/* SPDX-License-Identifier: Apache-2.0 OR BSD-2-Clause */ // // This file is dual-licensed, meaning that you can use it under your // choice of either of the following two licenses: // // Copyright 2023 The OpenSSL Project Authors. All Rights Reserved. // // Licensed under the Apache License 2.0 (the "License"). You can obtain // a copy in the file LICENSE in the source distribution or at // https://www.openssl.org/source/license.html // // or // // Copyright (c) 2023, Jerry Shih // Copyright 2024 Google LLC // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // 1. Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // 2. Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // The generated code of this file depends on the following RISC-V extensions: // - RV64I // - RISC-V Vector ('V') with VLEN >= 128 // - RISC-V Vector Cryptography Bit-manipulation extension ('Zvkb') #include .text .option arch, +zvkb #define KEYP a0 #define INP a1 #define OUTP a2 #define LEN a3 #define IVP a4 #define CONSTS0 a5 #define CONSTS1 a6 #define CONSTS2 a7 #define CONSTS3 t0 #define TMP t1 #define VL t2 #define STRIDE t3 #define NROUNDS t4 #define KEY0 s0 #define KEY1 s1 #define KEY2 s2 #define KEY3 s3 #define KEY4 s4 #define KEY5 s5 #define KEY6 s6 #define KEY7 s7 #define COUNTER s8 #define NONCE0 s9 #define NONCE1 s10 #define NONCE2 s11 .macro chacha_round a0, b0, c0, d0, a1, b1, c1, d1, \ a2, b2, c2, d2, a3, b3, c3, d3 // a += b; d ^= a; d = rol(d, 16); vadd.vv \a0, \a0, \b0 vadd.vv \a1, \a1, \b1 vadd.vv \a2, \a2, \b2 vadd.vv \a3, \a3, \b3 vxor.vv \d0, \d0, \a0 vxor.vv \d1, \d1, \a1 vxor.vv \d2, \d2, \a2 vxor.vv \d3, \d3, \a3 vror.vi \d0, \d0, 32 - 16 vror.vi \d1, \d1, 32 - 16 vror.vi \d2, \d2, 32 - 16 vror.vi \d3, \d3, 32 - 16 // c += d; b ^= c; b = rol(b, 12); vadd.vv \c0, \c0, \d0 vadd.vv \c1, \c1, \d1 vadd.vv \c2, \c2, \d2 vadd.vv \c3, \c3, \d3 vxor.vv \b0, \b0, \c0 vxor.vv \b1, \b1, \c1 vxor.vv \b2, \b2, \c2 vxor.vv \b3, \b3, \c3 vror.vi \b0, \b0, 32 - 12 vror.vi \b1, \b1, 32 - 12 vror.vi \b2, \b2, 32 - 12 vror.vi \b3, \b3, 32 - 12 // a += b; d ^= a; d = rol(d, 8); vadd.vv \a0, \a0, \b0 vadd.vv \a1, \a1, \b1 vadd.vv \a2, \a2, \b2 vadd.vv \a3, \a3, \b3 vxor.vv \d0, \d0, \a0 vxor.vv \d1, \d1, \a1 vxor.vv \d2, \d2, \a2 vxor.vv \d3, \d3, \a3 vror.vi \d0, \d0, 32 - 8 vror.vi \d1, \d1, 32 - 8 vror.vi \d2, \d2, 32 - 8 vror.vi \d3, \d3, 32 - 8 // c += d; b ^= c; b = rol(b, 7); vadd.vv \c0, \c0, \d0 vadd.vv \c1, \c1, \d1 vadd.vv \c2, \c2, \d2 vadd.vv \c3, \c3, \d3 vxor.vv \b0, \b0, \c0 vxor.vv \b1, \b1, \c1 vxor.vv \b2, \b2, \c2 vxor.vv \b3, \b3, \c3 vror.vi \b0, \b0, 32 - 7 vror.vi \b1, \b1, 32 - 7 vror.vi \b2, \b2, 32 - 7 vror.vi \b3, \b3, 32 - 7 .endm // void chacha20_zvkb(const u32 key[8], const u8 *in, u8 *out, size_t len, // const u32 iv[4]); // // |len| must be nonzero and a multiple of 64 (CHACHA_BLOCK_SIZE). // The counter is treated as 32-bit, following the RFC7539 convention. SYM_FUNC_START(chacha20_zvkb) srli LEN, LEN, 6 // Bytes to blocks addi sp, sp, -96 sd s0, 0(sp) sd s1, 8(sp) sd s2, 16(sp) sd s3, 24(sp) sd s4, 32(sp) sd s5, 40(sp) sd s6, 48(sp) sd s7, 56(sp) sd s8, 64(sp) sd s9, 72(sp) sd s10, 80(sp) sd s11, 88(sp) li STRIDE, 64 // Set up the initial state matrix in scalar registers. li CONSTS0, 0x61707865 // "expa" little endian