mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2024-11-01 00:48:50 +00:00
d760156601
Use fs_info->max_extent_size also in get_extent_max_capacity() for the completeness. This is only used for defrag and not really necessary to fix the metadata reservation size. But, it still suppresses unnecessary defrag operations. Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
5593 lines
140 KiB
C
5593 lines
140 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2007 Oracle. All rights reserved.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/bio.h>
|
|
#include <linux/file.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/fsnotify.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/time.h>
|
|
#include <linux/string.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/mount.h>
|
|
#include <linux/namei.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/compat.h>
|
|
#include <linux/security.h>
|
|
#include <linux/xattr.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/uuid.h>
|
|
#include <linux/btrfs.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/iversion.h>
|
|
#include <linux/fileattr.h>
|
|
#include <linux/fsverity.h>
|
|
#include <linux/sched/xacct.h>
|
|
#include "ctree.h"
|
|
#include "disk-io.h"
|
|
#include "export.h"
|
|
#include "transaction.h"
|
|
#include "btrfs_inode.h"
|
|
#include "print-tree.h"
|
|
#include "volumes.h"
|
|
#include "locking.h"
|
|
#include "backref.h"
|
|
#include "rcu-string.h"
|
|
#include "send.h"
|
|
#include "dev-replace.h"
|
|
#include "props.h"
|
|
#include "sysfs.h"
|
|
#include "qgroup.h"
|
|
#include "tree-log.h"
|
|
#include "compression.h"
|
|
#include "space-info.h"
|
|
#include "delalloc-space.h"
|
|
#include "block-group.h"
|
|
#include "subpage.h"
|
|
|
|
#ifdef CONFIG_64BIT
|
|
/* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
|
|
* structures are incorrect, as the timespec structure from userspace
|
|
* is 4 bytes too small. We define these alternatives here to teach
|
|
* the kernel about the 32-bit struct packing.
|
|
*/
|
|
struct btrfs_ioctl_timespec_32 {
|
|
__u64 sec;
|
|
__u32 nsec;
|
|
} __attribute__ ((__packed__));
|
|
|
|
struct btrfs_ioctl_received_subvol_args_32 {
|
|
char uuid[BTRFS_UUID_SIZE]; /* in */
|
|
__u64 stransid; /* in */
|
|
__u64 rtransid; /* out */
|
|
struct btrfs_ioctl_timespec_32 stime; /* in */
|
|
struct btrfs_ioctl_timespec_32 rtime; /* out */
|
|
__u64 flags; /* in */
|
|
__u64 reserved[16]; /* in */
|
|
} __attribute__ ((__packed__));
|
|
|
|
#define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
|
|
struct btrfs_ioctl_received_subvol_args_32)
|
|
#endif
|
|
|
|
#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
|
|
struct btrfs_ioctl_send_args_32 {
|
|
__s64 send_fd; /* in */
|
|
__u64 clone_sources_count; /* in */
|
|
compat_uptr_t clone_sources; /* in */
|
|
__u64 parent_root; /* in */
|
|
__u64 flags; /* in */
|
|
__u32 version; /* in */
|
|
__u8 reserved[28]; /* in */
|
|
} __attribute__ ((__packed__));
|
|
|
|
#define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
|
|
struct btrfs_ioctl_send_args_32)
|
|
|
|
struct btrfs_ioctl_encoded_io_args_32 {
|
|
compat_uptr_t iov;
|
|
compat_ulong_t iovcnt;
|
|
__s64 offset;
|
|
__u64 flags;
|
|
__u64 len;
|
|
__u64 unencoded_len;
|
|
__u64 unencoded_offset;
|
|
__u32 compression;
|
|
__u32 encryption;
|
|
__u8 reserved[64];
|
|
};
|
|
|
|
#define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \
|
|
struct btrfs_ioctl_encoded_io_args_32)
|
|
#define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \
|
|
struct btrfs_ioctl_encoded_io_args_32)
|
|
#endif
|
|
|
|
/* Mask out flags that are inappropriate for the given type of inode. */
|
|
static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
|
|
unsigned int flags)
|
|
{
|
|
if (S_ISDIR(inode->i_mode))
|
|
return flags;
|
|
else if (S_ISREG(inode->i_mode))
|
|
return flags & ~FS_DIRSYNC_FL;
|
|
else
|
|
return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
|
|
}
|
|
|
|
/*
|
|
* Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
|
|
* ioctl.
|
|
*/
|
|
static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode)
|
|
{
|
|
unsigned int iflags = 0;
|
|
u32 flags = binode->flags;
|
|
u32 ro_flags = binode->ro_flags;
|
|
|
|
if (flags & BTRFS_INODE_SYNC)
|
|
iflags |= FS_SYNC_FL;
|
|
if (flags & BTRFS_INODE_IMMUTABLE)
|
|
iflags |= FS_IMMUTABLE_FL;
|
|
if (flags & BTRFS_INODE_APPEND)
|
|
iflags |= FS_APPEND_FL;
|
|
if (flags & BTRFS_INODE_NODUMP)
|
|
iflags |= FS_NODUMP_FL;
|
|
if (flags & BTRFS_INODE_NOATIME)
|
|
iflags |= FS_NOATIME_FL;
|
|
if (flags & BTRFS_INODE_DIRSYNC)
|
|
iflags |= FS_DIRSYNC_FL;
|
|
if (flags & BTRFS_INODE_NODATACOW)
|
|
iflags |= FS_NOCOW_FL;
|
|
if (ro_flags & BTRFS_INODE_RO_VERITY)
|
|
iflags |= FS_VERITY_FL;
|
|
|
|
if (flags & BTRFS_INODE_NOCOMPRESS)
|
|
iflags |= FS_NOCOMP_FL;
|
|
else if (flags & BTRFS_INODE_COMPRESS)
|
|
iflags |= FS_COMPR_FL;
|
|
|
|
return iflags;
|
|
}
|
|
|
|
/*
|
|
* Update inode->i_flags based on the btrfs internal flags.
|
|
*/
|
|
void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
|
|
{
|
|
struct btrfs_inode *binode = BTRFS_I(inode);
|
|
unsigned int new_fl = 0;
|
|
|
|
if (binode->flags & BTRFS_INODE_SYNC)
|
|
new_fl |= S_SYNC;
|
|
if (binode->flags & BTRFS_INODE_IMMUTABLE)
|
|
new_fl |= S_IMMUTABLE;
|
|
if (binode->flags & BTRFS_INODE_APPEND)
|
|
new_fl |= S_APPEND;
|
|
if (binode->flags & BTRFS_INODE_NOATIME)
|
|
new_fl |= S_NOATIME;
|
|
if (binode->flags & BTRFS_INODE_DIRSYNC)
|
|
new_fl |= S_DIRSYNC;
|
|
if (binode->ro_flags & BTRFS_INODE_RO_VERITY)
|
|
new_fl |= S_VERITY;
|
|
|
|
set_mask_bits(&inode->i_flags,
|
|
S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
|
|
S_VERITY, new_fl);
|
|
}
|
|
|
|
/*
|
|
* Check if @flags are a supported and valid set of FS_*_FL flags and that
|
|
* the old and new flags are not conflicting
|
|
*/
|
|
static int check_fsflags(unsigned int old_flags, unsigned int flags)
|
|
{
|
|
if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
|
|
FS_NOATIME_FL | FS_NODUMP_FL | \
|
|
FS_SYNC_FL | FS_DIRSYNC_FL | \
|
|
FS_NOCOMP_FL | FS_COMPR_FL |
|
|
FS_NOCOW_FL))
|
|
return -EOPNOTSUPP;
|
|
|
|
/* COMPR and NOCOMP on new/old are valid */
|
|
if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
|
|
return -EINVAL;
|
|
|
|
if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
|
|
return -EINVAL;
|
|
|
|
/* NOCOW and compression options are mutually exclusive */
|
|
if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
|
|
return -EINVAL;
|
|
if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
|
|
unsigned int flags)
|
|
{
|
|
if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
|
|
return -EPERM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Set flags/xflags from the internal inode flags. The remaining items of
|
|
* fsxattr are zeroed.
