linux-stable/include/linux/lockdep_types.h
Linus Torvalds 78273df7f6 header cleanups for 6.8
The goal is to get sched.h down to a type only header, so the main thing
 happening in this patchset is splitting out various _types.h headers and
 dependency fixups, as well as moving some things out of sched.h to
 better locations.
 
 This is prep work for the memory allocation profiling patchset which
 adds new sched.h interdepencencies.
 
 Testing - it's been in -next, and fixes from pretty much all
 architectures have percolated in - nothing major.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEKnAFLkS8Qha+jvQrE6szbY3KbnYFAmWfBwwACgkQE6szbY3K
 bnZPwBAAmuRojXaeWxi01IPIOehSGDe68vw44PR9glEMZvxdnZuPOdvE4/+245/L
 bRKU2WBCjBUokUbV9msIShwRkFTZAmEMPNfPAAsFMA+VXeDYHKB+ZRdwTggNAQ+I
 SG6fZgh5m0HsewCDxU8oqVHkjVq4fXn0cy+aL6xLEd9gu67GoBzX2pDieS2Kvy6j
 jnyoKTxFwb+LTQgph0P4EIpq5I2umAsdLwdSR8EJ+8e9NiNvMo1pI00Lx/ntAnFZ
 JftWUJcMy3TQ5u1GkyfQN9y/yThX1bZK5GvmHS9SJ2Dkacaus5d+xaKCHtRuFS1I
 7C6b8PsNgRczUMumBXus44HdlNfNs1yU3lvVxFvBIPE1qC9pYRHrkWIXXIocXLLC
 oxTEJ6B2G3BQZVQgLIA4fOaxMVhmvKffi/aEZLi9vN9VVosd1a6XNKI6KbyRnXFp
 GSs9qDqszhn5I3GYNlDNQTc/8UsRlhPFgS6nS0By6QnvxtGi9QkU2tBRBsXvqwCy
 cLoCYIhc2tvugHvld70dz26umiJ4rnmxGlobStNoigDvIKAIUt1UmIdr1so8P8eH
 xehnL9ZcOX6xnANDL0AqMFFHV6I58CJynhFdUoXfVQf/DWLGX48mpi9LVNsYBzsI
 CAwVOAQ0UjGrpdWmJ9ueY/ABYqg9vRjzaDEXQ+MhAYO55CLaVsg=
 =3tyT
 -----END PGP SIGNATURE-----

Merge tag 'header_cleanup-2024-01-10' of https://evilpiepirate.org/git/bcachefs

Pull header cleanups from Kent Overstreet:
 "The goal is to get sched.h down to a type only header, so the main
  thing happening in this patchset is splitting out various _types.h
  headers and dependency fixups, as well as moving some things out of
  sched.h to better locations.

  This is prep work for the memory allocation profiling patchset which
  adds new sched.h interdepencencies"

* tag 'header_cleanup-2024-01-10' of https://evilpiepirate.org/git/bcachefs: (51 commits)
  Kill sched.h dependency on rcupdate.h
  kill unnecessary thread_info.h include
  Kill unnecessary kernel.h include
  preempt.h: Kill dependency on list.h
  rseq: Split out rseq.h from sched.h
  LoongArch: signal.c: add header file to fix build error
  restart_block: Trim includes
  lockdep: move held_lock to lockdep_types.h
  sem: Split out sem_types.h
  uidgid: Split out uidgid_types.h
  seccomp: Split out seccomp_types.h
  refcount: Split out refcount_types.h
  uapi/linux/resource.h: fix include
  x86/signal: kill dependency on time.h
  syscall_user_dispatch.h: split out *_types.h
  mm_types_task.h: Trim dependencies
  Split out irqflags_types.h
  ipc: Kill bogus dependency on spinlock.h
  shm: Slim down dependencies
  workqueue: Split out workqueue_types.h
  ...
2024-01-10 16:43:55 -08:00

