// SPDX-License-Identifier: GPL-2.0-only /* * Stack depot - a stack trace storage that avoids duplication. * * Internally, stack depot maintains a hash table of unique stacktraces. The * stack traces themselves are stored contiguously one after another in a set * of separate page allocations. * * Author: Alexander Potapenko * Copyright (C) 2016 Google, Inc. * * Based on the code by Dmitry Chernenkov. */ #define pr_fmt(fmt) "stackdepot: " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define DEPOT_HANDLE_BITS (sizeof(depot_stack_handle_t) * 8) #define DEPOT_POOL_ORDER 2 /* Pool size order, 4 pages */ #define DEPOT_POOL_SIZE (1LL << (PAGE_SHIFT + DEPOT_POOL_ORDER)) #define DEPOT_STACK_ALIGN 4 #define DEPOT_OFFSET_BITS (DEPOT_POOL_ORDER + PAGE_SHIFT - DEPOT_STACK_ALIGN) #define DEPOT_POOL_INDEX_BITS (DEPOT_HANDLE_BITS - DEPOT_OFFSET_BITS - \ STACK_DEPOT_EXTRA_BITS) #define DEPOT_POOLS_CAP 8192 #define DEPOT_MAX_POOLS \ (((1LL << (DEPOT_POOL_INDEX_BITS)) < DEPOT_POOLS_CAP) ? \ (1LL << (DEPOT_POOL_INDEX_BITS)) : DEPOT_POOLS_CAP) /* Compact structure that stores a reference to a stack. */ union handle_parts { depot_stack_handle_t handle; struct { u32 pool_index : DEPOT_POOL_INDEX_BITS; u32 offset : DEPOT_OFFSET_BITS; u32 extra : STACK_DEPOT_EXTRA_BITS; }; }; struct stack_record { struct stack_record *next; /* Link in the hash table */ u32 hash; /* Hash in the hash table */ u32 size; /* Number of stored frames */ union handle_parts handle; unsigned long entries[CONFIG_STACKDEPOT_MAX_FRAMES]; /* Frames */ }; #define DEPOT_STACK_RECORD_SIZE \ ALIGN(sizeof(struct stack_record), 1 << DEPOT_STACK_ALIGN) static bool stack_depot_disabled; static bool __stack_depot_early_init_requested __initdata = IS_ENABLED(CONFIG_STACKDEPOT_ALWAYS_INIT); static bool __stack_depot_early_init_passed __initdata; /* Use one hash table bucket per 16 KB of memory. */ #define STACK_HASH_TABLE_SCALE 14 /* Limit the number of buckets between 4K and 1M. */ #define STACK_BUCKET_NUMBER_ORDER_MIN 12 #define STACK_BUCKET_NUMBER_ORDER_MAX 20 /* Initial seed for jhash2. */ #define STACK_HASH_SEED 0x9747b28c /* Hash table of pointers to stored stack traces. */ static struct stack_record **stack_table; /* Fixed order of the number of table buckets. Used when KASAN is enabled. */ static unsigned int stack_bucket_number_order; /* Hash mask for indexing the table. */ static unsigned int stack_hash_mask; /* Array of memory regions that store stack traces. */ static void *stack_pools[DEPOT_MAX_POOLS]; /* Currently used pool in stack_pools. */ static int pool_index; /* Offset to the unused space in the currently used pool. */ static size_t pool_offset; /* Lock that protects the variables above. */ static DEFINE_RAW_SPINLOCK(pool_lock); /* * Stack depot tries to keep an extra pool allocated even before it runs out * of space in the currently used pool. This flag marks whether this extra pool * needs to be allocated. It has the value 0 when either an extra pool is not * yet allocated or if the limit on the number of pools is reached. */ static int new_pool_required = 1; static int __init disable_stack_depot(char *str) { return kstrtobool(str, &stack_depot_disabled); } early_param("stack_depot_disable", disable_stack_depot); void __init stack_depot_request_early_init(void) { /* Too late to request early init now. */ WARN_ON(__stack_depot_early_init_passed); __stack_depot_early_init_requested = true; } /* Allocates a hash table via memblock. Can only be used during early boot. */ int __init stack_depot_early_init(void) { unsigned long entries = 0; /* This function must be called only once, from mm_init(). */ if (WARN_ON(__stack_depot_early_init_passed)) return 0; __stack_depot_early_init_passed = true; /* * Print disabled message even if early init has not been requested: * stack_depot_init() will not print one. */ if (stack_depot_disabled) { pr_info("disabled\n"); return 0; } /* * If KASAN is enabled, use the maximum order: KASAN is frequently used * in fuzzing scenarios, which leads to a large number of different * stack traces being stored in stack depot. */ if (kasan_enabled() && !stack_bucket_number_order) stack_bucket_number_order = STACK_BUCKET_NUMBER_ORDER_MAX; /* * Check if early init has been requested after setting * stack_bucket_number_order: stack_depot_init() uses its value. */ if (!