|
|
*/
|
|
int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
|
|
{
|
|
struct btrfs_inode *binode = BTRFS_I(d_inode(dentry));
|
|
|
|
fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode));
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_fileattr_set(struct user_namespace *mnt_userns,
|
|
struct dentry *dentry, struct fileattr *fa)
|
|
{
|
|
struct inode *inode = d_inode(dentry);
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_inode *binode = BTRFS_I(inode);
|
|
struct btrfs_root *root = binode->root;
|
|
struct btrfs_trans_handle *trans;
|
|
unsigned int fsflags, old_fsflags;
|
|
int ret;
|
|
const char *comp = NULL;
|
|
u32 binode_flags;
|
|
|
|
if (btrfs_root_readonly(root))
|
|
return -EROFS;
|
|
|
|
if (fileattr_has_fsx(fa))
|
|
return -EOPNOTSUPP;
|
|
|
|
fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags);
|
|
old_fsflags = btrfs_inode_flags_to_fsflags(binode);
|
|
ret = check_fsflags(old_fsflags, fsflags);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = check_fsflags_compatible(fs_info, fsflags);
|
|
if (ret)
|
|
return ret;
|
|
|
|
binode_flags = binode->flags;
|
|
if (fsflags & FS_SYNC_FL)
|
|
binode_flags |= BTRFS_INODE_SYNC;
|
|
else
|
|
binode_flags &= ~BTRFS_INODE_SYNC;
|
|
if (fsflags & FS_IMMUTABLE_FL)
|
|
binode_flags |= BTRFS_INODE_IMMUTABLE;
|
|
else
|
|
binode_flags &= ~BTRFS_INODE_IMMUTABLE;
|
|
if (fsflags & FS_APPEND_FL)
|
|
binode_flags |= BTRFS_INODE_APPEND;
|
|
else
|
|
binode_flags &= ~BTRFS_INODE_APPEND;
|
|
if (fsflags & FS_NODUMP_FL)
|
|
binode_flags |= BTRFS_INODE_NODUMP;
|
|
else
|
|
binode_flags &= ~BTRFS_INODE_NODUMP;
|
|
if (fsflags & FS_NOATIME_FL)
|
|
binode_flags |= BTRFS_INODE_NOATIME;
|
|
else
|
|
binode_flags &= ~BTRFS_INODE_NOATIME;
|
|
|
|
/* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
|
|
if (!fa->flags_valid) {
|
|
/* 1 item for the inode */
|
|
trans = btrfs_start_transaction(root, 1);
|
|
if (IS_ERR(trans))
|
|
return PTR_ERR(trans);
|
|
goto update_flags;
|
|
}
|
|
|
|
if (fsflags & FS_DIRSYNC_FL)
|
|
binode_flags |= BTRFS_INODE_DIRSYNC;
|
|
else
|
|
binode_flags &= ~BTRFS_INODE_DIRSYNC;
|
|
if (fsflags & FS_NOCOW_FL) {
|
|
if (S_ISREG(inode->i_mode)) {
|
|
/*
|
|
* It's safe to turn csums off here, no extents exist.
|
|
* Otherwise we want the flag to reflect the real COW
|
|
* status of the file and will not set it.
|
|
*/
|
|
if (inode->i_size == 0)
|
|
binode_flags |= BTRFS_INODE_NODATACOW |
|
|
BTRFS_INODE_NODATASUM;
|
|
} else {
|
|
binode_flags |= BTRFS_INODE_NODATACOW;
|
|
}
|
|
} else {
|
|
/*
|
|
* Revert back under same assumptions as above
|
|
*/
|
|
if (S_ISREG(inode->i_mode)) {
|
|
if (inode->i_size == 0)
|
|
binode_flags &= ~(BTRFS_INODE_NODATACOW |
|
|
BTRFS_INODE_NODATASUM);
|
|
} else {
|
|
binode_flags &= ~BTRFS_INODE_NODATACOW;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The COMPRESS flag can only be changed by users, while the NOCOMPRESS
|
|
* flag may be changed automatically if compression code won't make
|
|
* things smaller.
|
|
*/
|
|
if (fsflags & FS_NOCOMP_FL) {
|
|
binode_flags &= ~BTRFS_INODE_COMPRESS;
|
|
binode_flags |= BTRFS_INODE_NOCOMPRESS;
|
|
} else if (fsflags & FS_COMPR_FL) {
|
|
|
|
if (IS_SWAPFILE(inode))
|
|
return -ETXTBSY;
|
|
|
|
binode_flags |= BTRFS_INODE_COMPRESS;
|
|
binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
|
|
|
|
comp = btrfs_compress_type2str(fs_info->compress_type);
|
|
if (!comp || comp[0] == 0)
|
|
comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
|
|
} else {
|
|
binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
|
|
}
|
|
|
|
/*
|
|
* 1 for inode item
|
|
* 2 for properties
|
|
*/
|
|
trans = btrfs_start_transaction(root, 3);
|
|
if (IS_ERR(trans))
|
|
return PTR_ERR(trans);
|
|
|
|
if (comp) {
|
|
ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
|
|
strlen(comp), 0);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out_end_trans;
|
|
}
|
|
} else {
|
|
ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
|
|
0, 0);
|
|
if (ret && ret != -ENODATA) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out_end_trans;
|
|
}
|
|
}
|
|
|
|
update_flags:
|
|
binode->flags = binode_flags;
|
|
btrfs_sync_inode_flags_to_i_flags(inode);
|
|
inode_inc_iversion(inode);
|
|
inode->i_ctime = current_time(inode);
|
|
ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
|
|
|
|
out_end_trans:
|
|
btrfs_end_transaction(trans);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Start exclusive operation @type, return true on success
|
|
*/
|
|
bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
|
|
enum btrfs_exclusive_operation type)
|
|
{
|
|
bool ret = false;
|
|
|
|
spin_lock(&fs_info->super_lock);
|
|
if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) {
|
|
fs_info->exclusive_operation = type;
|
|
ret = true;
|
|
}
|
|
spin_unlock(&fs_info->super_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Conditionally allow to enter the exclusive operation in case it's compatible
|
|
* with the running one. This must be paired with btrfs_exclop_start_unlock and
|
|
* btrfs_exclop_finish.
|
|
*
|
|
* Compatibility:
|
|
* - the same type is already running
|
|
* - when trying to add a device and balance has been paused
|
|
* - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller
|
|
* must check the condition first that would allow none -> @type
|
|
*/
|
|
bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
|
|
enum btrfs_exclusive_operation type)
|
|
{
|
|
spin_lock(&fs_info->super_lock);
|
|
if (fs_info->exclusive_operation == type ||
|
|
(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED &&
|
|
type == BTRFS_EXCLOP_DEV_ADD))
|
|
return true;
|
|
|
|
spin_unlock(&fs_info->super_lock);
|
|
return false;
|
|
}
|
|
|
|
void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info)
|
|
{
|
|
spin_unlock(&fs_info->super_lock);
|
|
}
|
|
|
|
void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
|
|
{
|
|
spin_lock(&fs_info->super_lock);
|
|
WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
|
|
spin_unlock(&fs_info->super_lock);
|
|
sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
|
|
}
|
|
|
|
void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
|
|
enum btrfs_exclusive_operation op)
|
|
{
|
|
switch (op) {
|
|
case BTRFS_EXCLOP_BALANCE_PAUSED:
|
|
spin_lock(&fs_info->super_lock);
|
|
ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE ||
|
|
fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD);
|
|
fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED;
|
|
spin_unlock(&fs_info->super_lock);
|
|
break;
|
|
case BTRFS_EXCLOP_BALANCE:
|
|
spin_lock(&fs_info->super_lock);
|
|
ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
|
|
fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
|
|
spin_unlock(&fs_info->super_lock);
|
|
break;
|
|
default:
|
|
btrfs_warn(fs_info,
|
|
"invalid exclop balance operation %d requested", op);
|
|
}
|
|
}
|
|
|
|
static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg)
|
|
{
|
|
return put_user(inode->i_generation, arg);
|
|
}
|
|
|
|
static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
|
|
void __user *arg)
|
|
{
|
|
struct btrfs_device *device;
|
|
struct fstrim_range range;
|
|
u64 minlen = ULLONG_MAX;
|
|
u64 num_devices = 0;
|
|
int ret;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
/*
|
|
* btrfs_trim_block_group() depends on space cache, which is not
|
|
* available in zoned filesystem. So, disallow fitrim on a zoned
|
|
* filesystem for now.
