linux-stable/arch/powerpc/kernel/rtas.c

2188 lines
58 KiB
C
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// SPDX-License-Identifier: GPL-2.0-or-later
/*
*
* Procedures for interfacing to the RTAS on CHRP machines.
*
* Peter Bergner, IBM March 2001.
* Copyright (C) 2001 IBM.
*/
#define pr_fmt(fmt) "rtas: " fmt
#include <linux/bsearch.h>
#include <linux/capability.h>
#include <linux/delay.h>
#include <linux/export.h>
#include <linux/init.h>
#include <linux/kconfig.h>
#include <linux/kernel.h>
#include <linux/lockdep.h>
#include <linux/memblock.h>
#include <linux/mutex.h>
#include <linux/of.h>
#include <linux/of_fdt.h>
#include <linux/reboot.h>
#include <linux/sched.h>
#include <linux/security.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/stdarg.h>
#include <linux/syscalls.h>
#include <linux/types.h>
#include <linux/uaccess.h>
#include <linux/xarray.h>
#include <asm/delay.h>
#include <asm/firmware.h>
#include <asm/interrupt.h>
#include <asm/machdep.h>
#include <asm/mmu.h>
#include <asm/page.h>
#include <asm/rtas-work-area.h>
#include <asm/rtas.h>
#include <asm/time.h>
#include <asm/trace.h>
#include <asm/udbg.h>
struct rtas_filter {
/* Indexes into the args buffer, -1 if not used */
const int buf_idx1;
const int size_idx1;
const int buf_idx2;
const int size_idx2;
/*
* Assumed buffer size per the spec if the function does not
* have a size parameter, e.g. ibm,errinjct. 0 if unused.
*/
const int fixed_size;
};
/**
* struct rtas_function - Descriptor for RTAS functions.
*
* @token: Value of @name if it exists under the /rtas node.
* @name: Function name.
* @filter: If non-NULL, invoking this function via the rtas syscall is
* generally allowed, and @filter describes constraints on the
* arguments. See also @banned_for_syscall_on_le.
* @banned_for_syscall_on_le: Set when call via sys_rtas is generally allowed
* but specifically restricted on ppc64le. Such
* functions are believed to have no users on
* ppc64le, and we want to keep it that way. It does
* not make sense for this to be set when @filter
* is NULL.
* @lock: Pointer to an optional dedicated per-function mutex. This
* should be set for functions that require multiple calls in
* sequence to complete a single operation, and such sequences
* will disrupt each other if allowed to interleave. Users of
* this function are required to hold the associated lock for
* the duration of the call sequence. Add an explanatory
* comment to the function table entry if setting this member.
*/
struct rtas_function {
s32 token;
const bool banned_for_syscall_on_le:1;
const char * const name;
const struct rtas_filter *filter;
struct mutex *lock;
};
/*
* Per-function locks for sequence-based RTAS functions.
*/
static DEFINE_MUTEX(rtas_ibm_activate_firmware_lock);
static DEFINE_MUTEX(rtas_ibm_get_dynamic_sensor_state_lock);
static DEFINE_MUTEX(rtas_ibm_get_indices_lock);
static DEFINE_MUTEX(rtas_ibm_lpar_perftools_lock);
static DEFINE_MUTEX(rtas_ibm_physical_attestation_lock);
static DEFINE_MUTEX(rtas_ibm_set_dynamic_indicator_lock);
DEFINE_MUTEX(rtas_ibm_get_vpd_lock);
static struct rtas_function rtas_function_table[] __ro_after_init = {
[RTAS_FNIDX__CHECK_EXCEPTION] = {
.name = "check-exception",
},
[RTAS_FNIDX__DISPLAY_CHARACTER] = {
.name = "display-character",
.filter = &(const struct rtas_filter) {
.buf_idx1 = -1, .size_idx1 = -1,
.buf_idx2 = -1, .size_idx2 = -1,
},
},
[RTAS_FNIDX__EVENT_SCAN] = {
.name = "event-scan",
},
[RTAS_FNIDX__FREEZE_TIME_BASE] = {
.name = "freeze-time-base",
},
[RTAS_FNIDX__GET_POWER_LEVEL] = {
.name = "get-power-level",
.filter = &(const struct rtas_filter) {
.buf_idx1 = -1, .size_idx1 = -1,
.buf_idx2 = -1, .size_idx2 = -1,
},
},
[RTAS_FNIDX__GET_SENSOR_STATE] = {
.name = "get-sensor-state",
.filter = &(const struct rtas_filter) {
.buf_idx1 = -1, .size_idx1 = -1,
.buf_idx2 = -1, .size_idx2 = -1,
},
},
[RTAS_FNIDX__GET_TERM_CHAR] = {
.name = "get-term-char",
},
[RTAS_FNIDX__GET_TIME_OF_DAY] = {
.name = "get-time-of-day",
.filter = &(const struct rtas_filter) {
.buf_idx1 = -1, .size_idx1 = -1,
.buf_idx2 = -1, .size_idx2 = -1,
},
},
[RTAS_FNIDX__IBM_ACTIVATE_FIRMWARE] = {
.name = "ibm,activate-firmware",
.filter = &(const struct rtas_filter) {
.buf_idx1 = -1, .size_idx1 = -1,
.buf_idx2 = -1, .size_idx2 = -1,
},
/*
* PAPR+ as of v2.13 doesn't explicitly impose any
* restriction, but this typically requires multiple
* calls before success, and there's no reason to
* allow sequences to interleave.
*/
.lock = &rtas_ibm_activate_firmware_lock,
},
[RTAS_FNIDX__IBM_CBE_START_PTCAL] = {
.name = "ibm,cbe-start-ptcal",
},
[RTAS_FNIDX__IBM_CBE_STOP_PTCAL] = {
.name = "ibm,cbe-stop-ptcal",
},
[RTAS_FNIDX__IBM_CHANGE_MSI] = {
.name = "ibm,change-msi",
},
[RTAS_FNIDX__IBM_CLOSE_ERRINJCT] = {
.name = "ibm,close-errinjct",
.filter = &(const struct rtas_filter) {
.buf_idx1 = -1, .size_idx1 = -1,
.buf_idx2 = -1, .size_idx2 = -1,
},
},
[RTAS_FNIDX__IBM_CONFIGURE_BRIDGE] = {
.name = "ibm,configure-bridge",
},
[RTAS_FNIDX__IBM_CONFIGURE_CONNECTOR] = {
.name = "ibm,configure-connector",
.filter = &(const struct rtas_filter) {
.buf_idx1 = 0, .size_idx1 = -1,
.buf_idx2 = 1, .size_idx2 = -1,
.fixed_size = 4096,
},
},
[RTAS_FNIDX__IBM_CONFIGURE_KERNEL_DUMP] = {
.name = "ibm,configure-kernel-dump",
},
[RTAS_FNIDX__IBM_CONFIGURE_PE] = {
.name = "ibm,configure-pe",
},
[RTAS_FNIDX__IBM_CREATE_PE_DMA_WINDOW] = {
.name = "ibm,create-pe-dma-window",
},
[RTAS_FNIDX__IBM_DISPLAY_MESSAGE] = {
.name = "ibm,display-message",
.filter = &(const struct rtas_filter) {
.buf_idx1 = 0, .size_idx1 = -1,
.buf_idx2 = -1, .size_idx2 = -1,
},
},
[RTAS_FNIDX__IBM_ERRINJCT] = {
.name = "ibm,errinjct",
.filter = &(const struct rtas_filter) {
.buf_idx1 = 2, .size_idx1 = -1,
.buf_idx2 = -1, .size_idx2 = -1,
.fixed_size = 1024,
},
},
[RTAS_FNIDX__IBM_EXTI2C] = {
.name = "ibm,exti2c",
},
[RTAS_FNIDX__IBM_GET_CONFIG_ADDR_INFO] = {
.name = "ibm,get-config-addr-info",
},
[RTAS_FNIDX__IBM_GET_CONFIG_ADDR_INFO2] = {
.name = "ibm,get-config-addr-info2",
.filter = &(const struct rtas_filter) {
.buf_idx1 = -1, .size_idx1 = -1,
.buf_idx2 = -1, .size_idx2 = -1,
},
},
[RTAS_FNIDX__IBM_GET_DYNAMIC_SENSOR_STATE] = {
.name = "ibm,get-dynamic-sensor-state",
.filter = &(const struct rtas_filter) {
.buf_idx1 = 1, .size_idx1 = -1,
.buf_idx2 = -1, .size_idx2 = -1,
},
/*
* PAPR+ v2.13 R17.3.193 is explicit that the OS
* must not call ibm,get-dynamic-sensor-state with
* different inputs until a non-retry status has been
* returned.