__stack_depot_early_init_requested) return 0; /* * If stack_bucket_number_order is not set, leave entries as 0 to rely * on the automatic calculations performed by alloc_large_system_hash. */ if (stack_bucket_number_order) entries = 1UL << stack_bucket_number_order; pr_info("allocating hash table via alloc_large_system_hash\n"); stack_table = alloc_large_system_hash("stackdepot", sizeof(struct stack_record *), entries, STACK_HASH_TABLE_SCALE, HASH_EARLY | HASH_ZERO, NULL, &stack_hash_mask, 1UL << STACK_BUCKET_NUMBER_ORDER_MIN, 1UL << STACK_BUCKET_NUMBER_ORDER_MAX); if (!stack_table) { pr_err("hash table allocation failed, disabling\n"); stack_depot_disabled = true; return -ENOMEM; } return 0; } /* Allocates a hash table via kvcalloc. Can be used after boot. */ int stack_depot_init(void) { static DEFINE_MUTEX(stack_depot_init_mutex); unsigned long entries; int ret = 0; mutex_lock(&stack_depot_init_mutex); if (stack_depot_disabled || stack_table) goto out_unlock; /* * Similarly to stack_depot_early_init, use stack_bucket_number_order * if assigned, and rely on automatic scaling otherwise. */ if (stack_bucket_number_order) { entries = 1UL << stack_bucket_number_order; } else { int scale = STACK_HASH_TABLE_SCALE; entries = nr_free_buffer_pages(); entries = roundup_pow_of_two(entries); if (scale > PAGE_SHIFT) entries >>= (scale - PAGE_SHIFT); else entries <<= (PAGE_SHIFT - scale); } if (entries < 1UL << STACK_BUCKET_NUMBER_ORDER_MIN) entries = 1UL << STACK_BUCKET_NUMBER_ORDER_MIN; if (entries > 1UL << STACK_BUCKET_NUMBER_ORDER_MAX) entries = 1UL << STACK_BUCKET_NUMBER_ORDER_MAX; pr_info("allocating hash table of %lu entries via kvcalloc\n", entries); stack_table = kvcalloc(entries, sizeof(struct stack_record *), GFP_KERNEL); if (!stack_table) { pr_err("hash table allocation failed, disabling\n"); stack_depot_disabled = true; ret = -ENOMEM; goto out_unlock; } stack_hash_mask = entries - 1; out_unlock: mutex_unlock(&stack_depot_init_mutex); return ret; } EXPORT_SYMBOL_GPL(stack_depot_init); /* Keeps the preallocated memory to be used for a new stack depot pool. */ static void depot_keep_new_pool(void **prealloc) { /* * If a new pool is already saved or the maximum number of * pools is reached, do not use the preallocated memory. * Access new_pool_required non-atomically, as there are no concurrent * write accesses to this variable. */ if (!new_pool_required) return; /* * Use the preallocated memory for the new pool * as long as we do not exceed the maximum number of pools. */ if (pool_index + 1 < DEPOT_MAX_POOLS) { stack_pools[pool_index + 1] = *prealloc; *prealloc = NULL; } /* * At this point, either a new pool is kept or the maximum * number of pools is reached. In either case, take note that * keeping another pool is not required. * smp_store_release() pairs with smp_load_acquire() in * stack_depot_save(). */ smp_store_release(&new_pool_required, 0); } /* Updates references to the current and the next stack depot pools. */ static bool depot_update_pools(size_t required_size, void **prealloc) { /* Check if there is not enough space in the current pool. */ if (unlikely(pool_offset + required_size > DEPOT_POOL_SIZE)) { /* Bail out if we reached the pool limit. */ if (unlikely(pool_index + 1 >= DEPOT_MAX_POOLS)) { WARN_ONCE(1, "Stack depot reached limit capacity"); return false; } /* * Move on to the new