linux-stable/drivers/dma/ioat_dma.c
Dan Williams 0036731c88 async_tx: kill tx_set_src and tx_set_dest methods
The tx_set_src and tx_set_dest methods were originally implemented to allow
an array of addresses to be passed down from async_xor to the dmaengine
driver while minimizing stack overhead.  Removing these methods allows
drivers to have all transaction parameters available at 'prep' time, saves
two function pointers in struct dma_async_tx_descriptor, and reduces the
number of indirect branches..

A consequence of moving this data to the 'prep' routine is that
multi-source routines like async_xor need temporary storage to convert an
array of linear addresses into an array of dma addresses.  In order to keep
the same stack footprint of the previous implementation the input array is
reused as storage for the dma addresses.  This requires that
sizeof(dma_addr_t) be less than or equal to sizeof(void *).  As a
consequence CONFIG_DMADEVICES now depends on !CONFIG_HIGHMEM64G.  It also
requires that drivers be able to make descriptor resources available when
the 'prep' routine is polled.

Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Shannon Nelson <shannon.nelson@intel.com>
2008-02-06 10:12:17 -07:00

1386 lines
37 KiB
C

/*
* Intel I/OAT DMA Linux driver
* Copyright(c) 2004 - 2007 Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
*
* The full GNU General Public License is included in this distribution in
* the file called "COPYING".
*
*/
/*
* This driver supports an Intel I/OAT DMA engine, which does asynchronous
* copy operations.
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/interrupt.h>
#include <linux/dmaengine.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include "ioatdma.h"
#include "ioatdma_registers.h"
#include "ioatdma_hw.h"
#define to_ioat_chan(chan) container_of(chan, struct ioat_dma_chan, common)
#define to_ioatdma_device(dev) container_of(dev, struct ioatdma_device, common)
#define to_ioat_desc(lh) container_of(lh, struct ioat_desc_sw, node)
#define tx_to_ioat_desc(tx) container_of(tx, struct ioat_desc_sw, async_tx)
static int ioat_pending_level = 4;
module_param(ioat_pending_level, int, 0644);
MODULE_PARM_DESC(ioat_pending_level,
"high-water mark for pushing ioat descriptors (default: 4)");
/* internal functions */
static void ioat_dma_start_null_desc(struct ioat_dma_chan *ioat_chan);
static void ioat_dma_memcpy_cleanup(struct ioat_dma_chan *ioat_chan);
static struct ioat_desc_sw *
ioat1_dma_get_next_descriptor(struct ioat_dma_chan *ioat_chan);
static struct ioat_desc_sw *
ioat2_dma_get_next_descriptor(struct ioat_dma_chan *ioat_chan);
static inline struct ioat_dma_chan *ioat_lookup_chan_by_index(
struct ioatdma_device *device,
int index)
{
return device->idx[index];
}
/**
* ioat_dma_do_interrupt - handler used for single vector interrupt mode
* @irq: interrupt id
* @data: interrupt data
*/
static irqreturn_t ioat_dma_do_interrupt(int irq, void *data)
{
struct ioatdma_device *instance = data;
struct ioat_dma_chan *ioat_chan;
unsigned long attnstatus;
int bit;
u8 intrctrl;
intrctrl = readb(instance->reg_base + IOAT_INTRCTRL_OFFSET);
if (!(intrctrl & IOAT_INTRCTRL_MASTER_INT_EN))
return IRQ_NONE;
if (!(intrctrl & IOAT_INTRCTRL_INT_STATUS)) {
writeb(intrctrl, instance->reg_base + IOAT_INTRCTRL_OFFSET);
return IRQ_NONE;
}
attnstatus = readl(instance->reg_base + IOAT_ATTNSTATUS_OFFSET);
for_each_bit(bit, &attnstatus, BITS_PER_LONG) {
ioat_chan = ioat_lookup_chan_by_index(instance, bit);
tasklet_schedule(&ioat_chan->cleanup_task);
}
writeb(intrctrl, instance->reg_base + IOAT_INTRCTRL_OFFSET);
return IRQ_HANDLED;
}
/**
* ioat_dma_do_interrupt_msix - handler used for vector-per-channel interrupt mode
* @irq: interrupt id
* @data: interrupt data
*/
static irqreturn_t ioat_dma_do_interrupt_msix(int irq, void *data)
{
struct ioat_dma_chan *ioat_chan = data;
tasklet_schedule(&ioat_chan->cleanup_task);
return IRQ_HANDLED;
}
static void ioat_dma_cleanup_tasklet(unsigned long data);
/**
* ioat_dma_enumerate_channels - find and initialize the device's channels
* @device: the device to be enumerated
*/
static int ioat_dma_enumerate_channels(struct ioatdma_device *device)
{
u8 xfercap_scale;
u32 xfercap;
int i;
struct ioat_dma_chan *ioat_chan;
device->common.chancnt = readb(device->reg_base + IOAT_CHANCNT_OFFSET);