*/
.lock = &rtas_ibm_get_dynamic_sensor_state_lock,
},
[RTAS_FNIDX__IBM_GET_INDICES] = {
.name = "ibm,get-indices",
.filter = &(const struct rtas_filter) {
.buf_idx1 = 2, .size_idx1 = 3,
.buf_idx2 = -1, .size_idx2 = -1,
},
/*
* PAPR+ v2.13 R17.3.172 says that the OS must not
* interleave ibm,get-indices call sequences with
* different inputs.
*/
.lock = &rtas_ibm_get_indices_lock,
},
[RTAS_FNIDX__IBM_GET_RIO_TOPOLOGY] = {
.name = "ibm,get-rio-topology",
},
[RTAS_FNIDX__IBM_GET_SYSTEM_PARAMETER] = {
.name = "ibm,get-system-parameter",
.filter = &(const struct rtas_filter) {
.buf_idx1 = 1, .size_idx1 = 2,
.buf_idx2 = -1, .size_idx2 = -1,
},
},
[RTAS_FNIDX__IBM_GET_VPD] = {
.name = "ibm,get-vpd",
.filter = &(const struct rtas_filter) {
.buf_idx1 = 0, .size_idx1 = -1,
.buf_idx2 = 1, .size_idx2 = 2,
},
/*
* PAPR+ v2.13 R17.3.204 indicates that sequences
* should not be allowed to interleave.
*/
.lock = &rtas_ibm_get_vpd_lock,
},
[RTAS_FNIDX__IBM_GET_XIVE] = {
.name = "ibm,get-xive",
},
[RTAS_FNIDX__IBM_INT_OFF] = {
.name = "ibm,int-off",
},
[RTAS_FNIDX__IBM_INT_ON] = {
.name = "ibm,int-on",
},
[RTAS_FNIDX__IBM_IO_QUIESCE_ACK] = {
.name = "ibm,io-quiesce-ack",
},
[RTAS_FNIDX__IBM_LPAR_PERFTOOLS] = {
.name = "ibm,lpar-perftools",
.filter = &(const struct rtas_filter) {
.buf_idx1 = 2, .size_idx1 = 3,
.buf_idx2 = -1, .size_idx2 = -1,
},
/*
* PAPR+ v2.13 R17.3.266 says the OS should allow
* only one call sequence in progress at a time.
*/
.lock = &rtas_ibm_lpar_perftools_lock,
},
[RTAS_FNIDX__IBM_MANAGE_FLASH_IMAGE] = {
.name = "ibm,manage-flash-image",
},
[RTAS_FNIDX__IBM_MANAGE_STORAGE_PRESERVATION] = {
.name = "ibm,manage-storage-preservation",
},
[RTAS_FNIDX__IBM_NMI_INTERLOCK] = {
.name = "ibm,nmi-interlock",
},
[RTAS_FNIDX__IBM_NMI_REGISTER] = {
.name = "ibm,nmi-register",
},
[RTAS_FNIDX__IBM_OPEN_ERRINJCT] = {
.name = "ibm,open-errinjct",
.filter = &(const struct rtas_filter) {
.buf_idx1 = -1, .size_idx1 = -1,
.buf_idx2 = -1, .size_idx2 = -1,
},
},
[RTAS_FNIDX__IBM_OPEN_SRIOV_ALLOW_UNFREEZE] = {
.name = "ibm,open-sriov-allow-unfreeze",
},
[RTAS_FNIDX__IBM_OPEN_SRIOV_MAP_PE_NUMBER] = {
.name = "ibm,open-sriov-map-pe-number",
},
[RTAS_FNIDX__IBM_OS_TERM] = {
.name = "ibm,os-term",
},
[RTAS_FNIDX__IBM_PARTNER_CONTROL] = {
.name = "ibm,partner-control",
},
[RTAS_FNIDX__IBM_PHYSICAL_ATTESTATION] = {
.name = "ibm,physical-attestation",
.filter = &(const struct rtas_filter) {
.buf_idx1 = 0, .size_idx1 = 1,
.buf_idx2 = -1, .size_idx2 = -1,
},
/*
* This follows a sequence-based pattern similar to
* ibm,get-vpd et al. Since PAPR+ restricts
* interleaving call sequences for other functions of
* this style, assume the restriction applies here,
* even though it's not explicit in the spec.
*/
.lock = &rtas_ibm_physical_attestation_lock,
},
[RTAS_FNIDX__IBM_PLATFORM_DUMP] = {
.name = "ibm,platform-dump",
.filter = &(const struct rtas_filter) {
.buf_idx1 = 4, .size_idx1 = 5,
.buf_idx2 = -1, .size_idx2 = -1,
},
/*
* PAPR+ v2.13 7.3.3.4.1 indicates that concurrent
* sequences of ibm,platform-dump are allowed if they
* are operating on different dump tags. So leave the
* lock pointer unset for now. This may need
* reconsideration if kernel-internal users appear.
*/
},
[RTAS_FNIDX__IBM_POWER_OFF_UPS] = {
.name = "ibm,power-off-ups",
},
[RTAS_FNIDX__IBM_QUERY_INTERRUPT_SOURCE_NUMBER] = {
.name = "ibm,query-interrupt-source-number",
},
[RTAS_FNIDX__IBM_QUERY_PE_DMA_WINDOW] = {
.name = "ibm,query-pe-dma-window",
},
[RTAS_FNIDX__IBM_READ_PCI_CONFIG] = {
.name = "ibm,read-pci-config",
},
[RTAS_FNIDX__IBM_READ_SLOT_RESET_STATE] = {
.name = "ibm,read-slot-reset-state",
.filter = &(const struct rtas_filter) {
.buf_idx1 = -1, .size_idx1 = -1,
.buf_idx2 = -1, .size_idx2 = -1,
},
},
[RTAS_FNIDX__IBM_READ_SLOT_RESET_STATE2] = {
.name = "ibm,read-slot-reset-state2",
},
[RTAS_FNIDX__IBM_REMOVE_PE_DMA_WINDOW] = {
.name = "ibm,remove-pe-dma-window",
},
[RTAS_FNIDX__IBM_RESET_PE_DMA_WINDOW] = {
/*
* Note: PAPR+ v2.13 7.3.31.4.1 spells this as
* "ibm,reset-pe-dma-windows" (plural), but RTAS
* implementations use the singular form in practice.
*/
.name = "ibm,reset-pe-dma-window",
},
[RTAS_FNIDX__IBM_SCAN_LOG_DUMP] = {
.name = "ibm,scan-log-dump",
.filter = &(const struct rtas_filter) {
.buf_idx1 = 0, .size_idx1 = 1,
.buf_idx2 = -1, .size_idx2 = -1,
},
},
[RTAS_FNIDX__IBM_SET_DYNAMIC_INDICATOR] = {
.name = "ibm,set-dynamic-indicator",
.filter = &(const struct rtas_filter) {
.buf_idx1 = 2, .size_idx1 = -1,
.buf_idx2 = -1, .size_idx2 = -1,
},
/*
* PAPR+ v2.13 R17.3.183 says the OS must not call
* this function with different inputs until a
* non-retry status has been returned.
