/* * Copyright 2008 Cisco Systems, Inc. All rights reserved. * Copyright 2007 Nuova Systems, Inc. All rights reserved. * * This program is free software; you may redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "cq_enet_desc.h" #include "vnic_dev.h" #include "vnic_intr.h" #include "vnic_stats.h" #include "enic_res.h" #include "enic.h" #define ENIC_NOTIFY_TIMER_PERIOD (2 * HZ) /* Supported devices */ static struct pci_device_id enic_id_table[] = { { PCI_VDEVICE(CISCO, 0x0043) }, { 0, } /* end of table */ }; MODULE_DESCRIPTION(DRV_DESCRIPTION); MODULE_AUTHOR("Scott Feldman "); MODULE_LICENSE("GPL"); MODULE_VERSION(DRV_VERSION); MODULE_DEVICE_TABLE(pci, enic_id_table); struct enic_stat { char name[ETH_GSTRING_LEN]; unsigned int offset; }; #define ENIC_TX_STAT(stat) \ { .name = #stat, .offset = offsetof(struct vnic_tx_stats, stat) / 8 } #define ENIC_RX_STAT(stat) \ { .name = #stat, .offset = offsetof(struct vnic_rx_stats, stat) / 8 } static const struct enic_stat enic_tx_stats[] = { ENIC_TX_STAT(tx_frames_ok), ENIC_TX_STAT(tx_unicast_frames_ok), ENIC_TX_STAT(tx_multicast_frames_ok), ENIC_TX_STAT(tx_broadcast_frames_ok), ENIC_TX_STAT(tx_bytes_ok), ENIC_TX_STAT(tx_unicast_bytes_ok), ENIC_TX_STAT(tx_multicast_bytes_ok), ENIC_TX_STAT(tx_broadcast_bytes_ok), ENIC_TX_STAT(tx_drops), ENIC_TX_STAT(tx_errors), ENIC_TX_STAT(tx_tso), }; static const struct enic_stat enic_rx_stats[] = { ENIC_RX_STAT(rx_frames_ok), ENIC_RX_STAT(rx_frames_total), ENIC_RX_STAT(rx_unicast_frames_ok), ENIC_RX_STAT(rx_multicast_frames_ok), ENIC_RX_STAT(rx_broadcast_frames_ok), ENIC_RX_STAT(rx_bytes_ok), ENIC_RX_STAT(rx_unicast_bytes_ok), ENIC_RX_STAT(rx_multicast_bytes_ok), ENIC_RX_STAT(rx_broadcast_bytes_ok), ENIC_RX_STAT(rx_drop), ENIC_RX_STAT(rx_no_bufs), ENIC_RX_STAT(rx_errors), ENIC_RX_STAT(rx_rss), ENIC_RX_STAT(rx_crc_errors), ENIC_RX_STAT(rx_frames_64), ENIC_RX_STAT(rx_frames_127), ENIC_RX_STAT(rx_frames_255), ENIC_RX_STAT(rx_frames_511), ENIC_RX_STAT(rx_frames_1023), ENIC_RX_STAT(rx_frames_1518), ENIC_RX_STAT(rx_frames_to_max), }; static const unsigned int enic_n_tx_stats = ARRAY_SIZE(enic_tx_stats); static const unsigned int enic_n_rx_stats = ARRAY_SIZE(enic_rx_stats); static int enic_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd) { struct enic *enic = netdev_priv(netdev); ecmd->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE); ecmd->advertising = (ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE); ecmd->port = PORT_FIBRE; ecmd->transceiver = XCVR_EXTERNAL; if (netif_carrier_ok(netdev)) { ecmd->speed = vnic_dev_port_speed(enic->vdev); ecmd->duplex = DUPLEX_FULL; } else { ecmd->speed = -1; ecmd->duplex = -1; } ecmd->autoneg = AUTONEG_DISABLE; return 0; } static void enic_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *drvinfo) { struct enic *enic = netdev_priv(netdev); struct vnic_devcmd_fw_info *fw_info; spin_lock(&enic->devcmd_lock); vnic_dev_fw_info(enic->vdev, &fw_info); spin_unlock(&enic->devcmd_lock); strncpy(drvinfo->driver, DRV_NAME, sizeof(drvinfo->driver)); strncpy(drvinfo->version, DRV_VERSION, sizeof(drvinfo->version)); strncpy(drvinfo->fw_version, fw_info->fw_version, sizeof(drvinfo->fw_version)); strncpy(drvinfo->bus_info, pci_name(enic->pdev), sizeof(drvinfo->bus_info)); } static void enic_get_strings(struct net_device *netdev, u32 stringset, u8 *data) { unsigned int i; switch (stringset) { case ETH_SS_STATS: for (i = 0; i < enic_n_tx_stats; i++) { memcpy(data, enic_tx_stats[i].name, ETH_GSTRING_LEN); data += ETH_GSTRING_LEN; } for (i = 0; i < enic_n_rx_stats; i++) { memcpy(data, enic_rx_stats[i].name, ETH_GSTRING_LEN); data += ETH_GSTRING_LEN; } break; } } static int enic_get_sset_count(struct net_device *netdev, int sset) { switch (sset) { case ETH_SS_STATS: return enic_n_tx_stats + enic_n_rx_stats; default: return -EOPNOTSUPP; } } static void enic_get_ethtool_stats(struct net_device *netdev, struct ethtool_stats *stats, u64 *data) { struct enic *enic = netdev_priv(netdev); struct vnic_stats *vstats; unsigned int i; spin_lock(&enic->devcmd_lock); vnic_dev_stats_dump(enic->vdev, &vstats); spin_unlock(&enic->devcmd_lock); for (i = 0; i < enic_n_tx_stats; i++) *(data++) = ((u64 *)&vstats->tx)[enic_tx_stats[i].offset]; for (i = 0; i < enic_n_rx_stats; i++) *(data++) = ((u64 *)&vstats->rx)[enic_rx_stats[i].offset]; } static u32 enic_get_rx_csum(struct net_device *netdev) { struct enic *enic = netdev_priv(netdev); return enic->csum_rx_enabled; } static int enic_set_rx_csum(struct net_device *netdev, u32 data) { struct enic *enic = netdev_priv(netdev); if (data && !ENIC_SETTING(enic, RXCSUM)) return -EINVAL; enic->csum_rx_enabled = !!data; return 0; } static int enic_set_tx_csum(struct net_device *netdev, u32 data) { struct enic *enic = netdev_priv(netdev); if (data && !ENIC_SETTING(enic, TXCSUM)) return -EINVAL; if (data) netdev->features |= NETIF_F_HW_CSUM; else netdev->features &= ~NETIF_F_HW_CSUM; return 0; } static int enic_set_tso(struct net_device *netdev, u32 data) { struct enic *enic = netdev_priv(netdev); if (data && !ENIC_SETTING(enic, TSO)) return -EINVAL; if (data) netdev->features |= NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN; else netdev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN); return 0; } static u32 enic_get_msglevel(struct net_device *netdev) { struct enic *enic = netdev_priv(netdev); return enic->msg_enable; } static void enic_set_msglevel(struct net_device *netdev, u32 value) { struct enic *enic = netdev_priv(netdev); enic->msg_enable = value; } static