xfercap_scale = readb(device->reg_base + IOAT_XFERCAP_OFFSET);
xfercap = (xfercap_scale == 0 ? -1 : (1UL << xfercap_scale));
for (i = 0; i < device->common.chancnt; i++) {
ioat_chan = kzalloc(sizeof(*ioat_chan), GFP_KERNEL);
if (!ioat_chan) {
device->common.chancnt = i;
break;
}
ioat_chan->device = device;
ioat_chan->reg_base = device->reg_base + (0x80 * (i + 1));
ioat_chan->xfercap = xfercap;
ioat_chan->desccount = 0;
if (ioat_chan->device->version != IOAT_VER_1_2) {
writel(IOAT_DCACTRL_CMPL_WRITE_ENABLE
| IOAT_DMA_DCA_ANY_CPU,
ioat_chan->reg_base + IOAT_DCACTRL_OFFSET);
}
spin_lock_init(&ioat_chan->cleanup_lock);
spin_lock_init(&ioat_chan->desc_lock);
INIT_LIST_HEAD(&ioat_chan->free_desc);
INIT_LIST_HEAD(&ioat_chan->used_desc);
/* This should be made common somewhere in dmaengine.c */
ioat_chan->common.device = &device->common;
list_add_tail(&ioat_chan->common.device_node,
&device->common.channels);
device->idx[i] = ioat_chan;
tasklet_init(&ioat_chan->cleanup_task,
ioat_dma_cleanup_tasklet,
(unsigned long) ioat_chan);
tasklet_disable(&ioat_chan->cleanup_task);
}
return device->common.chancnt;
}
/**
* ioat_dma_memcpy_issue_pending - push potentially unrecognized appended
* descriptors to hw
* @chan: DMA channel handle
*/
static inline void __ioat1_dma_memcpy_issue_pending(
struct ioat_dma_chan *ioat_chan)
{
ioat_chan->pending = 0;
writeb(IOAT_CHANCMD_APPEND, ioat_chan->reg_base + IOAT1_CHANCMD_OFFSET);
}
static void ioat1_dma_memcpy_issue_pending(struct dma_chan *chan)
{
struct ioat_dma_chan *ioat_chan = to_ioat_chan(chan);
if (ioat_chan->pending != 0) {
spin_lock_bh(&ioat_chan->desc_lock);
__ioat1_dma_memcpy_issue_pending(ioat_chan);
spin_unlock_bh(&ioat_chan->desc_lock);
}
}
static inline void __ioat2_dma_memcpy_issue_pending(
struct ioat_dma_chan *ioat_chan)
{
ioat_chan->pending = 0;
writew(ioat_chan->dmacount,
ioat_chan->reg_base + IOAT_CHAN_DMACOUNT_OFFSET);
}
static void ioat2_dma_memcpy_issue_pending(struct dma_chan *chan)
{
struct ioat_dma_chan *ioat_chan = to_ioat_chan(chan);
if (ioat_chan->pending != 0) {
spin_lock_bh(&ioat_chan->desc_lock);
__ioat2_dma_memcpy_issue_pending(ioat_chan);
spin_unlock_bh(&ioat_chan->desc_lock);
}
}
static dma_cookie_t ioat1_tx_submit(struct dma_async_tx_descriptor *tx)
{
struct ioat_dma_chan *ioat_chan = to_ioat_chan(tx->chan);
struct ioat_desc_sw *first = tx_to_ioat_desc(tx);
struct ioat_desc_sw *prev, *new;
struct ioat_dma_descriptor *hw;
dma_cookie_t cookie;
LIST_HEAD(new_chain);
u32 copy;
size_t len;
dma_addr_t src, dst;
int orig_ack;
unsigned int desc_count = 0;
/* src and dest and len are stored in the initial descriptor */
len = first->len;
src = first->src;
dst = first->dst;
orig_ack = first->async_tx.ack;
new = first;
spin_lock_bh(&ioat_chan->desc_lock);
prev = to_ioat_desc(ioat_chan->used_desc.prev);
prefetch(prev->hw);
do {
copy = min_t(size_t, len, ioat_chan->xfercap);
new->async_tx.ack = 1;
hw = new->hw;
hw->size = copy;
hw->ctl = 0;
hw->src_addr = src;
hw->dst_addr = dst;
hw->next = 0;
/* chain together the physical address list for the HW */
wmb();
prev->hw->next = (u64) new->async_tx.phys;
len -= copy;
dst += copy;
src += copy;
list_add_tail(&new->node, &new_chain);
desc_count++;
prev = new;
} while (len && (new = ioat1_dma_get_next_descriptor(ioat_chan)));
hw->ctl = IOAT_DMA_DESCRIPTOR_CTL_CP_STS;
if (new->async_tx.callback) {
hw->ctl |= IOAT_DMA_DESCRIPTOR_CTL_INT_GN;
if (first != new) {
/* move callback into to last desc */
new->async_tx.callback = first->async_tx.callback;
new->async_tx.callback_param
= first->async_tx.callback_param;
first->async_tx.callback = NULL;
first->async_tx.callback_param = NULL;
}
}
new->tx_cnt = desc_count;
new->async_tx.ack = orig_ack; /* client is in control of this ack */
/* store the original values for use in later cleanup */
if (new != first) {
new->src = first->src;
new->dst = first->dst;
new->len = first->len;
}
/* cookie incr and addition to used_list must be atomic */
cookie = ioat_chan->common.cookie;
cookie++;
if (cookie < 0)
cookie = 1;
ioat_chan->common.cookie = new->async_tx.cookie = cookie;
/* write address into NextDescriptor field of last desc in chain */
to_ioat_desc(ioat_chan->used_desc.prev)->hw->next =
first->async_tx.phys;
__list_splice(&new_chain, ioat_chan->used_desc.prev);
ioat_chan->dmacount += desc_count;
