linux-stable/include/linux/gfp.h
Vlastimil Babka 803de9000f mm, vmscan: prevent infinite loop for costly GFP_NOIO | __GFP_RETRY_MAYFAIL allocations
Sven reports an infinite loop in __alloc_pages_slowpath() for costly order
__GFP_RETRY_MAYFAIL allocations that are also GFP_NOIO.  Such combination
can happen in a suspend/resume context where a GFP_KERNEL allocation can
have __GFP_IO masked out via gfp_allowed_mask.

Quoting Sven:

1. try to do a "costly" allocation (order > PAGE_ALLOC_COSTLY_ORDER)
   with __GFP_RETRY_MAYFAIL set.

2. page alloc's __alloc_pages_slowpath tries to get a page from the
   freelist. This fails because there is nothing free of that costly
   order.

3. page alloc tries to reclaim by calling __alloc_pages_direct_reclaim,
   which bails out because a zone is ready to be compacted; it pretends
   to have made a single page of progress.

4. page alloc tries to compact, but this always bails out early because
   __GFP_IO is not set (it's not passed by the snd allocator, and even
   if it were, we are suspending so the __GFP_IO flag would be cleared
   anyway).

5. page alloc believes reclaim progress was made (because of the
   pretense in item 3) and so it checks whether it should retry
   compaction. The compaction retry logic thinks it should try again,
   because:
    a) reclaim is needed because of the early bail-out in item 4
    b) a zonelist is suitable for compaction

6. goto 2. indefinite stall.

(end quote)

The immediate root cause is confusing the COMPACT_SKIPPED returned from
__alloc_pages_direct_compact() (step 4) due to lack of __GFP_IO to be
indicating a lack of order-0 pages, and in step 5 evaluating that in
should_compact_retry() as a reason to retry, before incrementing and
limiting the number of retries.  There are however other places that
wrongly assume that compaction can happen while we lack __GFP_IO.

To fix this, introduce gfp_compaction_allowed() to abstract the __GFP_IO
evaluation and switch the open-coded test in try_to_compact_pages() to use
it.

Also use the new helper in:
- compaction_ready(), which will make reclaim not bail out in step 3, so
  there's at least one attempt to actually reclaim, even if chances are
  small for a costly order
- in_reclaim_compaction() which will make should_continue_reclaim()
  return false and we don't over-reclaim unnecessarily
- in __alloc_pages_slowpath() to set a local variable can_compact,
  which is then used to avoid retrying reclaim/compaction for costly
  allocations (step 5) if we can't compact and also to skip the early
  compaction attempt that we do in some cases

Link: https://lkml.kernel.org/r/20240221114357.13655-2-vbabka@suse.cz
Fixes: 3250845d05 ("Revert "mm, oom: prevent premature OOM killer invocation for high order request"")
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: Sven van Ashbrook <svenva@chromium.org>
Closes: https://lore.kernel.org/all/CAG-rBihs_xMKb3wrMO1%2B-%2Bp4fowP9oy1pa_OTkfxBzPUVOZF%2Bg@mail.gmail.com/
Tested-by: Karthikeyan Ramasubramanian <kramasub@chromium.org>
Cc: Brian Geffon <bgeffon@google.com>
Cc: Curtis Malainey <cujomalainey@chromium.org>
Cc: Jaroslav Kysela <perex@perex.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Takashi Iwai <tiwai@suse.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-03-04 16:40:32 -08:00