struct ethtool_ops enic_ethtool_ops = { .get_settings = enic_get_settings, .get_drvinfo = enic_get_drvinfo, .get_msglevel = enic_get_msglevel, .set_msglevel = enic_set_msglevel, .get_link = ethtool_op_get_link, .get_strings = enic_get_strings, .get_sset_count = enic_get_sset_count, .get_ethtool_stats = enic_get_ethtool_stats, .get_rx_csum = enic_get_rx_csum, .set_rx_csum = enic_set_rx_csum, .get_tx_csum = ethtool_op_get_tx_csum, .set_tx_csum = enic_set_tx_csum, .get_sg = ethtool_op_get_sg, .set_sg = ethtool_op_set_sg, .get_tso = ethtool_op_get_tso, .set_tso = enic_set_tso, }; static void enic_free_wq_buf(struct vnic_wq *wq, struct vnic_wq_buf *buf) { struct enic *enic = vnic_dev_priv(wq->vdev); if (buf->sop) pci_unmap_single(enic->pdev, buf->dma_addr, buf->len, PCI_DMA_TODEVICE); else pci_unmap_page(enic->pdev, buf->dma_addr, buf->len, PCI_DMA_TODEVICE); if (buf->os_buf) dev_kfree_skb_any(buf->os_buf); } static void enic_wq_free_buf(struct vnic_wq *wq, struct cq_desc *cq_desc, struct vnic_wq_buf *buf, void *opaque) { enic_free_wq_buf(wq, buf); } static int enic_wq_service(struct vnic_dev *vdev, struct cq_desc *cq_desc, u8 type, u16 q_number, u16 completed_index, void *opaque) { struct enic *enic = vnic_dev_priv(vdev); spin_lock(&enic->wq_lock[q_number]); vnic_wq_service(&enic->wq[q_number], cq_desc, completed_index, enic_wq_free_buf, opaque); if (netif_queue_stopped(enic->netdev) && vnic_wq_desc_avail(&enic->wq[q_number]) >= MAX_SKB_FRAGS + 1) netif_wake_queue(enic->netdev); spin_unlock(&enic->wq_lock[q_number]); return 0; } static void enic_log_q_error(struct enic *enic) { unsigned int i; u32 error_status; for (i = 0; i < enic->wq_count; i++) { error_status = vnic_wq_error_status(&enic->wq[i]); if (error_status) printk(KERN_ERR PFX "%s: WQ[%d] error_status %d\n", enic->netdev->name, i, error_status); } for (i = 0; i < enic->rq_count; i++) { error_status = vnic_rq_error_status(&enic->rq[i]); if (error_status) printk(KERN_ERR PFX "%s: RQ[%d] error_status %d\n", enic->netdev->name, i, error_status); } } static void enic_link_check(struct enic *enic) { int link_status = vnic_dev_link_status(enic->vdev); int carrier_ok = netif_carrier_ok(enic->netdev); if (link_status && !carrier_ok) { printk(KERN_INFO PFX "%s: Link UP\n", enic->netdev->name); netif_carrier_on(enic->netdev); } else if (!link_status && carrier_ok) { printk(KERN_INFO PFX "%s: Link DOWN\n", enic->netdev->name); netif_carrier_off(enic->netdev); } } static void enic_mtu_check(struct enic *enic) { u32 mtu = vnic_dev_mtu(enic->vdev); if (mtu != enic->port_mtu) { if (mtu < enic->netdev->mtu) printk(KERN_WARNING PFX "%s: interface MTU (%d) set higher " "than switch port MTU (%d)\n", enic->netdev->name, enic->netdev->mtu, mtu); enic->port_mtu = mtu; } } static void enic_msglvl_check(struct enic *enic) { u32 msg_enable = vnic_dev_msg_lvl(enic->vdev); if (msg_enable != enic->msg_enable) { printk(KERN_INFO PFX "%s: msg lvl changed from 0x%x to 0x%x\n", enic->netdev->name, enic->msg_enable, msg_enable); enic->msg_enable = msg_enable; } } static void enic_notify_check(struct enic *enic) { enic_msglvl_check(enic); enic_mtu_check(enic); enic_link_check(enic); } #define ENIC_TEST_INTR(pba, i) (pba & (1 << i)) static irqreturn_t enic_isr_legacy(int irq, void *data) { struct net_device *netdev = data; struct enic *enic = netdev_priv(netdev); u32 pba; vnic_intr_mask(&enic->intr[ENIC_INTX_WQ_RQ]); pba = vnic_intr_legacy_pba(enic->legacy_pba); if (!pba) { vnic_intr_unmask(&enic->intr[ENIC_INTX_WQ_RQ]); return IRQ_NONE; /* not our interrupt */ } if (ENIC_TEST_INTR(pba, ENIC_INTX_NOTIFY)) enic_notify_check(enic); if (ENIC_TEST_INTR(pba, ENIC_INTX_ERR)) { enic_log_q_error(enic); /* schedule recovery from WQ/RQ error */ schedule_work(&enic->reset); return IRQ_HANDLED; } if (ENIC_TEST_INTR(pba, ENIC_INTX_WQ_RQ)) { if (netif_rx_schedule_prep(netdev, &enic->napi)) __netif_rx_schedule(netdev, &enic->napi); } else { vnic_intr_unmask(&enic->intr[ENIC_INTX_WQ_RQ]); } return IRQ_HANDLED; } static irqreturn_t enic_isr_msi(int irq, void *data) { struct enic *enic = data; /* With MSI, there is no sharing of interrupts, so this is * our interrupt and there is no need to ack it. The device * is not providing per-vector masking, so the OS will not * write to PCI config space to mask/unmask the interrupt. * We're using mask_on_assertion for MSI, so the device * automatically masks the interrupt when the interrupt is * generated. Later, when exiting polling, the interrupt * will be unmasked (see enic_poll). * * Also, the device uses the same PCIe Traffic Class (TC) * for Memory Write data and MSI, so there are no ordering * issues; the MSI will always arrive at the Root Complex * _after_ corresponding Memory Writes (i.e. descriptor * writes). */ netif_rx_schedule(enic->netdev, &enic->napi); return IRQ_HANDLED; } static irqreturn_t enic_isr_msix_rq(int irq, void *data) { struct enic *enic = data; /* schedule NAPI polling for RQ cleanup */ netif_rx_schedule(enic->netdev, &enic->napi); return IRQ_HANDLED; } static irqreturn_t enic_isr_msix_wq(int irq, void *data) { struct enic *enic = data; unsigned int wq_work_to_do = -1; /* no limit */ unsigned int wq_work_done; wq_work_done = vnic_cq_service(&enic->cq[ENIC_CQ_WQ], wq_work_to_do, enic_wq_service, NULL); vnic_intr_return_credits(&enic->intr[ENIC_MSIX_WQ], wq_work_done, 1 /* unmask intr */, 1 /* reset intr timer */); return IRQ_HANDLED; } static irqreturn_t enic_isr_msix_err(int irq, void *data) { struct enic *enic = data; enic_log_q_error(enic); /* schedule recovery from WQ/RQ error */ schedule_work(&enic->reset); return IRQ_HANDLED; } static irqreturn_t enic_isr_msix_notify(int irq, void *data) { struct enic *enic = data; enic_notify_check(enic); vnic_intr_unmask(&enic->intr[ENIC_MSIX_NOTIFY]); return IRQ_HANDLED; } static inline void enic_queue_wq_skb_cont(struct enic *enic, struct vnic_wq *wq, struct sk_buff *skb, unsigned int len_left) { skb_frag_t *frag; /* Queue additional data fragments */ for (frag = skb_shinfo(skb)->frags; len_left; frag++) { len_left -= frag->size; enic_queue_wq_desc_cont(wq, skb, pci_map_page(enic->pdev, frag->page, frag->page_offset, frag->size, PCI_DMA_TODEVICE), frag->size, (len_left == 0)); /* EOP? */ } } static inline void enic_queue_wq_skb_vlan(struct enic *enic, struct vnic_wq *wq, struct sk_buff *skb, int vlan_tag_insert, unsigned int vlan_tag) { unsigned int head_len = skb_headlen(skb); unsigned int len_left = skb->len - head_len; int eop = (len_left == 0); /* Queue the main skb fragment */ enic_queue_wq_desc(wq, skb, pci_map_single(enic->pdev, skb->data, head_len, PCI_DMA_TODEVICE), head_len, vlan_tag_insert, vlan_tag, eop); if (!eop) enic_queue_wq_skb_cont(enic, wq, skb, len_left); } static inline void enic_queue_wq_skb_csum_l4(struct enic *enic, struct vnic_wq *wq, struct sk_buff *skb, int vlan_tag_insert, unsigned int vlan_tag) { unsigned int head_len = skb_headlen(skb); unsigned int len_left = skb->len - head_len; unsigned int hdr_len = skb_transport_offset(skb); unsigned int csum_offset = hdr_len + skb->csum_offset; int eop = (len_left == 0); /* Queue the main skb fragment */ enic_queue_wq_desc_csum_l4(wq, skb, pci_map_single(enic->pdev, skb->data, head_len, PCI_DMA_TODEVICE), head_len, csum_offset, hdr_len, vlan_tag_insert, vlan_tag, eop); if (!eop) enic_queue_wq_skb_cont(enic, wq, skb, len_left); } static inline void enic_queue_wq_skb_tso(struct enic *enic, struct vnic_wq *wq, struct sk_buff *skb, unsigned int mss, int vlan_tag_insert, unsigned int vlan_tag) { unsigned int head_len = skb_headlen(skb); unsigned int len_left = skb->len - head_len; unsigned int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); int eop = (len_left == 0); /* Preload TCP csum field with IP pseudo hdr calculated * with IP length set to zero. HW will later add in length * to each TCP segment resulting from the TSO. */ if (skb->protocol == __constant_htons(ETH_P_IP)) { ip_hdr(skb)->check = 0; tcp_hdr(skb)->check = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); } else if (skb->protocol == __constant_htons(ETH_P_IPV6)) { tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); } /* Queue the main skb fragment */ enic_queue_wq_desc_tso(wq, skb, pci_map_single(enic->pdev, skb->data, head_len, PCI_DMA_TODEVICE), head_len, mss, hdr_len, vlan_tag_insert, vlan_tag, eop); if (!eop) enic_queue_wq_skb_cont(enic, wq, skb, len_left); } static inline void enic_queue_wq_skb(struct enic *enic, struct vnic_wq *wq, struct sk_buff *skb) { unsigned int mss = skb_shinfo(skb)->gso_size; unsigned int vlan_tag = 0; int vlan_tag_insert = 0; if (enic->vlan_group && vlan_tx_tag_present(skb)) { /* VLAN tag from trunking driver */ vlan_tag_insert = 1; vlan_tag = vlan_tx_tag_get(skb); } if (mss) enic_queue_wq_skb_tso(enic, wq, skb, mss, vlan_tag_insert, vlan_tag); else if (skb->ip_summed == CHECKSUM_PARTIAL) enic_queue_wq_skb_csum_l4(enic, wq, skb, vlan_tag_insert, vlan_tag); else enic_queue_wq_skb_vlan(enic, wq, skb, vlan_tag_insert, vlan_tag); } /* netif_tx_lock held, process context with BHs disabled */ static int enic_hard_start_xmit(struct sk_buff *skb, struct net_device *netdev) { struct enic *enic = netdev_priv(netdev); struct vnic_wq *wq = &enic->wq[0]; unsigned long flags; if (skb->len <= 0) { dev_kfree_skb(skb); return NETDEV_TX_OK; } /* Non-TSO sends must fit within ENIC_NON_TSO_MAX_DESC descs, * which is very likely. In the off chance it's going to take * more than * ENIC_NON_TSO_MAX_DESC, linearize the skb. */ if (skb_shinfo(skb)->gso_size == 0 && skb_shinfo(skb)->nr_frags + 1 > ENIC_NON_TSO_MAX_DESC && skb_linearize(skb)) { dev_kfree_skb(skb); return NETDEV_TX_OK; } spin_lock_irqsave(&enic->wq_lock[0], flags); if (vnic_wq_desc_avail(wq) < skb_shinfo(skb)->nr_frags + 1) { netif_stop_queue(netdev); /* This is a hard error, log it */ printk(KERN_ERR PFX "%s: BUG! Tx ring full when " "queue awake!\n", netdev->name); spin_unlock_irqrestore(&enic->wq_lock[0], flags); return NETDEV_TX_BUSY; } enic_queue_wq_skb(enic, wq, skb); if (vnic_wq_desc_avail(wq) < MAX_SKB_FRAGS + 1) netif_stop_queue(netdev); netdev->trans_start = jiffies; spin_unlock_irqrestore(&enic->wq_lock[0], flags); return NETDEV_TX_OK; } /* dev_base_lock rwlock held, nominally process context */ static struct net_device_stats *enic_get_stats(struct net_device *netdev) { struct enic *enic = netdev_priv(netdev); struct net_device_stats *net_stats = &netdev->stats; struct vnic_stats *stats; spin_lock(&enic->devcmd_lock); vnic_dev_stats_dump(enic->vdev, &stats); spin_unlock(&enic->devcmd_lock); net_stats->tx_packets = stats->tx.tx_frames_ok; net_stats->tx_bytes = stats->tx.tx_bytes_ok; net_stats->tx_errors = stats->tx.tx_errors; net_stats->tx_dropped = stats->tx.tx_drops; net_stats->rx_packets = stats->rx.rx_frames_ok; net_stats->rx_bytes = stats->rx.rx_bytes_ok; net_stats->rx_errors = stats->rx.rx_errors; net_stats->multicast = stats->rx.rx_multicast_frames_ok; net_stats->rx_crc_errors = stats->rx.rx_crc_errors; net_stats->rx_dropped = stats->rx.rx_no_bufs; return net_stats; } static void enic_reset_mcaddrs(struct enic *enic) { enic->mc_count = 0; } static int enic_set_mac_addr(struct net_device *netdev, char *addr) { if (!is_valid_ether_addr(addr)) return -EADDRNOTAVAIL; memcpy(netdev->dev_addr, addr, netdev->addr_len); return 0; } /* netif_tx_lock held, BHs disabled */ static void enic_set_multicast_list(struct net_device *netdev) { struct enic *enic = netdev_priv(netdev); struct dev_mc_list *list = netdev->mc_list; int directed = 1; int multicast = (netdev->flags & IFF_MULTICAST) ? 