li CONSTS1, 0x3320646e // "nd 3" little endian li CONSTS2, 0x79622d32 // "2-by" little endian li CONSTS3, 0x6b206574 // "te k" little endian lw KEY0, 0(KEYP) lw KEY1, 4(KEYP) lw KEY2, 8(KEYP) lw KEY3, 12(KEYP) lw KEY4, 16(KEYP) lw KEY5, 20(KEYP) lw KEY6, 24(KEYP) lw KEY7, 28(KEYP) lw COUNTER, 0(IVP) lw NONCE0, 4(IVP) lw NONCE1, 8(IVP) lw NONCE2, 12(IVP) .Lblock_loop: // Set vl to the number of blocks to process in this iteration. vsetvli VL, LEN, e32, m1, ta, ma // Set up the initial state matrix for the next VL blocks in v0-v15. // v{i} holds the i'th 32-bit word of the state matrix for all blocks. // Note that only the counter word, at index 12, differs across blocks. vmv.v.x v0, CONSTS0 vmv.v.x v1, CONSTS1 vmv.v.x v2, CONSTS2 vmv.v.x v3, CONSTS3 vmv.v.x v4, KEY0 vmv.v.x v5, KEY1 vmv.v.x v6, KEY2 vmv.v.x v7, KEY3 vmv.v.x v8, KEY4 vmv.v.x v9, KEY5 vmv.v.x v10, KEY6 vmv.v.x v11, KEY7 vid.v v12 vadd.vx v12, v12, COUNTER vmv.v.x v13, NONCE0 vmv.v.x v14, NONCE1 vmv.v.x v15, NONCE2 // Load the first half of the input data for each block into v16-v23. // v{16+i} holds the i'th 32-bit word for all blocks. vlsseg8e32.v v16, (INP), STRIDE li NROUNDS, 20 .Lnext_doubleround: addi NROUNDS, NROUNDS, -2 // column round chacha_round v0, v4, v8, v12, v1, v5, v9, v13, \ v2, v6, v10, v14, v3, v7, v11, v15 // diagonal round chacha_round v0, v5, v10, v15, v1, v6, v11, v12, \ v2, v7, v8, v13, v3, v4, v9, v14 bnez NROUNDS, .Lnext_doubleround // Load the second half of the input data for each block into v24-v31. // v{24+i} holds the {8+i}'th 32-bit word for all blocks. addi TMP, INP, 32 vlsseg8e32.v v24, (TMP), STRIDE // Finalize the first half of the keystream for each block. vadd.vx v0, v0, CONSTS0 vadd.vx v1, v1, CONSTS1 vadd.vx v2, v2, CONSTS2 vadd.vx v3, v3, CONSTS3 vadd.vx v4, v4, KEY0 vadd.vx v5, v5, KEY1 vadd.vx v6, v6, KEY2 vadd.vx v7, v7, KEY3 // Encrypt/decrypt the first half of the data for each block. vxor.vv v16, v16, v0 vxor.vv v17, v17, v1 vxor.vv v18, v18, v2 vxor.vv v19, v19, v3 vxor.vv v20, v20, v4 vxor.vv v21, v21, v5 vxor.vv v22, v22, v6 vxor.vv v23, v23, v7 // Store the first half of the output data for each block. vssseg8e32.v v16, (OUTP), STRIDE // Finalize the second half of the keystream for each block. vadd.vx v8, v8, KEY4 vadd.vx v9, v9, KEY5 vadd.vx v10, v10, KEY6 vadd.vx v11, v11, KEY7 vid.v v0 vadd.vx v12, v12, COUNTER vadd.vx v13, v13, NONCE0 vadd.vx v14, v14, NONCE1 vadd.vx v15, v15, NONCE2 vadd.vv v12, v12, v0 // Encrypt/decrypt the second half of the data for each block. vxor.vv v24, v24, v8 vxor.vv v25, v25, v9 vxor.vv v26, v26, v10 vxor.vv v27, v27, v11 vxor.vv v29, v29, v13 vxor.vv v28, v28, v12 vxor.vv v30, v30, v14 vxor.vv v31, v31, v15 // Store the second half of the output data for each block. addi TMP, OUTP, 32 vssseg8e32.v v24, (TMP), STRIDE // Update the counter, the remaining number of blocks, and the input and // output pointers according to the number of blocks processed (VL). add COUNTER, COUNTER, VL sub LEN, LEN, VL slli TMP, VL, 6 add OUTP, OUTP, TMP add INP, INP, TMP bnez LEN, .Lblock_loop ld s0, 0(sp) ld s1, 8(sp) ld s2, 16(sp) ld s3, 24(sp) ld s4, 32(sp) ld s5, 40(sp) ld s6, 48(sp) ld s7, 56(sp) ld s8, 64(sp) ld s9, 72(sp) ld s10, 80(sp) ld s11, 88(sp) addi sp, sp, 96 ret SYM_FUNC_END(chacha20_zvkb)