch2_pagecache_add_put(&inode->ei_pagecache_lock); sb_end_pagefault(inode->v.i_sb); return ret; } void bch2_invalidate_folio(struct folio *folio, size_t offset, size_t length) { EBUG_ON(!PageLocked(&folio->page)); EBUG_ON(folio_test_writeback(folio)); if (offset || length < folio_size(folio)) return; bch2_clear_page_bits(&folio->page); } bool bch2_release_folio(struct folio *folio, gfp_t gfp_mask) { /* XXX: this can't take locks that are held while we allocate memory */ EBUG_ON(!PageLocked(&folio->page)); EBUG_ON(folio_test_writeback(folio)); if (folio_test_dirty(folio)) return false; bch2_clear_page_bits(&folio->page); return true; } /* readpages/writepages: */ static bool bio_can_add_page_contig(struct bio *bio, struct page *page) { sector_t offset = (sector_t) page->index << PAGE_SECTOR_SHIFT; return bio->bi_vcnt < bio->bi_max_vecs && bio_end_sector(bio) == offset; } static int bio_add_page_contig(struct bio *bio, struct page *page) { sector_t offset = (sector_t) page->index << PAGE_SECTOR_SHIFT; EBUG_ON(!bio->bi_max_vecs); if (!bio->bi_vcnt) bio->bi_iter.bi_sector = offset; else if (!bio_can_add_page_contig(bio, page)) return -1; __bio_add_page(bio, page, PAGE_SIZE, 0); return 0; } /* readpage(s): */ static void bch2_readpages_end_io(struct bio *bio) { struct bvec_iter_all iter; struct bio_vec *bv; bio_for_each_segment_all(bv, bio, iter) { struct page *page = bv->bv_page; if (!bio->bi_status) { SetPageUptodate(page); } else { ClearPageUptodate(page); SetPageError(page); } unlock_page(page); } bio_put(bio); } static inline void page_state_init_for_read(struct page *page) { struct bch_page_state *s = page_state(page); BUG_ON(s->reserved); s->sectors = 0; s->compressed = 0; } struct readpages_iter { struct address_space *mapping; struct page **pages; unsigned nr_pages; unsigned idx; pgoff_t offset; }; static int readpages_iter_init(struct readpages_iter *iter, struct readahead_control *ractl) { unsigned i, nr_pages = readahead_count(ractl); memset(iter, 0, sizeof(*iter)); iter->mapping = ractl->mapping; iter->offset = readahead_index(ractl); iter->nr_pages = nr_pages; iter->pages = kmalloc_array(nr_pages, sizeof(struct page *), GFP_NOFS); if (!iter->pages) return -ENOMEM; __readahead_batch(ractl, iter->pages, nr_pages); for (i = 0; i < nr_pages; i++) { put_page(iter->pages[i]); } return 0; } static inline struct page *readpage_iter_next(struct readpages_iter *iter) { if (iter->idx >= iter->nr_pages) return NULL; EBUG_ON(iter->pages[iter->idx]->index != iter->offset + iter->idx); page_state_init_for_read(iter->pages[iter->idx]); return iter->pages[iter->idx]; } static void bch2_add_page_sectors(struct bio *bio, struct bkey_s_c k) { struct bvec_iter iter; struct bio_vec bv; bool compressed = bch2_extent_is_compressed(k); unsigned nr_ptrs = bch2_extent_nr_dirty_ptrs(k); bio_for_each_segment(bv, bio, iter) { struct bch_page_state *s = page_state(bv.bv_page); /* sectors in @k from the start of this page: */ unsigned k_sectors = k.k->size - (iter.bi_sector - k.k->p.offset); unsigned page_sectors = min(bv.bv_len >> 9, k_sectors); s->nr_replicas = !s->sectors ? nr_ptrs : min_t(unsigned, s->nr_replicas, nr_ptrs); BUG_ON(s->sectors + page_sectors > PAGE_SECTORS); s->sectors += page_sectors; s->compressed |= compressed; } } static void readpage_bio_extend(struct readpages_iter *iter, struct bio *bio, u64 offset, bool get_more) { while (bio_end_sector(bio) < offset && bio->bi_vcnt < bio->bi_max_vecs) { pgoff_t page_offset = bio_end_sector(bio) >> PAGE_SECTOR_SHIFT; struct page *page = readpage_iter_next(iter); int ret; if (page) { if (iter->offset + iter->idx != page_offset) break; iter->idx++; } else { if (!get_more) break; page = xa_load(&iter->mapping->i_pages, page_offset); if (page && !xa_is_value(page)) break; page = __page_cache_alloc(readahead_gfp_mask(iter->mapping)); if (!page) break; page_state_init_for_read(page); ret = add_to_page_cache_lru(page, iter->mapping, page_offset, GFP_NOFS); if (ret) { ClearPagePrivate(page); put_page(page); break; } put_page(page); } __bio_add_page(bio, page, PAGE_SIZE, 0); } } static void bchfs_read(struct bch_fs *c, struct btree_iter *iter, struct bch_read_bio *rbio, u64 inum, struct readpages_iter *readpages_iter) { struct bio *bio = &rbio->bio; int flags = BCH_READ_RETRY_IF_STALE| BCH_READ_MAY_PROMOTE; rbio->c = c; rbio->start_time = local_clock(); while (1) { BKEY_PADDED(k) tmp; struct bkey_s_c k; unsigned bytes; bch2_btree_iter_set_pos(iter, POS(inum, bio->bi_iter.bi_sector)); k = bch2_btree_iter_peek_slot(iter); BUG_ON(!k.k); if (IS_ERR(k.k)) { int ret = bch2_btree_iter_unlock(iter); BUG_ON(!ret); bcache_io_error(c, bio, "btree IO error %i", ret); bio_endio(bio); return; } bkey_reassemble(&tmp.k, k); bch2_btree_iter_unlock(iter); k = bkey_i_to_s_c(&tmp.k); if (readpages_iter) { bool want_full_extent = false; if (bkey_extent_is_data(k.k)) { struct bkey_s_c_extent e = bkey_s_c_to_extent(k); struct bch_extent_crc_unpacked crc; const union bch_extent_entry *i; extent_for_each_crc(e, crc, i) want_full_extent |= ((crc.csum_type != 0) | (crc.compression_type != 0)); } readpage_bio_extend(readpages_iter, bio, k.k->p.offset, want_full_extent); } bytes = (min_t(u64, k.k->p.offset, bio_end_sector(bio)) - bio->bi_iter.bi_sector) << 9; swap(bio->bi_iter.bi_size, bytes); if (bytes == bio->bi_iter.bi_size) flags |= BCH_READ_LAST_FRAGMENT; if (bkey_extent_is_allocation(k.k)) bch2_add_page_sectors(bio, k); bch2_read_extent(c, rbio, k, flags); if (flags & BCH_READ_LAST_FRAGMENT) return; swap(bio->bi_iter.bi_size, bytes); bio_advance(bio, bytes); } } void bch2_readahead(struct readahead_control *ractl) { struct bch_inode_info *inode = to_bch_ei(ractl->mapping->host); struct bch_fs *c = inode->v.i_sb->s_fs_info; struct bch_io_opts opts = io_opts(c, inode); struct btree_iter iter; struct page *page; struct readpages_iter readpages_iter; int ret; ret = readpages_iter_init(&readpages_iter, ractl); BUG_ON(ret); bch2_btree_iter_init(&iter, c, BTREE_ID_EXTENTS, POS_MIN, BTREE_ITER_SLOTS); bch2_pagecache_add_get(&inode->ei_pagecache_lock); while ((page = readpage_iter_next(&readpages_iter))) { pgoff_t index = readpages_iter.offset + readpages_iter.idx; unsigned n = min_t(unsigned, readpages_iter.nr_pages - readpages_iter.idx, BIO_MAX_VECS); struct bch_read_bio *rbio = rbio_init(bio_alloc_bioset(NULL, n, REQ_OP_READ, GFP_NOFS, &c->bio_read), opts); readpages_iter.idx++; rbio->bio.bi_iter.bi_sector = (sector_t) index << PAGE_SECTOR_SHIFT; rbio->bio.bi_end_io = bch2_readpages_end_io; __bio_add_page(&rbio->bio, page, PAGE_SIZE, 0); bchfs_read(c, &iter, rbio, inode->v.i_ino, &readpages_iter); } bch2_pagecache_add_put(&inode->ei_pagecache_lock); kfree(readpages_iter.pages); } static void __bchfs_readpage(struct bch_fs *c, struct bch_read_bio *rbio, u64 inum, struct page *page) { struct btree_iter iter; page_state_init_for_read(page); rbio->bio.bi_opf = REQ_OP_READ|REQ_SYNC; bio_add_page_contig(&rbio->bio, page); bch2_btree_iter_init(&iter, c, BTREE_ID_EXTENTS, POS_MIN, BTREE_ITER_SLOTS); bchfs_read(c, &iter, rbio, inum, NULL); } static void bch2_read_single_page_end_io(struct bio *bio) { complete(bio->bi_private); } static int bch2_read_single_page(struct page *page, struct address_space *mapping) { struct bch_inode_info *inode = to_bch_ei(mapping->host); struct bch_fs *c = inode->v.i_sb->s_fs_info; struct bch_read_bio *rbio; int ret; DECLARE_COMPLETION_ONSTACK(done); rbio = rbio_init(bio_alloc_bioset(NULL, 1, REQ_OP_READ, GFP_NOFS, &c->bio_read), io_opts(c, inode)); rbio->bio.bi_private = &done; rbio->bio.bi_end_io = bch2_read_single_page_end_io; __bchfs_readpage(c, rbio, inode->v.i_ino, page); wait_for_completion(&done); ret = blk_status_to_errno(rbio->bio.bi_status); bio_put(&rbio->bio); if (ret < 0) return ret; SetPageUptodate(page); return 0; } int bch2_read_folio(struct file *file, struct folio *folio) { struct page *page = &folio->page; int ret; ret = bch2_read_single_page(page, page->mapping); folio_unlock(folio); return ret; } /* writepages: */ struct bch_writepage_state { struct bch_writepage_io *io; struct bch_io_opts opts; }; static inline struct bch_writepage_state bch_writepage_state_init(struct bch_fs *c, struct bch_inode_info *inode) { return (struct bch_writepage_state) { .opts = io_opts(c, inode) }; } static void bch2_writepage_io_free(struct closure *cl) { struct bch_writepage_io *io = container_of(cl, struct bch_writepage_io, cl); bio_put(&io->op.op.wbio.bio); } static void bch2_writepage_io_done(struct closure *cl) { struct bch_writepage_io *io = container_of(cl, struct bch_writepage_io, cl); struct bch_fs *c = io->op.op.c; struct bio *bio = &io->op.op.wbio.bio; struct bvec_iter_all iter; struct bio_vec *bvec; if (io->op.op.error) { bio_for_each_segment_all(bvec, bio, iter) SetPageError(bvec->bv_page); set_bit(AS_EIO, &io->op.inode->v.i_mapping->flags); } /* * racing with fallocate can cause us to add fewer sectors than * expected - but we shouldn't add more sectors than expected: */ BUG_ON(io->op.sectors_added > (s64) io->new_sectors); /* * (error (due to going RO) halfway through a page can screw that up * slightly) * XXX wtf? BUG_ON(io->op.sectors_added - io->new_sectors >= (s64) PAGE_SECTORS); */ /* * PageWriteback is effectively our ref on the inode - fixup i_blocks * before calling end_page_writeback: */ if (io->op.sectors_added != io->new_sectors) i_sectors_acct(c, io->op.inode, NULL, io->op.sectors_added - (s64) io->new_sectors); bio_for_each_segment_all(bvec, bio, iter) end_page_writeback(bvec->bv_page); closure_return_with_destructor(&io->cl, bch2_writepage_io_free); } static void bch2_writepage_do_io(struct bch_writepage_state *w) { struct bch_writepage_io *io = w->io; w->io = NULL; closure_call(&io->op.op.cl, bch2_write, NULL, &io->cl); continue_at(&io->cl, bch2_writepage_io_done, NULL); } /* * Get a bch_writepage_io and add @page to it - appending to an existing one if * possible, else allocating a new one: */ static void bch2_writepage_io_alloc(struct bch_fs *c, struct bch_writepage_state *w, struct bch_inode_info *inode, struct page *page, unsigned nr_replicas) { struct bch_write_op *op; u64 offset = (u64) page->index << PAGE_SECTOR_SHIFT; w->io = container_of(bio_alloc_bioset(NULL, BIO_MAX_VECS, REQ_OP_WRITE, GFP_NOFS, &c->writepage_bioset), struct bch_writepage_io, op.op.wbio.bio); closure_init(&w->io->cl, NULL); w->io->new_sectors = 0; bch2_fswrite_op_init(&w->io->op, c, inode, w->opts, false); op = &w->io->op.op; op->nr_replicas = nr_replicas; op->res.nr_replicas = nr_replicas; op->write_point = writepoint_hashed(inode->ei_last_dirtied); op->pos = POS(inode->v.i_ino, offset); op->wbio.bio.bi_iter.bi_sector = offset; } static int __bch2_writepage(struct folio *folio, struct writeback_control *wbc, void *data) { struct page *page = &folio->page; struct bch_inode_info *inode = to_bch_ei(page->mapping->host); struct bch_fs *c = inode->v.i_sb->s_fs_info; struct bch_writepage_state *w = data; struct bch_page_state new, old; unsigned offset; loff_t i_size = i_size_read(&inode->v); pgoff_t end_index = i_size >> PAGE_SHIFT; EBUG_ON(!PageUptodate(page)); /* Is the page fully inside i_size? */ if (page->index < end_index) goto do_io; /* Is the page fully outside i_size? (truncate in progress) */ offset = i_size & (PAGE_SIZE - 1); if (page->index > end_index || !offset) { unlock_page(page); return 0; } /* * The page straddles i_size. It must be zeroed out on each and every * writepage invocation because it may be mmapped. "A file is mapped * in multiples of the page size. For a file that is not a multiple of * the page size, the remaining memory is zeroed when mapped, and * writes to that region are not written out to the file." */ zero_user_segment(page, offset, PAGE_SIZE); do_io: /* Before unlocking the page, transfer reservation to w->io: */ old = page_state_cmpxchg(page_state(page), new, { EBUG_ON(!new.reserved && (new.sectors != PAGE_SECTORS || new.compressed)); if (new.reserved) new.nr_replicas = new.reservation_replicas; new.reserved = 0; new.compressed |= w->opts.compression != 0; new.sectors += new.dirty_sectors; new.dirty_sectors = 0; }); BUG_ON(PageWriteback(page)); set_page_writeback(page); unlock_page(page); if (w->io && (w->io->op.op.res.nr_replicas != new.nr_replicas || !bio_can_add_page_contig(&w->io->op.op.wbio.bio, page))) bch2_writepage_do_io(w); if (!w->io) bch2_writepage_io_alloc(c, w, inode, page, new.nr_replicas); w->io->new_sectors += new.sectors - old.sectors; BUG_ON(inode != w->io->op.inode); BUG_ON(bio_add_page_contig(&w->io->op.op.wbio.bio, page)); if (old.reserved) w->io->op.op.res.sectors += old.reservation_replicas * PAGE_SECTORS; w->io->op.new_i_size = i_size; if (wbc->sync_mode == WB_SYNC_ALL) w->io->op.op.wbio.bio.bi_opf |= REQ_SYNC; return 0; } int bch2_writepages(struct address_space *mapping, struct writeback_control *wbc) { struct bch_fs *c = mapping->host->i_sb->s_fs_info; struct bch_writepage_state w = bch_writepage_state_init(c, to_bch_ei(mapping->host)); struct blk_plug plug; int ret; blk_start_plug(&plug); ret = write_cache_pages(mapping, wbc, __bch2_writepage, &w); if (w.io) bch2_writepage_do_io(&w); blk_finish_plug(&plug); return ret; } int bch2_writepage(struct page *page, struct writeback_control *wbc) { struct bch_fs *c = page->mapping->host->i_sb->s_fs_info; struct bch_writepage_state w = bch_writepage_state_init(c, to_bch_ei(page->mapping->host)); int ret; ret = __bch2_writepage(page_folio(page), wbc, &w); if (w.io) bch2_writepage_do_io(&w); return ret; } /* buffered writes: */ int bch2_write_begin(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, struct page **pagep, void **fsdata) { struct bch_inode_info *inode = to_bch_ei(mapping->host); struct bch_fs *c = inode->v.i_sb->s_fs_info; pgoff_t index = pos >> PAGE_SHIFT; unsigned offset = pos & (PAGE_SIZE - 1); struct page *page; int ret = -ENOMEM; BUG_ON(inode_unhashed(&inode->v)); bch2_pagecache_add_get(&inode->ei_pagecache_lock); page = grab_cache_page_write_begin(mapping, index); if (!page) goto err_unlock; if (PageUptodate(page)) goto out; /* If we're writing entire page, don't need to read it in first: */ if (len == PAGE_SIZE) goto out; if (!offset && pos + len >= inode->v.i_size) { zero_user_segment(page, len, PAGE_SIZE); flush_dcache_page(page); goto out; } if (index > inode->v.i_size >> PAGE_SHIFT) { zero_user_segments(page, 0, offset, offset + len, PAGE_SIZE); flush_dcache_page(page); goto out; } readpage: ret = bch2_read_single_page(page, mapping); if (ret) goto err; out: ret = bch2_get_page_reservation(c, inode, page, true); if (ret) { if (!PageUptodate(page)) { /* * If the page hasn't been read in, we won't know if we * actually need a reservation - we don't actually need * to read here, we just need to check if the page is * fully backed by uncompressed data: */ goto readpage; } goto err; } *pagep = page; return 0; err: unlock_page(page); put_page(page); *pagep = NULL; err_unlock: bch2_pagecache_add_put(&inode->ei_pagecache_lock); return ret; } int bch2_write_end(struct file *file, struct address_space *mapping, loff_t pos, unsigned len, unsigned copied, struct page *page, void *fsdata) { struct bch_inode_info *inode = to_bch_ei(mapping->host); struct bch_fs *c = inode->v.i_sb->s_fs_info; lockdep_assert_held(&inode->v.i_rwsem); if (unlikely(copied < len && !PageUptodate(page))) { /* * The page needs to be read in, but that would destroy * our partial write - simplest thing is to just force * userspace to redo the write: */ zero_user(page, 0, PAGE_SIZE); flush_dcache_page(page); copied = 0; } spin_lock(&inode->v.i_lock); if (pos + copied > inode->v.i_size) i_size_write(&inode->v, pos + copied); spin_unlock(&inode->v.i_lock); if (copied) { if (!PageUptodate(page)) SetPageUptodate(page); if (!PageDirty(page)) set_page_dirty(page); inode->ei_last_dirtied = (unsigned long) current; } else { bch2_put_page_reservation(c, inode, page); } unlock_page(page); put_page(page); bch2_pagecache_add_put(&inode->ei_pagecache_lock); return copied; } #define WRITE_BATCH_PAGES 32 static int __bch2_buffered_write(struct bch_inode_info *inode, struct address_space *mapping, struct iov_iter *iter, loff_t pos, unsigned len) { struct bch_fs *c = inode->v.i_sb->s_fs_info; struct page *pages[WRITE_BATCH_PAGES]; unsigned long index = pos >> PAGE_SHIFT; unsigned offset = pos & (PAGE_SIZE - 1); unsigned nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE); unsigned i, copied = 0, nr_pages_copied = 0; int ret = 0; BUG_ON(!len); BUG_ON(nr_pages > ARRAY_SIZE(pages)); for (i = 0; i < nr_pages; i++) { pages[i] = grab_cache_page_write_begin(mapping, index + i); if (!pages[i]) { nr_pages = i; ret = -ENOMEM; goto out; } } if (offset && !PageUptodate(pages[0])) { ret = bch2_read_single_page(pages[0], mapping); if (ret) goto out; } if ((pos + len) & (PAGE_SIZE - 1) && !PageUptodate(pages[nr_pages - 1])) { if ((index + nr_pages - 1) << PAGE_SHIFT >= inode->v.i_size) { zero_user(pages[nr_pages - 1], 0, PAGE_SIZE); } else { ret = bch2_read_single_page(pages[nr_pages - 1], mapping); if (ret) goto out; } } for (i = 0; i < nr_pages; i++) { ret = bch2_get_page_reservation(c, inode, pages[i], true); if (ret && !PageUptodate(pages[i])) { ret = bch2_read_single_page(pages[i], mapping); if (ret) goto out; ret = bch2_get_page_reservation(c, inode, pages[i], true); } if (ret) goto out; } if (mapping_writably_mapped(mapping)) for (i = 0; i < nr_pages; i++) flush_dcache_page(pages[i]); while (copied < len) { struct page *page = pages[(offset + copied) >> PAGE_SHIFT]; unsigned pg_offset = (offset + copied) & (PAGE_SIZE - 1); unsigned pg_bytes = min_t(unsigned, len - copied, PAGE_SIZE - pg_offset); unsigned pg_copied = copy_page_from_iter_atomic(page, pg_offset, pg_bytes, iter); flush_dcache_page(page); copied += pg_copied; if (pg_copied != pg_bytes) break; } if (!copied) goto out; nr_pages_copied = DIV_ROUND_UP(offset + copied, PAGE_SIZE); inode->ei_last_dirtied = (unsigned long) current; spin_lock(&inode->v.i_lock); if (pos + copied > inode->v.i_size) i_size_write(&inode->v, pos + copied); spin_unlock(&inode->v.i_lock); if (copied < len && ((offset + copied) & (PAGE_SIZE - 1))) { struct page *page = pages[(offset + copied) >> PAGE_SHIFT]; if (!PageUptodate(page)) { zero_user(page, 0, PAGE_SIZE); copied -= (offset + copied) & (PAGE_SIZE - 1); } } out: for (i = 0; i < nr_pages_copied; i++) { if (!PageUptodate(pages[i])) SetPageUptodate(pages[i]); if (!PageDirty(pages[i])) set_page_dirty(pages[i]); unlock_page(pages[i]); put_page(pages[i]); } for (i = nr_pages_copied; i < nr_pages; i++) { if (!PageDirty(pages[i])) bch2_put_page_reservation(c, inode, pages[i]); unlock_page(pages[i]); put_page(pages[i]); } return copied ?: ret; } static ssize_t bch2_buffered_write(struct kiocb *iocb, struct iov_iter *iter) { struct file *file = iocb->ki_filp; struct address_space *mapping = file->f_mapping; struct bch_inode_info *inode = file_bch_inode(file); loff_t pos = iocb->ki_pos; ssize_t written = 0; int ret = 0; bch2_pagecache_add_get(&inode->ei_pagecache_lock); do { unsigned offset = pos & (PAGE_SIZE - 1); unsigned bytes = min_t(unsigned long, iov_iter_count(iter), PAGE_SIZE * WRITE_BATCH_PAGES - offset); again: /* * Bring in the user page that we will copy from _first_. * Otherwise there's a nasty deadlock on copying from the * same page as we're writing to, without it being marked * up-to-date. * * Not only is this an optimisation, but it is also required * to check that the address is actually valid, when atomic * usercopies are used, below. */ if (unlikely(fault_in_iov_iter_readable(iter, bytes))) { bytes = min_t(unsigned long, iov_iter_count(iter), PAGE_SIZE - offset); if (unlikely(fault_in_iov_iter_readable(iter, bytes))) { ret = -EFAULT; break; } } if (unlikely(fatal_signal_pending(current))) { ret = -EINTR; break; } ret = __bch2_buffered_write(inode, mapping, iter, pos, bytes); if (unlikely(ret < 0)) break; cond_resched(); if (unlikely(ret == 0)) { /* * If we were unable to copy any data at all, we must * fall back to a single segment length write. * * If we didn't fallback here, we could livelock * because not all segments in the iov can be copied at * once without a pagefault. */ bytes = min_t(unsigned long, PAGE_SIZE - offset, iov_iter_single_seg_count(iter)); goto again; } pos += ret; written += ret; balance_dirty_pages_ratelimited(mapping); } while (iov_iter_count(iter)); bch2_pagecache_add_put(&inode->ei_pagecache_lock); return written ? written : ret; } /* O_DIRECT reads */ static void bch2_dio_read_complete(struct closure *cl) { struct dio_read *dio = container_of(cl, struct dio_read, cl); dio->req->ki_complete(dio->req, dio->ret); bio_check_pages_dirty(&dio->rbio.bio); /* transfers ownership */ } static void bch2_direct_IO_read_endio(struct bio *bio) { struct dio_read *dio = bio->bi_private; if (bio->bi_status) dio->ret = blk_status_to_errno(bio->bi_status); closure_put(&dio->cl); } static void bch2_direct_IO_read_split_endio(struct bio *bio) { bch2_direct_IO_read_endio(bio); bio_check_pages_dirty(bio); /* transfers ownership */ } static int bch2_direct_IO_read(struct kiocb *req, struct iov_iter *iter) { struct file *file = req->ki_filp; struct bch_inode_info *inode = file_bch_inode(file); struct bch_fs *c = inode->v.i_sb->s_fs_info; struct bch_io_opts opts = io_opts(c, inode); struct dio_read *dio; struct bio *bio; loff_t offset = req->ki_pos; bool sync = is_sync_kiocb(req); size_t shorten; ssize_t ret; if ((offset|iter->count) & (block_bytes(c) - 1)) return -EINVAL; ret = min_t(loff_t, iter->count, max_t(loff_t, 0, i_size_read(&inode->v) - offset)); if (!ret) return ret; shorten = iov_iter_count(iter) - round_up(ret, block_bytes(c)); iter->count -= shorten; bio = bio_alloc_bioset(NULL, iov_iter_npages(iter, BIO_MAX_VECS), REQ_OP_READ, GFP_KERNEL, &c->dio_read_bioset); bio->bi_end_io = bch2_direct_IO_read_endio; dio = container_of(bio, struct dio_read, rbio.bio); closure_init(&dio->cl, NULL); /* * this is a _really_ horrible hack just to avoid an atomic sub at the * end: */ if (!sync) { set_closure_fn(&dio->cl, bch2_dio_read_complete, NULL); atomic_set(&dio->cl.remaining, CLOSURE_REMAINING_INITIALIZER - CLOSURE_RUNNING + CLOSURE_DESTRUCTOR); } else { atomic_set(&dio->cl.remaining, CLOSURE_REMAINING_INITIALIZER + 1); } dio->req = req; dio->ret = ret; goto start; while (iter->count) { bio = bio_alloc_bioset(NULL, iov_iter_npages(iter, BIO_MAX_VECS), REQ_OP_READ, GFP_KERNEL, &c->bio_read); bio->bi_end_io = bch2_direct_IO_read_split_endio; start: bio->bi_opf = REQ_OP_READ|REQ_SYNC; bio->bi_iter.bi_sector = offset >> 9; bio->bi_private = dio; ret = bio_iov_iter_get_pages(bio, iter); if (ret < 0) { /* XXX: fault inject this path */ bio->bi_status = BLK_STS_RESOURCE; bio_endio(bio); break; } offset += bio->bi_iter.bi_size; bio_set_pages_dirty(bio); if (iter->count) closure_get(&dio->cl); bch2_read(c, rbio_init(bio, opts), inode->v.i_ino); } iter->count += shorten; if (sync) { closure_sync(&dio->cl); closure_debug_destroy(&dio->cl); ret = dio->ret; bio_check_pages_dirty(&dio->rbio.bio); /* transfers ownership */ return ret; } else { return -EIOCBQUEUED; } } ssize_t bch2_read_iter(struct kiocb *iocb, struct iov_iter *iter) { struct file *file = iocb->ki_filp; struct bch_inode_info *inode = file_bch_inode(file); struct address_space *mapping = file->f_mapping; size_t count = iov_iter_count(iter); ssize_t ret; if (!count) return 0; /* skip atime */ if (iocb->ki_flags & IOCB_DIRECT) { struct blk_plug plug; ret = filemap_write_and_wait_range(mapping, iocb->ki_pos, iocb->ki_pos + count - 1); if (ret < 0) return ret; file_accessed(file); blk_start_plug(&plug); ret = bch2_direct_IO_read(iocb, iter); blk_finish_plug(&plug); if (ret >= 0) iocb->ki_pos += ret; } else { bch2_pagecache_add_get(&inode->ei_pagecache_lock); ret = generic_file_read_iter(iocb, iter); bch2_pagecache_add_put(&inode->ei_pagecache_lock); } return ret; } /* O_DIRECT writes */ /* * We're going to return -EIOCBQUEUED, but we haven't finished consuming the * iov_iter yet, so we need to stash a copy of the iovec: it might be on the * caller's stack, we're not guaranteed that it will live for the duration of * the IO: */ static noinline int bch2_dio_write_copy_iov(struct dio_write *dio) { struct iovec *iov = dio->inline_vecs; /* * iov_iter has a single embedded iovec - nothing to do: */ if (iter_is_ubuf(&dio->iter)) return 0; /* * We don't currently handle non-iovec iov_iters here - return an error, * and we'll fall back to doing the IO synchronously: */ if (!iter_is_iovec(&dio->iter)) return -1; if (dio->iter.nr_segs > ARRAY_SIZE(dio->inline_vecs)) { iov = kmalloc_array(dio->iter.nr_segs, sizeof(*iov), GFP_KERNEL); if (unlikely(!iov)) return -ENOMEM; dio->free_iov = true; } memcpy(iov, dio->iter.