pool. * WRITE_ONCE() pairs with potential concurrent read in * stack_depot_fetch(). */ WRITE_ONCE(pool_index, pool_index + 1); pool_offset = 0; /* * If the maximum number of pools is not reached, take note * that yet another new pool needs to be allocated. * smp_store_release() pairs with smp_load_acquire() in * stack_depot_save(). */ if (pool_index + 1 < DEPOT_MAX_POOLS) smp_store_release(&new_pool_required, 1); } /* Check if the current pool is not yet allocated. */ if (*prealloc && stack_pools[pool_index] == NULL) { /* Use the preallocated memory for the current pool. */ stack_pools[pool_index] = *prealloc; *prealloc = NULL; return true; } /* Otherwise, try using the preallocated memory for a new pool. */ if (*prealloc) depot_keep_new_pool(prealloc); return true; } /* Allocates a new stack in a stack depot pool. */ static struct stack_record * depot_alloc_stack(unsigned long *entries, int size, u32 hash, void **prealloc) { struct stack_record *stack; size_t required_size = DEPOT_STACK_RECORD_SIZE; /* Update current and new pools if required and possible. */ if (!depot_update_pools(required_size, prealloc)) return NULL; /* Check if we have a pool to save the stack trace. */ if (stack_pools[pool_index] == NULL) return NULL; /* Limit number of saved frames to CONFIG_STACKDEPOT_MAX_FRAMES. */ if (size > CONFIG_STACKDEPOT_MAX_FRAMES) size = CONFIG_STACKDEPOT_MAX_FRAMES; /* Save the stack trace. */ stack = stack_pools[pool_index] + pool_offset; stack->hash = hash; stack->size = size; stack->handle.pool_index = pool_index; stack->handle.offset = pool_offset >> DEPOT_STACK_ALIGN; stack->handle.extra = 0; memcpy(stack->entries, entries, flex_array_size(stack, entries, size)); pool_offset += required_size; /* * Let KMSAN know the stored stack record is initialized. This shall * prevent false positive reports if instrumented code accesses it. */ kmsan_unpoison_memory(stack, required_size); return stack; } static struct stack_record *depot_fetch_stack(depot_stack_handle_t handle) { union handle_parts parts = { .handle = handle }; /* * READ_ONCE() pairs with potential concurrent write in * depot_update_pools(). */ int pool_index_cached = READ_ONCE(pool_index); void *pool; size_t offset = parts.offset << DEPOT_STACK_ALIGN; struct stack_record *stack; if (parts.pool_index > pool_index_cached) { WARN(1, "pool index %d out of bounds (%d) for stack id %08x\n", parts.pool_index, pool_index_cached, handle); return NULL; } pool = stack_pools[parts.pool_index]; if (!pool) return NULL; stack = pool + offset; return stack; } /* Calculates the hash for a stack. */ static inline u32 hash_stack(unsigned long *entries, unsigned int size) { return jhash2((u32 *)entries, array_size(size, sizeof(*entries)) / sizeof(u32), STACK_HASH_SEED); } /* * Non-instrumented version of memcmp(). * Does not check the lexicographical order, only the equality. */ static inline int stackdepot_memcmp(const unsigned long *u1, const unsigned long *u2, unsigned int n) { for ( ; n-- ; u1++, u2++) { if (*u1 != *u2) return 1; } return 0; } /* Finds a stack in a bucket of the hash table. */ static inline struct stack_record *find_stack(struct stack_record *bucket, unsigned long *entries, int size, u32 hash) { struct stack_record *found; for (found = bucket; found; found = found->next) { if (found->hash == hash && found->size == size && !stackdepot_memcmp(entries, found->entries, size)) return found; } return NULL; } depot_stack_handle_t __stack_depot_save(unsigned long *entries, unsigned int nr_entries, gfp_t alloc_flags, bool can_alloc) { struct stack_record *found = NULL, **bucket; depot_stack_handle_t handle = 0; struct page *page = NULL; void *prealloc = NULL; unsigned long flags; u32 hash; /* * If this stack trace is from an interrupt, including anything before * interrupt entry usually leads to unbounded stack depot growth. * * Since