|
|
*/
|
|
if (btrfs_is_zoned(fs_info))
|
|
return -EOPNOTSUPP;
|
|
|
|
/*
|
|
* If the fs is mounted with nologreplay, which requires it to be
|
|
* mounted in RO mode as well, we can not allow discard on free space
|
|
* inside block groups, because log trees refer to extents that are not
|
|
* pinned in a block group's free space cache (pinning the extents is
|
|
* precisely the first phase of replaying a log tree).
|
|
*/
|
|
if (btrfs_test_opt(fs_info, NOLOGREPLAY))
|
|
return -EROFS;
|
|
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
|
|
dev_list) {
|
|
if (!device->bdev || !bdev_max_discard_sectors(device->bdev))
|
|
continue;
|
|
num_devices++;
|
|
minlen = min_t(u64, bdev_discard_granularity(device->bdev),
|
|
minlen);
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
if (!num_devices)
|
|
return -EOPNOTSUPP;
|
|
if (copy_from_user(&range, arg, sizeof(range)))
|
|
return -EFAULT;
|
|
|
|
/*
|
|
* NOTE: Don't truncate the range using super->total_bytes. Bytenr of
|
|
* block group is in the logical address space, which can be any
|
|
* sectorsize aligned bytenr in the range [0, U64_MAX].
|
|
*/
|
|
if (range.len < fs_info->sb->s_blocksize)
|
|
return -EINVAL;
|
|
|
|
range.minlen = max(range.minlen, minlen);
|
|
ret = btrfs_trim_fs(fs_info, &range);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (copy_to_user(arg, &range, sizeof(range)))
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int __pure btrfs_is_empty_uuid(u8 *uuid)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < BTRFS_UUID_SIZE; i++) {
|
|
if (uuid[i])
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Calculate the number of transaction items to reserve for creating a subvolume
|
|
* or snapshot, not including the inode, directory entries, or parent directory.
|
|
*/
|
|
static unsigned int create_subvol_num_items(struct btrfs_qgroup_inherit *inherit)
|
|
{
|
|
/*
|
|
* 1 to add root block
|
|
* 1 to add root item
|
|
* 1 to add root ref
|
|
* 1 to add root backref
|
|
* 1 to add UUID item
|
|
* 1 to add qgroup info
|
|
* 1 to add qgroup limit
|
|
*
|
|
* Ideally the last two would only be accounted if qgroups are enabled,
|
|
* but that can change between now and the time we would insert them.
|
|
*/
|
|
unsigned int num_items = 7;
|
|
|
|
if (inherit) {
|
|
/* 2 to add qgroup relations for each inherited qgroup */
|
|
num_items += 2 * inherit->num_qgroups;
|
|
}
|
|
return num_items;
|
|
}
|
|
|
|
static noinline int create_subvol(struct user_namespace *mnt_userns,
|
|
struct inode *dir, struct dentry *dentry,
|
|
struct btrfs_qgroup_inherit *inherit)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_key key;
|
|
struct btrfs_root_item *root_item;
|
|
struct btrfs_inode_item *inode_item;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_root *root = BTRFS_I(dir)->root;
|
|
struct btrfs_root *new_root;
|
|
struct btrfs_block_rsv block_rsv;
|
|
struct timespec64 cur_time = current_time(dir);
|
|
struct btrfs_new_inode_args new_inode_args = {
|
|
.dir = dir,
|
|
.dentry = dentry,
|
|
.subvol = true,
|
|
};
|
|
unsigned int trans_num_items;
|
|
int ret;
|
|
dev_t anon_dev;
|
|
u64 objectid;
|
|
|
|
root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
|
|
if (!root_item)
|
|
return -ENOMEM;
|
|
|
|
ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
|
|
if (ret)
|
|
goto out_root_item;
|
|
|
|
/*
|
|
* Don't create subvolume whose level is not zero. Or qgroup will be
|
|
* screwed up since it assumes subvolume qgroup's level to be 0.
|
|
*/
|
|
if (btrfs_qgroup_level(objectid)) {
|
|
ret = -ENOSPC;
|
|
goto out_root_item;
|
|
}
|
|
|
|
ret = get_anon_bdev(&anon_dev);
|
|
if (ret < 0)
|
|
goto out_root_item;
|
|
|
|
new_inode_args.inode = btrfs_new_subvol_inode(mnt_userns, dir);
|
|
if (!new_inode_args.inode) {
|
|
ret = -ENOMEM;
|
|
goto out_anon_dev;
|
|
}
|
|
ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
|
|
if (ret)
|
|
goto out_inode;
|
|
trans_num_items += create_subvol_num_items(inherit);
|
|
|
|
btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
|
|
ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
|
|
trans_num_items, false);
|
|
if (ret)
|
|
goto out_new_inode_args;
|
|
|
|
trans = btrfs_start_transaction(root, 0);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
btrfs_subvolume_release_metadata(root, &block_rsv);
|
|
goto out_new_inode_args;
|
|
}
|
|
trans->block_rsv = &block_rsv;
|
|
trans->bytes_reserved = block_rsv.size;
|
|
|
|
ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
|
|
if (ret)
|
|
goto out;
|
|
|
|
leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
|
|
BTRFS_NESTING_NORMAL);
|
|
if (IS_ERR(leaf)) {
|
|
ret = PTR_ERR(leaf);
|
|
goto out;
|
|
}
|
|
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
|
|
inode_item = &root_item->inode;
|
|
btrfs_set_stack_inode_generation(inode_item, 1);
|
|
btrfs_set_stack_inode_size(inode_item, 3);
|
|
btrfs_set_stack_inode_nlink(inode_item, 1);
|
|
btrfs_set_stack_inode_nbytes(inode_item,
|
|
fs_info->nodesize);
|
|
btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
|
|
|
|
btrfs_set_root_flags(root_item, 0);
|
|
btrfs_set_root_limit(root_item, 0);
|
|
btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
|
|
|
|
btrfs_set_root_bytenr(root_item, leaf->start);
|
|
btrfs_set_root_generation(root_item, trans->transid);
|
|
btrfs_set_root_level(root_item, 0);
|
|
btrfs_set_root_refs(root_item, 1);
|
|
btrfs_set_root_used(root_item, leaf->len);
|
|
btrfs_set_root_last_snapshot(root_item, 0);
|
|
|
|
btrfs_set_root_generation_v2(root_item,
|
|
btrfs_root_generation(root_item));
|
|
generate_random_guid(root_item->uuid);
|
|
btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
|
|
btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
|
|
root_item->ctime = root_item->otime;
|
|
btrfs_set_root_ctransid(root_item, trans->transid);
|
|
btrfs_set_root_otransid(root_item, trans->transid);
|
|
|
|
btrfs_tree_unlock(leaf);
|
|
|
|
btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
|
|
|
|
key.objectid = objectid;
|
|
key.offset = 0;
|
|
key.type = BTRFS_ROOT_ITEM_KEY;
|
|
ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
|
|
root_item);
|
|
if (ret) {
|
|
/*
|
|
* Since we don't abort the transaction in this case, free the
|
|
* tree block so that we don't leak space and leave the
|
|
* filesystem in an inconsistent state (an extent item in the
|
|
* extent tree with a backreference for a root that does not
|
|
* exists).
