// SPDX-License-Identifier: GPL-2.0 /* * Checksum library * * Influenced by arch/arm64/lib/csum.c * Copyright (C) 2023 Rivos Inc. */ #include #include #include #include #include #include #include /* Default version is sufficient for 32 bit */ #ifndef CONFIG_32BIT __sum16 csum_ipv6_magic(const struct in6_addr *saddr, const struct in6_addr *daddr, __u32 len, __u8 proto, __wsum csum) { unsigned int ulen, uproto; unsigned long sum = (__force unsigned long)csum; sum += (__force unsigned long)saddr->s6_addr32[0]; sum += (__force unsigned long)saddr->s6_addr32[1]; sum += (__force unsigned long)saddr->s6_addr32[2]; sum += (__force unsigned long)saddr->s6_addr32[3]; sum += (__force unsigned long)daddr->s6_addr32[0]; sum += (__force unsigned long)daddr->s6_addr32[1]; sum += (__force unsigned long)daddr->s6_addr32[2]; sum += (__force unsigned long)daddr->s6_addr32[3]; ulen = (__force unsigned int)htonl((unsigned int)len); sum += ulen; uproto = (__force unsigned int)htonl(proto); sum += uproto; /* * Zbb support saves 4 instructions, so not worth checking without * alternatives if supported */ if (IS_ENABLED(CONFIG_RISCV_ISA_ZBB) && IS_ENABLED(CONFIG_RISCV_ALTERNATIVE)) { unsigned long fold_temp; /* * Zbb is likely available when the kernel is compiled with Zbb * support, so nop when Zbb is available and jump when Zbb is * not available. */ asm_volatile_goto(ALTERNATIVE("j %l[no_zbb]", "nop", 0, RISCV_ISA_EXT_ZBB, 1) : : : : no_zbb); asm(".option push \n\ .option arch,+zbb \n\ rori %[fold_temp], %[sum], 32 \n\ add %[sum], %[fold_temp], %[sum] \n\ srli %[sum], %[sum], 32 \n\ not %[fold_temp], %[sum] \n\ roriw %[sum], %[sum], 16 \n\ subw %[sum], %[fold_temp], %[sum] \n\ .option pop" : [sum] "+r" (sum), [fold_temp] "=&r" (fold_temp)); return (__force __sum16)(sum >> 16); } no_zbb: sum += ror64(sum, 32); sum >>= 32; return csum_fold((__force __wsum)sum); } EXPORT_SYMBOL(csum_ipv6_magic); #endif /* !CONFIG_32BIT */ #ifdef CONFIG_32BIT #define OFFSET_MASK 3 #elif CONFIG_64BIT #define OFFSET_MASK 7 #endif static inline __no_sanitize_address unsigned long do_csum_common(const unsigned long *ptr, const unsigned long *end, unsigned long data) { unsigned int shift; unsigned long csum = 0, carry = 0; /* * Do 32-bit reads on RV32 and 64-bit reads otherwise. This should be * faster than doing 32-bit reads on architectures that support larger * reads. */ while (ptr < end) { csum += data; carry += csum < data; data = *(ptr++); } /* * Perform alignment (and over-read) bytes on the tail if any bytes * leftover. */ shift = ((long)ptr - (long)end) * 8; #ifdef __LITTLE_ENDIAN data = (data << shift) >> shift; #else data = (data >> shift) << shift; #endif csum += data; carry += csum < data; csum += carry; csum += csum < carry; return csum; } /* * Algorithm accounts for buff being misaligned. * If buff is not aligned, will over-read bytes but not use the bytes that it * shouldn't. The same thing will occur on the tail-end of the read. */ static inline __no_sanitize_address unsigned int do_csum_with_alignment(const unsigned char *buff, int len) { unsigned int offset, shift; unsigned long csum, data; const unsigned long *ptr, *end; /* * Align address to closest word (double word on rv64) that comes before * buff. This should always be in the same page and cache line. * Directly call KASAN with the alignment we will be using. */ offset = (unsigned long)buff & OFFSET_MASK; kasan_check_read(buff, len); ptr = (const unsigned long *)(buff - offset); /* * Clear the most significant bytes that were over-read if buff was not * aligned. */ shift = offset * 8; data = *(ptr++); #ifdef __LITTLE_ENDIAN data = (data >> shift) << shift; #else data = (data << shift) >> shift; #endif end = (const unsigned long *)(buff + len); csum = do_csum_common(ptr, end, data); #ifdef CC_HAS_ASM_GOTO_TIED_OUTPUT /* * Zbb support saves 6 instructions, so not worth checking without * alternatives if supported */ if (IS_ENABLED(CONFIG_RISCV_ISA_ZBB) && IS_ENABLED(CONFIG_RISCV_ALTERNATIVE)) { unsigned