*/
.lock = &rtas_ibm_set_dynamic_indicator_lock,
},
[RTAS_FNIDX__IBM_SET_EEH_OPTION] = {
.name = "ibm,set-eeh-option",
.filter = &(const struct rtas_filter) {
.buf_idx1 = -1, .size_idx1 = -1,
.buf_idx2 = -1, .size_idx2 = -1,
},
},
[RTAS_FNIDX__IBM_SET_SLOT_RESET] = {
.name = "ibm,set-slot-reset",
},
[RTAS_FNIDX__IBM_SET_SYSTEM_PARAMETER] = {
.name = "ibm,set-system-parameter",
.filter = &(const struct rtas_filter) {
.buf_idx1 = 1, .size_idx1 = -1,
.buf_idx2 = -1, .size_idx2 = -1,
},
},
[RTAS_FNIDX__IBM_SET_XIVE] = {
.name = "ibm,set-xive",
},
[RTAS_FNIDX__IBM_SLOT_ERROR_DETAIL] = {
.name = "ibm,slot-error-detail",
},
[RTAS_FNIDX__IBM_SUSPEND_ME] = {
.name = "ibm,suspend-me",
.banned_for_syscall_on_le = true,
.filter = &(const struct rtas_filter) {
.buf_idx1 = -1, .size_idx1 = -1,
.buf_idx2 = -1, .size_idx2 = -1,
},
},
[RTAS_FNIDX__IBM_TUNE_DMA_PARMS] = {
.name = "ibm,tune-dma-parms",
},
[RTAS_FNIDX__IBM_UPDATE_FLASH_64_AND_REBOOT] = {
.name = "ibm,update-flash-64-and-reboot",
},
[RTAS_FNIDX__IBM_UPDATE_NODES] = {
.name = "ibm,update-nodes",
.banned_for_syscall_on_le = true,
.filter = &(const struct rtas_filter) {
.buf_idx1 = 0, .size_idx1 = -1,
.buf_idx2 = -1, .size_idx2 = -1,
.fixed_size = 4096,
},
},
[RTAS_FNIDX__IBM_UPDATE_PROPERTIES] = {
.name = "ibm,update-properties",
.banned_for_syscall_on_le = true,
.filter = &(const struct rtas_filter) {
.buf_idx1 = 0, .size_idx1 = -1,
.buf_idx2 = -1, .size_idx2 = -1,
.fixed_size = 4096,
},
},
[RTAS_FNIDX__IBM_VALIDATE_FLASH_IMAGE] = {
.name = "ibm,validate-flash-image",
},
[RTAS_FNIDX__IBM_WRITE_PCI_CONFIG] = {
.name = "ibm,write-pci-config",
},
[RTAS_FNIDX__NVRAM_FETCH] = {
.name = "nvram-fetch",
},
[RTAS_FNIDX__NVRAM_STORE] = {
.name = "nvram-store",
},
[RTAS_FNIDX__POWER_OFF] = {
.name = "power-off",
},
[RTAS_FNIDX__PUT_TERM_CHAR] = {
.name = "put-term-char",
},
[RTAS_FNIDX__QUERY_CPU_STOPPED_STATE] = {
.name = "query-cpu-stopped-state",
},
[RTAS_FNIDX__READ_PCI_CONFIG] = {
.name = "read-pci-config",
},
[RTAS_FNIDX__RTAS_LAST_ERROR] = {
.name = "rtas-last-error",
},
[RTAS_FNIDX__SET_INDICATOR] = {
.name = "set-indicator",
.filter = &(const struct rtas_filter) {
.buf_idx1 = -1, .size_idx1 = -1,
.buf_idx2 = -1, .size_idx2 = -1,
},
},
[RTAS_FNIDX__SET_POWER_LEVEL] = {
.name = "set-power-level",
.filter = &(const struct rtas_filter) {
.buf_idx1 = -1, .size_idx1 = -1,
.buf_idx2 = -1, .size_idx2 = -1,
},
},
[RTAS_FNIDX__SET_TIME_FOR_POWER_ON] = {
.name = "set-time-for-power-on",
.filter = &(const struct rtas_filter) {
.buf_idx1 = -1, .size_idx1 = -1,
.buf_idx2 = -1, .size_idx2 = -1,
},
},
[RTAS_FNIDX__SET_TIME_OF_DAY] = {
.name = "set-time-of-day",
.filter = &(const struct rtas_filter) {
.buf_idx1 = -1, .size_idx1 = -1,
.buf_idx2 = -1, .size_idx2 = -1,
},
},
[RTAS_FNIDX__START_CPU] = {
.name = "start-cpu",
},
[RTAS_FNIDX__STOP_SELF] = {
.name = "stop-self",
},
[RTAS_FNIDX__SYSTEM_REBOOT] = {
.name = "system-reboot",
},
[RTAS_FNIDX__THAW_TIME_BASE] = {
.name = "thaw-time-base",
},
[RTAS_FNIDX__WRITE_PCI_CONFIG] = {
.name = "write-pci-config",
},
};
#define for_each_rtas_function(funcp) \
for (funcp = &rtas_function_table[0]; \
funcp < &rtas_function_table[ARRAY_SIZE(rtas_function_table)]; \
++funcp)
/*
* Nearly all RTAS calls need to be serialized. All uses of the
* default rtas_args block must hold rtas_lock.
*
* Exceptions to the RTAS serialization requirement (e.g. stop-self)
* must use a separate rtas_args structure.
*/
static DEFINE_RAW_SPINLOCK(rtas_lock);
static struct rtas_args rtas_args;
/**
* rtas_function_token() - RTAS function token lookup.
* @handle: Function handle, e.g. RTAS_FN_EVENT_SCAN.
*
* Context: Any context.
* Return: the token value for the function if implemented by this platform,
* otherwise RTAS_UNKNOWN_SERVICE.
*/
s32 rtas_function_token(const rtas_fn_handle_t handle)
{
const size_t index = handle.index;
const bool out_of_bounds = index >= ARRAY_SIZE(rtas_function_table);
if (WARN_ONCE(out_of_bounds, "invalid function index %zu", index))
return RTAS_UNKNOWN_SERVICE;
/*
* Various drivers attempt token lookups on non-RTAS
* platforms.
*/
if (!rtas.dev)
return RTAS_UNKNOWN_SERVICE;
return rtas_function_table[index].token;
}
EXPORT_SYMBOL_GPL(rtas_function_token);
static int rtas_function_cmp(const void *a, const void *b)
{
const struct rtas_function *f1 = a;
const struct rtas_function *f2 = b;
return strcmp(f1->name, f2->name);
}
/*
* Boot-time initialization of the function table needs the lookup to
* return a non-const-qualified object. Use rtas_name_to_function()
* in all other contexts.
*/
static struct rtas_function *__rtas_name_to_function(const char *name)
{
const struct rtas_function key = {
.name = name,
};
struct rtas_function *found;
found = bsearch(&key, rtas_function_table, ARRAY_SIZE(rtas_function_table),
sizeof(rtas_function_table[0]), rtas_function_cmp);
return found;
}
static const struct rtas_function *rtas_name_to_function(const char *name)
{
return __rtas_name_to_function(name);
}
static DEFINE_XARRAY(rtas_token_to_function_xarray);
static int __init rtas_token_to_function_xarray_init(void)
{
const struct rtas_function *func;
int err = 0;
for_each_rtas_function(func) {
const s32 token = func->token;
if (token == RTAS_UNKNOWN_SERVICE)
continue;
err = xa_err(xa_store(&rtas_token_to_function_xarray,
token, (void *)func, GFP_KERNEL));
if (err)
break;
}
return err;
}
arch_initcall(rtas_token_to_function_xarray_init);
/*
* For use by sys_rtas(), where the token value is provided by user
* space and we don't want to warn on failed lookups.
*/
static const struct rtas_function *rtas_token_to_function_untrusted(s32 token)
{
return xa_load(&rtas_token_to_function_xarray, token);
}
/*
* Reverse lookup for deriving the function descriptor from a
* known-good token value in contexts where the former is not already
* available. @token must be valid, e.g. derived from the result of a
* prior lookup against the function table.
*/
static const struct rtas_function *rtas_token_to_function(s32 token)
{
const struct rtas_function *func;
if (WARN_ONCE(token < 0, "invalid token %d", token))
return NULL;
func = rtas_token_to_function_untrusted(token);
if (func)
return func;
/*
* Fall back to linear scan in case the reverse mapping hasn't
* been initialized yet.
*/
if (xa_empty(&rtas_token_to_function_xarray)) {
for_each_rtas_function(func) {
if (func->token == token)
return func;
}
}
WARN_ONCE(true, "unexpected failed lookup for token %d", token);
return NULL;
}
/* This is here deliberately so it's only used in this file */
void enter_rtas(unsigned long);
static void __do_enter_rtas(struct rtas_args *args)
{
enter_rtas(__pa(args));
srr_regs_clobbered(); /* rtas uses SRRs, invalidate */
}
static void __do_enter_rtas_trace(struct rtas_args *args)
{
const struct rtas_function *func = rtas_token_to_function(be32_to_cpu(args->token));
/*
* If there is a per-function lock, it must be held by the
* caller.
*/
if (func->lock)
lockdep_assert_held(func->lock);
if (args == &rtas_args)
lockdep_assert_held(&rtas_lock);
trace_rtas_input(args, func->name);
trace_rtas_ll_entry(args);
__do_enter_rtas(args);
trace_rtas_ll_exit(args);
trace_rtas_output(args, func->name);
}
static void do_enter_rtas(struct rtas_args *args)
{
const unsigned long msr = mfmsr();
/*
* Situations where we want to skip any active tracepoints for
* safety reasons:
*
* 1. The last code executed on an offline CPU as it stops,
* i.e. we're about to call stop-self. The tracepoints'
* function name lookup uses xarray, which uses RCU, which
* isn't valid to call on an offline CPU. Any events
* emitted on an offline CPU will be discarded anyway.
*
* 2. In real mode, as when invoking ibm,nmi-interlock from
* the pseries MCE handler. We cannot count on trace
* buffers or the entries in rtas_token_to_function_xarray
* to be contained in the RMO.