ioat_chan->pending += desc_count;
if (ioat_chan->pending >= ioat_pending_level)
__ioat1_dma_memcpy_issue_pending(ioat_chan);
spin_unlock_bh(&ioat_chan->desc_lock);
return cookie;
}
static dma_cookie_t ioat2_tx_submit(struct dma_async_tx_descriptor *tx)
{
struct ioat_dma_chan *ioat_chan = to_ioat_chan(tx->chan);
struct ioat_desc_sw *first = tx_to_ioat_desc(tx);
struct ioat_desc_sw *new;
struct ioat_dma_descriptor *hw;
dma_cookie_t cookie;
u32 copy;
size_t len;
dma_addr_t src, dst;
int orig_ack;
unsigned int desc_count = 0;
/* src and dest and len are stored in the initial descriptor */
len = first->len;
src = first->src;
dst = first->dst;
orig_ack = first->async_tx.ack;
new = first;
/*
* ioat_chan->desc_lock is still in force in version 2 path
* it gets unlocked at end of this function
*/
do {
copy = min_t(size_t, len, ioat_chan->xfercap);
new->async_tx.ack = 1;
hw = new->hw;
hw->size = copy;
hw->ctl = 0;
hw->src_addr = src;
hw->dst_addr = dst;
len -= copy;
dst += copy;
src += copy;
desc_count++;
} while (len && (new = ioat2_dma_get_next_descriptor(ioat_chan)));
hw->ctl = IOAT_DMA_DESCRIPTOR_CTL_CP_STS;
if (new->async_tx.callback) {
hw->ctl |= IOAT_DMA_DESCRIPTOR_CTL_INT_GN;
if (first != new) {
/* move callback into to last desc */
new->async_tx.callback = first->async_tx.callback;
new->async_tx.callback_param
= first->async_tx.callback_param;
first->async_tx.callback = NULL;
first->async_tx.callback_param = NULL;
}
}
new->tx_cnt = desc_count;
new->async_tx.ack = orig_ack; /* client is in control of this ack */
/* store the original values for use in later cleanup */
if (new != first) {
new->src = first->src;
new->dst = first->dst;
new->len = first->len;
}
/* cookie incr and addition to used_list must be atomic */
cookie = ioat_chan->common.cookie;
cookie++;
if (cookie < 0)
cookie = 1;
ioat_chan->common.cookie = new->async_tx.cookie = cookie;
ioat_chan->dmacount += desc_count;
ioat_chan->pending += desc_count;
if (ioat_chan->pending >= ioat_pending_level)
__ioat2_dma_memcpy_issue_pending(ioat_chan);
spin_unlock_bh(&ioat_chan->desc_lock);
return cookie;
}
/**
* ioat_dma_alloc_descriptor - allocate and return a sw and hw descriptor pair
* @ioat_chan: the channel supplying the memory pool for the descriptors
* @flags: allocation flags
*/
static struct ioat_desc_sw *ioat_dma_alloc_descriptor(
struct ioat_dma_chan *ioat_chan,
gfp_t flags)
{
struct ioat_dma_descriptor *desc;
struct ioat_desc_sw *desc_sw;
struct ioatdma_device *ioatdma_device;
dma_addr_t phys;
ioatdma_device = to_ioatdma_device(ioat_chan->common.device);
desc = pci_pool_alloc(ioatdma_device->dma_pool, flags, &phys);
if (unlikely(!desc))
return NULL;
desc_sw = kzalloc(sizeof(*desc_sw), flags);
if (unlikely(!desc_sw)) {
pci_pool_free(ioatdma_device->dma_pool, desc, phys);
return NULL;
}
memset(desc, 0, sizeof(*desc));
dma_async_tx_descriptor_init(&desc_sw->async_tx, &ioat_chan->common);
switch (ioat_chan->device->version) {
case IOAT_VER_1_2:
desc_sw->async_tx.tx_submit = ioat1_tx_submit;
break;
case IOAT_VER_2_0:
desc_sw->async_tx.tx_submit = ioat2_tx_submit;
break;
}
INIT_LIST_HEAD(&desc_sw->async_tx.tx_list);
desc_sw->hw = desc;
desc_sw->async_tx.phys = phys;
return desc_sw;
}
static int ioat_initial_desc_count = 256;
module_param(ioat_initial_desc_count, int, 0644);
MODULE_PARM_DESC(ioat_initial_desc_count,
"initial descriptors per channel (default: 256)");
/**
* ioat2_dma_massage_chan_desc - link the descriptors into a circle
* @ioat_chan: the channel to be massaged
*/
static void ioat2_dma_massage_chan_desc(struct ioat_dma_chan *ioat_chan)
{
struct ioat_desc_sw *desc, *_desc;
/* setup used_desc */
ioat_chan->used_desc.next = ioat_chan->free_desc.next;
ioat_chan->used_desc.prev = NULL;
/* pull free_desc out of the circle so that every node is a hw
* descriptor, but leave it pointing to the list
*/
ioat_chan->free_desc.prev->next = ioat_chan->free_desc.next;
ioat_chan->free_desc.next->prev = ioat_chan->free_desc.prev;
/* circle link the hw descriptors */
desc = to_ioat_desc(ioat_chan->free_desc.next);
desc->hw->next = to_ioat_desc(desc->node.next)->async_tx.phys;
list_for_each_entry_safe(desc, _desc, ioat_chan->free_desc.next, node) {
desc->hw->next = to_ioat_desc(desc->node.next)->async_tx.phys;
}
}
/**