1 : 0; int broadcast = (netdev->flags & IFF_BROADCAST) ? 1 : 0; int promisc = (netdev->flags & IFF_PROMISC) ? 1 : 0; int allmulti = (netdev->flags & IFF_ALLMULTI) || (netdev->mc_count > ENIC_MULTICAST_PERFECT_FILTERS); u8 mc_addr[ENIC_MULTICAST_PERFECT_FILTERS][ETH_ALEN]; unsigned int mc_count = netdev->mc_count; unsigned int i, j; if (mc_count > ENIC_MULTICAST_PERFECT_FILTERS) mc_count = ENIC_MULTICAST_PERFECT_FILTERS; spin_lock(&enic->devcmd_lock); vnic_dev_packet_filter(enic->vdev, directed, multicast, broadcast, promisc, allmulti); /* Is there an easier way? Trying to minimize to * calls to add/del multicast addrs. We keep the * addrs from the last call in enic->mc_addr and * look for changes to add/del. */ for (i = 0; list && i < mc_count; i++) { memcpy(mc_addr[i], list->dmi_addr, ETH_ALEN); list = list->next; } for (i = 0; i < enic->mc_count; i++) { for (j = 0; j < mc_count; j++) if (compare_ether_addr(enic->mc_addr[i], mc_addr[j]) == 0) break; if (j == mc_count) enic_del_multicast_addr(enic, enic->mc_addr[i]); } for (i = 0; i < mc_count; i++) { for (j = 0; j < enic->mc_count; j++) if (compare_ether_addr(mc_addr[i], enic->mc_addr[j]) == 0) break; if (j == enic->mc_count) enic_add_multicast_addr(enic, mc_addr[i]); } /* Save the list to compare against next time */ for (i = 0; i < mc_count; i++) memcpy(enic->mc_addr[i], mc_addr[i], ETH_ALEN); enic->mc_count = mc_count; spin_unlock(&enic->devcmd_lock); } /* rtnl lock is held */ static void enic_vlan_rx_register(struct net_device *netdev, struct vlan_group *vlan_group) { struct enic *enic = netdev_priv(netdev); enic->vlan_group = vlan_group; } /* rtnl lock is held */ static void enic_vlan_rx_add_vid(struct net_device *netdev, u16 vid) { struct enic *enic = netdev_priv(netdev); spin_lock(&enic->devcmd_lock); enic_add_vlan(enic, vid); spin_unlock(&enic->devcmd_lock); } /* rtnl lock is held */ static void enic_vlan_rx_kill_vid(struct net_device *netdev, u16 vid) { struct enic *enic = netdev_priv(netdev); spin_lock(&enic->devcmd_lock); enic_del_vlan(enic, vid); spin_unlock(&enic->devcmd_lock); } /* netif_tx_lock held, BHs disabled */ static void enic_tx_timeout(struct net_device *netdev) { struct enic *enic = netdev_priv(netdev); schedule_work(&enic->reset); } static void enic_free_rq_buf(struct vnic_rq *rq, struct vnic_rq_buf *buf) { struct enic *enic = vnic_dev_priv(rq->vdev); if (!buf->os_buf) return; pci_unmap_single(enic->pdev, buf->dma_addr, buf->len, PCI_DMA_FROMDEVICE); dev_kfree_skb_any(buf->os_buf); } static inline struct sk_buff *enic_rq_alloc_skb(unsigned int size) { struct sk_buff *skb; skb = dev_alloc_skb(size + NET_IP_ALIGN); if (skb) skb_reserve(skb, NET_IP_ALIGN); return skb; } static int enic_rq_alloc_buf(struct vnic_rq *rq) { struct enic *enic = vnic_dev_priv(rq->vdev); struct sk_buff *skb; unsigned int len = enic->netdev->mtu + ETH_HLEN; unsigned int os_buf_index = 0; dma_addr_t dma_addr; skb = enic_rq_alloc_skb(len); if (!skb) return -ENOMEM; dma_addr = pci_map_single(enic->pdev, skb->data, len, PCI_DMA_FROMDEVICE); enic_queue_rq_desc(rq, skb, os_buf_index, dma_addr, len); return 0; } static int enic_get_skb_header(struct sk_buff *skb, void **iphdr, void **tcph, u64 *hdr_flags, void *priv) { struct cq_enet_rq_desc *cq_desc = priv; unsigned int ip_len; struct iphdr *iph; u8 type, color, eop, sop, ingress_port, vlan_stripped; u8 fcoe, fcoe_sof, fcoe_fc_crc_ok, fcoe_enc_error, fcoe_eof; u8 tcp_udp_csum_ok, udp, tcp, ipv4_csum_ok; u8 ipv6, ipv4, ipv4_fragment, fcs_ok, rss_type, csum_not_calc; u8 packet_error; u16 q_number, completed_index, bytes_written, vlan, checksum; u32 rss_hash; cq_enet_rq_desc_dec(cq_desc, &type, &color, &q_number, &completed_index, &ingress_port, &fcoe, &eop, &sop, &rss_type, &csum_not_calc, &rss_hash, &bytes_written, &packet_error, &vlan_stripped, &vlan, &checksum, &fcoe_sof, &fcoe_fc_crc_ok, &fcoe_enc_error, &fcoe_eof, &tcp_udp_csum_ok, &udp, &tcp, &ipv4_csum_ok, &ipv6, &ipv4, &ipv4_fragment, &fcs_ok); if (!(ipv4 && tcp && !ipv4_fragment)) return -1; skb_reset_network_header(skb); iph = ip_hdr(skb); ip_len = ip_hdrlen(skb); skb_set_transport_header(skb, ip_len); /* check if ip header and tcp header are complete */ if (ntohs(iph->tot_len) < ip_len + tcp_hdrlen(skb)) return -1; *hdr_flags = LRO_IPV4 | LRO_TCP; *tcph = tcp_hdr(skb); *iphdr = iph; return 0; } static void enic_rq_indicate_buf(struct vnic_rq *rq, struct cq_desc *cq_desc, struct vnic_rq_buf *buf, int skipped, void *opaque) { struct enic *enic = vnic_dev_priv(rq->vdev); struct sk_buff *skb; u8 type, color, eop, sop, ingress_port, vlan_stripped; u8 fcoe, fcoe_sof, fcoe_fc_crc_ok, fcoe_enc_error, fcoe_eof; u8 tcp_udp_csum_ok, udp, tcp, ipv4_csum_ok; u8 ipv6, ipv4, ipv4_fragment, fcs_ok, rss_type, csum_not_calc; u8 packet_error; u16 q_number, completed_index, bytes_written, vlan, checksum; u32 rss_hash; if (skipped) return; skb = buf->os_buf; prefetch(skb->data - NET_IP_ALIGN); pci_unmap_single(enic->pdev, buf->dma_addr, buf->len, PCI_DMA_FROMDEVICE); cq_enet_rq_desc_dec((struct