use of filter_irq_stacks() is a requirement to ensure stack * depot can efficiently deduplicate interrupt stacks, always * filter_irq_stacks() to simplify all callers' use of stack depot. */ nr_entries = filter_irq_stacks(entries, nr_entries); if (unlikely(nr_entries == 0) || stack_depot_disabled) return 0; hash = hash_stack(entries, nr_entries); bucket = &stack_table[hash & stack_hash_mask]; /* * Fast path: look the stack trace up without locking. * smp_load_acquire() pairs with smp_store_release() to |bucket| below. */ found = find_stack(smp_load_acquire(bucket), entries, nr_entries, hash); if (found) goto exit; /* * Check if another stack pool needs to be allocated. If so, allocate * the memory now: we won't be able to do that under the lock. * * smp_load_acquire() pairs with smp_store_release() in * depot_update_pools() and depot_keep_new_pool(). */ if (unlikely(can_alloc && smp_load_acquire(&new_pool_required))) { /* * Zero out zone modifiers, as we don't have specific zone * requirements. Keep the flags related to allocation in atomic * contexts and I/O. */ alloc_flags &= ~GFP_ZONEMASK; alloc_flags &= (GFP_ATOMIC | GFP_KERNEL); alloc_flags |= __GFP_NOWARN; page = alloc_pages(alloc_flags, DEPOT_POOL_ORDER); if (page) prealloc = page_address(page); } raw_spin_lock_irqsave(&pool_lock, flags); found = find_stack(*bucket, entries, nr_entries, hash); if (!found) { struct stack_record *new = depot_alloc_stack(entries, nr_entries, hash, &prealloc); if (new) { new->next = *bucket; /* * smp_store_release() pairs with smp_load_acquire() * from |bucket| above. */ smp_store_release(bucket, new); found = new; } } else if (prealloc) { /* * Stack depot already contains this stack trace, but let's * keep the preallocated memory for future. */ depot_keep_new_pool(&prealloc); } raw_spin_unlock_irqrestore(&pool_lock, flags); exit: if (prealloc) { /* Stack depot didn't use this memory, free it. */ free_pages((unsigned long)prealloc, DEPOT_POOL_ORDER); } if (found) handle = found->handle.handle; return handle; } EXPORT_SYMBOL_GPL(__stack_depot_save); depot_stack_handle_t stack_depot_save(unsigned long *entries, unsigned int nr_entries, gfp_t alloc_flags) { return __stack_depot_save(entries, nr_entries, alloc_flags, true); } EXPORT_SYMBOL_GPL(stack_depot_save); unsigned int stack_depot_fetch(depot_stack_handle_t handle, unsigned long **entries) { struct stack_record *stack; *entries = NULL; /* * Let KMSAN know *entries is initialized. This shall prevent false * positive reports if instrumented code accesses it. */ kmsan_unpoison_memory(entries, sizeof(*entries)); if (!handle || stack_depot_disabled) return 0; stack = depot_fetch_stack(handle); *entries = stack->entries; return stack->size; } EXPORT_SYMBOL_GPL(stack_depot_fetch); void stack_depot_print(depot_stack_handle_t stack) { unsigned long *entries; unsigned int nr_entries; nr_entries = stack_depot_fetch(stack, &entries); if (nr_entries > 0) stack_trace_print(entries, nr_entries, 0); } EXPORT_SYMBOL_GPL(stack_depot_print); int stack_depot_snprint(depot_stack_handle_t handle, char *buf, size_t size, int spaces) { unsigned long *entries; unsigned int nr_entries; nr_entries = stack_depot_fetch(handle, &entries); return nr_entries ? stack_trace_snprint(buf, size, entries, nr_entries, spaces) : 0; } EXPORT_SYMBOL_GPL(stack_depot_snprint); depot_stack_handle_t __must_check stack_depot_set_extra_bits( depot_stack_handle_t handle, unsigned int extra_bits) { union handle_parts parts = { .handle = handle }; /* Don't set extra bits on empty handles. */ if (!handle) return 0; parts.extra = extra_bits; return parts.handle; } EXPORT_SYMBOL(stack_depot_set_extra_bits); unsigned int stack_depot_get_extra_bits(depot_stack_handle_t handle) { union handle_parts parts = { .handle = handle }; return parts.extra; } EXPORT_SYMBOL(stack_depot_get_extra_bits);