* ioat_dma_alloc_chan_resources - returns the number of allocated descriptors
* @chan: the channel to be filled out
*/
static int ioat_dma_alloc_chan_resources(struct dma_chan *chan)
{
struct ioat_dma_chan *ioat_chan = to_ioat_chan(chan);
struct ioat_desc_sw *desc;
u16 chanctrl;
u32 chanerr;
int i;
LIST_HEAD(tmp_list);
/* have we already been set up? */
if (!list_empty(&ioat_chan->free_desc))
return ioat_chan->desccount;
/* Setup register to interrupt and write completion status on error */
chanctrl = IOAT_CHANCTRL_ERR_INT_EN |
IOAT_CHANCTRL_ANY_ERR_ABORT_EN |
IOAT_CHANCTRL_ERR_COMPLETION_EN;
writew(chanctrl, ioat_chan->reg_base + IOAT_CHANCTRL_OFFSET);
chanerr = readl(ioat_chan->reg_base + IOAT_CHANERR_OFFSET);
if (chanerr) {
dev_err(&ioat_chan->device->pdev->dev,
"CHANERR = %x, clearing\n", chanerr);
writel(chanerr, ioat_chan->reg_base + IOAT_CHANERR_OFFSET);
}
/* Allocate descriptors */
for (i = 0; i < ioat_initial_desc_count; i++) {
desc = ioat_dma_alloc_descriptor(ioat_chan, GFP_KERNEL);
if (!desc) {
dev_err(&ioat_chan->device->pdev->dev,
"Only %d initial descriptors\n", i);
break;
}
list_add_tail(&desc->node, &tmp_list);
}
spin_lock_bh(&ioat_chan->desc_lock);
ioat_chan->desccount = i;
list_splice(&tmp_list, &ioat_chan->free_desc);
if (ioat_chan->device->version != IOAT_VER_1_2)
ioat2_dma_massage_chan_desc(ioat_chan);
spin_unlock_bh(&ioat_chan->desc_lock);
/* allocate a completion writeback area */
/* doing 2 32bit writes to mmio since 1 64b write doesn't work */
ioat_chan->completion_virt =
pci_pool_alloc(ioat_chan->device->completion_pool,
GFP_KERNEL,
&ioat_chan->completion_addr);
memset(ioat_chan->completion_virt, 0,
sizeof(*ioat_chan->completion_virt));
writel(((u64) ioat_chan->completion_addr) & 0x00000000FFFFFFFF,
ioat_chan->reg_base + IOAT_CHANCMP_OFFSET_LOW);
writel(((u64) ioat_chan->completion_addr) >> 32,
ioat_chan->reg_base + IOAT_CHANCMP_OFFSET_HIGH);
tasklet_enable(&ioat_chan->cleanup_task);
ioat_dma_start_null_desc(ioat_chan); /* give chain to dma device */
return ioat_chan->desccount;
}
/**
* ioat_dma_free_chan_resources - release all the descriptors
* @chan: the channel to be cleaned
*/
static void ioat_dma_free_chan_resources(struct dma_chan *chan)
{
struct ioat_dma_chan *ioat_chan = to_ioat_chan(chan);
struct ioatdma_device *ioatdma_device = to_ioatdma_device(chan->device);
struct ioat_desc_sw *desc, *_desc;
int in_use_descs = 0;
tasklet_disable(&ioat_chan->cleanup_task);
ioat_dma_memcpy_cleanup(ioat_chan);
/* Delay 100ms after reset to allow internal DMA logic to quiesce
* before removing DMA descriptor resources.
*/
writeb(IOAT_CHANCMD_RESET,
ioat_chan->reg_base
+ IOAT_CHANCMD_OFFSET(ioat_chan->device->version));
mdelay(100);
spin_lock_bh(&ioat_chan->desc_lock);
switch (ioat_chan->device->version) {
case IOAT_VER_1_2:
list_for_each_entry_safe(desc, _desc,
&ioat_chan->used_desc, node) {
in_use_descs++;
list_del(&desc->node);
pci_pool_free(ioatdma_device->dma_pool, desc->hw,
desc->async_tx.phys);
kfree(desc);
}
list_for_each_entry_safe(desc, _desc,
&ioat_chan->free_desc, node) {
list_del(&desc->node);
pci_pool_free(ioatdma_device->dma_pool, desc->hw,
desc->async_tx.phys);
kfree(desc);
}
break;
case IOAT_VER_2_0:
list_for_each_entry_safe(desc, _desc,
ioat_chan->free_desc.next, node) {
list_del(&desc->node);
pci_pool_free(ioatdma_device->dma_pool, desc->hw,
desc->async_tx.phys);
kfree(desc);
}
desc = to_ioat_desc(ioat_chan->free_desc.next);
pci_pool_free(ioatdma_device->dma_pool, desc->hw,
desc->async_tx.phys);
kfree(desc);
INIT_LIST_HEAD(&ioat_chan->free_desc);
INIT_LIST_HEAD(&ioat_chan->used_desc);
break;
}
spin_unlock_bh(&ioat_chan->desc_lock);
pci_pool_free(ioatdma_device->completion_pool,
ioat_chan->completion_virt,
ioat_chan->completion_addr);
/* one is ok since we left it on there on purpose */
if (in_use_descs > 1)
dev_err(&ioat_chan->device->pdev->dev,
"Freeing %d in use descriptors!\n",
in_use_descs - 1);
ioat_chan->last_completion = ioat_chan->completion_addr = 0;
ioat_chan->pending = 0;
ioat_chan->dmacount = 0;
}
/**
* ioat_dma_get_next_descriptor - return the next available descriptor
* @ioat_chan: IOAT DMA channel handle
*
* Gets the next descriptor from the chain, and must be called with the
* channel's desc_lock held. Allocates more descriptors if the channel
* has run out.