__iov, dio->iter.nr_segs * sizeof(*iov)); dio->iter.__iov = iov; return 0; } static void bch2_dio_write_loop_async(struct closure *); static long bch2_dio_write_loop(struct dio_write *dio) { struct kiocb *req = dio->req; struct address_space *mapping = req->ki_filp->f_mapping; struct bch_inode_info *inode = dio->iop.inode; struct bio *bio = &dio->iop.op.wbio.bio; struct bvec_iter_all iter; struct bio_vec *bv; bool sync; long ret; if (dio->loop) goto loop; inode_dio_begin(&inode->v); bch2_pagecache_block_get(&inode->ei_pagecache_lock); /* Write and invalidate pagecache range that we're writing to: */ ret = write_invalidate_inode_pages_range(mapping, req->ki_pos, req->ki_pos + iov_iter_count(&dio->iter) - 1); if (unlikely(ret)) goto err; while (1) { if (current != dio->task) kthread_use_mm(dio->task->mm); BUG_ON(current->faults_disabled_mapping); current->faults_disabled_mapping = mapping; ret = bio_iov_iter_get_pages(bio, &dio->iter); current->faults_disabled_mapping = NULL; if (current != dio->task) kthread_unuse_mm(dio->task->mm); if (unlikely(ret < 0)) goto err; /* gup might have faulted pages back in: */ ret = write_invalidate_inode_pages_range(mapping, req->ki_pos + (dio->iop.op.written << 9), req->ki_pos + iov_iter_count(&dio->iter) - 1); if (unlikely(ret)) goto err; dio->iop.op.pos = POS(inode->v.i_ino, (req->ki_pos >> 9) + dio->iop.op.written); task_io_account_write(bio->bi_iter.bi_size); closure_call(&dio->iop.op.cl, bch2_write, NULL, &dio->cl); if (!dio->sync && !dio->loop && dio->iter.count) { if (bch2_dio_write_copy_iov(dio)) { dio->iop.op.error = -ENOMEM; goto err_wait_io; } } err_wait_io: dio->loop = true; if (!dio->sync) { continue_at(&dio->cl, bch2_dio_write_loop_async, NULL); return -EIOCBQUEUED; } closure_sync(&dio->cl); loop: bio_for_each_segment_all(bv, bio, iter) put_page(bv->bv_page); if (!dio->iter.count || dio->iop.op.error) break; bio_reset(bio, NULL, REQ_OP_WRITE); } ret = dio->iop.op.error ?: ((long) dio->iop.op.written << 9); err: bch2_pagecache_block_put(&inode->ei_pagecache_lock); bch2_disk_reservation_put(dio->iop.op.c, &dio->iop.op.res); bch2_quota_reservation_put(dio->iop.op.c, inode, &dio->quota_res); if (dio->free_iov) kfree(dio->iter.__iov); closure_debug_destroy(&dio->cl); sync = dio->sync; bio_put(bio); /* inode->i_dio_count is our ref on inode and thus bch_fs */ inode_dio_end(&inode->v); if (!sync) { req->ki_complete(req, ret); ret = -EIOCBQUEUED; } return ret; } static void bch2_dio_write_loop_async(struct closure *cl) { struct dio_write *dio = container_of(cl, struct dio_write, cl); bch2_dio_write_loop(dio); } static noinline ssize_t bch2_direct_write(struct kiocb *req, struct iov_iter *iter) { struct file *file = req->ki_filp; struct bch_inode_info *inode = file_bch_inode(file); struct bch_fs *c = inode->v.i_sb->s_fs_info; struct dio_write *dio; struct bio *bio; loff_t offset = req->ki_pos; ssize_t ret; lockdep_assert_held(&inode->v.i_rwsem); if (unlikely(!iter->count)) return 0; if (unlikely((offset|iter->count) & (block_bytes(c) - 1))) return -EINVAL; bio = bio_alloc_bioset(NULL, iov_iter_npages(iter, BIO_MAX_VECS), REQ_OP_WRITE, GFP_KERNEL, &c->dio_write_bioset); dio = container_of(bio, struct dio_write, iop.op.wbio.bio); closure_init(&dio->cl, NULL); dio->req = req; dio->task = current; dio->loop = false; dio->sync = is_sync_kiocb(req) || offset + iter->count > inode->v.i_size; dio->free_iov = false; dio->quota_res.sectors = 0; dio->iter = *iter; bch2_fswrite_op_init(&dio->iop, c, inode, io_opts(c, inode), true); dio->iop.op.write_point = writepoint_hashed((unsigned long) dio->task); dio->iop.op.flags |= BCH_WRITE_NOPUT_RESERVATION; if ((req->ki_flags & IOCB_DSYNC) && !c->opts.journal_flush_disabled) dio->iop.op.flags |= BCH_WRITE_FLUSH; ret = bch2_quota_reservation_add(c, inode, &dio->quota_res, iter->count >> 9, true); if (unlikely(ret)) goto err; ret = bch2_disk_reservation_get(c, &dio->iop.op.res, iter->count >> 9, dio->iop.op.opts.data_replicas, 0); if (unlikely(ret)) { if (bch2_check_range_allocated(c, POS(inode->v.i_ino, offset >> 9), iter->count >> 9)) goto err; dio->iop.unalloc = true; } dio->iop.op.nr_replicas = dio->iop.op.res.nr_replicas; return bch2_dio_write_loop(dio); err: bch2_disk_reservation_put(c, &dio->iop.op.res); bch2_quota_reservation_put(c, inode, &dio->quota_res); closure_debug_destroy(&dio->cl); bio_put(bio); return ret; } static ssize_t __bch2_write_iter(struct kiocb *iocb, struct iov_iter *from) { struct file *file = iocb->ki_filp; ssize_t ret; if (iocb->ki_flags & IOCB_DIRECT) return bch2_direct_write(iocb, from); ret = file_remove_privs(file); if (ret) return ret; ret = file_update_time(file); if (ret) return ret; ret = iocb->ki_flags & IOCB_DIRECT ? bch2_direct_write(iocb, from) : bch2_buffered_write(iocb, from); if (likely(ret > 0)) iocb->ki_pos += ret; return ret; } ssize_t bch2_write_iter(struct kiocb *iocb, struct iov_iter *from) { struct bch_inode_info *inode = file_bch_inode(iocb->ki_filp); bool direct = iocb->ki_flags & IOCB_DIRECT; ssize_t ret; inode_lock(&inode->v); ret = generic_write_checks(iocb, from); if (ret > 0) ret = __bch2_write_iter(iocb, from); inode_unlock(&inode->v); if (ret > 0 && !direct) ret = generic_write_sync(iocb, ret); return ret; } /* fsync: */ int bch2_fsync(struct file *file, loff_t start, loff_t end, int datasync) { struct bch_inode_info *inode = file_bch_inode(file); struct bch_fs *c = inode->v.i_sb->s_fs_info; int ret, ret2; ret = file_write_and_wait_range(file, start, end); if (ret) return ret; if (datasync && !