|
|
*/
|
|
btrfs_tree_lock(leaf);
|
|
btrfs_clean_tree_block(leaf);
|
|
btrfs_tree_unlock(leaf);
|
|
btrfs_free_tree_block(trans, objectid, leaf, 0, 1);
|
|
free_extent_buffer(leaf);
|
|
goto out;
|
|
}
|
|
|
|
free_extent_buffer(leaf);
|
|
leaf = NULL;
|
|
|
|
new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev);
|
|
if (IS_ERR(new_root)) {
|
|
ret = PTR_ERR(new_root);
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out;
|
|
}
|
|
/* anon_dev is owned by new_root now. */
|
|
anon_dev = 0;
|
|
BTRFS_I(new_inode_args.inode)->root = new_root;
|
|
/* ... and new_root is owned by new_inode_args.inode now. */
|
|
|
|
ret = btrfs_record_root_in_trans(trans, new_root);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out;
|
|
}
|
|
|
|
ret = btrfs_uuid_tree_add(trans, root_item->uuid,
|
|
BTRFS_UUID_KEY_SUBVOL, objectid);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out;
|
|
}
|
|
|
|
ret = btrfs_create_new_inode(trans, &new_inode_args);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out;
|
|
}
|
|
|
|
d_instantiate_new(dentry, new_inode_args.inode);
|
|
new_inode_args.inode = NULL;
|
|
|
|
out:
|
|
trans->block_rsv = NULL;
|
|
trans->bytes_reserved = 0;
|
|
btrfs_subvolume_release_metadata(root, &block_rsv);
|
|
|
|
if (ret)
|
|
btrfs_end_transaction(trans);
|
|
else
|
|
ret = btrfs_commit_transaction(trans);
|
|
out_new_inode_args:
|
|
btrfs_new_inode_args_destroy(&new_inode_args);
|
|
out_inode:
|
|
iput(new_inode_args.inode);
|
|
out_anon_dev:
|
|
if (anon_dev)
|
|
free_anon_bdev(anon_dev);
|
|
out_root_item:
|
|
kfree(root_item);
|
|
return ret;
|
|
}
|
|
|
|
static int create_snapshot(struct btrfs_root *root, struct inode *dir,
|
|
struct dentry *dentry, bool readonly,
|
|
struct btrfs_qgroup_inherit *inherit)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
|
|
struct inode *inode;
|
|
struct btrfs_pending_snapshot *pending_snapshot;
|
|
unsigned int trans_num_items;
|
|
struct btrfs_trans_handle *trans;
|
|
int ret;
|
|
|
|
/* We do not support snapshotting right now. */
|
|
if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
|
|
btrfs_warn(fs_info,
|
|
"extent tree v2 doesn't support snapshotting yet");
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
|
|
return -EINVAL;
|
|
|
|
if (atomic_read(&root->nr_swapfiles)) {
|
|
btrfs_warn(fs_info,
|
|
"cannot snapshot subvolume with active swapfile");
|
|
return -ETXTBSY;
|
|
}
|
|
|
|
pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
|
|
if (!pending_snapshot)
|
|
return -ENOMEM;
|
|
|
|
ret = get_anon_bdev(&pending_snapshot->anon_dev);
|
|
if (ret < 0)
|
|
goto free_pending;
|
|
pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
|
|
GFP_KERNEL);
|
|
pending_snapshot->path = btrfs_alloc_path();
|
|
if (!pending_snapshot->root_item || !pending_snapshot->path) {
|
|
ret = -ENOMEM;
|
|
goto free_pending;
|
|
}
|
|
|
|
btrfs_init_block_rsv(&pending_snapshot->block_rsv,
|
|
BTRFS_BLOCK_RSV_TEMP);
|
|
/*
|
|
* 1 to add dir item
|
|
* 1 to add dir index
|
|
* 1 to update parent inode item
|
|
*/
|
|
trans_num_items = create_subvol_num_items(inherit) + 3;
|
|
ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
|
|
&pending_snapshot->block_rsv,
|
|
trans_num_items, false);
|
|
if (ret)
|
|
goto free_pending;
|
|
|
|
pending_snapshot->dentry = dentry;
|
|
pending_snapshot->root = root;
|
|
pending_snapshot->readonly = readonly;
|
|
pending_snapshot->dir = dir;
|
|
pending_snapshot->inherit = inherit;
|
|
|
|
trans = btrfs_start_transaction(root, 0);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
goto fail;
|
|
}
|
|
|
|
trans->pending_snapshot = pending_snapshot;
|
|
|
|
ret = btrfs_commit_transaction(trans);
|
|
if (ret)
|
|
goto fail;
|
|
|
|
ret = pending_snapshot->error;
|
|
if (ret)
|
|
goto fail;
|
|
|
|
ret = btrfs_orphan_cleanup(pending_snapshot->snap);
|
|
if (ret)
|
|
goto fail;
|
|
|
|
inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
|
|
if (IS_ERR(inode)) {
|
|
ret = PTR_ERR(inode);
|
|
goto fail;
|
|
}
|
|
|
|
d_instantiate(dentry, inode);
|
|
ret = 0;
|
|
pending_snapshot->anon_dev = 0;
|
|
fail:
|
|
/* Prevent double freeing of anon_dev */
|
|
if (ret && pending_snapshot->snap)
|
|
pending_snapshot->snap->anon_dev = 0;
|
|
btrfs_put_root(pending_snapshot->snap);
|
|
btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv);
|
|
free_pending:
|
|
if (pending_snapshot->anon_dev)
|
|
free_anon_bdev(pending_snapshot->anon_dev);
|
|
kfree(pending_snapshot->root_item);
|
|
btrfs_free_path(pending_snapshot->path);
|
|
kfree(pending_snapshot);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* copy of may_delete in fs/namei.c()
|
|
* Check whether we can remove a link victim from directory dir, check
|
|
* whether the type of victim is right.
|
|
* 1. We can't do it if dir is read-only (done in permission())
|
|
* 2. We should have write and exec permissions on dir
|
|
* 3. We can't remove anything from append-only dir
|
|
* 4. We can't do anything with immutable dir (done in permission())
|
|
* 5. If the sticky bit on dir is set we should either
|
|
* a. be owner of dir, or
|
|
* b. be owner of victim, or
|
|
* c. have CAP_FOWNER capability
|
|
* 6. If the victim is append-only or immutable we can't do anything with
|
|
* links pointing to it.
|
|
* 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
|
|
* 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
|
|
* 9. We can't remove a root or mountpoint.
|
|
* 10. We don't allow removal of NFS sillyrenamed files; it's handled by
|
|
* nfs_async_unlink().