cq_enet_rq_desc *)cq_desc, &type, &color, &q_number, &completed_index, &ingress_port, &fcoe, &eop, &sop, &rss_type, &csum_not_calc, &rss_hash, &bytes_written, &packet_error, &vlan_stripped, &vlan, &checksum, &fcoe_sof, &fcoe_fc_crc_ok, &fcoe_enc_error, &fcoe_eof, &tcp_udp_csum_ok, &udp, &tcp, &ipv4_csum_ok, &ipv6, &ipv4, &ipv4_fragment, &fcs_ok); if (packet_error) { if (bytes_written > 0 && !fcs_ok) { if (net_ratelimit()) printk(KERN_ERR PFX "%s: packet error: bad FCS\n", enic->netdev->name); } dev_kfree_skb_any(skb); return; } if (eop && bytes_written > 0) { /* Good receive */ skb_put(skb, bytes_written); skb->protocol = eth_type_trans(skb, enic->netdev); if (enic->csum_rx_enabled && !csum_not_calc) { skb->csum = htons(checksum); skb->ip_summed = CHECKSUM_COMPLETE; } skb->dev = enic->netdev; enic->netdev->last_rx = jiffies; if (enic->vlan_group && vlan_stripped) { if (ENIC_SETTING(enic, LRO) && ipv4) lro_vlan_hwaccel_receive_skb(&enic->lro_mgr, skb, enic->vlan_group, vlan, cq_desc); else vlan_hwaccel_receive_skb(skb, enic->vlan_group, vlan); } else { if (ENIC_SETTING(enic, LRO) && ipv4) lro_receive_skb(&enic->lro_mgr, skb, cq_desc); else netif_receive_skb(skb); } } else { /* Buffer overflow */ dev_kfree_skb_any(skb); } } static int enic_rq_service(struct vnic_dev *vdev, struct cq_desc *cq_desc, u8 type, u16 q_number, u16 completed_index, void *opaque) { struct enic *enic = vnic_dev_priv(vdev); vnic_rq_service(&enic->rq[q_number], cq_desc, completed_index, VNIC_RQ_RETURN_DESC, enic_rq_indicate_buf, opaque); return 0; } static void enic_rq_drop_buf(struct vnic_rq *rq, struct cq_desc *cq_desc, struct vnic_rq_buf *buf, int skipped, void *opaque) { struct enic *enic = vnic_dev_priv(rq->vdev); struct sk_buff *skb = buf->os_buf; if (skipped) return; pci_unmap_single(enic->pdev, buf->dma_addr, buf->len, PCI_DMA_FROMDEVICE); dev_kfree_skb_any(skb); } static int enic_rq_service_drop(struct vnic_dev *vdev, struct cq_desc *cq_desc, u8 type, u16 q_number, u16 completed_index, void *opaque) { struct enic *enic = vnic_dev_priv(vdev); vnic_rq_service(&enic->rq[q_number], cq_desc, completed_index, VNIC_RQ_RETURN_DESC, enic_rq_drop_buf, opaque); return 0; } static int enic_poll(struct napi_struct *napi, int budget) { struct enic *enic = container_of(napi, struct enic, napi); struct net_device *netdev = enic->netdev; unsigned int rq_work_to_do = budget; unsigned int wq_work_to_do = -1; /* no limit */ unsigned int work_done, rq_work_done, wq_work_done; /* Service RQ (first) and WQ */ rq_work_done = vnic_cq_service(&enic->cq[ENIC_CQ_RQ], rq_work_to_do, enic_rq_service, NULL); wq_work_done = vnic_cq_service(&enic->cq[ENIC_CQ_WQ], wq_work_to_do, enic_wq_service, NULL); /* Accumulate intr event credits for this polling * cycle. An intr event is the completion of a * a WQ or RQ packet. */ work_done = rq_work_done + wq_work_done; if (work_done > 0) vnic_intr_return_credits(&enic->intr[ENIC_INTX_WQ_RQ], work_done, 0 /* don't unmask intr */, 0 /* don't reset intr timer */); if (rq_work_done > 0) { /* Replenish RQ */ vnic_rq_fill(&enic->rq[0], enic_rq_alloc_buf); } else { /* If no work done, flush all LROs and exit polling */ if (ENIC_SETTING(enic, LRO)) lro_flush_all(&enic->lro_mgr); netif_rx_complete(netdev, napi); vnic_intr_unmask(&enic->intr[ENIC_MSIX_RQ]); } return rq_work_done; } static int enic_poll_msix(struct napi_struct *napi, int budget) { struct enic *enic = container_of(napi, struct enic, napi); struct net_device *netdev = enic->netdev; unsigned int work_to_do = budget; unsigned int work_done; /* Service RQ */ work_done = vnic_cq_service(&enic->cq[ENIC_CQ_RQ], work_to_do, enic_rq_service, NULL); if (work_done > 0) { /* Replenish RQ */ vnic_rq_fill(&enic->rq[0], enic_rq_alloc_buf); /* Accumulate intr event credits for this polling * cycle. An intr event is the completion of a * a WQ or RQ packet. */ vnic_intr_return_credits(&enic->intr[ENIC_MSIX_RQ], work_done, 0 /* don't unmask intr */, 0 /* don't reset intr timer */); } else { /* If no work done, flush all LROs and exit polling */ if (ENIC_SETTING(enic, LRO)) lro_flush_all(&enic->lro_mgr); netif_rx_complete(netdev, napi); vnic_intr_unmask(&enic->intr[ENIC_MSIX_RQ]); } return work_done; } static void enic_notify_timer(unsigned long data) { struct enic *enic = (struct enic *)data; enic_notify_check(enic); mod_timer(&enic->notify_timer, round_jiffies(jiffies + ENIC_NOTIFY_TIMER_PERIOD)); } static void enic_free_intr(struct enic *enic) { struct net_device *netdev = enic->netdev; unsigned int i; switch (vnic_dev_get_intr_mode(enic->vdev)) { case VNIC_DEV_INTR_MODE_INTX: free_irq(enic->pdev->irq, netdev); break; case VNIC_DEV_INTR_MODE_MSI: free_irq(enic->pdev->irq, enic); break; case VNIC_DEV_INTR_MODE_MSIX: for (i = 0; i < ARRAY_SIZE(enic->msix); i++) if (enic->msix[i].requested) free_irq(enic->msix_entry[i].vector, enic->msix[i].devid); break; default: break; } } static int enic_request_intr(struct enic *enic) { struct net_device *netdev = enic->netdev; unsigned int i; int err = 0; switch (vnic_dev_get_intr_mode(enic->vdev)) { case VNIC_DEV_INTR_MODE_INTX: err = request_irq(enic->pdev->irq, enic_isr_legacy, IRQF_SHARED, netdev->name, netdev); break; case VNIC_DEV_INTR_MODE_MSI: err = request_irq(enic->pdev->irq, enic_isr_msi, 0, netdev->name, enic); break; case VNIC_DEV_INTR_MODE_MSIX: sprintf(enic->msix[ENIC_MSIX_RQ].devname, "%.11s-rx-0", netdev->name); enic->msix[ENIC_MSIX_RQ].isr = enic_isr_msix_rq; enic->msix[ENIC_MSIX_RQ].devid = enic; sprintf(enic->msix[ENIC_MSIX_WQ].devname, "%.11s-tx-0", netdev->name); enic->msix[ENIC_MSIX_WQ].isr = enic_isr_msix_wq; enic->msix[ENIC_MSIX_WQ].devid = enic; sprintf(enic->msix[ENIC_MSIX_ERR].devname, "%.11s-err", netdev->name); enic->msix[ENIC_MSIX_ERR].isr = enic_isr_msix_err; enic->msix[ENIC_MSIX_ERR].devid = enic; sprintf(enic->msix[ENIC_MSIX_NOTIFY].devname, "%.11s-notify", netdev->name); enic->msix[ENIC_MSIX_NOTIFY].isr = enic_isr_msix_notify; enic->msix[ENIC_MSIX_NOTIFY].devid = enic; for (i = 0; i < ARRAY_SIZE(enic->msix); i++) { err = request_irq(enic->msix_entry[i].vector, enic->msix[i].isr, 0, enic->msix[i].devname, enic->msix[i].devid); if (err) { enic_free_intr(enic); break; } enic->msix[i].requested = 1; } break; default: break; } return err; } static int enic_notify_set(struct enic *enic) { int err; switch (vnic_dev_get_intr_mode(enic->vdev)) { case VNIC_DEV_INTR_MODE_INTX: err = vnic_dev_notify_set(enic->vdev, ENIC_INTX_NOTIFY); break; case VNIC_DEV_INTR_MODE_MSIX: err = vnic_dev_notify_set(enic->vdev, ENIC_MSIX_NOTIFY); break; default: err = vnic_dev_notify_set(enic->vdev, -1 /* no intr */); break; } return err; } static void enic_notify_timer_start(struct enic *enic) { switch (vnic_dev_get_intr_mode(enic->vdev)) { case VNIC_DEV_INTR_MODE_MSI: mod_timer(&enic->notify_timer, jiffies); break; default: /* Using intr for notification for INTx/MSI-X */ break; }; } /* rtnl lock is held, process context */ static int enic_open(struct net_device *netdev) { struct enic *enic = netdev_priv(netdev); unsigned int i; int err; for (i = 0; i < enic->rq_count; i++) { err = vnic_rq_fill(&enic->rq[i], enic_rq_alloc_buf); if (err) { printk(KERN_ERR PFX "%s: Unable to alloc receive buffers.\n", netdev->name); return err; } } for (i = 0; i < enic->wq_count; i++) vnic_wq_enable(&enic->wq[i]); for (i = 0; i < enic->rq_count; i++) vnic_rq_enable(&enic->rq[i]); enic_add_station_addr(enic); enic_set_multicast_list(netdev); netif_wake_queue(netdev); napi_enable(&enic->napi); vnic_dev_enable(enic->vdev); for (i = 0; i < enic->intr_count; i++) vnic_intr_unmask(&enic->intr[i]); enic_notify_timer_start(enic); return 0; } /* rtnl lock is held, process context */ static int enic_stop(struct net_device *netdev) { struct enic *enic = netdev_priv(netdev); unsigned int i; int err; del_timer_sync(&enic->notify_timer); vnic_dev_disable(enic->vdev); napi_disable(&enic->napi); netif_stop_queue(netdev); for (i = 0; i < enic->intr_count; i++) vnic_intr_mask(&enic->intr[i]); for (i = 0; i < enic->wq_count; i++) { err = vnic_wq_disable(&enic->wq[i]); if (err) return err; } for (i = 0; i < enic->rq_count; i++) { err = vnic_rq_disable(&enic->rq[i]); if (err) return err; } (void)vnic_cq_service(&enic->cq[ENIC_CQ_RQ], -1, enic_rq_service_drop, NULL); (void)vnic_cq_service(&enic->cq[ENIC_CQ_WQ], -1, enic_wq_service, NULL); for (i = 0; i < enic->wq_count; i++) vnic_wq_clean(&enic->wq[i], enic_free_wq_buf); for (i = 0; i < enic->rq_count; i++) vnic_rq_clean(&enic->rq[i], enic_free_rq_buf); for (i = 0; i < enic->cq_count; i++) vnic_cq_clean(&enic->cq[i]); for (i = 0; i < enic->intr_count; i++) vnic_intr_clean(&enic->intr[i]); return 0; } static int enic_change_mtu(struct net_device *netdev, int new_mtu) { struct enic *enic = netdev_priv(netdev); int running = netif_running(netdev); if (new_mtu < ENIC_MIN_MTU || new_mtu > ENIC_MAX_MTU) return -EINVAL; if (running) enic_stop(netdev); netdev->mtu = new_mtu; if (netdev->mtu > enic->port_mtu) printk(KERN_WARNING PFX "%s: interface MTU (%d) set higher " "than port MTU (%d)\n", netdev->name, netdev->mtu, enic->port_mtu); if (running) enic_open(netdev); return 0; } #ifdef CONFIG_NET_POLL_CONTROLLER static void enic_poll_controller(struct net_device *netdev) { struct enic *enic = netdev_priv(netdev); struct vnic_dev *vdev = enic->vdev; switch (vnic_dev_get_intr_mode(vdev)) { case VNIC_DEV_INTR_MODE_MSIX: enic_isr_msix_rq(enic->pdev->irq, enic); enic_isr_msix_wq(enic->pdev->irq, enic); break; case VNIC_DEV_INTR_MODE_MSI: enic_isr_msi(enic->pdev->irq, enic); break; case VNIC_DEV_INTR_MODE_INTX: enic_isr_legacy(enic->pdev->irq, netdev); break; default: break; } } #endif static int enic_dev_wait(struct vnic_dev *vdev, int (*start)(struct vnic_dev *, int), int (*finished)(struct vnic_dev *, int *), int arg) { unsigned long time; int done; int err; BUG_ON(in_interrupt()); err = start(vdev, arg); if (err) return err; /* Wait for func to complete...2 seconds max */ time = jiffies + (HZ * 2); do { err = finished(vdev, &done); if (err) return err; if (done) return 0; schedule_timeout_uninterruptible(HZ / 10); } while (time_after(time, jiffies)); return -ETIMEDOUT; } static int enic_dev_open(struct enic *enic) { int err; err = enic_dev_wait(enic->vdev, vnic_dev_open, vnic_dev_open_done, 0); if (err) printk(KERN_ERR PFX "vNIC device open failed, err %d.\n", err); return err; } static int enic_dev_soft_reset(struct enic *enic) { int err; err = enic_dev_wait(enic->vdev, vnic_dev_soft_reset, vnic_dev_soft_reset_done, 0); if (err) printk(KERN_ERR PFX "vNIC soft reset failed, err %d.