(inode->v.i_state & I_DIRTY_DATASYNC)) goto out; ret = sync_inode_metadata(&inode->v, 1); if (ret) return ret; out: if (c->opts.journal_flush_disabled) return 0; ret = bch2_journal_flush_seq(&c->journal, inode->ei_journal_seq); ret2 = file_check_and_advance_wb_err(file); return ret ?: ret2; } /* truncate: */ static int __bch2_fpunch(struct bch_fs *c, struct bch_inode_info *inode, u64 start_offset, u64 end_offset, u64 *journal_seq) { struct bpos start = POS(inode->v.i_ino, start_offset); struct bpos end = POS(inode->v.i_ino, end_offset); unsigned max_sectors = KEY_SIZE_MAX & (~0 << c->block_bits); struct btree_trans trans; struct btree_iter *iter; struct bkey_s_c k; int ret = 0; bch2_trans_init(&trans, c); bch2_trans_preload_iters(&trans); iter = bch2_trans_get_iter(&trans, BTREE_ID_EXTENTS, start, BTREE_ITER_INTENT); while ((k = bch2_btree_iter_peek(iter)).k && !(ret = btree_iter_err(k)) && bkey_cmp(iter->pos, end) < 0) { struct disk_reservation disk_res = bch2_disk_reservation_init(c, 0); struct bkey_i delete; bkey_init(&delete.k); delete.k.p = iter->pos; /* create the biggest key we can */ bch2_key_resize(&delete.k, max_sectors); bch2_cut_back(end, &delete.k); ret = bch2_extent_update(&trans, inode, &disk_res, NULL, iter, &delete, 0, true, true, NULL); bch2_disk_reservation_put(c, &disk_res); if (ret == -EINTR) ret = 0; if (ret) break; bch2_btree_iter_cond_resched(iter); } bch2_trans_exit(&trans); return ret; } static inline int range_has_data(struct bch_fs *c, struct bpos start, struct bpos end) { struct btree_iter iter; struct bkey_s_c k; int ret = 0; for_each_btree_key(&iter, c, BTREE_ID_EXTENTS, start, 0, k) { if (bkey_cmp(bkey_start_pos(k.k), end) >= 0) break; if (bkey_extent_is_data(k.k)) { ret = 1; break; } } return bch2_btree_iter_unlock(&iter) ?: ret; } static int __bch2_truncate_page(struct bch_inode_info *inode, pgoff_t index, loff_t start, loff_t end) { struct bch_fs *c = inode->v.i_sb->s_fs_info; struct address_space *mapping = inode->v.i_mapping; unsigned start_offset = start & (PAGE_SIZE - 1); unsigned end_offset = ((end - 1) & (PAGE_SIZE - 1)) + 1; struct page *page; int ret = 0; /* Page boundary? Nothing to do */ if (!((index == start >> PAGE_SHIFT && start_offset) || (index == end >> PAGE_SHIFT && end_offset != PAGE_SIZE))) return 0; /* Above i_size? */ if (index << PAGE_SHIFT >= inode->v.i_size) return 0; page = find_lock_page(mapping, index); if (!page) { /* * XXX: we're doing two index lookups when we end up reading the * page */ ret = range_has_data(c, POS(inode->v.i_ino, index << PAGE_SECTOR_SHIFT), POS(inode->v.i_ino, (index + 1) << PAGE_SECTOR_SHIFT)); if (ret <= 0) return ret; page = find_or_create_page(mapping, index, GFP_KERNEL); if (unlikely(!page)) { ret = -ENOMEM; goto out; } } if (!PageUptodate(page)) { ret = bch2_read_single_page(page, mapping); if (ret) goto unlock; } /* * Bit of a hack - we don't want truncate to fail due to -ENOSPC. * * XXX: because we aren't currently tracking whether the page has actual * data in it (vs. just 0s, or only partially written) this wrong. ick. */ ret = bch2_get_page_reservation(c, inode, page, false); BUG_ON(ret); if (index == start >> PAGE_SHIFT && index == end >> PAGE_SHIFT) zero_user_segment(page, start_offset, end_offset); else if (index == start >> PAGE_SHIFT) zero_user_segment(page, start_offset, PAGE_SIZE); else if (index == end >> PAGE_SHIFT) zero_user_segment(page, 0, end_offset); if (!PageDirty(page)) set_page_dirty(page); unlock: unlock_page(page); put_page(page); out: return ret; } static int bch2_truncate_page(struct bch_inode_info *inode, loff_t from) { return __bch2_truncate_page(inode, from >> PAGE_SHIFT, from, from + PAGE_SIZE); } static int bch2_extend(struct bch_inode_info *inode, struct iattr *iattr) { struct bch_fs *c = inode->v.i_sb->s_fs_info; struct address_space *mapping = inode->v.i_mapping; int ret; ret = filemap_write_and_wait_range(mapping, inode->ei_inode.bi_size, S64_MAX); if (ret) return ret; truncate_setsize(&inode->v, iattr->ia_size); /* ATTR_MODE will never be set here, ns argument isn't needed: */ setattr_copy(NULL, &inode->v, iattr); mutex_lock(&inode->ei_update_lock); ret = bch2_write_inode_size(c, inode, inode->v.i_size, ATTR_MTIME|ATTR_CTIME); mutex_unlock(&inode->ei_update_lock); return ret; } static int bch2_truncate_finish_fn(struct bch_inode_info *inode, struct bch_inode_unpacked *bi, void *p) { struct bch_fs *c = inode->v.i_sb->s_fs_info; bi->bi_flags &= ~BCH_INODE_I_SIZE_DIRTY; bi->bi_mtime = bi->bi_ctime = bch2_current_time(c); return 0; } static int bch2_truncate_start_fn(struct bch_inode_info *inode, struct bch_inode_unpacked *bi, void *p) { u64 *new_i_size = p; bi->bi_flags |= BCH_INODE_I_SIZE_DIRTY; bi->bi_size = *new_i_size; return 0; } int bch2_truncate(struct bch_inode_info *inode, struct iattr *iattr) { struct bch_fs *c = inode->v.i_sb->s_fs_info; struct address_space *mapping = inode->v.i_mapping; u64 new_i_size = iattr->ia_size; bool shrink; int ret = 0; inode_dio_wait(&inode->v); bch2_pagecache_block_get(&inode->ei_pagecache_lock); BUG_ON(inode->v.i_size < inode->ei_inode.bi_size); shrink = iattr->ia_size <= inode->v.i_size; if (!shrink) { ret = bch2_extend(inode, iattr); goto err; } ret = bch2_truncate_page(inode, iattr->ia_size); if (unlikely(ret)) goto err; if (iattr->ia_size > inode->ei_inode.bi_size) ret = filemap_write_and_wait_range(mapping, inode->ei_inode.bi_size, iattr->ia_size - 1); else if (iattr->ia_size & (PAGE_SIZE - 1)) ret = filemap_write_and_wait_range(mapping, round_down(iattr->ia_size, PAGE_SIZE), iattr->ia_size - 1); if (ret) goto err; mutex_lock(&inode->ei_update_lock); ret = bch2_write_inode(c, inode, bch2_truncate_start_fn, &new_i_size, 0); mutex_unlock(&inode->ei_update_lock); if (unlikely(ret)) goto err; truncate_setsize(&inode->v, iattr->ia_size); /* * XXX: need a comment explaining why PAGE_SIZE and not block_bytes() * here: */ ret = __bch2_fpunch(c, inode, round_up(iattr->ia_size, PAGE_SIZE) >> 9, U64_MAX, &inode->ei_journal_seq); if (unlikely(ret)) goto err; /* ATTR_MODE will never be set here, ns argument isn't needed: */ setattr_copy(NULL, &inode->v, iattr); mutex_lock(&inode->ei_update_lock); ret = bch2_write_inode(c, inode, bch2_truncate_finish_fn, NULL, ATTR_MTIME|ATTR_CTIME); mutex_unlock(&inode->ei_update_lock); err: bch2_pagecache_block_put(&inode->ei_pagecache_lock); return ret; } /* fallocate: */ static long bch2_fpunch(struct bch_inode_info *inode, loff_t offset, loff_t len) { struct bch_fs *c = inode->v.i_sb->s_fs_info; u64 discard_start = round_up(offset, PAGE_SIZE) >> 9; u64 