|
|
*/
|
|
|
|
static int btrfs_may_delete(struct user_namespace *mnt_userns,
|
|
struct inode *dir, struct dentry *victim, int isdir)
|
|
{
|
|
int error;
|
|
|
|
if (d_really_is_negative(victim))
|
|
return -ENOENT;
|
|
|
|
BUG_ON(d_inode(victim->d_parent) != dir);
|
|
audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
|
|
|
|
error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
|
|
if (error)
|
|
return error;
|
|
if (IS_APPEND(dir))
|
|
return -EPERM;
|
|
if (check_sticky(mnt_userns, dir, d_inode(victim)) ||
|
|
IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
|
|
IS_SWAPFILE(d_inode(victim)))
|
|
return -EPERM;
|
|
if (isdir) {
|
|
if (!d_is_dir(victim))
|
|
return -ENOTDIR;
|
|
if (IS_ROOT(victim))
|
|
return -EBUSY;
|
|
} else if (d_is_dir(victim))
|
|
return -EISDIR;
|
|
if (IS_DEADDIR(dir))
|
|
return -ENOENT;
|
|
if (victim->d_flags & DCACHE_NFSFS_RENAMED)
|
|
return -EBUSY;
|
|
return 0;
|
|
}
|
|
|
|
/* copy of may_create in fs/namei.c() */
|
|
static inline int btrfs_may_create(struct user_namespace *mnt_userns,
|
|
struct inode *dir, struct dentry *child)
|
|
{
|
|
if (d_really_is_positive(child))
|
|
return -EEXIST;
|
|
if (IS_DEADDIR(dir))
|
|
return -ENOENT;
|
|
if (!fsuidgid_has_mapping(dir->i_sb, mnt_userns))
|
|
return -EOVERFLOW;
|
|
return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
|
|
}
|
|
|
|
/*
|
|
* Create a new subvolume below @parent. This is largely modeled after
|
|
* sys_mkdirat and vfs_mkdir, but we only do a single component lookup
|
|
* inside this filesystem so it's quite a bit simpler.
|
|
*/
|
|
static noinline int btrfs_mksubvol(const struct path *parent,
|
|
struct user_namespace *mnt_userns,
|
|
const char *name, int namelen,
|
|
struct btrfs_root *snap_src,
|
|
bool readonly,
|
|
struct btrfs_qgroup_inherit *inherit)
|
|
{
|
|
struct inode *dir = d_inode(parent->dentry);
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
|
|
struct dentry *dentry;
|
|
int error;
|
|
|
|
error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
|
|
if (error == -EINTR)
|
|
return error;
|
|
|
|
dentry = lookup_one(mnt_userns, name, parent->dentry, namelen);
|
|
error = PTR_ERR(dentry);
|
|
if (IS_ERR(dentry))
|
|
goto out_unlock;
|
|
|
|
error = btrfs_may_create(mnt_userns, dir, dentry);
|
|
if (error)
|
|
goto out_dput;
|
|
|
|
/*
|
|
* even if this name doesn't exist, we may get hash collisions.
|
|
* check for them now when we can safely fail
|
|
*/
|
|
error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
|
|
dir->i_ino, name,
|
|
namelen);
|
|
if (error)
|
|
goto out_dput;
|
|
|
|
down_read(&fs_info->subvol_sem);
|
|
|
|
if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
|
|
goto out_up_read;
|
|
|
|
if (snap_src)
|
|
error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
|
|
else
|
|
error = create_subvol(mnt_userns, dir, dentry, inherit);
|
|
|
|
if (!error)
|
|
fsnotify_mkdir(dir, dentry);
|
|
out_up_read:
|
|
up_read(&fs_info->subvol_sem);
|
|
out_dput:
|
|
dput(dentry);
|
|
out_unlock:
|
|
btrfs_inode_unlock(dir, 0);
|
|
return error;
|
|
}
|
|
|
|
static noinline int btrfs_mksnapshot(const struct path *parent,
|
|
struct user_namespace *mnt_userns,
|
|
const char *name, int namelen,
|
|
struct btrfs_root *root,
|
|
bool readonly,
|
|
struct btrfs_qgroup_inherit *inherit)
|
|
{
|
|
int ret;
|
|
bool snapshot_force_cow = false;
|
|
|
|
/*
|
|
* Force new buffered writes to reserve space even when NOCOW is
|
|
* possible. This is to avoid later writeback (running dealloc) to
|
|
* fallback to COW mode and unexpectedly fail with ENOSPC.
|
|
*/
|
|
btrfs_drew_read_lock(&root->snapshot_lock);
|
|
|
|
ret = btrfs_start_delalloc_snapshot(root, false);
|
|
if (ret)
|
|
goto out;
|
|
|
|
/*
|
|
* All previous writes have started writeback in NOCOW mode, so now
|
|
* we force future writes to fallback to COW mode during snapshot
|
|
* creation.
|
|
*/
|
|
atomic_inc(&root->snapshot_force_cow);
|
|
snapshot_force_cow = true;
|
|
|
|
btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
|
|
|
|
ret = btrfs_mksubvol(parent, mnt_userns, name, namelen,
|
|
root, readonly, inherit);
|
|
out:
|
|
if (snapshot_force_cow)
|
|
atomic_dec(&root->snapshot_force_cow);
|
|
btrfs_drew_read_unlock(&root->snapshot_lock);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Defrag specific helper to get an extent map.
|
|
*
|
|
* Differences between this and btrfs_get_extent() are:
|
|
*
|
|
* - No extent_map will be added to inode->extent_tree
|
|
* To reduce memory usage in the long run.
|
|
*
|
|
* - Extra optimization to skip file extents older than @newer_than
|
|
* By using btrfs_search_forward() we can skip entire file ranges that
|
|
* have extents created in past transactions, because btrfs_search_forward()
|
|
* will not visit leaves and nodes with a generation smaller than given
|
|
* minimal generation threshold (@newer_than).
|
|
*
|
|
* Return valid em if we find a file extent matching the requirement.
|
|
* Return NULL if we can not find a file extent matching the requirement.
|
|
*
|
|
* Return ERR_PTR() for error.
|
|
*/
|
|
static struct extent_map *defrag_get_extent(struct btrfs_inode *inode,
|
|
u64 start, u64 newer_than)
|
|
{
|
|
struct btrfs_root *root = inode->root;
|
|
struct btrfs_file_extent_item *fi;
|
|
struct btrfs_path path = { 0 };
|
|
struct extent_map *em;
|
|
struct btrfs_key key;
|
|
u64 ino = btrfs_ino(inode);
|
|
int ret;
|
|
|
|
em = alloc_extent_map();
|
|
if (!em) {
|
|
ret = -ENOMEM;
|
|
goto err;
|
|
}
|
|
|
|
key.objectid = ino;
|
|
key.type = BTRFS_EXTENT_DATA_KEY;
|
|
key.offset = start;
|
|
|
|
if (newer_than) {
|
|
ret = btrfs_search_forward(root, &key, &path, newer_than);
|
|
if (ret < 0)
|
|
goto err;
|
|
/* Can't find anything newer */
|
|
if (ret > 0)
|
|
goto not_found;
|
|
} else {
|
|
ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0);
|
|
if (ret < 0)
|
|
goto err;
|
|
}
|
|
if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) {
|
|
/*
|
|
* If btrfs_search_slot() makes path to point beyond nritems,
|
|
* we should not have an empty leaf, as this inode must at
|
|
* least have its INODE_ITEM.
|
|
*/
|
|
ASSERT(btrfs_header_nritems(path.nodes[0]));
|
|
path.slots[0] = btrfs_header_nritems(path.nodes[0]) - 1;
|
|
}
|
|
btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
|
|
/* Perfect match, no need to go one slot back */
|
|
if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY &&
|
|
key.offset == start)
|
|
goto iterate;
|
|
|
|
/* We didn't find a perfect match, needs to go one slot back */
|
|
if (path.slots[0] > 0) {
|
|
btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
|
|
if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
|
|
path.slots[0]--;
|
|
}
|
|
|
|
iterate:
|
|
/* Iterate through the path to find a file extent covering @start */
|
|
while (true) {
|
|
u64 extent_end;
|
|
|
|
if (path.slots[0] >= btrfs_header_nritems(path.nodes[0]))
|
|
goto next;
|
|
|
|
btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
|
|
|
|
/*
|
|
* We may go one slot back to INODE_REF/XATTR item, then
|
|
* need to go forward until we reach an EXTENT_DATA.