*/
const unsigned long mask = MSR_IR | MSR_DR;
const bool can_trace = likely(cpu_online(raw_smp_processor_id()) &&
(msr & mask) == mask);
/*
* Make sure MSR[RI] is currently enabled as it will be forced later
* in enter_rtas.
*/
BUG_ON(!(msr & MSR_RI));
BUG_ON(!irqs_disabled());
hard_irq_disable(); /* Ensure MSR[EE] is disabled on PPC64 */
if (can_trace)
__do_enter_rtas_trace(args);
else
__do_enter_rtas(args);
}
struct rtas_t rtas;
DEFINE_SPINLOCK(rtas_data_buf_lock);
EXPORT_SYMBOL_GPL(rtas_data_buf_lock);
char rtas_data_buf[RTAS_DATA_BUF_SIZE] __aligned(SZ_4K);
EXPORT_SYMBOL_GPL(rtas_data_buf);
unsigned long rtas_rmo_buf;
/*
* If non-NULL, this gets called when the kernel terminates.
* This is done like this so rtas_flash can be a module.
*/
void (*rtas_flash_term_hook)(int);
EXPORT_SYMBOL_GPL(rtas_flash_term_hook);
/*
* call_rtas_display_status and call_rtas_display_status_delay
* are designed only for very early low-level debugging, which
* is why the token is hard-coded to 10.
*/
static void call_rtas_display_status(unsigned char c)
{
unsigned long flags;
if (!rtas.base)
return;
raw_spin_lock_irqsave(&rtas_lock, flags);
rtas_call_unlocked(&rtas_args, 10, 1, 1, NULL, c);
raw_spin_unlock_irqrestore(&rtas_lock, flags);
}
static void call_rtas_display_status_delay(char c)
{
static int pending_newline = 0; /* did last write end with unprinted newline? */
static int width = 16;
if (c == '\n') {
while (width-- > 0)
call_rtas_display_status(' ');
width = 16;
mdelay(500);
pending_newline = 1;
} else {
if (pending_newline) {
call_rtas_display_status('\r');
call_rtas_display_status('\n');
}
pending_newline = 0;
if (width--) {
call_rtas_display_status(c);
udelay(10000);
}
}
}
void __init udbg_init_rtas_panel(void)
{
udbg_putc = call_rtas_display_status_delay;
}
#ifdef CONFIG_UDBG_RTAS_CONSOLE
/* If you think you're dying before early_init_dt_scan_rtas() does its
* work, you can hard code the token values for your firmware here and
* hardcode rtas.base/entry etc.
*/
static unsigned int rtas_putchar_token = RTAS_UNKNOWN_SERVICE;
static unsigned int rtas_getchar_token = RTAS_UNKNOWN_SERVICE;
static void udbg_rtascon_putc(char c)
{
int tries;
if (!rtas.base)
return;
/* Add CRs before LFs */
if (c == '\n')
udbg_rtascon_putc('\r');
/* if there is more than one character to be displayed, wait a bit */
for (tries = 0; tries < 16; tries++) {
if (rtas_call(rtas_putchar_token, 1, 1, NULL, c) == 0)
break;
udelay(1000);
}
}
static int udbg_rtascon_getc_poll(void)
{
int c;
if (!rtas.base)
return -1;
if (rtas_call(rtas_getchar_token, 0, 2, &c))
return -1;
return c;
}
static int udbg_rtascon_getc(void)
{
int c;
while ((c = udbg_rtascon_getc_poll()) == -1)
;
return c;
}
void __init udbg_init_rtas_console(void)
{
udbg_putc = udbg_rtascon_putc;
udbg_getc = udbg_rtascon_getc;
udbg_getc_poll = udbg_rtascon_getc_poll;
}
#endif /* CONFIG_UDBG_RTAS_CONSOLE */
void rtas_progress(char *s, unsigned short hex)
{
struct device_node *root;
int width;
const __be32 *p;
char *os;
static int display_character, set_indicator;
static int display_width, display_lines, form_feed;
static const int *row_width;
static DEFINE_SPINLOCK(progress_lock);
static int current_line;
static int pending_newline = 0; /* did last write end with unprinted newline? */
if (!rtas.base)
return;
if (display_width == 0) {
display_width = 0x10;
if ((root = of_find_node_by_path("/rtas"))) {
if ((p = of_get_property(root,
"ibm,display-line-length", NULL)))
display_width = be32_to_cpu(*p);
if ((p = of_get_property(root,
"ibm,form-feed", NULL)))
form_feed = be32_to_cpu(*p);
if ((p = of_get_property(root,
"ibm,display-number-of-lines", NULL)))
display_lines = be32_to_cpu(*p);
row_width = of_get_property(root,
"ibm,display-truncation-length", NULL);
of_node_put(root);
}
display_character = rtas_function_token(RTAS_FN_DISPLAY_CHARACTER);
set_indicator = rtas_function_token(RTAS_FN_SET_INDICATOR);
}
if (display_character == RTAS_UNKNOWN_SERVICE) {
/* use hex display if available */
if (set_indicator != RTAS_UNKNOWN_SERVICE)
rtas_call(set_indicator, 3, 1, NULL, 6, 0, hex);
return;
}
spin_lock(&progress_lock);
/*
* Last write ended with newline, but we didn't print it since
* it would just clear the bottom line of output. Print it now
* instead.
*
* If no newline is pending and form feed is supported, clear the
* display with a form feed; otherwise, print a CR to start output
* at the beginning of the line.
*/
if (pending_newline) {
rtas_call(display_character, 1, 1, NULL, '\r');
rtas_call(display_character, 1, 1, NULL, '\n');
pending_newline = 0;
} else {
current_line = 0;
if (form_feed)
rtas_call(display_character, 1, 1, NULL,
(char)form_feed);
else
rtas_call(display_character, 1, 1, NULL, '\r');
}
if (row_width)
width = row_width[current_line];
else
width = display_width;
os = s;
while (*os) {
if (*os == '\n' || *os == '\r') {
/* If newline is the last character, save it
* until next call to avoid bumping up the
* display output.
*/
if (*os == '\n' && !os[1]) {
pending_newline = 1;
current_line++;
if (current_line > display_lines-1)
current_line = display_lines-1;
spin_unlock(&progress_lock);
return;
}
/* RTAS wants CR-LF, not just LF */
if (*os == '\n') {
rtas_call(display_character, 1, 1, NULL, '\r');
rtas_call(display_character, 1, 1, NULL, '\n');
} else {
/* CR might be used to re-draw a line, so we'll
* leave it alone and not add LF.
*/
rtas_call(display_character, 1, 1, NULL, *os);
}
if (row_width)
width = row_width[current_line];
else
width = display_width;
} else {
width--;
rtas_call(display_character, 1, 1, NULL, *os);
}
os++;
/* if we overwrite the screen length */
if (width <= 0)
while ((*os != 0) && (*os != '\n') && (*os != '\r'))
os++;
}
spin_unlock(&progress_lock);
}
EXPORT_SYMBOL_GPL(rtas_progress); /* needed by rtas_flash module */
int rtas_token(const char *service)
{
const struct rtas_function *func;
const __be32 *tokp;
if (rtas.dev == NULL)
return RTAS_UNKNOWN_SERVICE;
func = rtas_name_to_function(service);
if (func)
return func->token;
/*
* The caller is looking up a name that is not known to be an
* RTAS function. Either it's a function that needs to be
* added to the table, or they're misusing rtas_token() to
* access non-function properties of the /rtas node. Warn and
* fall back to the legacy behavior.
*/
WARN_ONCE(1, "unknown function `%s`, should it be added to rtas_function_table?\n",
service);
tokp = of_get_property(rtas.dev, service, NULL);
return tokp ? be32_to_cpu(*tokp) : RTAS_UNKNOWN_SERVICE;
}
EXPORT_SYMBOL_GPL(rtas_token);
#ifdef CONFIG_RTAS_ERROR_LOGGING
static u32 rtas_error_log_max __ro_after_init = RTAS_ERROR_LOG_MAX;
/*
* Return the firmware-specified size of the error log buffer
* for all rtas calls that require an error buffer argument.
* This includes 'check-exception' and 'rtas-last-error'.