discard_end = round_down(offset + len, PAGE_SIZE) >> 9; int ret = 0; inode_lock(&inode->v); inode_dio_wait(&inode->v); bch2_pagecache_block_get(&inode->ei_pagecache_lock); ret = __bch2_truncate_page(inode, offset >> PAGE_SHIFT, offset, offset + len); if (unlikely(ret)) goto err; if (offset >> PAGE_SHIFT != (offset + len) >> PAGE_SHIFT) { ret = __bch2_truncate_page(inode, (offset + len) >> PAGE_SHIFT, offset, offset + len); if (unlikely(ret)) goto err; } truncate_pagecache_range(&inode->v, offset, offset + len - 1); if (discard_start < discard_end) ret = __bch2_fpunch(c, inode, discard_start, discard_end, &inode->ei_journal_seq); err: bch2_pagecache_block_put(&inode->ei_pagecache_lock); inode_unlock(&inode->v); return ret; } static long bch2_fcollapse(struct bch_inode_info *inode, loff_t offset, loff_t len) { struct bch_fs *c = inode->v.i_sb->s_fs_info; struct address_space *mapping = inode->v.i_mapping; struct btree_trans trans; struct btree_iter *src, *dst; BKEY_PADDED(k) copy; struct bkey_s_c k; loff_t new_size; int ret; if ((offset | len) & (block_bytes(c) - 1)) return -EINVAL; bch2_trans_init(&trans, c); bch2_trans_preload_iters(&trans); /* * We need i_mutex to keep the page cache consistent with the extents * btree, and the btree consistent with i_size - we don't need outside * locking for the extents btree itself, because we're using linked * iterators */ inode_lock(&inode->v); inode_dio_wait(&inode->v); bch2_pagecache_block_get(&inode->ei_pagecache_lock); ret = -EINVAL; if (offset + len >= inode->v.i_size) goto err; if (inode->v.i_size < len) goto err; new_size = inode->v.i_size - len; ret = write_invalidate_inode_pages_range(mapping, offset, LLONG_MAX); if (ret) goto err; dst = bch2_trans_get_iter(&trans, BTREE_ID_EXTENTS, POS(inode->v.i_ino, offset >> 9), BTREE_ITER_SLOTS|BTREE_ITER_INTENT); BUG_ON(IS_ERR_OR_NULL(dst)); src = bch2_trans_get_iter(&trans, BTREE_ID_EXTENTS, POS_MIN, BTREE_ITER_SLOTS); BUG_ON(IS_ERR_OR_NULL(src)); while (bkey_cmp(dst->pos, POS(inode->v.i_ino, round_up(new_size, PAGE_SIZE) >> 9)) < 0) { struct disk_reservation disk_res; ret = bch2_btree_iter_traverse(dst); if (ret) goto btree_iter_err; bch2_btree_iter_set_pos(src, POS(dst->pos.inode, dst->pos.offset + (len >> 9))); k = bch2_btree_iter_peek_slot(src); if ((ret = btree_iter_err(k))) goto btree_iter_err; bkey_reassemble(©.k, k); bch2_cut_front(src->pos, ©.k); copy.k.k.p.offset -= len >> 9; bch2_extent_trim_atomic(©.k, dst); BUG_ON(bkey_cmp(dst->pos, bkey_start_pos(©.k.k))); ret = bch2_disk_reservation_get(c, &disk_res, copy.k.k.size, bch2_extent_nr_dirty_ptrs(bkey_i_to_s_c(©.k)), BCH_DISK_RESERVATION_NOFAIL); BUG_ON(ret); ret = bch2_extent_update(&trans, inode, &disk_res, NULL, dst, ©.k, 0, true, true, NULL); bch2_disk_reservation_put(c, &disk_res); btree_iter_err: if (ret == -EINTR) ret = 0; if (ret) goto err; /* * XXX: if we error here we've left data with multiple * pointers... which isn't a _super_ serious problem... */ bch2_btree_iter_cond_resched(src); } bch2_trans_unlock(&trans); ret = __bch2_fpunch(c, inode, round_up(new_size, block_bytes(c)) >> 9, U64_MAX, &inode->ei_journal_seq); if (ret) goto err; i_size_write(&inode->v, new_size); mutex_lock(&inode->ei_update_lock); ret = bch2_write_inode_size(c, inode, new_size, ATTR_MTIME|ATTR_CTIME); mutex_unlock(&inode->ei_update_lock); err: bch2_trans_exit(&trans); bch2_pagecache_block_put(&inode->ei_pagecache_lock); inode_unlock(&inode->v); return ret; } static long bch2_fallocate(struct bch_inode_info *inode, int mode, loff_t offset, loff_t len) { struct address_space *mapping = inode->v.i_mapping; struct bch_fs *c = inode->v.i_sb->s_fs_info; struct i_sectors_hook i_sectors_hook = i_sectors_hook_init(inode, 0); struct btree_iter iter; struct bpos end_pos; loff_t block_start, block_end; loff_t end = offset + len; unsigned sectors; unsigned replicas = io_opts(c, inode).data_replicas; int ret; bch2_btree_iter_init(&iter, c, BTREE_ID_EXTENTS, POS_MIN, BTREE_ITER_SLOTS|BTREE_ITER_INTENT); inode_lock(&inode->v); inode_dio_wait(&inode->v); bch2_pagecache_block_get(&inode->ei_pagecache_lock); if (!(mode & FALLOC_FL_KEEP_SIZE) && end > inode->v.i_size) { ret = inode_newsize_ok(&inode->v, end); if (ret) goto err; } if (mode & FALLOC_FL_ZERO_RANGE) { ret = __bch2_truncate_page(inode, offset >> PAGE_SHIFT, offset, end); if (!ret && offset >> PAGE_SHIFT != end >> PAGE_SHIFT) ret = __bch2_truncate_page(inode, end >> PAGE_SHIFT, offset, end); if (unlikely(ret)) goto err; truncate_pagecache_range(&inode->v, offset, end - 1); block_start = round_up(offset, PAGE_SIZE); block_end = round_down(end, PAGE_SIZE); } else { block_start = round_down(offset, PAGE_SIZE); block_end = round_up(end, PAGE_SIZE); } bch2_btree_iter_set_pos(&iter, POS(inode->v.i_ino, block_start >> 9)); end_pos = POS(inode->v.i_ino, block_end >> 9); ret = i_sectors_dirty_start(c, &i_sectors_hook); if (unlikely(ret)) goto err; while (bkey_cmp(iter.pos, end_pos) < 0) { struct disk_reservation disk_res = { 0 }; struct bkey_i_reservation reservation; struct bkey_s_c k; k = bch2_btree_iter_peek_slot(&iter); if ((ret = btree_iter_err(k))) goto btree_iter_err; /* already reserved */ if (k.k->type == BCH_RESERVATION && bkey_s_c_to_reservation(k).v->nr_replicas >= replicas) { bch2_btree_iter_next_slot(&iter); continue; } if (bkey_extent_is_data(k.k)) { if (!(mode & FALLOC_FL_ZERO_RANGE)) { bch2_btree_iter_next_slot(&iter); continue; } } bkey_reservation_init(&reservation.k_i); reservation.k.type = BCH_RESERVATION; reservation.k.p = k.k->p; reservation.k.size = k.k->size; bch2_cut_front(iter.pos, &reservation.k_i); bch2_cut_back(end_pos, &reservation.k); sectors = reservation.k.size; reservation.v.nr_replicas = bch2_extent_nr_dirty_ptrs(k); if (!bkey_extent_is_allocation(k.k)) { ret = bch2_quota_reservation_add(c, inode, &i_sectors_hook.quota_res, sectors, true); if (unlikely(ret)) goto btree_iter_err; } if (reservation.v.nr_replicas < replicas || bch2_extent_is_compressed(k)) { ret = bch2_disk_reservation_get(c, &disk_res, sectors, replicas, 0); if (unlikely(ret)) goto btree_iter_err; reservation.v.nr_replicas = disk_res.nr_replicas; } ret = bch2_btree_insert_at(c, &disk_res, &i_sectors_hook.hook, &inode->ei_journal_seq, BTREE_INSERT_ATOMIC| BTREE_INSERT_NOFAIL, BTREE_INSERT_ENTRY(&iter, &reservation.k_i)); bch2_disk_reservation_put(c, &disk_res); btree_iter_err: if (ret == -EINTR) ret = 0; if (ret) { bch2_btree_iter_unlock(&iter); goto err_put_sectors_dirty; } } bch2_btree_iter_unlock(&iter); ret = i_sectors_dirty_finish(c, &i_sectors_hook) ?: ret; if (!