376 lines
12 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef __LINUX_GFP_H
#define __LINUX_GFP_H
#include <linux/gfp_types.h>
#include <linux/mmzone.h>
#include <linux/topology.h>
struct vm_area_struct;
struct mempolicy;
/* Convert GFP flags to their corresponding migrate type */
#define GFP_MOVABLE_MASK (__GFP_RECLAIMABLE|__GFP_MOVABLE)
#define GFP_MOVABLE_SHIFT 3
static inline int gfp_migratetype(const gfp_t gfp_flags)
{
VM_WARN_ON((gfp_flags & GFP_MOVABLE_MASK) == GFP_MOVABLE_MASK);
BUILD_BUG_ON((1UL << GFP_MOVABLE_SHIFT) != ___GFP_MOVABLE);
BUILD_BUG_ON((___GFP_MOVABLE >> GFP_MOVABLE_SHIFT) != MIGRATE_MOVABLE);
BUILD_BUG_ON((___GFP_RECLAIMABLE >> GFP_MOVABLE_SHIFT) != MIGRATE_RECLAIMABLE);
BUILD_BUG_ON(((___GFP_MOVABLE | ___GFP_RECLAIMABLE) >>
GFP_MOVABLE_SHIFT) != MIGRATE_HIGHATOMIC);
if (unlikely(page_group_by_mobility_disabled))
return MIGRATE_UNMOVABLE;
/* Group based on mobility */
return (__force unsigned long)(gfp_flags & GFP_MOVABLE_MASK) >> GFP_MOVABLE_SHIFT;
}
#undef GFP_MOVABLE_MASK
#undef GFP_MOVABLE_SHIFT
static inline bool gfpflags_allow_blocking(const gfp_t gfp_flags)
{
return !!(gfp_flags & __GFP_DIRECT_RECLAIM);
}
#ifdef CONFIG_HIGHMEM
#define OPT_ZONE_HIGHMEM ZONE_HIGHMEM
#else
#define OPT_ZONE_HIGHMEM ZONE_NORMAL
#endif
#ifdef CONFIG_ZONE_DMA
#define OPT_ZONE_DMA ZONE_DMA
#else
#define OPT_ZONE_DMA ZONE_NORMAL
#endif
#ifdef CONFIG_ZONE_DMA32
#define OPT_ZONE_DMA32 ZONE_DMA32
#else
#define OPT_ZONE_DMA32 ZONE_NORMAL
#endif
/*
* GFP_ZONE_TABLE is a word size bitstring that is used for looking up the
* zone to use given the lowest 4 bits of gfp_t. Entries are GFP_ZONES_SHIFT
* bits long and there are 16 of them to cover all possible combinations of
* __GFP_DMA, __GFP_DMA32, __GFP_MOVABLE and __GFP_HIGHMEM.
*
* The zone fallback order is MOVABLE=>HIGHMEM=>NORMAL=>DMA32=>DMA.
* But GFP_MOVABLE is not only a zone specifier but also an allocation
* policy. Therefore __GFP_MOVABLE plus another zone selector is valid.
* Only 1 bit of the lowest 3 bits (DMA,DMA32,HIGHMEM) can be set to "1".
*
* bit result
* =================
* 0x0 => NORMAL
* 0x1 => DMA or NORMAL
* 0x2 => HIGHMEM or NORMAL
* 0x3 => BAD (DMA+HIGHMEM)
* 0x4 => DMA32 or NORMAL
* 0x5 => BAD (DMA+DMA32)
* 0x6 => BAD (HIGHMEM+DMA32)
* 0x7 => BAD (HIGHMEM+DMA32+DMA)
* 0x8 => NORMAL (MOVABLE+0)
* 0x9 => DMA or NORMAL (MOVABLE+DMA)
* 0xa => MOVABLE (Movable is valid only if HIGHMEM is set too)
* 0xb => BAD (MOVABLE+HIGHMEM+DMA)
* 0xc => DMA32 or NORMAL (MOVABLE+DMA32)
* 0xd => BAD (MOVABLE+DMA32+DMA)
* 0xe => BAD (MOVABLE+DMA32+HIGHMEM)
* 0xf => BAD (MOVABLE+DMA32+HIGHMEM+DMA)
*
* GFP_ZONES_SHIFT must be <= 2 on 32 bit platforms.
*/
#if defined(CONFIG_ZONE_DEVICE) && (MAX_NR_ZONES-1) <= 4
/* ZONE_DEVICE is not a valid GFP zone specifier */
#define GFP_ZONES_SHIFT 2
#else
#define GFP_ZONES_SHIFT ZONES_SHIFT
#endif
#if 16 * GFP_ZONES_SHIFT > BITS_PER_LONG
#error GFP_ZONES_SHIFT too large to create GFP_ZONE_TABLE integer
#endif
#define GFP_ZONE_TABLE ( \
(ZONE_NORMAL << 0 * GFP_ZONES_SHIFT) \
| (OPT_ZONE_DMA << ___GFP_DMA * GFP_ZONES_SHIFT) \
| (OPT_ZONE_HIGHMEM << ___GFP_HIGHMEM * GFP_ZONES_SHIFT) \
| (OPT_ZONE_DMA32 << ___GFP_DMA32 * GFP_ZONES_SHIFT) \
| (ZONE_NORMAL << ___GFP_MOVABLE * GFP_ZONES_SHIFT) \
| (OPT_ZONE_DMA << (___GFP_MOVABLE | ___GFP_DMA) * GFP_ZONES_SHIFT) \
| (ZONE_MOVABLE << (___GFP_MOVABLE | ___GFP_HIGHMEM) * GFP_ZONES_SHIFT)\
| (OPT_ZONE_DMA32 << (___GFP_MOVABLE | ___GFP_DMA32) * GFP_ZONES_SHIFT)\
)
/*
* GFP_ZONE_BAD is a bitmap for all combinations of __GFP_DMA, __GFP_DMA32
* __GFP_HIGHMEM and __GFP_MOVABLE that are not permitted. One flag per
* entry starting with bit 0. Bit is set if the combination is not
* allowed.
*/
#define GFP_ZONE_BAD ( \
1 << (___GFP_DMA | ___GFP_HIGHMEM) \
| 1 << (___GFP_DMA | ___GFP_DMA32) \
| 1 << (___GFP_DMA32 | ___GFP_HIGHMEM) \
| 1 << (___GFP_DMA | ___GFP_DMA32 | ___GFP_HIGHMEM) \
| 1 << (___GFP_MOVABLE | ___GFP_HIGHMEM | ___GFP_DMA) \