|
|
* But we should still has the correct ino as key.objectid.
|
|
*/
|
|
if (WARN_ON(key.objectid < ino) || key.type < BTRFS_EXTENT_DATA_KEY)
|
|
goto next;
|
|
|
|
/* It's beyond our target range, definitely not extent found */
|
|
if (key.objectid > ino || key.type > BTRFS_EXTENT_DATA_KEY)
|
|
goto not_found;
|
|
|
|
/*
|
|
* | |<- File extent ->|
|
|
* \- start
|
|
*
|
|
* This means there is a hole between start and key.offset.
|
|
*/
|
|
if (key.offset > start) {
|
|
em->start = start;
|
|
em->orig_start = start;
|
|
em->block_start = EXTENT_MAP_HOLE;
|
|
em->len = key.offset - start;
|
|
break;
|
|
}
|
|
|
|
fi = btrfs_item_ptr(path.nodes[0], path.slots[0],
|
|
struct btrfs_file_extent_item);
|
|
extent_end = btrfs_file_extent_end(&path);
|
|
|
|
/*
|
|
* |<- file extent ->| |
|
|
* \- start
|
|
*
|
|
* We haven't reached start, search next slot.
|
|
*/
|
|
if (extent_end <= start)
|
|
goto next;
|
|
|
|
/* Now this extent covers @start, convert it to em */
|
|
btrfs_extent_item_to_extent_map(inode, &path, fi, false, em);
|
|
break;
|
|
next:
|
|
ret = btrfs_next_item(root, &path);
|
|
if (ret < 0)
|
|
goto err;
|
|
if (ret > 0)
|
|
goto not_found;
|
|
}
|
|
btrfs_release_path(&path);
|
|
return em;
|
|
|
|
not_found:
|
|
btrfs_release_path(&path);
|
|
free_extent_map(em);
|
|
return NULL;
|
|
|
|
err:
|
|
btrfs_release_path(&path);
|
|
free_extent_map(em);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start,
|
|
u64 newer_than, bool locked)
|
|
{
|
|
struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
|
|
struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
|
|
struct extent_map *em;
|
|
const u32 sectorsize = BTRFS_I(inode)->root->fs_info->sectorsize;
|
|
|
|
/*
|
|
* hopefully we have this extent in the tree already, try without
|
|
* the full extent lock
|
|
*/
|
|
read_lock(&em_tree->lock);
|
|
em = lookup_extent_mapping(em_tree, start, sectorsize);
|
|
read_unlock(&em_tree->lock);
|
|
|
|
/*
|
|
* We can get a merged extent, in that case, we need to re-search
|
|
* tree to get the original em for defrag.
|
|
*
|
|
* If @newer_than is 0 or em::generation < newer_than, we can trust
|
|
* this em, as either we don't care about the generation, or the
|
|
* merged extent map will be rejected anyway.
|
|
*/
|
|
if (em && test_bit(EXTENT_FLAG_MERGED, &em->flags) &&
|
|
newer_than && em->generation >= newer_than) {
|
|
free_extent_map(em);
|
|
em = NULL;
|
|
}
|
|
|
|
if (!em) {
|
|
struct extent_state *cached = NULL;
|
|
u64 end = start + sectorsize - 1;
|
|
|
|
/* get the big lock and read metadata off disk */
|
|
if (!locked)
|
|
lock_extent_bits(io_tree, start, end, &cached);
|
|
em = defrag_get_extent(BTRFS_I(inode), start, newer_than);
|
|
if (!locked)
|
|
unlock_extent_cached(io_tree, start, end, &cached);
|
|
|
|
if (IS_ERR(em))
|
|
return NULL;
|
|
}
|
|
|
|
return em;
|
|
}
|
|
|
|
static u32 get_extent_max_capacity(const struct btrfs_fs_info *fs_info,
|
|
const struct extent_map *em)
|
|
{
|
|
if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
|
|
return BTRFS_MAX_COMPRESSED;
|
|
return fs_info->max_extent_size;
|
|
}
|
|
|
|
static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em,
|
|
u32 extent_thresh, u64 newer_than, bool locked)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct extent_map *next;
|
|
bool ret = false;
|
|
|
|
/* this is the last extent */
|
|
if (em->start + em->len >= i_size_read(inode))
|
|
return false;
|
|
|
|
/*
|
|
* Here we need to pass @newer_then when checking the next extent, or
|
|
* we will hit a case we mark current extent for defrag, but the next
|
|
* one will not be a target.
|
|
* This will just cause extra IO without really reducing the fragments.
|
|
*/
|
|
next = defrag_lookup_extent(inode, em->start + em->len, newer_than, locked);
|
|
/* No more em or hole */
|
|
if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
|
|
goto out;
|
|
if (test_bit(EXTENT_FLAG_PREALLOC, &next->flags))
|
|
goto out;
|
|
/*
|
|
* If the next extent is at its max capacity, defragging current extent
|
|
* makes no sense, as the total number of extents won't change.
|
|
*/
|
|
if (next->len >= get_extent_max_capacity(fs_info, em))
|
|
goto out;
|
|
/* Skip older extent */
|
|
if (next->generation < newer_than)
|
|
goto out;
|
|
/* Also check extent size */
|
|
if (next->len >= extent_thresh)
|
|
goto out;
|
|
|
|
ret = true;
|
|
out:
|
|
free_extent_map(next);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Prepare one page to be defragged.
|
|
*
|
|
* This will ensure:
|
|
*
|
|
* - Returned page is locked and has been set up properly.
|
|
* - No ordered extent exists in the page.
|
|
* - The page is uptodate.
|
|
*
|
|
* NOTE: Caller should also wait for page writeback after the cluster is
|
|
* prepared, here we don't do writeback wait for each page.
|
|
*/
|
|
static struct page *defrag_prepare_one_page(struct btrfs_inode *inode,
|
|
pgoff_t index)
|
|
{
|
|
struct address_space *mapping = inode->vfs_inode.i_mapping;
|
|
gfp_t mask = btrfs_alloc_write_mask(mapping);
|
|
u64 page_start = (u64)index << PAGE_SHIFT;
|
|
u64 page_end = page_start + PAGE_SIZE - 1;
|
|
struct extent_state *cached_state = NULL;
|
|
struct page *page;
|
|
int ret;
|
|
|
|
again:
|
|
page = find_or_create_page(mapping, index, mask);
|
|
if (!page)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
/*
|
|
* Since we can defragment files opened read-only, we can encounter
|
|
* transparent huge pages here (see CONFIG_READ_ONLY_THP_FOR_FS). We
|
|
* can't do I/O using huge pages yet, so return an error for now.
|
|
* Filesystem transparent huge pages are typically only used for
|
|
* executables that explicitly enable them, so this isn't very
|
|
* restrictive.
|
|
*/
|
|
if (PageCompound(page)) {
|
|
unlock_page(page);
|
|
put_page(page);
|
|
return ERR_PTR(-ETXTBSY);
|
|
}
|
|
|
|
ret = set_page_extent_mapped(page);
|
|
if (ret < 0) {
|
|
unlock_page(page);
|
|
put_page(page);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
/* Wait for any existing ordered extent in the range */
|
|
while (1) {
|
|
struct btrfs_ordered_extent *ordered;
|
|
|
|
lock_extent_bits(&inode->io_tree, page_start, page_end, &cached_state);
|
|
ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
|
|
unlock_extent_cached(&inode->io_tree, page_start, page_end,
|
|
&cached_state);
|
|
if (!ordered)
|
|
break;
|
|
|
|
unlock_page(page);
|
|
btrfs_start_ordered_extent(ordered, 1);
|
|
btrfs_put_ordered_extent(ordered);
|
|
lock_page(page);
|
|
/*
|
|
* We unlocked the page above, so we need check if it was
|
|
* released or not.