(mode & FALLOC_FL_KEEP_SIZE) && end > inode->v.i_size) { i_size_write(&inode->v, end); mutex_lock(&inode->ei_update_lock); ret = bch2_write_inode_size(c, inode, inode->v.i_size, 0); mutex_unlock(&inode->ei_update_lock); } /* blech */ if ((mode & FALLOC_FL_KEEP_SIZE) && (mode & FALLOC_FL_ZERO_RANGE) && inode->ei_inode.bi_size != inode->v.i_size) { /* sync appends.. */ ret = filemap_write_and_wait_range(mapping, inode->ei_inode.bi_size, S64_MAX); if (ret) goto err; if (inode->ei_inode.bi_size != inode->v.i_size) { mutex_lock(&inode->ei_update_lock); ret = bch2_write_inode_size(c, inode, inode->v.i_size, 0); mutex_unlock(&inode->ei_update_lock); } } bch2_pagecache_block_put(&inode->ei_pagecache_lock); inode_unlock(&inode->v); return 0; err_put_sectors_dirty: ret = i_sectors_dirty_finish(c, &i_sectors_hook) ?: ret; err: bch2_pagecache_block_put(&inode->ei_pagecache_lock); inode_unlock(&inode->v); return ret; } long bch2_fallocate_dispatch(struct file *file, int mode, loff_t offset, loff_t len) { struct bch_inode_info *inode = file_bch_inode(file); if (!(mode & ~(FALLOC_FL_KEEP_SIZE|FALLOC_FL_ZERO_RANGE))) return bch2_fallocate(inode, mode, offset, len); if (mode == (FALLOC_FL_PUNCH_HOLE|FALLOC_FL_KEEP_SIZE)) return bch2_fpunch(inode, offset, len); if (mode == FALLOC_FL_COLLAPSE_RANGE) return bch2_fcollapse(inode, offset, len); return -EOPNOTSUPP; } /* fseek: */ static bool folio_is_data(struct folio *folio) { /* XXX: should only have to check PageDirty */ return folio_test_private(folio) && (page_state(&folio->page)->sectors || page_state(&folio->page)->dirty_sectors); } static loff_t bch2_next_pagecache_data(struct inode *vinode, loff_t start_offset, loff_t end_offset) { struct folio_batch fbatch; pgoff_t start_index = start_offset >> PAGE_SHIFT; pgoff_t end_index = end_offset >> PAGE_SHIFT; pgoff_t index = start_index; unsigned i; folio_batch_init(&fbatch); while (filemap_get_folios(vinode->i_mapping, &index, end_index, &fbatch)) { for (i = 0; i < folio_batch_count(&fbatch); i++) { struct folio *folio = fbatch.folios[i]; folio_lock(folio); if (folio_is_data(folio)) { end_offset = min(end_offset, max(start_offset, ((loff_t) index) << PAGE_SHIFT)); folio_unlock(folio); folio_batch_release(&fbatch); return end_offset; } folio_unlock(folio); } folio_batch_release(&fbatch); cond_resched(); } return end_offset; } static loff_t bch2_seek_data(struct file *file, u64 offset) { struct bch_inode_info *inode = file_bch_inode(file); struct bch_fs *c = inode->v.i_sb->s_fs_info; struct btree_iter iter; struct bkey_s_c k; u64 isize, next_data = MAX_LFS_FILESIZE; int ret; isize = i_size_read(&inode->v); if (offset >= isize) return -ENXIO; for_each_btree_key(&iter, c, BTREE_ID_EXTENTS, POS(inode->v.i_ino, offset >> 9), 0, k) { if (k.k->p.inode != inode->v.i_ino) { break; } else if (bkey_extent_is_data(k.k)) { next_data = max(offset, bkey_start_offset(k.k) << 9); break; } else if (k.k->p.offset >> 9 > isize) break; } ret = bch2_btree_iter_unlock(&iter); if (ret) return ret; if (next_data > offset) next_data = bch2_next_pagecache_data(&inode->v, offset, next_data); if (next_data > isize) return -ENXIO; return vfs_setpos(file, next_data, MAX_LFS_FILESIZE); } static bool page_slot_is_data(struct address_space *mapping, pgoff_t index) { struct page *page; bool ret; page = find_lock_page(mapping, index); if (!page) return false; ret = folio_is_data(page_folio(page)); unlock_page(page); return ret; } static loff_t bch2_next_pagecache_hole(struct inode *vinode, loff_t start_offset, loff_t end_offset) { struct address_space *mapping = vinode->i_mapping; pgoff_t index; for (index = start_offset >> PAGE_SHIFT; index < end_offset >> PAGE_SHIFT; index++) if (!page_slot_is_data(mapping, index)) end_offset = max(start_offset, ((loff_t) index) << PAGE_SHIFT); return end_offset; } static loff_t bch2_seek_hole(struct file *file, u64 offset) { struct bch_inode_info *inode = file_bch_inode(file); struct bch_fs *c = inode->v.i_sb->s_fs_info; struct btree_iter iter; struct bkey_s_c k; u64 isize, next_hole = MAX_LFS_FILESIZE; int ret; isize = i_size_read(&inode->v); if (offset >= isize) return -ENXIO; for_each_btree_key(&iter, c, BTREE_ID_EXTENTS, POS(inode->v.i_ino, offset >> 9), BTREE_ITER_SLOTS, k) { if (k.k->p.inode != inode->v.i_ino) { next_hole = bch2_next_pagecache_hole(&inode->v, offset, MAX_LFS_FILESIZE); break; } else if (!bkey_extent_is_data(k.k)) { next_hole = bch2_next_pagecache_hole(&inode->v, max(offset, bkey_start_offset(k.k) << 9), k.k->p.offset << 9); if (next_hole < k.k->p.offset << 9) break; } else { offset = max(offset, bkey_start_offset(k.k) << 9); } } ret = bch2_btree_iter_unlock(&iter); if (ret) return ret; if (next_hole > isize) next_hole = isize; return vfs_setpos(file, next_hole, MAX_LFS_FILESIZE); } loff_t bch2_llseek(struct file *file, loff_t offset, int whence) { switch (whence) { case SEEK_SET: case SEEK_CUR: case SEEK_END: return generic_file_llseek(file, offset, whence); case SEEK_DATA: return bch2_seek_data(file, offset); case SEEK_HOLE: return bch2_seek_hole(file, offset); } return -EINVAL; } void bch2_fs_fsio_exit(struct bch_fs *c) { bioset_exit(&c->dio_write_bioset); bioset_exit(&c->dio_read_bioset); bioset_exit(&c->writepage_bioset); } int bch2_fs_fsio_init(struct bch_fs *c) { int ret = 0; pr_verbose_init(c->opts, ""); if (bioset_init(&c->writepage_bioset, 4, offsetof(struct bch_writepage_io, op.op.wbio.bio), BIOSET_NEED_BVECS) || bioset_init(&c->dio_read_bioset, 4, offsetof(struct dio_read, rbio.bio), BIOSET_NEED_BVECS) || bioset_init(&c->dio_write_bioset, 4, offsetof(struct dio_write, iop.op.wbio.bio), BIOSET_NEED_BVECS)) ret = -ENOMEM; pr_verbose_init(c->opts, "ret %i", ret); return ret; } #endif /* NO_BCACHEFS_FS */