| 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_DMA) \
| 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_HIGHMEM) \
| 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_DMA | ___GFP_HIGHMEM) \
)
static inline enum zone_type gfp_zone(gfp_t flags)
{
enum zone_type z;
int bit = (__force int) (flags & GFP_ZONEMASK);
z = (GFP_ZONE_TABLE >> (bit * GFP_ZONES_SHIFT)) &
((1 << GFP_ZONES_SHIFT) - 1);
VM_BUG_ON((GFP_ZONE_BAD >> bit) & 1);
return z;
}
/*
* There is only one page-allocator function, and two main namespaces to
* it. The alloc_page*() variants return 'struct page *' and as such
* can allocate highmem pages, the *get*page*() variants return
* virtual kernel addresses to the allocated page(s).
*/
static inline int gfp_zonelist(gfp_t flags)
{
#ifdef CONFIG_NUMA
if (unlikely(flags & __GFP_THISNODE))
return ZONELIST_NOFALLBACK;
#endif
return ZONELIST_FALLBACK;
}
/*
* We get the zone list from the current node and the gfp_mask.
* This zone list contains a maximum of MAX_NUMNODES*MAX_NR_ZONES zones.
* There are two zonelists per node, one for all zones with memory and
* one containing just zones from the node the zonelist belongs to.
*
* For the case of non-NUMA systems the NODE_DATA() gets optimized to
* &contig_page_data at compile-time.
*/
static inline struct zonelist *node_zonelist(int nid, gfp_t flags)
{
return NODE_DATA(nid)->node_zonelists + gfp_zonelist(flags);
}
#ifndef HAVE_ARCH_FREE_PAGE
static inline void arch_free_page(struct page *page, int order) { }
#endif
#ifndef HAVE_ARCH_ALLOC_PAGE
static inline void arch_alloc_page(struct page *page, int order) { }
#endif
struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
nodemask_t *nodemask);
struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
nodemask_t *nodemask);
unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
nodemask_t *nodemask, int nr_pages,
struct list_head *page_list,
struct page **page_array);
unsigned long alloc_pages_bulk_array_mempolicy(gfp_t gfp,
unsigned long nr_pages,
struct page **page_array);
/* Bulk allocate order-0 pages */
static inline unsigned long
alloc_pages_bulk_list(gfp_t gfp, unsigned long nr_pages, struct list_head *list)
{
return __alloc_pages_bulk(gfp, numa_mem_id(), NULL, nr_pages, list, NULL);
}
static inline unsigned long
alloc_pages_bulk_array(gfp_t gfp, unsigned long nr_pages, struct page **page_array)
{
return __alloc_pages_bulk(gfp, numa_mem_id(), NULL, nr_pages, NULL, page_array);
}
static inline unsigned long
alloc_pages_bulk_array_node(gfp_t gfp, int nid, unsigned long nr_pages, struct page **page_array)
{
if (nid == NUMA_NO_NODE)
nid = numa_mem_id();
return __alloc_pages_bulk(gfp, nid, NULL, nr_pages, NULL, page_array);
}
static inline void warn_if_node_offline(int this_node, gfp_t gfp_mask)
{
gfp_t warn_gfp = gfp_mask & (__GFP_THISNODE|__GFP_NOWARN);
if (warn_gfp != (__GFP_THISNODE|__GFP_NOWARN))
return;
if (node_online(this_node))
return;
pr_warn("%pGg allocation from offline node %d\n", &gfp_mask, this_node);
dump_stack();
}
/*
* Allocate pages, preferring the node given as nid. The node must be valid and
* online. For more general interface, see alloc_pages_node().
*/
static inline struct page *
__alloc_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
{
VM_BUG_ON(nid < 0 || nid >= MAX_NUMNODES);
warn_if_node_offline(nid, gfp_mask);
return __alloc_pages(gfp_mask, order, nid, NULL);
}
static inline
struct folio *__folio_alloc_node(gfp_t gfp, unsigned int order, int nid)
{
VM_BUG_ON(nid < 0 || nid >= MAX_NUMNODES);
warn_if_node_offline(nid, gfp);
return __folio_alloc(gfp, order, nid, NULL);
}
/*
* Allocate pages, preferring the node given as nid. When nid == NUMA_NO_NODE,
* prefer the current CPU's closest node. Otherwise node must be valid and
* online.
*/
static inline struct page *alloc_pages_node(int nid, gfp_t gfp_mask,
unsigned int order)
{
if (nid == NUMA_NO_NODE)
nid = numa_mem_id();