*/
static struct ioat_desc_sw *
ioat1_dma_get_next_descriptor(struct ioat_dma_chan *ioat_chan)
{
struct ioat_desc_sw *new;
if (!list_empty(&ioat_chan->free_desc)) {
new = to_ioat_desc(ioat_chan->free_desc.next);
list_del(&new->node);
} else {
/* try to get another desc */
new = ioat_dma_alloc_descriptor(ioat_chan, GFP_ATOMIC);
if (!new) {
dev_err(&ioat_chan->device->pdev->dev,
"alloc failed\n");
return NULL;
}
}
prefetch(new->hw);
return new;
}
static struct ioat_desc_sw *
ioat2_dma_get_next_descriptor(struct ioat_dma_chan *ioat_chan)
{
struct ioat_desc_sw *new;
/*
* used.prev points to where to start processing
* used.next points to next free descriptor
* if used.prev == NULL, there are none waiting to be processed
* if used.next == used.prev.prev, there is only one free descriptor,
* and we need to use it to as a noop descriptor before
* linking in a new set of descriptors, since the device
* has probably already read the pointer to it
*/
if (ioat_chan->used_desc.prev &&
ioat_chan->used_desc.next == ioat_chan->used_desc.prev->prev) {
struct ioat_desc_sw *desc;
struct ioat_desc_sw *noop_desc;
int i;
/* set up the noop descriptor */
noop_desc = to_ioat_desc(ioat_chan->used_desc.next);
noop_desc->hw->size = 0;
noop_desc->hw->ctl = IOAT_DMA_DESCRIPTOR_NUL;
noop_desc->hw->src_addr = 0;
noop_desc->hw->dst_addr = 0;
ioat_chan->used_desc.next = ioat_chan->used_desc.next->next;
ioat_chan->pending++;
ioat_chan->dmacount++;
/* try to get a few more descriptors */
for (i = 16; i; i--) {
desc = ioat_dma_alloc_descriptor(ioat_chan, GFP_ATOMIC);
if (!desc) {
dev_err(&ioat_chan->device->pdev->dev,
"alloc failed\n");
break;
}
list_add_tail(&desc->node, ioat_chan->used_desc.next);
desc->hw->next
= to_ioat_desc(desc->node.next)->async_tx.phys;
to_ioat_desc(desc->node.prev)->hw->next
= desc->async_tx.phys;
ioat_chan->desccount++;
}
ioat_chan->used_desc.next = noop_desc->node.next;
}
new = to_ioat_desc(ioat_chan->used_desc.next);
prefetch(new);
ioat_chan->used_desc.next = new->node.next;
if (ioat_chan->used_desc.prev == NULL)
ioat_chan->used_desc.prev = &new->node;
prefetch(new->hw);
return new;
}
static struct ioat_desc_sw *ioat_dma_get_next_descriptor(
struct ioat_dma_chan *ioat_chan)
{
if (!ioat_chan)
return NULL;
switch (ioat_chan->device->version) {
case IOAT_VER_1_2:
return ioat1_dma_get_next_descriptor(ioat_chan);
break;
case IOAT_VER_2_0:
return ioat2_dma_get_next_descriptor(ioat_chan);
break;
}
return NULL;
}
static struct dma_async_tx_descriptor *ioat1_dma_prep_memcpy(
struct dma_chan *chan,
dma_addr_t dma_dest,
dma_addr_t dma_src,
size_t len,
int int_en)
{
struct ioat_dma_chan *ioat_chan = to_ioat_chan(chan);
struct ioat_desc_sw *new;
spin_lock_bh(&ioat_chan->desc_lock);
new = ioat_dma_get_next_descriptor(ioat_chan);
spin_unlock_bh(&ioat_chan->desc_lock);
if (new) {
new->len = len;
new->dst = dma_dest;
new->src = dma_src;
return &new->async_tx;
} else
return NULL;
}
static struct dma_async_tx_descriptor *ioat2_dma_prep_memcpy(
struct dma_chan *chan,
dma_addr_t dma_dest,
dma_addr_t dma_src,
size_t len,
int int_en)
{
struct ioat_dma_chan *ioat_chan = to_ioat_chan(chan);
struct ioat_desc_sw *new;
spin_lock_bh(&ioat_chan->desc_lock);
new = ioat2_dma_get_next_descriptor(ioat_chan);
/*
* leave ioat_chan->desc_lock set in ioat 2 path
* it will get unlocked at end of tx_submit
*/
if (new) {
new->len = len;
new->dst = dma_dest;
new->src = dma_src;
return &new->async_tx;
} else
return NULL;
}
static void ioat_dma_cleanup_tasklet(unsigned long data)
{
struct ioat_dma_chan *chan = (void *)data;
ioat_dma_memcpy_cleanup(chan);
writew(IOAT_CHANCTRL_INT_DISABLE,
chan->reg_base + IOAT_CHANCTRL_OFFSET);
}
/**
* ioat_dma_memcpy_cleanup - cleanup up finished descriptors
* @chan: ioat channel to be cleaned up
*/
static void ioat_dma_memcpy_cleanup(struct ioat_dma_chan *ioat_chan)
{
unsigned long phys_complete;
struct ioat_desc_sw *desc, *_desc;
dma_cookie_t cookie = 0;
unsigned long desc_phys;
struct ioat_desc_sw *latest_desc;
prefetch(ioat_chan->completion_virt);
if (!spin_trylock_bh(&ioat_chan->cleanup_lock))
return;
/* The completion writeback can happen at any time,
so reads by the driver need to be atomic operations
The descriptor physical addresses are limited to 32-bits
when the CPU can only do a 32-bit mov */
#if (BITS_PER_LONG == 64)
phys_complete =
ioat_chan->completion_virt->full
& IOAT_CHANSTS_COMPLETED_DESCRIPTOR_ADDR;
#else
phys_complete =
ioat_chan->completion_virt->low & IOAT_LOW_COMPLETION_MASK;
#endif
if ((ioat_chan->completion_virt->full
& IOAT_CHANSTS_DMA_TRANSFER_STATUS) ==
IOAT_CHANSTS_DMA_TRANSFER_STATUS_HALTED) {
dev_err(&ioat_chan->device->pdev->dev,
"Channel halted, chanerr = %x\n",
readl(ioat_chan->reg_base + IOAT_CHANERR_OFFSET));
/* TODO do something to salvage the situation */
}
if (phys_complete == ioat_chan->last_completion) {
spin_unlock_bh(&ioat_chan->cleanup_lock);
return;
}
cookie = 0;
spin_lock_bh(&ioat_chan->desc_lock);
switch (ioat_chan->device->version) {
case IOAT_VER_1_2:
list_for_each_entry_safe(desc, _desc,
&ioat_chan->used_desc, node) {
/*
* Incoming DMA requests may use multiple descriptors,
* due to exceeding xfercap, perhaps. If so, only the
* last one will have a cookie, and require unmapping.
*/
if (desc->async_tx.cookie) {
cookie = desc->async_tx.cookie;
/*
* yes we are unmapping both _page and _single
* alloc'd regions with unmap_page. Is this
* *really* that bad?