*/
int rtas_get_error_log_max(void)
{
return rtas_error_log_max;
}
static void __init init_error_log_max(void)
{
static const char propname[] __initconst = "rtas-error-log-max";
u32 max;
if (of_property_read_u32(rtas.dev, propname, &max)) {
pr_warn("%s not found, using default of %u\n",
propname, RTAS_ERROR_LOG_MAX);
max = RTAS_ERROR_LOG_MAX;
}
if (max > RTAS_ERROR_LOG_MAX) {
pr_warn("%s = %u, clamping max error log size to %u\n",
propname, max, RTAS_ERROR_LOG_MAX);
max = RTAS_ERROR_LOG_MAX;
}
rtas_error_log_max = max;
}
static char rtas_err_buf[RTAS_ERROR_LOG_MAX];
/** Return a copy of the detailed error text associated with the
* most recent failed call to rtas. Because the error text
* might go stale if there are any other intervening rtas calls,
* this routine must be called atomically with whatever produced
* the error (i.e. with rtas_lock still held from the previous call).
*/
static char *__fetch_rtas_last_error(char *altbuf)
{
const s32 token = rtas_function_token(RTAS_FN_RTAS_LAST_ERROR);
struct rtas_args err_args, save_args;
u32 bufsz;
char *buf = NULL;
lockdep_assert_held(&rtas_lock);
if (token == -1)
return NULL;
bufsz = rtas_get_error_log_max();
err_args.token = cpu_to_be32(token);
err_args.nargs = cpu_to_be32(2);
err_args.nret = cpu_to_be32(1);
err_args.args[0] = cpu_to_be32(__pa(rtas_err_buf));
err_args.args[1] = cpu_to_be32(bufsz);
err_args.args[2] = 0;
save_args = rtas_args;
rtas_args = err_args;
do_enter_rtas(&rtas_args);
err_args = rtas_args;
rtas_args = save_args;
/* Log the error in the unlikely case that there was one. */
if (unlikely(err_args.args[2] == 0)) {
if (altbuf) {
buf = altbuf;
} else {
buf = rtas_err_buf;
if (slab_is_available())
buf = kmalloc(RTAS_ERROR_LOG_MAX, GFP_ATOMIC);
}
if (buf)
memmove(buf, rtas_err_buf, RTAS_ERROR_LOG_MAX);
}
return buf;
}
#define get_errorlog_buffer() kmalloc(RTAS_ERROR_LOG_MAX, GFP_KERNEL)
#else /* CONFIG_RTAS_ERROR_LOGGING */
#define __fetch_rtas_last_error(x) NULL
#define get_errorlog_buffer() NULL
static void __init init_error_log_max(void) {}
#endif
static void
va_rtas_call_unlocked(struct rtas_args *args, int token, int nargs, int nret,
va_list list)
{
int i;
args->token = cpu_to_be32(token);
args->nargs = cpu_to_be32(nargs);
args->nret = cpu_to_be32(nret);
args->rets = &(args->args[nargs]);
for (i = 0; i < nargs; ++i)
args->args[i] = cpu_to_be32(va_arg(list, __u32));
for (i = 0; i < nret; ++i)
args->rets[i] = 0;
do_enter_rtas(args);
}
/**
* rtas_call_unlocked() - Invoke an RTAS firmware function without synchronization.
* @args: RTAS parameter block to be used for the call, must obey RTAS addressing
* constraints.
* @token: Identifies the function being invoked.
* @nargs: Number of input parameters. Does not include token.
* @nret: Number of output parameters, including the call status.
* @....: List of @nargs input parameters.
*
* Invokes the RTAS function indicated by @token, which the caller
* should obtain via rtas_function_token().
*
* This function is similar to rtas_call(), but must be used with a
* limited set of RTAS calls specifically exempted from the general
* requirement that only one RTAS call may be in progress at any
* time. Examples include stop-self and ibm,nmi-interlock.
*/
void rtas_call_unlocked(struct rtas_args *args, int token, int nargs, int nret, ...)
{
va_list list;
va_start(list, nret);
va_rtas_call_unlocked(args, token, nargs, nret, list);
va_end(list);
}
static bool token_is_restricted_errinjct(s32 token)
{
return token == rtas_function_token(RTAS_FN_IBM_OPEN_ERRINJCT) ||
token == rtas_function_token(RTAS_FN_IBM_ERRINJCT);
}
/**
* rtas_call() - Invoke an RTAS firmware function.
* @token: Identifies the function being invoked.
* @nargs: Number of input parameters. Does not include token.
* @nret: Number of output parameters, including the call status.
* @outputs: Array of @nret output words.
* @....: List of @nargs input parameters.
*
* Invokes the RTAS function indicated by @token, which the caller
* should obtain via rtas_function_token().
*
* The @nargs and @nret arguments must match the number of input and
* output parameters specified for the RTAS function.
*
* rtas_call() returns RTAS status codes, not conventional Linux errno
* values. Callers must translate any failure to an appropriate errno
* in syscall context. Most callers of RTAS functions that can return
* -2 or 990x should use rtas_busy_delay() to correctly handle those
* statuses before calling again.
*
* The return value descriptions are adapted from 7.2.8 [RTAS] Return
* Codes of the PAPR and CHRP specifications.
*
* Context: Process context preferably, interrupt context if
* necessary. Acquires an internal spinlock and may perform
* GFP_ATOMIC slab allocation in error path. Unsafe for NMI
* context.
* Return:
* * 0 - RTAS function call succeeded.
* * -1 - RTAS function encountered a hardware or
* platform error, or the token is invalid,
* or the function is restricted by kernel policy.
* * -2 - Specs say "A necessary hardware device was busy,
* and the requested function could not be
* performed. The operation should be retried at
* a later time." This is misleading, at least with
* respect to current RTAS implementations. What it
* usually means in practice is that the function
* could not be completed while meeting RTAS's
* deadline for returning control to the OS (250us
* for PAPR/PowerVM, typically), but the call may be
* immediately reattempted to resume work on it.
* * -3 - Parameter error.
* * -7 - Unexpected state change.
* * 9000...9899 - Vendor-specific success codes.
* * 9900...9905 - Advisory extended delay. Caller should try
* again after ~10^x ms has elapsed, where x is
* the last digit of the status [0-5]. Again going
* beyond the PAPR text, 990x on PowerVM indicates
* contention for RTAS-internal resources. Other
* RTAS call sequences in progress should be
* allowed to complete before reattempting the
* call.
* * -9000 - Multi-level isolation error.
* * -9999...-9004 - Vendor-specific error codes.
* * Additional negative values - Function-specific error.
* * Additional positive values - Function-specific success.
*/
int rtas_call(int token, int nargs, int nret, int *outputs, ...)
{
struct pin_cookie cookie;
va_list list;
int i;
unsigned long flags;
struct rtas_args *args;
char *buff_copy = NULL;
int ret;
if (!rtas.entry || token == RTAS_UNKNOWN_SERVICE)
return -1;
if (token_is_restricted_errinjct(token)) {
/*
* It would be nicer to not discard the error value
* from security_locked_down(), but callers expect an
* RTAS status, not an errno.
*/
if (security_locked_down(LOCKDOWN_RTAS_ERROR_INJECTION))
return -1;
}
if ((mfmsr() & (MSR_IR|MSR_DR)) != (MSR_IR|MSR_DR)) {
WARN_ON_ONCE(1);
return -1;
}
raw_spin_lock_irqsave(&rtas_lock, flags);
cookie = lockdep_pin_lock(&rtas_lock);
/* We use the global rtas args buffer */
args = &rtas_args;
va_start(list, outputs);
va_rtas_call_unlocked(args, token, nargs, nret, list);
va_end(list);
/* A -1 return code indicates that the last command couldn't
be completed due to a hardware error. */
if (be32_to_cpu(args->rets[0]) == -1)
buff_copy = __fetch_rtas_last_error(NULL);
if (nret > 1 && outputs != NULL)
for (i = 0; i < nret-1; ++i)
outputs[i] = be32_to_cpu(args->rets[i + 1]);
ret = (nret > 0) ? be32_to_cpu(args->rets[0]) : 0;
lockdep_unpin_lock(&rtas_lock, cookie);
raw_spin_unlock_irqrestore(&rtas_lock, flags);
if (buff_copy) {
log_error(buff_copy, ERR_TYPE_RTAS_LOG, 0);
if (slab_is_available())
kfree(buff_copy);
}
return ret;
}
EXPORT_SYMBOL_GPL(rtas_call);
/**
* rtas_busy_delay_time() - From an RTAS status value, calculate the
* suggested delay time in milliseconds.
*
* @status: a value returned from rtas_call() or similar APIs which return
* the status of a RTAS function call.
*
* Context: Any context.
*
* Return:
* * 100000 - If @status is 9905.
* * 10000 - If @status is 9904.
* * 1000 - If @status is 9903.
* * 100 - If @status is 9902.
* * 10 - If @status is 9901.
* * 1 - If @status is either 9900 or -2. This is "wrong" for -2, but
* some callers depend on this behavior, and the worst outcome
* is that they will delay for longer than necessary.
* * 0 - If @status is not a busy or extended delay value.
