/* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (C) 2008 Oracle. All rights reserved. */ #ifndef BTRFS_DELAYED_REF_H #define BTRFS_DELAYED_REF_H #include #include #include #include #include #include #include #include struct btrfs_trans_handle; struct btrfs_fs_info; /* these are the possible values of struct btrfs_delayed_ref_node->action */ enum btrfs_delayed_ref_action { /* Add one backref to the tree */ BTRFS_ADD_DELAYED_REF = 1, /* Delete one backref from the tree */ BTRFS_DROP_DELAYED_REF, /* Record a full extent allocation */ BTRFS_ADD_DELAYED_EXTENT, /* Not changing ref count on head ref */ BTRFS_UPDATE_DELAYED_HEAD, } __packed; struct btrfs_delayed_tree_ref { u64 root; u64 parent; int level; }; struct btrfs_delayed_data_ref { u64 root; u64 parent; u64 objectid; u64 offset; }; struct btrfs_delayed_ref_node { struct rb_node ref_node; /* * If action is BTRFS_ADD_DELAYED_REF, also link this node to * ref_head->ref_add_list, then we do not need to iterate the * whole ref_head->ref_list to find BTRFS_ADD_DELAYED_REF nodes. */ struct list_head add_list; /* the starting bytenr of the extent */ u64 bytenr; /* the size of the extent */ u64 num_bytes; /* seq number to keep track of insertion order */ u64 seq; /* ref count on this data structure */ refcount_t refs; /* * how many refs is this entry adding or deleting. For * head refs, this may be a negative number because it is keeping * track of the total mods done to the reference count. * For individual refs, this will always be a positive number * * It may be more than one, since it is possible for a single * parent to have more than one ref on an extent */ int ref_mod; unsigned int action:8; unsigned int type:8; union { struct btrfs_delayed_tree_ref tree_ref; struct btrfs_delayed_data_ref data_ref; }; }; struct btrfs_delayed_extent_op { struct btrfs_disk_key key; u8 level; bool update_key; bool update_flags; u64 flags_to_set; }; /* * the head refs are used to hold a lock on a given extent, which allows us * to make sure that only one process is running the delayed refs * at a time for a single extent. They also store the sum of all the * reference count modifications we've queued up. */ struct btrfs_delayed_ref_head { u64 bytenr; u64 num_bytes; /* * For insertion into struct btrfs_delayed_ref_root::href_root. * Keep it in the same cache line as 'bytenr' for more efficient * searches in the rbtree. */ struct rb_node href_node; /* * the mutex is held while running the refs, and it is also * held when checking the sum of reference modifications. */ struct mutex mutex; refcount_t refs; /* Protects 'ref_tree' and 'ref_add_list'. */ spinlock_t lock; struct rb_root_cached ref_tree; /* accumulate add BTRFS_ADD_DELAYED_REF nodes to this ref_add_list. */ struct list_head ref_add_list; struct btrfs_delayed_extent_op *extent_op; /* * This is used to track the final ref_mod from all the refs associated * with this head ref, this is not adjusted as delayed refs are run, * this is meant to track if we need to do the csum accounting or not. */ int total_ref_mod; /* * This is the current outstanding mod references for this bytenr. This * is used with lookup_extent_info to get an accurate reference count * for a bytenr, so it is adjusted as delayed refs are run so that any * on disk reference count + ref_mod is accurate. */ int ref_mod; /* * The root that triggered the allocation when must_insert_reserved is * set to true. */ u64 owning_root; /* * Track reserved bytes when setting must_insert_reserved. On success * or cleanup, we will need to free the reservation. */ u64 reserved_bytes; /* * when a new extent is allocated, it is just reserved in memory * The actual extent isn't inserted into the extent allocation tree * until the delayed ref is processed. must_insert_reserved is * used to flag a delayed ref so