*/
pci_unmap_page(ioat_chan->device->pdev,
pci_unmap_addr(desc, dst),
pci_unmap_len(desc, len),
PCI_DMA_FROMDEVICE);
pci_unmap_page(ioat_chan->device->pdev,
pci_unmap_addr(desc, src),
pci_unmap_len(desc, len),
PCI_DMA_TODEVICE);
if (desc->async_tx.callback) {
desc->async_tx.callback(desc->async_tx.callback_param);
desc->async_tx.callback = NULL;
}
}
if (desc->async_tx.phys != phys_complete) {
/*
* a completed entry, but not the last, so clean
* up if the client is done with the descriptor
*/
if (desc->async_tx.ack) {
list_del(&desc->node);
list_add_tail(&desc->node,
&ioat_chan->free_desc);
} else
desc->async_tx.cookie = 0;
} else {
/*
* last used desc. Do not remove, so we can
* append from it, but don't look at it next
* time, either
*/
desc->async_tx.cookie = 0;
/* TODO check status bits? */
break;
}
}
break;
case IOAT_VER_2_0:
/* has some other thread has already cleaned up? */
if (ioat_chan->used_desc.prev == NULL)
break;
/* work backwards to find latest finished desc */
desc = to_ioat_desc(ioat_chan->used_desc.next);
latest_desc = NULL;
do {
desc = to_ioat_desc(desc->node.prev);
desc_phys = (unsigned long)desc->async_tx.phys
& IOAT_CHANSTS_COMPLETED_DESCRIPTOR_ADDR;
if (desc_phys == phys_complete) {
latest_desc = desc;
break;
}
} while (&desc->node != ioat_chan->used_desc.prev);
if (latest_desc != NULL) {
/* work forwards to clear finished descriptors */
for (desc = to_ioat_desc(ioat_chan->used_desc.prev);
&desc->node != latest_desc->node.next &&
&desc->node != ioat_chan->used_desc.next;
desc = to_ioat_desc(desc->node.next)) {
if (desc->async_tx.cookie) {
cookie = desc->async_tx.cookie;
desc->async_tx.cookie = 0;
pci_unmap_page(ioat_chan->device->pdev,
pci_unmap_addr(desc, dst),
pci_unmap_len(desc, len),
PCI_DMA_FROMDEVICE);
pci_unmap_page(ioat_chan->device->pdev,
pci_unmap_addr(desc, src),
pci_unmap_len(desc, len),
PCI_DMA_TODEVICE);
if (desc->async_tx.callback) {
desc->async_tx.callback(desc->async_tx.callback_param);
desc->async_tx.callback = NULL;
}
}
}
/* move used.prev up beyond those that are finished */
if (&desc->node == ioat_chan->used_desc.next)
ioat_chan->used_desc.prev = NULL;
else
ioat_chan->used_desc.prev = &desc->node;
}
break;
}
spin_unlock_bh(&ioat_chan->desc_lock);
ioat_chan->last_completion = phys_complete;
if (cookie != 0)
ioat_chan->completed_cookie = cookie;
spin_unlock_bh(&ioat_chan->cleanup_lock);
}
static void ioat_dma_dependency_added(struct dma_chan *chan)
{
struct ioat_dma_chan *ioat_chan = to_ioat_chan(chan);
spin_lock_bh(&ioat_chan->desc_lock);
if (ioat_chan->pending == 0) {
spin_unlock_bh(&ioat_chan->desc_lock);
ioat_dma_memcpy_cleanup(ioat_chan);
} else
spin_unlock_bh(&ioat_chan->desc_lock);
}
/**
* ioat_dma_is_complete - poll the status of a IOAT DMA transaction
* @chan: IOAT DMA channel handle
* @cookie: DMA transaction identifier
* @done: if not %NULL, updated with last completed transaction
* @used: if not %NULL, updated with last used transaction
*/
static enum dma_status ioat_dma_is_complete(struct dma_chan *chan,
dma_cookie_t cookie,
dma_cookie_t *done,
dma_cookie_t *used)
{
struct ioat_dma_chan *ioat_chan = to_ioat_chan(chan);
dma_cookie_t last_used;
dma_cookie_t last_complete;
enum dma_status ret;
last_used = chan->cookie;
last_complete = ioat_chan->completed_cookie;
if (done)
*done = last_complete;
if (used)
*used = last_used;
ret = dma_async_is_complete(cookie, last_complete, last_used);
if (ret == DMA_SUCCESS)
return ret;
ioat_dma_memcpy_cleanup(ioat_chan);
last_used = chan->cookie;
last_complete = ioat_chan->completed_cookie;
if (done)
*done = last_complete;
if (used)
*used = last_used;
return dma_async_is_complete(cookie, last_complete, last_used);
}
static void ioat_dma_start_null_desc(struct ioat_dma_chan *ioat_chan)
{
struct ioat_desc_sw *desc;
spin_lock_bh(&ioat_chan->desc_lock);
desc = ioat_dma_get_next_descriptor(ioat_chan);
desc->hw->ctl = IOAT_DMA_DESCRIPTOR_NUL
| IOAT_DMA_DESCRIPTOR_CTL_INT_GN
| IOAT_DMA_DESCRIPTOR_CTL_CP_STS;
desc->hw->size = 0;
desc->hw->src_addr = 0;
desc->hw->dst_addr = 0;
desc->async_tx.ack = 1;
switch (ioat_chan->device->version) {
case IOAT_VER_1_2:
desc->hw->next = 0;
list_add_tail(&desc->node, &ioat_chan->used_desc);
writel(((u64) desc->async_tx.phys) & 0x00000000FFFFFFFF,
ioat_chan->reg_base + IOAT1_CHAINADDR_OFFSET_LOW);
writel(((u64) desc->async_tx.phys) >> 32,
ioat_chan->reg_base + IOAT1_CHAINADDR_OFFSET_HIGH);
writeb(IOAT_CHANCMD_START, ioat_chan->reg_base
+ IOAT_CHANCMD_OFFSET(ioat_chan->device->version));
break;
case IOAT_VER_2_0:
writel(((u64) desc->async_tx.phys) & 0x00000000FFFFFFFF,
ioat_chan->reg_base + IOAT2_CHAINADDR_OFFSET_LOW);
writel(((u64) desc->async_tx.phys) >> 32,
ioat_chan->reg_base + IOAT2_CHAINADDR_OFFSET_HIGH);
ioat_chan->dmacount++;
__ioat2_dma_memcpy_issue_pending(ioat_chan);
break;
}
spin_unlock_bh(&ioat_chan->desc_lock);
}
/*
* Perform a IOAT transaction to verify the HW works.