\n", err); return err; } static void enic_reset(struct work_struct *work) { struct enic *enic = container_of(work, struct enic, reset); if (!netif_running(enic->netdev)) return; rtnl_lock(); spin_lock(&enic->devcmd_lock); vnic_dev_hang_notify(enic->vdev); spin_unlock(&enic->devcmd_lock); enic_stop(enic->netdev); enic_dev_soft_reset(enic); enic_reset_mcaddrs(enic); enic_init_vnic_resources(enic); enic_open(enic->netdev); rtnl_unlock(); } static int enic_set_intr_mode(struct enic *enic) { unsigned int n = ARRAY_SIZE(enic->rq); unsigned int m = ARRAY_SIZE(enic->wq); unsigned int i; /* Set interrupt mode (INTx, MSI, MSI-X) depending * system capabilities. * * Try MSI-X first * * We need n RQs, m WQs, n+m CQs, and n+m+2 INTRs * (the second to last INTR is used for WQ/RQ errors) * (the last INTR is used for notifications) */ BUG_ON(ARRAY_SIZE(enic->msix_entry) < n + m + 2); for (i = 0; i < n + m + 2; i++) enic->msix_entry[i].entry = i; if (enic->config.intr_mode < 1 && enic->rq_count >= n && enic->wq_count >= m && enic->cq_count >= n + m && enic->intr_count >= n + m + 2 && !pci_enable_msix(enic->pdev, enic->msix_entry, n + m + 2)) { enic->rq_count = n; enic->wq_count = m; enic->cq_count = n + m; enic->intr_count = n + m + 2; vnic_dev_set_intr_mode(enic->vdev, VNIC_DEV_INTR_MODE_MSIX); return 0; } /* Next try MSI * * We need 1 RQ, 1 WQ, 2 CQs, and 1 INTR */ if (enic->config.intr_mode < 2 && enic->rq_count >= 1 && enic->wq_count >= 1 && enic->cq_count >= 2 && enic->intr_count >= 1 && !pci_enable_msi(enic->pdev)) { enic->rq_count = 1; enic->wq_count = 1; enic->cq_count = 2; enic->intr_count = 1; vnic_dev_set_intr_mode(enic->vdev, VNIC_DEV_INTR_MODE_MSI); return 0; } /* Next try INTx * * We need 1 RQ, 1 WQ, 2 CQs, and 3 INTRs * (the first INTR is used for WQ/RQ) * (the second INTR is used for WQ/RQ errors) * (the last INTR is used for notifications) */ if (enic->config.intr_mode < 3 && enic->rq_count >= 1 && enic->wq_count >= 1 && enic->cq_count >= 2 && enic->intr_count >= 3) { enic->rq_count = 1; enic->wq_count = 1; enic->cq_count = 2; enic->intr_count = 3; vnic_dev_set_intr_mode(enic->vdev, VNIC_DEV_INTR_MODE_INTX); return 0; } vnic_dev_set_intr_mode(enic->vdev, VNIC_DEV_INTR_MODE_UNKNOWN); return -EINVAL; } static void enic_clear_intr_mode(struct enic *enic) { switch (vnic_dev_get_intr_mode(enic->vdev)) { case VNIC_DEV_INTR_MODE_MSIX: pci_disable_msix(enic->pdev); break; case VNIC_DEV_INTR_MODE_MSI: pci_disable_msi(enic->pdev); break; default: break; } vnic_dev_set_intr_mode(enic->vdev, VNIC_DEV_INTR_MODE_UNKNOWN); } static void enic_iounmap(struct enic *enic) { if (enic->bar0.vaddr) iounmap(enic->bar0.vaddr); } static int __devinit enic_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct net_device *netdev; struct enic *enic; int using_dac = 0; unsigned int i; int err; const u8 rss_default_cpu = 0; const u8 rss_hash_type = 0; const u8 rss_hash_bits = 0; const u8 rss_base_cpu = 0; const u8 rss_enable = 0; const u8 tso_ipid_split_en = 0; const u8 ig_vlan_strip_en = 1; /* Allocate net device structure and initialize. Private * instance data is initialized to zero. */ netdev = alloc_etherdev(sizeof(struct enic)); if (!netdev) { printk(KERN_ERR PFX "Etherdev alloc failed, aborting.\n"); return -ENOMEM; } /* Set the netdev name early so intr vectors are properly * named and any error msgs can include netdev->name */ rtnl_lock(); err = dev_alloc_name(netdev, netdev->name); rtnl_unlock(); if (err < 0) { printk(KERN_ERR PFX "Unable to allocate netdev name.\n"); goto err_out_free_netdev; } pci_set_drvdata(pdev, netdev); SET_NETDEV_DEV(netdev, &pdev->dev); enic = netdev_priv(netdev); enic->netdev = netdev; enic->pdev = pdev; /* Setup PCI resources */ err = pci_enable_device(pdev); if (err) { printk(KERN_ERR PFX "%s: Cannot enable PCI device, aborting.\n", netdev->name); goto err_out_free_netdev; } err = pci_request_regions(pdev, DRV_NAME); if (err) { printk(KERN_ERR PFX "%s: Cannot request PCI regions, aborting.\n", netdev->name); goto err_out_disable_device; } pci_set_master(pdev); /* Query PCI controller on system for DMA addressing * limitation for the device. Try 40-bit first, and * fail to 32-bit. */ err = pci_set_dma_mask(pdev, DMA_40BIT_MASK); if (err) { err = pci_set_dma_mask(pdev, DMA_32BIT_MASK); if (err) { printk(KERN_ERR PFX "%s: No usable DMA configuration, aborting.\n", netdev->name); goto err_out_release_regions; } err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK); if (err) { printk(KERN_ERR PFX "%s: Unable to obtain 32-bit DMA " "for consistent allocations, aborting.\n", netdev->name); goto err_out_release_regions; } } else { err = pci_set_consistent_dma_mask(pdev, DMA_40BIT_MASK); if (err) { printk(KERN_ERR PFX "%s: Unable to obtain 40-bit DMA " "for consistent allocations, aborting.\n", netdev->name); goto err_out_release_regions; } using_dac = 1; } /* Map vNIC resources from BAR0 */ if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { printk(KERN_ERR PFX "%s: BAR0 not memory-map'able, aborting.\n", netdev->name); err = -ENODEV; goto err_out_release_regions; } enic->bar0.vaddr = pci_iomap(pdev, 0, enic->bar0.len); enic->bar0.bus_addr = pci_resource_start(pdev, 0); enic->bar0.len = pci_resource_len(pdev, 0); if (!enic->bar0.vaddr) { printk(KERN_ERR PFX "%s: Cannot memory-map BAR0 res hdr, aborting.\n", netdev->name); err = -ENODEV; goto err_out_release_regions; } /* Register vNIC device */ enic->vdev = vnic_dev_register(NULL, enic, pdev, &enic->bar0); if (!enic->vdev) { printk(KERN_ERR PFX "%s: vNIC registration failed, aborting.\n", netdev->name); err = -ENODEV; goto err_out_iounmap; } /* Issue device open to get device in known state */ err = enic_dev_open(enic); if (err) { printk(KERN_ERR PFX "%s: vNIC dev open failed, aborting.