the accounting can be updated * when a full insert is done. * * It is possible the extent will be freed before it is ever * inserted into the extent allocation tree. In this case * we need to update the in ram accounting to properly reflect * the free has happened. */ bool must_insert_reserved; bool is_data; bool is_system; bool processing; }; enum btrfs_delayed_ref_flags { /* Indicate that we are flushing delayed refs for the commit */ BTRFS_DELAYED_REFS_FLUSHING, }; struct btrfs_delayed_ref_root { /* head ref rbtree */ struct rb_root_cached href_root; /* dirty extent records */ struct rb_root dirty_extent_root; /* this spin lock protects the rbtree and the entries inside */ spinlock_t lock; /* how many delayed ref updates we've queued, used by the * throttling code */ atomic_t num_entries; /* total number of head nodes in tree */ unsigned long num_heads; /* total number of head nodes ready for processing */ unsigned long num_heads_ready; u64 pending_csums; unsigned long flags; u64 run_delayed_start; /* * To make qgroup to skip given root. * This is for snapshot, as btrfs_qgroup_inherit() will manually * modify counters for snapshot and its source, so we should skip * the snapshot in new_root/old_roots or it will get calculated twice */ u64 qgroup_to_skip; }; enum btrfs_ref_type { BTRFS_REF_NOT_SET, BTRFS_REF_DATA, BTRFS_REF_METADATA, BTRFS_REF_LAST, } __packed; struct btrfs_data_ref { /* For EXTENT_DATA_REF */ /* Inode which refers to this data extent */ u64 ino; /* * file_offset - extent_offset * * file_offset is the key.offset of the EXTENT_DATA key. * extent_offset is btrfs_file_extent_offset() of the EXTENT_DATA data. */ u64 offset; }; struct btrfs_tree_ref { /* * Level of this tree block * * Shared for skinny (TREE_BLOCK_REF) and normal tree ref. */ int level; /* For non-skinny metadata, no special member needed */ }; struct btrfs_ref { enum btrfs_ref_type type; enum btrfs_delayed_ref_action action; /* * Whether this extent should go through qgroup record. * * Normally false, but for certain cases like delayed subtree scan, * setting this flag can hugely reduce qgroup overhead. */ bool skip_qgroup; #ifdef CONFIG_BTRFS_FS_REF_VERIFY /* Through which root is this modification. */ u64 real_root; #endif u64 bytenr; u64 len; u64 owning_root; /* * The root that owns the reference for this reference, this will be set * or ->parent will be set, depending on what type of reference this is. */ u64 ref_root; /* Bytenr of the parent tree block */ u64 parent; union { struct btrfs_data_ref data_ref; struct btrfs_tree_ref tree_ref; }; }; extern struct kmem_cache *btrfs_delayed_ref_head_cachep; extern struct kmem_cache *btrfs_delayed_ref_node_cachep; extern struct kmem_cache *btrfs_delayed_extent_op_cachep; int __init btrfs_delayed_ref_init(void); void __cold btrfs_delayed_ref_exit(void); static inline u64 btrfs_calc_delayed_ref_bytes(const struct btrfs_fs_info *fs_info, int num_delayed_refs) { u64 num_bytes; num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_delayed_refs); /* * We have to check the mount option here because we could be enabling * the free space tree for the first time and don't have the compat_ro * option set yet. * * We need extra reservations if we have the free space tree because * we'll have to modify that tree as well. */ if (btrfs_test_opt(fs_info, FREE_SPACE_TREE)) num_bytes *= 2; return num_bytes; } static inline u64 btrfs_calc_delayed_ref_csum_bytes(const struct btrfs_fs_info *fs_info, int num_csum_items) { /* * Deleting csum items does not result in new nodes/leaves and does not * require changing the free space tree, only the csum tree, so this is * all we need. */ return btrfs_calc_metadata_size(fs_info, num_csum_items); } void btrfs_init_tree_ref(struct btrfs_ref *generic_ref, int level, u64 mod_root, bool skip_qgroup); void