*/
#define IOAT_TEST_SIZE 2000
static void ioat_dma_test_callback(void *dma_async_param)
{
printk(KERN_ERR "ioatdma: ioat_dma_test_callback(%p)\n",
dma_async_param);
}
/**
* ioat_dma_self_test - Perform a IOAT transaction to verify the HW works.
* @device: device to be tested
*/
static int ioat_dma_self_test(struct ioatdma_device *device)
{
int i;
u8 *src;
u8 *dest;
struct dma_chan *dma_chan;
struct dma_async_tx_descriptor *tx;
dma_addr_t dma_dest, dma_src;
dma_cookie_t cookie;
int err = 0;
src = kzalloc(sizeof(u8) * IOAT_TEST_SIZE, GFP_KERNEL);
if (!src)
return -ENOMEM;
dest = kzalloc(sizeof(u8) * IOAT_TEST_SIZE, GFP_KERNEL);
if (!dest) {
kfree(src);
return -ENOMEM;
}
/* Fill in src buffer */
for (i = 0; i < IOAT_TEST_SIZE; i++)
src[i] = (u8)i;
/* Start copy, using first DMA channel */
dma_chan = container_of(device->common.channels.next,
struct dma_chan,
device_node);
if (device->common.device_alloc_chan_resources(dma_chan) < 1) {
dev_err(&device->pdev->dev,
"selftest cannot allocate chan resource\n");
err = -ENODEV;
goto out;
}
dma_src = dma_map_single(dma_chan->device->dev, src, IOAT_TEST_SIZE,
DMA_TO_DEVICE);
dma_dest = dma_map_single(dma_chan->device->dev, dest, IOAT_TEST_SIZE,
DMA_FROM_DEVICE);
tx = device->common.device_prep_dma_memcpy(dma_chan, dma_dest, dma_src,
IOAT_TEST_SIZE, 0);
if (!tx) {
dev_err(&device->pdev->dev,
"Self-test prep failed, disabling\n");
err = -ENODEV;
goto free_resources;
}
async_tx_ack(tx);
tx->callback = ioat_dma_test_callback;
tx->callback_param = (void *)0x8086;
cookie = tx->tx_submit(tx);
if (cookie < 0) {
dev_err(&device->pdev->dev,
"Self-test setup failed, disabling\n");
err = -ENODEV;
goto free_resources;
}
device->common.device_issue_pending(dma_chan);
msleep(1);
if (device->common.device_is_tx_complete(dma_chan, cookie, NULL, NULL)
!= DMA_SUCCESS) {
dev_err(&device->pdev->dev,
"Self-test copy timed out, disabling\n");
err = -ENODEV;
goto free_resources;
}
if (memcmp(src, dest, IOAT_TEST_SIZE)) {
dev_err(&device->pdev->dev,
"Self-test copy failed compare, disabling\n");
err = -ENODEV;
goto free_resources;
}
free_resources:
device->common.device_free_chan_resources(dma_chan);
out:
kfree(src);
kfree(dest);
return err;
}
static char ioat_interrupt_style[32] = "msix";
module_param_string(ioat_interrupt_style, ioat_interrupt_style,
sizeof(ioat_interrupt_style), 0644);
MODULE_PARM_DESC(ioat_interrupt_style,
"set ioat interrupt style: msix (default), "
"msix-single-vector, msi, intx)");
/**
* ioat_dma_setup_interrupts - setup interrupt handler
* @device: ioat device
*/
static int ioat_dma_setup_interrupts(struct ioatdma_device *device)
{
struct ioat_dma_chan *ioat_chan;
int err, i, j, msixcnt;
u8 intrctrl = 0;
if (!strcmp(ioat_interrupt_style, "msix"))
goto msix;
if (!strcmp(ioat_interrupt_style, "msix-single-vector"))
goto msix_single_vector;
if (!strcmp(ioat_interrupt_style, "msi"))
goto msi;
if (!strcmp(ioat_interrupt_style, "intx"))
goto intx;
dev_err(&device->pdev->dev, "invalid ioat_interrupt_style %s\n",
ioat_interrupt_style);
goto err_no_irq;
msix:
/* The number of MSI-X vectors should equal the number of channels */
msixcnt = device->common.chancnt;
for (i = 0; i < msixcnt; i++)
device->msix_entries[i].entry = i;
err = pci_enable_msix(device->pdev, device->msix_entries, msixcnt);
if (err < 0)
goto msi;
if (err > 0)
goto msix_single_vector;
for (i = 0; i < msixcnt; i++) {
ioat_chan = ioat_lookup_chan_by_index(device, i);
err = request_irq(device->msix_entries[i].vector,
ioat_dma_do_interrupt_msix,
0, "ioat-msix", ioat_chan);
if (err) {
for (j = 0; j < i; j++) {
ioat_chan =
ioat_lookup_chan_by_index(device, j);
free_irq(device->msix_entries[j].vector,
ioat_chan);
}
goto msix_single_vector;
}
}
intrctrl |= IOAT_INTRCTRL_MSIX_VECTOR_CONTROL;
device->irq_mode = msix_multi_vector;
goto done;
msix_single_vector:
device->msix_entries[0].entry = 0;
err = pci_enable_msix(device->pdev, device->msix_entries, 1);
if (err)
goto msi;
err = request_irq(device->msix_entries[0].vector, ioat_dma_do_interrupt,
0, "ioat-msix", device);
if (err) {
pci_disable_msix(device->pdev);
goto msi;
}
device->irq_mode = msix_single_vector;
goto done;
msi:
err = pci_enable_msi(device->pdev);
if (err)
goto intx;
err = request_irq(device->pdev->irq, ioat_dma_do_interrupt,
0, "ioat-msi", device);
if (err) {
pci_disable_msi(device->pdev);
goto intx;
}
/*
* CB 1.2 devices need a bit set in configuration space to enable MSI
*/