long fold_temp; /* * Zbb is likely available when the kernel is compiled with Zbb * support, so nop when Zbb is available and jump when Zbb is * not available. */ asm_volatile_goto(ALTERNATIVE("j %l[no_zbb]", "nop", 0, RISCV_ISA_EXT_ZBB, 1) : : : : no_zbb); #ifdef CONFIG_32BIT asm_volatile_goto(".option push \n\ .option arch,+zbb \n\ rori %[fold_temp], %[csum], 16 \n\ andi %[offset], %[offset], 1 \n\ add %[csum], %[fold_temp], %[csum] \n\ beq %[offset], zero, %l[end] \n\ rev8 %[csum], %[csum] \n\ .option pop" : [csum] "+r" (csum), [fold_temp] "=&r" (fold_temp) : [offset] "r" (offset) : : end); return (unsigned short)csum; #else /* !CONFIG_32BIT */ asm_volatile_goto(".option push \n\ .option arch,+zbb \n\ rori %[fold_temp], %[csum], 32 \n\ add %[csum], %[fold_temp], %[csum] \n\ srli %[csum], %[csum], 32 \n\ roriw %[fold_temp], %[csum], 16 \n\ addw %[csum], %[fold_temp], %[csum] \n\ andi %[offset], %[offset], 1 \n\ beq %[offset], zero, %l[end] \n\ rev8 %[csum], %[csum] \n\ .option pop" : [csum] "+r" (csum), [fold_temp] "=&r" (fold_temp) : [offset] "r" (offset) : : end); return (csum << 16) >> 48; #endif /* !CONFIG_32BIT */ end: return csum >> 16; } no_zbb: #endif /* CC_HAS_ASM_GOTO_TIED_OUTPUT */ #ifndef CONFIG_32BIT csum += ror64(csum, 32); csum >>= 32; #endif csum = (u32)csum + ror32((u32)csum, 16); if (offset & 1) return (u16)swab32(csum); return csum >> 16; } /* * Does not perform alignment, should only be used if machine has fast * misaligned accesses, or when buff is known to be aligned. */ static inline __no_sanitize_address unsigned int do_csum_no_alignment(const unsigned char *buff, int len) { unsigned long csum, data; const unsigned long *ptr, *end; ptr = (const unsigned long *)(buff); data = *(ptr++); kasan_check_read(buff, len); end = (const unsigned long *)(buff + len); csum = do_csum_common(ptr, end, data); /* * Zbb support saves 6 instructions, so not worth checking without * alternatives if supported */ if (IS_ENABLED(CONFIG_RISCV_ISA_ZBB) && IS_ENABLED(CONFIG_RISCV_ALTERNATIVE)) { unsigned long fold_temp; /* * Zbb is likely available when the kernel is compiled with Zbb * support, so nop when Zbb is available and jump when Zbb is * not available. */ asm_volatile_goto(ALTERNATIVE("j %l[no_zbb]", "nop", 0, RISCV_ISA_EXT_ZBB, 1) : : : : no_zbb); #ifdef CONFIG_32BIT asm (".option push \n\ .option arch,+zbb \n\ rori %[fold_temp], %[csum], 16 \n\ add %[csum], %[fold_temp], %[csum] \n\ .option pop" : [csum] "+r" (csum), [fold_temp] "=&r" (fold_temp) : : ); #else /* !CONFIG_32BIT */ asm (".option push \n\ .option arch,+zbb \n\ rori %[fold_temp], %[csum], 32 \n\ add %[csum], %[fold_temp], %[csum] \n\ srli %[csum], %[csum], 32 \n\ roriw %[fold_temp], %[csum], 16 \n\ addw %[csum], %[fold_temp], %[csum] \n\ .option pop" : [csum] "+r" (csum), [fold_temp] "=&r" (fold_temp) : : ); #endif /* !CONFIG_32BIT */ return csum >> 16; } no_zbb: #ifndef CONFIG_32BIT csum += ror64(csum, 32); csum >>= 32; #endif csum = (u32)csum + ror32((u32)csum, 16); return csum >> 16; } /* * Perform a checksum on an arbitrary memory address. * Will do a light-weight address alignment if buff is misaligned, unless * cpu supports fast misaligned accesses. */ unsigned int do_csum(const unsigned char *buff, int len) { if (unlikely(len <= 0)) return 0; /* * Significant performance gains can be seen by not doing alignment * on machines with fast misaligned accesses. * * There is some duplicate code between the "with_alignment" and * "no_alignment" implmentations, but the overlap is too awkward to be * able to fit in one function without introducing multiple static * branches. The largest chunk of overlap was delegated into the * do_csum_common function. */ if (static_branch_likely(&fast_misaligned_access_speed_key)) return do_csum_no_alignment(buff, len); if (((unsigned long)buff & OFFSET_MASK) == 0) return do_csum_no_alignment(buff, len); return do_csum_with_alignment(buff, len); }