*/
unsigned int rtas_busy_delay_time(int status)
{
int order;
unsigned int ms = 0;
if (status == RTAS_BUSY) {
ms = 1;
} else if (status >= RTAS_EXTENDED_DELAY_MIN &&
status <= RTAS_EXTENDED_DELAY_MAX) {
order = status - RTAS_EXTENDED_DELAY_MIN;
for (ms = 1; order > 0; order--)
ms *= 10;
}
return ms;
}
/*
* Early boot fallback for rtas_busy_delay().
*/
static bool __init rtas_busy_delay_early(int status)
{
static size_t successive_ext_delays __initdata;
bool retry;
switch (status) {
case RTAS_EXTENDED_DELAY_MIN...RTAS_EXTENDED_DELAY_MAX:
/*
* In the unlikely case that we receive an extended
* delay status in early boot, the OS is probably not
* the cause, and there's nothing we can do to clear
* the condition. Best we can do is delay for a bit
* and hope it's transient. Lie to the caller if it
* seems like we're stuck in a retry loop.
*/
mdelay(1);
retry = true;
successive_ext_delays += 1;
if (successive_ext_delays > 1000) {
pr_err("too many extended delays, giving up\n");
dump_stack();
retry = false;
successive_ext_delays = 0;
}
break;
case RTAS_BUSY:
retry = true;
successive_ext_delays = 0;
break;
default:
retry = false;
successive_ext_delays = 0;
break;
}
return retry;
}
/**
* rtas_busy_delay() - helper for RTAS busy and extended delay statuses
*
* @status: a value returned from rtas_call() or similar APIs which return
* the status of a RTAS function call.
*
* Context: Process context. May sleep or schedule.
*
* Return:
* * true - @status is RTAS_BUSY or an extended delay hint. The
* caller may assume that the CPU has been yielded if necessary,
* and that an appropriate delay for @status has elapsed.
* Generally the caller should reattempt the RTAS call which
* yielded @status.
*
* * false - @status is not @RTAS_BUSY nor an extended delay hint. The
* caller is responsible for handling @status.
*/
bool __ref rtas_busy_delay(int status)
{
unsigned int ms;
bool ret;
/*
* Can't do timed sleeps before timekeeping is up.
*/
if (system_state < SYSTEM_SCHEDULING)
return rtas_busy_delay_early(status);
switch (status) {
case RTAS_EXTENDED_DELAY_MIN...RTAS_EXTENDED_DELAY_MAX:
ret = true;
ms = rtas_busy_delay_time(status);
/*
* The extended delay hint can be as high as 100 seconds.
* Surely any function returning such a status is either
* buggy or isn't going to be significantly slowed by us
* polling at 1HZ. Clamp the sleep time to one second.
*/
ms = clamp(ms, 1U, 1000U);
/*
* The delay hint is an order-of-magnitude suggestion, not
* a minimum. It is fine, possibly even advantageous, for
* us to pause for less time than hinted. For small values,
* use usleep_range() to ensure we don't sleep much longer
* than actually needed.
*
* See Documentation/timers/timers-howto.rst for
* explanation of the threshold used here. In effect we use
* usleep_range() for 9900 and 9901, msleep() for
* 9902-9905.
*/
if (ms <= 20)
usleep_range(ms * 100, ms * 1000);
else
msleep(ms);
break;
case RTAS_BUSY:
ret = true;
/*
* We should call again immediately if there's no other
* work to do.
*/
cond_resched();
break;
default:
ret = false;
/*
* Not a busy or extended delay status; the caller should
* handle @status itself. Ensure we warn on misuses in
* atomic context regardless.
*/
might_sleep();
break;
}
return ret;
}
EXPORT_SYMBOL_GPL(rtas_busy_delay);
int rtas_error_rc(int rtas_rc)
{
int rc;
switch (rtas_rc) {
case RTAS_HARDWARE_ERROR: /* Hardware Error */
rc = -EIO;
break;
case RTAS_INVALID_PARAMETER: /* Bad indicator/domain/etc */
rc = -EINVAL;
break;
case -9000: /* Isolation error */
rc = -EFAULT;
break;
case -9001: /* Outstanding TCE/PTE */
rc = -EEXIST;
break;
case -9002: /* No usable slot */
rc = -ENODEV;
break;
default:
pr_err("%s: unexpected error %d\n", __func__, rtas_rc);
rc = -ERANGE;
break;
}
return rc;
}
EXPORT_SYMBOL_GPL(rtas_error_rc);
int rtas_get_power_level(int powerdomain, int *level)
{
int token = rtas_function_token(RTAS_FN_GET_POWER_LEVEL);
int rc;
if (token == RTAS_UNKNOWN_SERVICE)
return -ENOENT;
while ((rc = rtas_call(token, 1, 2, level, powerdomain)) == RTAS_BUSY)
udelay(1);
if (rc < 0)
return rtas_error_rc(rc);
return rc;
}
EXPORT_SYMBOL_GPL(rtas_get_power_level);
int rtas_set_power_level(int powerdomain, int level, int *setlevel)
{
int token = rtas_function_token(RTAS_FN_SET_POWER_LEVEL);
int rc;
if (token == RTAS_UNKNOWN_SERVICE)
return -ENOENT;
do {
rc = rtas_call(token, 2, 2, setlevel, powerdomain, level);
} while (rtas_busy_delay(rc));
if (rc < 0)
return rtas_error_rc(rc);
return rc;
}
EXPORT_SYMBOL_GPL(rtas_set_power_level);
int rtas_get_sensor(int sensor, int index, int *state)
{
int token = rtas_function_token(RTAS_FN_GET_SENSOR_STATE);
int rc;
if (token == RTAS_UNKNOWN_SERVICE)
return -ENOENT;
do {
rc = rtas_call(token, 2, 2, state, sensor, index);
} while (rtas_busy_delay(rc));
if (rc < 0)
return rtas_error_rc(rc);
return rc;
}
EXPORT_SYMBOL_GPL(rtas_get_sensor);
int rtas_get_sensor_fast(int sensor, int index, int *state)
{
int token = rtas_function_token(RTAS_FN_GET_SENSOR_STATE);
int rc;
if (token == RTAS_UNKNOWN_SERVICE)
return -ENOENT;
rc = rtas_call(token, 2, 2, state, sensor, index);
WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN &&
rc <= RTAS_EXTENDED_DELAY_MAX));
if (rc < 0)
return rtas_error_rc(rc);
return rc;
}
bool rtas_indicator_present(int token, int *maxindex)
{
int proplen, count, i;
const struct indicator_elem {
__be32 token;
__be32 maxindex;
} *indicators;
indicators = of_get_property(rtas.dev, "rtas-indicators", &proplen);
if (!indicators)
return false;
count = proplen / sizeof(struct indicator_elem);
for (i = 0; i < count; i++) {
if (__be32_to_cpu(indicators[i].token) != token)
continue;
if (maxindex)
*maxindex = __be32_to_cpu(indicators[i].maxindex);
return true;
}
return false;
}
int rtas_set_indicator(int indicator, int index, int new_value)
{
int token = rtas_function_token(RTAS_FN_SET_INDICATOR);
int rc;
if (token == RTAS_UNKNOWN_SERVICE)
return -ENOENT;
do {
rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value);
} while (rtas_busy_delay(rc));
if (rc < 0)
return rtas_error_rc(rc);
return rc;
}
EXPORT_SYMBOL_GPL(rtas_set_indicator);
/*
* Ignoring RTAS extended delay
*/
int rtas_set_indicator_fast(int indicator, int index, int new_value)
{
int token = rtas_function_token(RTAS_FN_SET_INDICATOR);
int rc;
if (token == RTAS_UNKNOWN_SERVICE)
return -ENOENT;
rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value);
WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN &&
rc <= RTAS_EXTENDED_DELAY_MAX));
if (rc < 0)
return rtas_error_rc(rc);
return rc;
}
/**
* rtas_ibm_suspend_me() - Call ibm,suspend-me to suspend the LPAR.
*
* @fw_status: RTAS call status will be placed here if not NULL.
*
* rtas_ibm_suspend_me() should be called only on a CPU which has
* received H_CONTINUE from the H_JOIN hcall. All other active CPUs
* should be waiting to return from H_JOIN.
*
* rtas_ibm_suspend_me() may suspend execution of the OS
* indefinitely. Callers should take appropriate measures upon return, such as
* resetting watchdog facilities.
*
* Callers may choose to retry this call if @fw_status is
* %RTAS_THREADS_ACTIVE.
*
* Return:
* 0 - The partition has resumed from suspend, possibly after
* migration to a different host.
* -ECANCELED - The operation was aborted.