274 lines
7.6 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
/*
* Runtime locking correctness validator
*
* Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
* Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
*
* see Documentation/locking/lockdep-design.rst for more details.
*/
#ifndef __LINUX_LOCKDEP_TYPES_H
#define __LINUX_LOCKDEP_TYPES_H
#include <linux/types.h>
#define MAX_LOCKDEP_SUBCLASSES 8UL
enum lockdep_wait_type {
LD_WAIT_INV = 0, /* not checked, catch all */
LD_WAIT_FREE, /* wait free, rcu etc.. */
LD_WAIT_SPIN, /* spin loops, raw_spinlock_t etc.. */
#ifdef CONFIG_PROVE_RAW_LOCK_NESTING
LD_WAIT_CONFIG, /* preemptible in PREEMPT_RT, spinlock_t etc.. */
#else
LD_WAIT_CONFIG = LD_WAIT_SPIN,
#endif
LD_WAIT_SLEEP, /* sleeping locks, mutex_t etc.. */
LD_WAIT_MAX, /* must be last */
};
enum lockdep_lock_type {
LD_LOCK_NORMAL = 0, /* normal, catch all */
LD_LOCK_PERCPU, /* percpu */
LD_LOCK_WAIT_OVERRIDE, /* annotation */
LD_LOCK_MAX,
};
#ifdef CONFIG_LOCKDEP
/*
* We'd rather not expose kernel/lockdep_states.h this wide, but we do need
* the total number of states... :-(
*
* XXX_LOCK_USAGE_STATES is the number of lines in lockdep_states.h, for each
* of those we generates 4 states, Additionally we report on USED and USED_READ.
*/
#define XXX_LOCK_USAGE_STATES 2
#define LOCK_TRACE_STATES (XXX_LOCK_USAGE_STATES*4 + 2)
/*
* NR_LOCKDEP_CACHING_CLASSES ... Number of classes
* cached in the instance of lockdep_map
*
* Currently main class (subclass == 0) and single depth subclass
* are cached in lockdep_map. This optimization is mainly targeting
* on rq->lock. double_rq_lock() acquires this highly competitive with
* single depth.
*/
#define NR_LOCKDEP_CACHING_CLASSES 2
/*
* A lockdep key is associated with each lock object. For static locks we use
* the lock address itself as the key. Dynamically allocated lock objects can
* have a statically or dynamically allocated key. Dynamically allocated lock
* keys must be registered before being used and must be unregistered before
* the key memory is freed.
*/
struct lockdep_subclass_key {
char __one_byte;
} __attribute__ ((__packed__));
/* hash_entry is used to keep track of dynamically allocated keys. */
struct lock_class_key {
union {
struct hlist_node hash_entry;
struct lockdep_subclass_key subkeys[MAX_LOCKDEP_SUBCLASSES];
};
};
extern struct lock_class_key __lockdep_no_validate__;
struct lock_trace;
#define LOCKSTAT_POINTS 4
struct lockdep_map;
typedef int (*lock_cmp_fn)(const struct lockdep_map *a,
const struct lockdep_map *b);
typedef void (*lock_print_fn)(const struct lockdep_map *map);
/*
* The lock-class itself. The order of the structure members matters.
* reinit_class() zeroes the key member and all subsequent members.
*/
struct lock_class {
/*
* class-hash:
*/
struct hlist_node hash_entry;
/*
* Entry in all_lock_classes when in use. Entry in free_lock_classes
* when not in use. Instances that are being freed are on one of the
* zapped_classes lists.
*/
struct list_head lock_entry;
/*
* These fields represent a directed graph of lock dependencies,
* to every node we attach a list of "forward" and a list of
* "backward" graph nodes.
*/
struct list_head locks_after, locks_before;
const struct lockdep_subclass_key *key;
lock_cmp_fn cmp_fn;
lock_print_fn print_fn;
unsigned int subclass;
unsigned int dep_gen_id;
/*
* IRQ/softirq usage tracking bits:
*/
unsigned long usage_mask;
const struct lock_trace *usage_traces[LOCK_TRACE_STATES];
const char *name;
/*
* Generation counter, when doing certain classes of graph walking,
* to ensure that we check one node only once:
*/
int name_version;
u8 wait_type_inner;
u8 wait_type_outer;
u8 lock_type;
/* u8 hole; */