|
|
*/
|
|
if (page->mapping != mapping || !PagePrivate(page)) {
|
|
unlock_page(page);
|
|
put_page(page);
|
|
goto again;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Now the page range has no ordered extent any more. Read the page to
|
|
* make it uptodate.
|
|
*/
|
|
if (!PageUptodate(page)) {
|
|
btrfs_read_folio(NULL, page_folio(page));
|
|
lock_page(page);
|
|
if (page->mapping != mapping || !PagePrivate(page)) {
|
|
unlock_page(page);
|
|
put_page(page);
|
|
goto again;
|
|
}
|
|
if (!PageUptodate(page)) {
|
|
unlock_page(page);
|
|
put_page(page);
|
|
return ERR_PTR(-EIO);
|
|
}
|
|
}
|
|
return page;
|
|
}
|
|
|
|
struct defrag_target_range {
|
|
struct list_head list;
|
|
u64 start;
|
|
u64 len;
|
|
};
|
|
|
|
/*
|
|
* Collect all valid target extents.
|
|
*
|
|
* @start: file offset to lookup
|
|
* @len: length to lookup
|
|
* @extent_thresh: file extent size threshold, any extent size >= this value
|
|
* will be ignored
|
|
* @newer_than: only defrag extents newer than this value
|
|
* @do_compress: whether the defrag is doing compression
|
|
* if true, @extent_thresh will be ignored and all regular
|
|
* file extents meeting @newer_than will be targets.
|
|
* @locked: if the range has already held extent lock
|
|
* @target_list: list of targets file extents
|
|
*/
|
|
static int defrag_collect_targets(struct btrfs_inode *inode,
|
|
u64 start, u64 len, u32 extent_thresh,
|
|
u64 newer_than, bool do_compress,
|
|
bool locked, struct list_head *target_list,
|
|
u64 *last_scanned_ret)
|
|
{
|
|
struct btrfs_fs_info *fs_info = inode->root->fs_info;
|
|
bool last_is_target = false;
|
|
u64 cur = start;
|
|
int ret = 0;
|
|
|
|
while (cur < start + len) {
|
|
struct extent_map *em;
|
|
struct defrag_target_range *new;
|
|
bool next_mergeable = true;
|
|
u64 range_len;
|
|
|
|
last_is_target = false;
|
|
em = defrag_lookup_extent(&inode->vfs_inode, cur,
|
|
newer_than, locked);
|
|
if (!em)
|
|
break;
|
|
|
|
/*
|
|
* If the file extent is an inlined one, we may still want to
|
|
* defrag it (fallthrough) if it will cause a regular extent.
|
|
* This is for users who want to convert inline extents to
|
|
* regular ones through max_inline= mount option.
|
|
*/
|
|
if (em->block_start == EXTENT_MAP_INLINE &&
|
|
em->len <= inode->root->fs_info->max_inline)
|
|
goto next;
|
|
|
|
/* Skip hole/delalloc/preallocated extents */
|
|
if (em->block_start == EXTENT_MAP_HOLE ||
|
|
em->block_start == EXTENT_MAP_DELALLOC ||
|
|
test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
|
|
goto next;
|
|
|
|
/* Skip older extent */
|
|
if (em->generation < newer_than)
|
|
goto next;
|
|
|
|
/* This em is under writeback, no need to defrag */
|
|
if (em->generation == (u64)-1)
|
|
goto next;
|
|
|
|
/*
|
|
* Our start offset might be in the middle of an existing extent
|
|
* map, so take that into account.
|
|
*/
|
|
range_len = em->len - (cur - em->start);
|
|
/*
|
|
* If this range of the extent map is already flagged for delalloc,
|
|
* skip it, because:
|
|
*
|
|
* 1) We could deadlock later, when trying to reserve space for
|
|
* delalloc, because in case we can't immediately reserve space
|
|
* the flusher can start delalloc and wait for the respective
|
|
* ordered extents to complete. The deadlock would happen
|
|
* because we do the space reservation while holding the range
|
|
* locked, and starting writeback, or finishing an ordered
|
|
* extent, requires locking the range;
|
|
*
|
|
* 2) If there's delalloc there, it means there's dirty pages for
|
|
* which writeback has not started yet (we clean the delalloc
|
|
* flag when starting writeback and after creating an ordered
|
|
* extent). If we mark pages in an adjacent range for defrag,
|
|
* then we will have a larger contiguous range for delalloc,
|
|
* very likely resulting in a larger extent after writeback is
|
|
* triggered (except in a case of free space fragmentation).
|
|
*/
|
|
if (test_range_bit(&inode->io_tree, cur, cur + range_len - 1,
|
|
EXTENT_DELALLOC, 0, NULL))
|
|
goto next;
|
|
|
|
/*
|
|
* For do_compress case, we want to compress all valid file
|
|
* extents, thus no @extent_thresh or mergeable check.
|
|
*/
|
|
if (do_compress)
|
|
goto add;
|
|
|
|
/* Skip too large extent */
|
|
if (range_len >= extent_thresh)
|
|
goto next;
|
|
|
|
/*
|
|
* Skip extents already at its max capacity, this is mostly for
|
|
* compressed extents, which max cap is only 128K.
|
|
*/
|
|
if (em->len >= get_extent_max_capacity(fs_info, em))
|
|
goto next;
|
|
|
|
/*
|
|
* Normally there are no more extents after an inline one, thus
|
|
* @next_mergeable will normally be false and not defragged.
|
|
* So if an inline extent passed all above checks, just add it
|
|
* for defrag, and be converted to regular extents.
|
|
*/
|
|
if (em->block_start == EXTENT_MAP_INLINE)
|
|
goto add;
|
|
|
|
next_mergeable = defrag_check_next_extent(&inode->vfs_inode, em,
|
|
extent_thresh, newer_than, locked);
|
|
if (!next_mergeable) {
|
|
struct defrag_target_range *last;
|
|
|
|
/* Empty target list, no way to merge with last entry */
|
|
if (list_empty(target_list))
|
|
goto next;
|
|
last = list_entry(target_list->prev,
|
|
struct defrag_target_range, list);
|
|
/* Not mergeable with last entry */
|
|
if (last->start + last->len != cur)
|
|
goto next;
|
|
|
|
/* Mergeable, fall through to add it to @target_list. */
|
|
}
|
|
|
|
add:
|
|
last_is_target = true;
|
|
range_len = min(extent_map_end(em), start + len) - cur;
|
|
/*
|
|
* This one is a good target, check if it can be merged into
|
|
* last range of the target list.
|
|
*/
|
|
if (!list_empty(target_list)) {
|
|
struct defrag_target_range *last;
|
|
|
|
last = list_entry(target_list->prev,
|
|
struct defrag_target_range, list);
|
|
ASSERT(last->start + last->len <= cur);
|
|
if (last->start + last->len == cur) {
|
|
/* Mergeable, enlarge the last entry */
|
|
last->len += range_len;
|
|
goto next;
|
|
}
|
|
/* Fall through to allocate a new entry */
|
|
}
|
|
|
|
/* Allocate new defrag_target_range */
|
|
new = kmalloc(sizeof(*new), GFP_NOFS);
|
|
if (!new) {
|
|
free_extent_map(em);
|
|
ret = -ENOMEM;
|
|
break;
|
|
}
|
|
new->start = cur;
|
|
new->len = range_len;
|
|
list_add_tail(&new->list, target_list);
|
|
|
|
next:
|
|
cur = extent_map_end(em);
|
|
free_extent_map(em);
|
|
}
|
|
if (ret < 0) {
|
|
struct defrag_target_range *entry;
|
|
struct defrag_target_range *tmp;
|
|
|
|
list_for_each_entry_safe(entry, tmp, target_list, list) {
|
|
list_del_init(&entry->list);
|
|
kfree(entry);
|
|
}
|
|
}
|
|
if (!ret && last_scanned_ret) {
|
|
/*
|
|
* If the last extent is not a target, the caller can skip to
|
|
* the end of that extent.