* -EAGAIN - There were other CPUs not in H_JOIN at the time of the call.
* -EBUSY - Some other condition prevented the suspend from succeeding.
* -EIO - Hardware/platform error.
*/
int rtas_ibm_suspend_me(int *fw_status)
{
int token = rtas_function_token(RTAS_FN_IBM_SUSPEND_ME);
int fwrc;
int ret;
fwrc = rtas_call(token, 0, 1, NULL);
switch (fwrc) {
case 0:
ret = 0;
break;
case RTAS_SUSPEND_ABORTED:
ret = -ECANCELED;
break;
case RTAS_THREADS_ACTIVE:
ret = -EAGAIN;
break;
case RTAS_NOT_SUSPENDABLE:
case RTAS_OUTSTANDING_COPROC:
ret = -EBUSY;
break;
case -1:
default:
ret = -EIO;
break;
}
if (fw_status)
*fw_status = fwrc;
return ret;
}
void __noreturn rtas_restart(char *cmd)
{
if (rtas_flash_term_hook)
rtas_flash_term_hook(SYS_RESTART);
pr_emerg("system-reboot returned %d\n",
rtas_call(rtas_function_token(RTAS_FN_SYSTEM_REBOOT), 0, 1, NULL));
for (;;);
}
void rtas_power_off(void)
{
if (rtas_flash_term_hook)
rtas_flash_term_hook(SYS_POWER_OFF);
/* allow power on only with power button press */
pr_emerg("power-off returned %d\n",
rtas_call(rtas_function_token(RTAS_FN_POWER_OFF), 2, 1, NULL, -1, -1));
for (;;);
}
void __noreturn rtas_halt(void)
{
if (rtas_flash_term_hook)
rtas_flash_term_hook(SYS_HALT);
/* allow power on only with power button press */
pr_emerg("power-off returned %d\n",
rtas_call(rtas_function_token(RTAS_FN_POWER_OFF), 2, 1, NULL, -1, -1));
for (;;);
}
/* Must be in the RMO region, so we place it here */
static char rtas_os_term_buf[2048];
static bool ibm_extended_os_term;
void rtas_os_term(char *str)
{
s32 token = rtas_function_token(RTAS_FN_IBM_OS_TERM);
static struct rtas_args args;
int status;
/*
* Firmware with the ibm,extended-os-term property is guaranteed
* to always return from an ibm,os-term call. Earlier versions without
* this property may terminate the partition which we want to avoid
* since it interferes with panic_timeout.
*/
if (token == RTAS_UNKNOWN_SERVICE || !ibm_extended_os_term)
return;
snprintf(rtas_os_term_buf, 2048, "OS panic: %s", str);
/*
* Keep calling as long as RTAS returns a "try again" status,
* but don't use rtas_busy_delay(), which potentially
* schedules.
*/
do {
rtas_call_unlocked(&args, token, 1, 1, NULL, __pa(rtas_os_term_buf));
status = be32_to_cpu(args.rets[0]);
} while (rtas_busy_delay_time(status));
if (status != 0)
pr_emerg("ibm,os-term call failed %d\n", status);
}
/**
* rtas_activate_firmware() - Activate a new version of firmware.
*
* Context: This function may sleep.
*
* Activate a new version of partition firmware. The OS must call this
* after resuming from a partition hibernation or migration in order
* to maintain the ability to perform live firmware updates. It's not
* catastrophic for this method to be absent or to fail; just log the
* condition in that case.
*/
void rtas_activate_firmware(void)
{
int token = rtas_function_token(RTAS_FN_IBM_ACTIVATE_FIRMWARE);
int fwrc;
if (token == RTAS_UNKNOWN_SERVICE) {
pr_notice("ibm,activate-firmware method unavailable\n");
return;
}
mutex_lock(&rtas_ibm_activate_firmware_lock);
do {
fwrc = rtas_call(token, 0, 1, NULL);
} while (rtas_busy_delay(fwrc));
mutex_unlock(&rtas_ibm_activate_firmware_lock);
if (fwrc)
pr_err("ibm,activate-firmware failed (%i)\n", fwrc);
}
/**
* get_pseries_errorlog() - Find a specific pseries error log in an RTAS
* extended event log.
* @log: RTAS error/event log
* @section_id: two character section identifier
*
* Return: A pointer to the specified errorlog or NULL if not found.
*/
noinstr struct pseries_errorlog *get_pseries_errorlog(struct rtas_error_log *log,
uint16_t section_id)
{
struct rtas_ext_event_log_v6 *ext_log =
(struct rtas_ext_event_log_v6 *)log->buffer;
struct pseries_errorlog *sect;
unsigned char *p, *log_end;
uint32_t ext_log_length = rtas_error_extended_log_length(log);
uint8_t log_format = rtas_ext_event_log_format(ext_log);
uint32_t company_id = rtas_ext_event_company_id(ext_log);
/* Check that we understand the format */
if (ext_log_length < sizeof(struct rtas_ext_event_log_v6) ||
log_format != RTAS_V6EXT_LOG_FORMAT_EVENT_LOG ||
company_id != RTAS_V6EXT_COMPANY_ID_IBM)
return NULL;
log_end = log->buffer + ext_log_length;
p = ext_log->vendor_log;
while (p < log_end) {
sect = (struct pseries_errorlog *)p;
if (pseries_errorlog_id(sect) == section_id)
return sect;
p += pseries_errorlog_length(sect);
}
return NULL;
}
/*
* The sys_rtas syscall, as originally designed, allows root to pass
* arbitrary physical addresses to RTAS calls. A number of RTAS calls
* can be abused to write to arbitrary memory and do other things that
* are potentially harmful to system integrity, and thus should only
* be used inside the kernel and not exposed to userspace.
*
* All known legitimate users of the sys_rtas syscall will only ever
* pass addresses that fall within the RMO buffer, and use a known
* subset of RTAS calls.
*
* Accordingly, we filter RTAS requests to check that the call is
* permitted, and that provided pointers fall within the RMO buffer.
* If a function is allowed to be invoked via the syscall, then its
* entry in the rtas_functions table points to a rtas_filter that
* describes its constraints, with the indexes of the parameters which
* are expected to contain addresses and sizes of buffers allocated
* inside the RMO buffer.
*/
static bool in_rmo_buf(u32 base, u32 end)
{
return base >= rtas_rmo_buf &&
base < (rtas_rmo_buf + RTAS_USER_REGION_SIZE) &&
base <= end &&
end >= rtas_rmo_buf &&
end < (rtas_rmo_buf + RTAS_USER_REGION_SIZE);
}
static bool block_rtas_call(const struct rtas_function *func, int nargs,
struct rtas_args *args)
{
const struct rtas_filter *f;
const bool is_platform_dump =
func == &rtas_function_table[RTAS_FNIDX__IBM_PLATFORM_DUMP];
const bool is_config_conn =
func == &rtas_function_table[RTAS_FNIDX__IBM_CONFIGURE_CONNECTOR];
u32 base, size, end;
/*
* Only functions with filters attached are allowed.
*/
f = func->filter;
if (!f)
goto err;
/*
* And some functions aren't allowed on LE.
*/
if (IS_ENABLED(CONFIG_CPU_LITTLE_ENDIAN) && func->banned_for_syscall_on_le)
goto err;
if (f->buf_idx1 != -1) {
base = be32_to_cpu(args->args[f->buf_idx1]);
if (f->size_idx1 != -1)
size = be32_to_cpu(args->args[f->size_idx1]);
else if (f->fixed_size)
size = f->fixed_size;
else
size = 1;
end = base + size - 1;
/*
* Special case for ibm,platform-dump - NULL buffer
* address is used to indicate end of dump processing
*/
if (is_platform_dump && base == 0)
return false;
if (!in_rmo_buf(base, end))
goto err;
}
if (f->buf_idx2 != -1) {
base = be32_to_cpu(args->args[f->buf_idx2]);
if (f->size_idx2 != -1)
size = be32_to_cpu(args->args[f->size_idx2]);
else if (f->fixed_size)
size = f->fixed_size;
else
size = 1;
end = base + size - 1;
/*
* Special case for ibm,configure-connector where the
* address can be 0
*/
if (is_config_conn && base == 0)
return false;
if (!in_rmo_buf(base, end))
goto err;
}
return false;
err:
pr_err_ratelimited("sys_rtas: RTAS call blocked - exploit attempt?\n");
pr_err_ratelimited("sys_rtas: %s nargs=%d (called by %s)\n",
func->name, nargs, current->comm);
return true;
}
/* We assume to be passed big endian arguments */
SYSCALL_DEFINE1(rtas, struct rtas_args __user *, uargs)
{
const struct rtas_function *func;
struct pin_cookie cookie;
struct rtas_args args;
unsigned long flags;
char *buff_copy, *errbuf = NULL;
int nargs, nret, token;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (!rtas.entry)
return -EINVAL;
if (copy_from_user(&args, uargs, 3 * sizeof(u32)) != 0)
return -EFAULT;
nargs = be32_to_cpu(args.nargs);
nret = be32_to_cpu(args.nret);
token = be32_to_cpu(args.token);
if (nargs >= ARRAY_SIZE(args.args)
|| nret > ARRAY_SIZE(args.args)
|| nargs + nret > ARRAY_SIZE(args.args))
return -EINVAL;
/* Copy in args. */
if (copy_from_user(args.args, uargs->args,
nargs * sizeof(rtas_arg_t)) != 0)
return -EFAULT;
/*
* If this token doesn't correspond to a function the kernel
* understands, you're not allowed to call it.