btrfs_init_data_ref(struct btrfs_ref *generic_ref, u64 ino, u64 offset, u64 mod_root, bool skip_qgroup); static inline struct btrfs_delayed_extent_op * btrfs_alloc_delayed_extent_op(void) { return kmem_cache_alloc(btrfs_delayed_extent_op_cachep, GFP_NOFS); } static inline void btrfs_free_delayed_extent_op(struct btrfs_delayed_extent_op *op) { if (op) kmem_cache_free(btrfs_delayed_extent_op_cachep, op); } void btrfs_put_delayed_ref(struct btrfs_delayed_ref_node *ref); static inline u64 btrfs_ref_head_to_space_flags( struct btrfs_delayed_ref_head *head_ref) { if (head_ref->is_data) return BTRFS_BLOCK_GROUP_DATA; else if (head_ref->is_system) return BTRFS_BLOCK_GROUP_SYSTEM; return BTRFS_BLOCK_GROUP_METADATA; } static inline void btrfs_put_delayed_ref_head(struct btrfs_delayed_ref_head *head) { if (refcount_dec_and_test(&head->refs)) kmem_cache_free(btrfs_delayed_ref_head_cachep, head); } int btrfs_add_delayed_tree_ref(struct btrfs_trans_handle *trans, struct btrfs_ref *generic_ref, struct btrfs_delayed_extent_op *extent_op); int btrfs_add_delayed_data_ref(struct btrfs_trans_handle *trans, struct btrfs_ref *generic_ref, u64 reserved); int btrfs_add_delayed_extent_op(struct btrfs_trans_handle *trans, u64 bytenr, u64 num_bytes, struct btrfs_delayed_extent_op *extent_op); void btrfs_merge_delayed_refs(struct btrfs_fs_info *fs_info, struct btrfs_delayed_ref_root *delayed_refs, struct btrfs_delayed_ref_head *head); struct btrfs_delayed_ref_head * btrfs_find_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, u64 bytenr); int btrfs_delayed_ref_lock(struct btrfs_delayed_ref_root *delayed_refs, struct btrfs_delayed_ref_head *head); static inline void btrfs_delayed_ref_unlock(struct btrfs_delayed_ref_head *head) { mutex_unlock(&head->mutex); } void btrfs_delete_ref_head(struct btrfs_delayed_ref_root *delayed_refs, struct btrfs_delayed_ref_head *head); struct btrfs_delayed_ref_head *btrfs_select_ref_head( struct btrfs_delayed_ref_root *delayed_refs); int btrfs_check_delayed_seq(struct btrfs_fs_info *fs_info, u64 seq); void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr_refs, int nr_csums); void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans); void btrfs_inc_delayed_refs_rsv_bg_inserts(struct btrfs_fs_info *fs_info); void btrfs_dec_delayed_refs_rsv_bg_inserts(struct btrfs_fs_info *fs_info); void btrfs_inc_delayed_refs_rsv_bg_updates(struct btrfs_fs_info *fs_info); void btrfs_dec_delayed_refs_rsv_bg_updates(struct btrfs_fs_info *fs_info); int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info, enum btrfs_reserve_flush_enum flush); void btrfs_migrate_to_delayed_refs_rsv(struct btrfs_fs_info *fs_info, u64 num_bytes); bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info); /* * helper functions to cast a node into its container */ static inline struct btrfs_delayed_tree_ref * btrfs_delayed_node_to_tree_ref(struct btrfs_delayed_ref_node *node) { return &node->tree_ref; } static inline struct btrfs_delayed_data_ref * btrfs_delayed_node_to_data_ref(struct btrfs_delayed_ref_node *node) { return &node->data_ref; } static inline struct btrfs_delayed_ref_node * btrfs_delayed_tree_ref_to_node(struct btrfs_delayed_tree_ref *ref) { return container_of(ref, struct btrfs_delayed_ref_node, tree_ref); } static inline struct btrfs_delayed_ref_node * btrfs_delayed_data_ref_to_node(struct btrfs_delayed_data_ref *ref) { return container_of(ref, struct btrfs_delayed_ref_node, data_ref); } static inline u8 btrfs_ref_type(struct btrfs_ref *ref) { ASSERT(ref->type == BTRFS_REF_DATA || ref->type == BTRFS_REF_METADATA); if (ref->type == BTRFS_REF_DATA) { if (ref->parent) return BTRFS_SHARED_DATA_REF_KEY; else return BTRFS_EXTENT_DATA_REF_KEY; } else { if (ref->parent) return BTRFS_SHARED_BLOCK_REF_KEY; else return BTRFS_TREE_BLOCK_REF_KEY; } return 0; } #endif