return __alloc_pages_node(nid, gfp_mask, order);
}
#ifdef CONFIG_NUMA
struct page *alloc_pages(gfp_t gfp, unsigned int order);
struct page *alloc_pages_mpol(gfp_t gfp, unsigned int order,
struct mempolicy *mpol, pgoff_t ilx, int nid);
struct folio *folio_alloc(gfp_t gfp, unsigned int order);
struct folio *vma_alloc_folio(gfp_t gfp, int order, struct vm_area_struct *vma,
unsigned long addr, bool hugepage);
#else
static inline struct page *alloc_pages(gfp_t gfp_mask, unsigned int order)
{
return alloc_pages_node(numa_node_id(), gfp_mask, order);
}
static inline struct page *alloc_pages_mpol(gfp_t gfp, unsigned int order,
struct mempolicy *mpol, pgoff_t ilx, int nid)
{
return alloc_pages(gfp, order);
}
static inline struct folio *folio_alloc(gfp_t gfp, unsigned int order)
{
return __folio_alloc_node(gfp, order, numa_node_id());
}
#define vma_alloc_folio(gfp, order, vma, addr, hugepage) \
folio_alloc(gfp, order)
#endif
#define alloc_page(gfp_mask) alloc_pages(gfp_mask, 0)
static inline struct page *alloc_page_vma(gfp_t gfp,
struct vm_area_struct *vma, unsigned long addr)
{
struct folio *folio = vma_alloc_folio(gfp, 0, vma, addr, false);
return &folio->page;
}
extern unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order);
extern unsigned long get_zeroed_page(gfp_t gfp_mask);
void *alloc_pages_exact(size_t size, gfp_t gfp_mask) __alloc_size(1);
void free_pages_exact(void *virt, size_t size);
__meminit void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) __alloc_size(2);
#define __get_free_page(gfp_mask) \
__get_free_pages((gfp_mask), 0)
#define __get_dma_pages(gfp_mask, order) \
__get_free_pages((gfp_mask) | GFP_DMA, (order))
extern void __free_pages(struct page *page, unsigned int order);
extern void free_pages(unsigned long addr, unsigned int order);
struct page_frag_cache;
extern void __page_frag_cache_drain(struct page *page, unsigned int count);
extern void *page_frag_alloc_align(struct page_frag_cache *nc,
unsigned int fragsz, gfp_t gfp_mask,
unsigned int align_mask);
static inline void *page_frag_alloc(struct page_frag_cache *nc,
unsigned int fragsz, gfp_t gfp_mask)
{
return page_frag_alloc_align(nc, fragsz, gfp_mask, ~0u);
}
extern void page_frag_free(void *addr);
#define __free_page(page) __free_pages((page), 0)
#define free_page(addr) free_pages((addr), 0)
void page_alloc_init_cpuhp(void);
int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp);
void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp);
void drain_all_pages(struct zone *zone);
void drain_local_pages(struct zone *zone);
void page_alloc_init_late(void);
void setup_pcp_cacheinfo(void);
/*
* gfp_allowed_mask is set to GFP_BOOT_MASK during early boot to restrict what
* GFP flags are used before interrupts are enabled. Once interrupts are
* enabled, it is set to __GFP_BITS_MASK while the system is running. During
* hibernation, it is used by PM to avoid I/O during memory allocation while
* devices are suspended.
*/
extern gfp_t gfp_allowed_mask;
/* Returns true if the gfp_mask allows use of ALLOC_NO_WATERMARK */
bool gfp_pfmemalloc_allowed(gfp_t gfp_mask);
static inline bool gfp_has_io_fs(gfp_t gfp)
{
return (gfp & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS);
}
/*
* Check if the gfp flags allow compaction - GFP_NOIO is a really
* tricky context because the migration might require IO.
*/
static inline bool gfp_compaction_allowed(gfp_t gfp_mask)
{
return IS_ENABLED(CONFIG_COMPACTION) && (gfp_mask & __GFP_IO);
}
extern gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma);
#ifdef CONFIG_CONTIG_ALLOC
/* The below functions must be run on a range from a single zone. */
extern int alloc_contig_range(unsigned long start, unsigned long end,
unsigned migratetype, gfp_t gfp_mask);
extern struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
int nid, nodemask_t *nodemask);
#endif
void free_contig_range(unsigned long pfn, unsigned long nr_pages);
#endif /* __LINUX_GFP_H */