*/
func = rtas_token_to_function_untrusted(token);
if (!func)
return -EINVAL;
args.rets = &args.args[nargs];
memset(args.rets, 0, nret * sizeof(rtas_arg_t));
if (block_rtas_call(func, nargs, &args))
return -EINVAL;
if (token_is_restricted_errinjct(token)) {
int err;
err = security_locked_down(LOCKDOWN_RTAS_ERROR_INJECTION);
if (err)
return err;
}
/* Need to handle ibm,suspend_me call specially */
if (token == rtas_function_token(RTAS_FN_IBM_SUSPEND_ME)) {
/*
* rtas_ibm_suspend_me assumes the streamid handle is in cpu
* endian, or at least the hcall within it requires it.
*/
int rc = 0;
u64 handle = ((u64)be32_to_cpu(args.args[0]) << 32)
| be32_to_cpu(args.args[1]);
rc = rtas_syscall_dispatch_ibm_suspend_me(handle);
if (rc == -EAGAIN)
args.rets[0] = cpu_to_be32(RTAS_NOT_SUSPENDABLE);
else if (rc == -EIO)
args.rets[0] = cpu_to_be32(-1);
else if (rc)
return rc;
goto copy_return;
}
buff_copy = get_errorlog_buffer();
/*
* If this function has a mutex assigned to it, we must
* acquire it to avoid interleaving with any kernel-based uses
* of the same function. Kernel-based sequences acquire the
* appropriate mutex explicitly.
*/
if (func->lock)
mutex_lock(func->lock);
raw_spin_lock_irqsave(&rtas_lock, flags);
cookie = lockdep_pin_lock(&rtas_lock);
rtas_args = args;
do_enter_rtas(&rtas_args);
args = rtas_args;
/* A -1 return code indicates that the last command couldn't
be completed due to a hardware error. */
if (be32_to_cpu(args.rets[0]) == -1)
errbuf = __fetch_rtas_last_error(buff_copy);
lockdep_unpin_lock(&rtas_lock, cookie);
raw_spin_unlock_irqrestore(&rtas_lock, flags);
if (func->lock)
mutex_unlock(func->lock);
if (buff_copy) {
if (errbuf)
log_error(errbuf, ERR_TYPE_RTAS_LOG, 0);
kfree(buff_copy);
}
copy_return:
/* Copy out args. */
if (copy_to_user(uargs->args + nargs,
args.args + nargs,
nret * sizeof(rtas_arg_t)) != 0)
return -EFAULT;
return 0;
}
static void __init rtas_function_table_init(void)
{
struct property *prop;
for (size_t i = 0; i < ARRAY_SIZE(rtas_function_table); ++i) {
struct rtas_function *curr = &rtas_function_table[i];
struct rtas_function *prior;
int cmp;
curr->token = RTAS_UNKNOWN_SERVICE;
if (i == 0)
continue;
/*
* Ensure table is sorted correctly for binary search
* on function names.
*/
prior = &rtas_function_table[i - 1];
cmp = strcmp(prior->name, curr->name);
if (cmp < 0)
continue;
if (cmp == 0) {
pr_err("'%s' has duplicate function table entries\n",
curr->name);
} else {
pr_err("function table unsorted: '%s' wrongly precedes '%s'\n",
prior->name, curr->name);
}
}
for_each_property_of_node(rtas.dev, prop) {
struct rtas_function *func;
if (prop->length != sizeof(u32))
continue;
func = __rtas_name_to_function(prop->name);
if (!func)
continue;
func->token = be32_to_cpup((__be32 *)prop->value);
pr_debug("function %s has token %u\n", func->name, func->token);
}
}
/*
* Call early during boot, before mem init, to retrieve the RTAS
* information from the device-tree and allocate the RMO buffer for userland
* accesses.
*/
void __init rtas_initialize(void)
{
unsigned long rtas_region = RTAS_INSTANTIATE_MAX;
u32 base, size, entry;
int no_base, no_size, no_entry;
/* Get RTAS dev node and fill up our "rtas" structure with infos
* about it.
*/
rtas.dev = of_find_node_by_name(NULL, "rtas");
if (!rtas.dev)
return;
no_base = of_property_read_u32(rtas.dev, "linux,rtas-base", &base);
no_size = of_property_read_u32(rtas.dev, "rtas-size", &size);
if (no_base || no_size) {
of_node_put(rtas.dev);
rtas.dev = NULL;
return;
}
rtas.base = base;
rtas.size = size;
no_entry = of_property_read_u32(rtas.dev, "linux,rtas-entry", &entry);
rtas.entry = no_entry ? rtas.base : entry;
init_error_log_max();
/* Must be called before any function token lookups */
rtas_function_table_init();
/*
* Discover this now to avoid a device tree lookup in the
* panic path.
*/
ibm_extended_os_term = of_property_read_bool(rtas.dev, "ibm,extended-os-term");
/* If RTAS was found, allocate the RMO buffer for it and look for
* the stop-self token if any
*/
#ifdef CONFIG_PPC64
if (firmware_has_feature(FW_FEATURE_LPAR))
rtas_region = min(ppc64_rma_size, RTAS_INSTANTIATE_MAX);
#endif
rtas_rmo_buf = memblock_phys_alloc_range(RTAS_USER_REGION_SIZE, PAGE_SIZE,
0, rtas_region);
if (!rtas_rmo_buf)
panic("ERROR: RTAS: Failed to allocate %lx bytes below %pa\n",
PAGE_SIZE, &rtas_region);
rtas_work_area_reserve_arena(rtas_region);
}
int __init early_init_dt_scan_rtas(unsigned long node,
const char *uname, int depth, void *data)
{
const u32 *basep, *entryp, *sizep;
if (depth != 1 || strcmp(uname, "rtas") != 0)
return 0;
basep = of_get_flat_dt_prop(node, "linux,rtas-base", NULL);
entryp = of_get_flat_dt_prop(node, "linux,rtas-entry", NULL);
sizep = of_get_flat_dt_prop(node, "rtas-size", NULL);
#ifdef CONFIG_PPC64
/* need this feature to decide the crashkernel offset */
if (of_get_flat_dt_prop(node, "ibm,hypertas-functions", NULL))
powerpc_firmware_features |= FW_FEATURE_LPAR;
#endif
if (basep && entryp && sizep) {
rtas.base = *basep;
rtas.entry = *entryp;
rtas.size = *sizep;
}
#ifdef CONFIG_UDBG_RTAS_CONSOLE
basep = of_get_flat_dt_prop(node, "put-term-char", NULL);
if (basep)
rtas_putchar_token = *basep;
basep = of_get_flat_dt_prop(node, "get-term-char", NULL);
if (basep)
rtas_getchar_token = *basep;
if (rtas_putchar_token != RTAS_UNKNOWN_SERVICE &&
rtas_getchar_token != RTAS_UNKNOWN_SERVICE)
udbg_init_rtas_console();
#endif
/* break now */
return 1;
}
static DEFINE_RAW_SPINLOCK(timebase_lock);
static u64 timebase = 0;
void rtas_give_timebase(void)
{
unsigned long flags;
raw_spin_lock_irqsave(&timebase_lock, flags);
hard_irq_disable();
rtas_call(rtas_function_token(RTAS_FN_FREEZE_TIME_BASE), 0, 1, NULL);
timebase = get_tb();
raw_spin_unlock(&timebase_lock);
while (timebase)
barrier();
rtas_call(rtas_function_token(RTAS_FN_THAW_TIME_BASE), 0, 1, NULL);
local_irq_restore(flags);
}
void rtas_take_timebase(void)
{
while (!timebase)
barrier();
raw_spin_lock(&timebase_lock);
set_tb(timebase >> 32, timebase & 0xffffffff);
timebase = 0;
raw_spin_unlock(&timebase_lock);
}