#ifdef CONFIG_LOCK_STAT
unsigned long contention_point[LOCKSTAT_POINTS];
unsigned long contending_point[LOCKSTAT_POINTS];
#endif
} __no_randomize_layout;
#ifdef CONFIG_LOCK_STAT
struct lock_time {
s64 min;
s64 max;
s64 total;
unsigned long nr;
};
enum bounce_type {
bounce_acquired_write,
bounce_acquired_read,
bounce_contended_write,
bounce_contended_read,
nr_bounce_types,
bounce_acquired = bounce_acquired_write,
bounce_contended = bounce_contended_write,
};
struct lock_class_stats {
unsigned long contention_point[LOCKSTAT_POINTS];
unsigned long contending_point[LOCKSTAT_POINTS];
struct lock_time read_waittime;
struct lock_time write_waittime;
struct lock_time read_holdtime;
struct lock_time write_holdtime;
unsigned long bounces[nr_bounce_types];
};
struct lock_class_stats lock_stats(struct lock_class *class);
void clear_lock_stats(struct lock_class *class);
#endif
/*
* Map the lock object (the lock instance) to the lock-class object.
* This is embedded into specific lock instances:
*/
struct lockdep_map {
struct lock_class_key *key;
struct lock_class *class_cache[NR_LOCKDEP_CACHING_CLASSES];
const char *name;
u8 wait_type_outer; /* can be taken in this context */
u8 wait_type_inner; /* presents this context */
u8 lock_type;
/* u8 hole; */
#ifdef CONFIG_LOCK_STAT
int cpu;
unsigned long ip;
#endif
};
struct pin_cookie { unsigned int val; };
#define MAX_LOCKDEP_KEYS_BITS 13
#define MAX_LOCKDEP_KEYS (1UL << MAX_LOCKDEP_KEYS_BITS)
#define INITIAL_CHAIN_KEY -1
struct held_lock {
/*
* One-way hash of the dependency chain up to this point. We
* hash the hashes step by step as the dependency chain grows.
*
* We use it for dependency-caching and we skip detection
* passes and dependency-updates if there is a cache-hit, so
* it is absolutely critical for 100% coverage of the validator
* to have a unique key value for every unique dependency path
* that can occur in the system, to make a unique hash value
* as likely as possible - hence the 64-bit width.
*
* The task struct holds the current hash value (initialized
* with zero), here we store the previous hash value:
*/
u64 prev_chain_key;
unsigned long acquire_ip;
struct lockdep_map *instance;
struct lockdep_map *nest_lock;
#ifdef CONFIG_LOCK_STAT
u64 waittime_stamp;
u64 holdtime_stamp;
#endif
/*
* class_idx is zero-indexed; it points to the element in
* lock_classes this held lock instance belongs to. class_idx is in
* the range from 0 to (MAX_LOCKDEP_KEYS-1) inclusive.
*/
unsigned int class_idx:MAX_LOCKDEP_KEYS_BITS;
/*
* The lock-stack is unified in that the lock chains of interrupt
* contexts nest ontop of process context chains, but we 'separate'
* the hashes by starting with 0 if we cross into an interrupt
* context, and we also keep do not add cross-context lock
* dependencies - the lock usage graph walking covers that area
* anyway, and we'd just unnecessarily increase the number of
* dependencies otherwise. [Note: hardirq and softirq contexts
* are separated from each other too.]
*
* The following field is used to detect when we cross into an
* interrupt context:
*/
unsigned int irq_context:2; /* bit 0 - soft, bit 1 - hard */
unsigned int trylock:1; /* 16 bits */
unsigned int read:2; /* see lock_acquire() comment */
unsigned int check:1; /* see lock_acquire() comment */
unsigned int hardirqs_off:1;
unsigned int sync:1;
unsigned int references:11; /* 32 bits */
unsigned int pin_count;
};
#else /* !CONFIG_LOCKDEP */
/*
* The class key takes no space if lockdep is disabled:
*/
struct lock_class_key { };
/*
* The lockdep_map takes no space if lockdep is disabled:
*/
struct lockdep_map { };
struct pin_cookie { };
#endif /* !LOCKDEP */
#endif /* __LINUX_LOCKDEP_TYPES_H */