if (device->version == IOAT_VER_1_2) {
u32 dmactrl;
pci_read_config_dword(device->pdev,
IOAT_PCI_DMACTRL_OFFSET, &dmactrl);
dmactrl |= IOAT_PCI_DMACTRL_MSI_EN;
pci_write_config_dword(device->pdev,
IOAT_PCI_DMACTRL_OFFSET, dmactrl);
}
device->irq_mode = msi;
goto done;
intx:
err = request_irq(device->pdev->irq, ioat_dma_do_interrupt,
IRQF_SHARED, "ioat-intx", device);
if (err)
goto err_no_irq;
device->irq_mode = intx;
done:
intrctrl |= IOAT_INTRCTRL_MASTER_INT_EN;
writeb(intrctrl, device->reg_base + IOAT_INTRCTRL_OFFSET);
return 0;
err_no_irq:
/* Disable all interrupt generation */
writeb(0, device->reg_base + IOAT_INTRCTRL_OFFSET);
dev_err(&device->pdev->dev, "no usable interrupts\n");
device->irq_mode = none;
return -1;
}
/**
* ioat_dma_remove_interrupts - remove whatever interrupts were set
* @device: ioat device
*/
static void ioat_dma_remove_interrupts(struct ioatdma_device *device)
{
struct ioat_dma_chan *ioat_chan;
int i;
/* Disable all interrupt generation */
writeb(0, device->reg_base + IOAT_INTRCTRL_OFFSET);
switch (device->irq_mode) {
case msix_multi_vector:
for (i = 0; i < device->common.chancnt; i++) {
ioat_chan = ioat_lookup_chan_by_index(device, i);
free_irq(device->msix_entries[i].vector, ioat_chan);
}
pci_disable_msix(device->pdev);
break;
case msix_single_vector:
free_irq(device->msix_entries[0].vector, device);
pci_disable_msix(device->pdev);
break;
case msi:
free_irq(device->pdev->irq, device);
pci_disable_msi(device->pdev);
break;
case intx:
free_irq(device->pdev->irq, device);
break;
case none:
dev_warn(&device->pdev->dev,
"call to %s without interrupts setup\n", __func__);
}
device->irq_mode = none;
}
struct ioatdma_device *ioat_dma_probe(struct pci_dev *pdev,
void __iomem *iobase)
{
int err;
struct ioatdma_device *device;
device = kzalloc(sizeof(*device), GFP_KERNEL);
if (!device) {
err = -ENOMEM;
goto err_kzalloc;
}
device->pdev = pdev;
device->reg_base = iobase;
device->version = readb(device->reg_base + IOAT_VER_OFFSET);
/* DMA coherent memory pool for DMA descriptor allocations */
device->dma_pool = pci_pool_create("dma_desc_pool", pdev,
sizeof(struct ioat_dma_descriptor),
64, 0);
if (!device->dma_pool) {
err = -ENOMEM;
goto err_dma_pool;
}
device->completion_pool = pci_pool_create("completion_pool", pdev,
sizeof(u64), SMP_CACHE_BYTES,
SMP_CACHE_BYTES);
if (!device->completion_pool) {
err = -ENOMEM;
goto err_completion_pool;
}
INIT_LIST_HEAD(&device->common.channels);
ioat_dma_enumerate_channels(device);
device->common.device_alloc_chan_resources =
ioat_dma_alloc_chan_resources;
device->common.device_free_chan_resources =
ioat_dma_free_chan_resources;
device->common.dev = &pdev->dev;
dma_cap_set(DMA_MEMCPY, device->common.cap_mask);
device->common.device_is_tx_complete = ioat_dma_is_complete;
device->common.device_dependency_added = ioat_dma_dependency_added;
switch (device->version) {
case IOAT_VER_1_2:
device->common.device_prep_dma_memcpy = ioat1_dma_prep_memcpy;
device->common.device_issue_pending =
ioat1_dma_memcpy_issue_pending;
break;
case IOAT_VER_2_0:
device->common.device_prep_dma_memcpy = ioat2_dma_prep_memcpy;
device->common.device_issue_pending =
ioat2_dma_memcpy_issue_pending;
break;
}
dev_err(&device->pdev->dev,
"Intel(R) I/OAT DMA Engine found,"
" %d channels, device version 0x%02x, driver version %s\n",
device->common.chancnt, device->version, IOAT_DMA_VERSION);
err = ioat_dma_setup_interrupts(device);
if (err)
goto err_setup_interrupts;
err = ioat_dma_self_test(device);
if (err)
goto err_self_test;
dma_async_device_register(&device->common);
return device;
err_self_test:
ioat_dma_remove_interrupts(device);
err_setup_interrupts:
pci_pool_destroy(device->completion_pool);
err_completion_pool:
pci_pool_destroy(device->dma_pool);
err_dma_pool:
kfree(device);
err_kzalloc:
dev_err(&pdev->dev,
"Intel(R) I/OAT DMA Engine initialization failed\n");
return NULL;
}
void ioat_dma_remove(struct ioatdma_device *device)
{
struct dma_chan *chan, *_chan;
struct ioat_dma_chan *ioat_chan;
ioat_dma_remove_interrupts(device);
dma_async_device_unregister(&device->common);
pci_pool_destroy(device->dma_pool);
pci_pool_destroy(device->completion_pool);
iounmap(device->reg_base);
pci_release_regions(device->pdev);
pci_disable_device(device->pdev);
list_for_each_entry_safe(chan, _chan,
&device->common.channels, device_node) {
ioat_chan = to_ioat_chan(chan);
list_del(&chan->device_node);
kfree(ioat_chan);
}
kfree(device);
}