\n", netdev->name); goto err_out_vnic_unregister; } /* Issue device init to initialize the vnic-to-switch link. * We'll start with carrier off and wait for link UP * notification later to turn on carrier. We don't need * to wait here for the vnic-to-switch link initialization * to complete; link UP notification is the indication that * the process is complete. */ netif_carrier_off(netdev); err = vnic_dev_init(enic->vdev, 0); if (err) { printk(KERN_ERR PFX "%s: vNIC dev init failed, aborting.\n", netdev->name); goto err_out_dev_close; } /* Get vNIC configuration */ err = enic_get_vnic_config(enic); if (err) { printk(KERN_ERR PFX "%s: Get vNIC configuration failed, aborting.\n", netdev->name); goto err_out_dev_close; } /* Get available resource counts */ enic_get_res_counts(enic); /* Set interrupt mode based on resource counts and system * capabilities */ err = enic_set_intr_mode(enic); if (err) { printk(KERN_ERR PFX "%s: Failed to set intr mode, aborting.\n", netdev->name); goto err_out_dev_close; } /* Request interrupt vector(s) */ err = enic_request_intr(enic); if (err) { printk(KERN_ERR PFX "%s: Unable to request irq.\n", netdev->name); goto err_out_dev_close; } /* Allocate and configure vNIC resources */ err = enic_alloc_vnic_resources(enic); if (err) { printk(KERN_ERR PFX "%s: Failed to alloc vNIC resources, aborting.\n", netdev->name); goto err_out_free_vnic_resources; } enic_init_vnic_resources(enic); /* Enable VLAN tag stripping. RSS not enabled (yet). */ err = enic_set_nic_cfg(enic, rss_default_cpu, rss_hash_type, rss_hash_bits, rss_base_cpu, rss_enable, tso_ipid_split_en, ig_vlan_strip_en); if (err) { printk(KERN_ERR PFX "%s: Failed to config nic, aborting.\n", netdev->name); goto err_out_free_vnic_resources; } /* Setup notification buffer area */ err = enic_notify_set(enic); if (err) { printk(KERN_ERR PFX "%s: Failed to alloc notify buffer, aborting.\n", netdev->name); goto err_out_free_vnic_resources; } /* Setup notification timer, HW reset task, and locks */ init_timer(&enic->notify_timer); enic->notify_timer.function = enic_notify_timer; enic->notify_timer.data = (unsigned long)enic; INIT_WORK(&enic->reset, enic_reset); for (i = 0; i < enic->wq_count; i++) spin_lock_init(&enic->wq_lock[i]); spin_lock_init(&enic->devcmd_lock); /* Register net device */ enic->port_mtu = enic->config.mtu; (void)enic_change_mtu(netdev, enic->port_mtu); err = enic_set_mac_addr(netdev, enic->mac_addr); if (err) { printk(KERN_ERR PFX "%s: Invalid MAC address, aborting.\n", netdev->name); goto err_out_notify_unset; } netdev->open = enic_open; netdev->stop = enic_stop; netdev->hard_start_xmit = enic_hard_start_xmit; netdev->get_stats = enic_get_stats; netdev->set_multicast_list = enic_set_multicast_list; netdev->change_mtu = enic_change_mtu; netdev->vlan_rx_register = enic_vlan_rx_register; netdev->vlan_rx_add_vid = enic_vlan_rx_add_vid; netdev->vlan_rx_kill_vid = enic_vlan_rx_kill_vid; netdev->tx_timeout = enic_tx_timeout; netdev->watchdog_timeo = 2 * HZ; netdev->ethtool_ops = &enic_ethtool_ops; #ifdef CONFIG_NET_POLL_CONTROLLER netdev->poll_controller = enic_poll_controller; #endif switch (vnic_dev_get_intr_mode(enic->vdev)) { default: netif_napi_add(netdev, &enic->napi, enic_poll, 64); break; case VNIC_DEV_INTR_MODE_MSIX: netif_napi_add(netdev, &enic->napi, enic_poll_msix, 64); break; } netdev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX; if (ENIC_SETTING(enic, TXCSUM)) netdev->features |= NETIF_F_SG | NETIF_F_HW_CSUM; if (ENIC_SETTING(enic, TSO)) netdev->features |= NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN; if (using_dac) netdev->features |= NETIF_F_HIGHDMA; enic->csum_rx_enabled = ENIC_SETTING(enic, RXCSUM); if (ENIC_SETTING(enic, LRO)) { enic->lro_mgr.max_aggr = ENIC_LRO_MAX_AGGR; enic->lro_mgr.max_desc = ENIC_LRO_MAX_DESC; enic->lro_mgr.lro_arr = enic->lro_desc; enic->lro_mgr.get_skb_header = enic_get_skb_header; enic->lro_mgr.features = LRO_F_NAPI | LRO_F_EXTRACT_VLAN_ID; enic->lro_mgr.dev = netdev; enic->lro_mgr.ip_summed = CHECKSUM_COMPLETE; enic->lro_mgr.ip_summed_aggr = CHECKSUM_UNNECESSARY; } err = register_netdev(netdev); if (err) { printk(KERN_ERR PFX "%s: Cannot register net device, aborting.\n", netdev->name); goto err_out_notify_unset; } return 0; err_out_notify_unset: vnic_dev_notify_unset(enic->vdev); err_out_free_vnic_resources: enic_free_vnic_resources(enic); enic_free_intr(enic); err_out_dev_close: vnic_dev_close(enic->vdev); err_out_vnic_unregister: enic_clear_intr_mode(enic); vnic_dev_unregister(enic->vdev); err_out_iounmap: enic_iounmap(enic); err_out_release_regions: pci_release_regions(pdev); err_out_disable_device: pci_disable_device(pdev); err_out_free_netdev: pci_set_drvdata(pdev, NULL); free_netdev(netdev); return err; } static void __devexit enic_remove(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); if (netdev) { struct enic *enic = netdev_priv(netdev); flush_scheduled_work(); unregister_netdev(netdev); vnic_dev_notify_unset(enic->vdev); enic_free_vnic_resources(enic); enic_free_intr(enic); vnic_dev_close(enic->vdev); enic_clear_intr_mode(enic); vnic_dev_unregister(enic->vdev); enic_iounmap(enic); pci_release_regions(pdev); pci_disable_device(pdev); pci_set_drvdata(pdev, NULL); free_netdev(netdev); } } static struct pci_driver enic_driver = { .name = DRV_NAME, .id_table = enic_id_table, .probe = enic_probe, .remove = __devexit_p(enic_remove), }; static int __init enic_init_module(void) { printk(KERN_INFO PFX "%s, ver %s\n", DRV_DESCRIPTION, DRV_VERSION); return pci_register_driver(&enic_driver); } static void __exit enic_cleanup_module(void) { pci_unregister_driver(&enic_driver); } module_init(enic_init_module); module_exit(enic_cleanup_module);