|
|
* Otherwise, we can only go the end of the specified range.
|
|
*/
|
|
if (!last_is_target)
|
|
*last_scanned_ret = max(cur, *last_scanned_ret);
|
|
else
|
|
*last_scanned_ret = max(start + len, *last_scanned_ret);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
#define CLUSTER_SIZE (SZ_256K)
|
|
static_assert(IS_ALIGNED(CLUSTER_SIZE, PAGE_SIZE));
|
|
|
|
/*
|
|
* Defrag one contiguous target range.
|
|
*
|
|
* @inode: target inode
|
|
* @target: target range to defrag
|
|
* @pages: locked pages covering the defrag range
|
|
* @nr_pages: number of locked pages
|
|
*
|
|
* Caller should ensure:
|
|
*
|
|
* - Pages are prepared
|
|
* Pages should be locked, no ordered extent in the pages range,
|
|
* no writeback.
|
|
*
|
|
* - Extent bits are locked
|
|
*/
|
|
static int defrag_one_locked_target(struct btrfs_inode *inode,
|
|
struct defrag_target_range *target,
|
|
struct page **pages, int nr_pages,
|
|
struct extent_state **cached_state)
|
|
{
|
|
struct btrfs_fs_info *fs_info = inode->root->fs_info;
|
|
struct extent_changeset *data_reserved = NULL;
|
|
const u64 start = target->start;
|
|
const u64 len = target->len;
|
|
unsigned long last_index = (start + len - 1) >> PAGE_SHIFT;
|
|
unsigned long start_index = start >> PAGE_SHIFT;
|
|
unsigned long first_index = page_index(pages[0]);
|
|
int ret = 0;
|
|
int i;
|
|
|
|
ASSERT(last_index - first_index + 1 <= nr_pages);
|
|
|
|
ret = btrfs_delalloc_reserve_space(inode, &data_reserved, start, len);
|
|
if (ret < 0)
|
|
return ret;
|
|
clear_extent_bit(&inode->io_tree, start, start + len - 1,
|
|
EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
|
|
EXTENT_DEFRAG, 0, 0, cached_state);
|
|
set_extent_defrag(&inode->io_tree, start, start + len - 1, cached_state);
|
|
|
|
/* Update the page status */
|
|
for (i = start_index - first_index; i <= last_index - first_index; i++) {
|
|
ClearPageChecked(pages[i]);
|
|
btrfs_page_clamp_set_dirty(fs_info, pages[i], start, len);
|
|
}
|
|
btrfs_delalloc_release_extents(inode, len);
|
|
extent_changeset_free(data_reserved);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int defrag_one_range(struct btrfs_inode *inode, u64 start, u32 len,
|
|
u32 extent_thresh, u64 newer_than, bool do_compress,
|
|
u64 *last_scanned_ret)
|
|
{
|
|
struct extent_state *cached_state = NULL;
|
|
struct defrag_target_range *entry;
|
|
struct defrag_target_range *tmp;
|
|
LIST_HEAD(target_list);
|
|
struct page **pages;
|
|
const u32 sectorsize = inode->root->fs_info->sectorsize;
|
|
u64 last_index = (start + len - 1) >> PAGE_SHIFT;
|
|
u64 start_index = start >> PAGE_SHIFT;
|
|
unsigned int nr_pages = last_index - start_index + 1;
|
|
int ret = 0;
|
|
int i;
|
|
|
|
ASSERT(nr_pages <= CLUSTER_SIZE / PAGE_SIZE);
|
|
ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(len, sectorsize));
|
|
|
|
pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
|
|
if (!pages)
|
|
return -ENOMEM;
|
|
|
|
/* Prepare all pages */
|
|
for (i = 0; i < nr_pages; i++) {
|
|
pages[i] = defrag_prepare_one_page(inode, start_index + i);
|
|
if (IS_ERR(pages[i])) {
|
|
ret = PTR_ERR(pages[i]);
|
|
pages[i] = NULL;
|
|
goto free_pages;
|
|
}
|
|
}
|
|
for (i = 0; i < nr_pages; i++)
|
|
wait_on_page_writeback(pages[i]);
|
|
|
|
/* Lock the pages range */
|
|
lock_extent_bits(&inode->io_tree, start_index << PAGE_SHIFT,
|
|
(last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
|
|
&cached_state);
|
|
/*
|
|
* Now we have a consistent view about the extent map, re-check
|
|
* which range really needs to be defragged.
|
|
*
|
|
* And this time we have extent locked already, pass @locked = true
|
|
* so that we won't relock the extent range and cause deadlock.
|
|
*/
|
|
ret = defrag_collect_targets(inode, start, len, extent_thresh,
|
|
newer_than, do_compress, true,
|
|
&target_list, last_scanned_ret);
|
|
if (ret < 0)
|
|
goto unlock_extent;
|
|
|
|
list_for_each_entry(entry, &target_list, list) {
|
|
ret = defrag_one_locked_target(inode, entry, pages, nr_pages,
|
|
&cached_state);
|
|
if (ret < 0)
|
|
break;
|
|
}
|
|
|
|
list_for_each_entry_safe(entry, tmp, &target_list, list) {
|
|
list_del_init(&entry->list);
|
|
kfree(entry);
|
|
}
|
|
unlock_extent:
|
|
unlock_extent_cached(&inode->io_tree, start_index << PAGE_SHIFT,
|
|
(last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
|
|
&cached_state);
|
|
free_pages:
|
|
for (i = 0; i < nr_pages; i++) {
|
|
if (pages[i]) {
|
|
unlock_page(pages[i]);
|
|
put_page(pages[i]);
|
|
}
|
|
}
|
|
kfree(pages);
|
|
return ret;
|
|
}
|
|
|
|
static int defrag_one_cluster(struct btrfs_inode *inode,
|
|
struct file_ra_state *ra,
|
|
u64 start, u32 len, u32 extent_thresh,
|
|
u64 newer_than, bool do_compress,
|
|
unsigned long *sectors_defragged,
|
|
unsigned long max_sectors,
|
|
u64 *last_scanned_ret)
|
|
{
|
|
const u32 sectorsize = inode->root->fs_info->sectorsize;
|
|
struct defrag_target_range *entry;
|
|
struct defrag_target_range *tmp;
|
|
LIST_HEAD(target_list);
|
|
int ret;
|
|
|
|
ret = defrag_collect_targets(inode, start, len, extent_thresh,
|
|
newer_than, do_compress, false,
|
|
&target_list, NULL);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
list_for_each_entry(entry, &target_list, list) {
|
|
u32 range_len = entry->len;
|
|
|
|
/* Reached or beyond the limit */
|
|
if (max_sectors && *sectors_defragged >= max_sectors) {
|
|
ret = 1;
|
|
break;
|
|
}
|
|
|
|
if (max_sectors)
|
|
range_len = min_t(u32, range_len,
|
|
(max_sectors - *sectors_defragged) * sectorsize);
|
|
|
|
/*
|
|
* If defrag_one_range() has updated last_scanned_ret,
|
|
* our range may already be invalid (e.g. hole punched).
|
|
* Skip if our range is before last_scanned_ret, as there is
|
|
* no need to defrag the range anymore.
|
|
*/
|
|
if (entry->start + range_len <= *last_scanned_ret)
|
|
continue;
|
|
|
|
if (ra)
|
|
page_cache_sync_readahead(inode->vfs_inode.i_mapping,
|
|
ra, NULL, entry->start >> PAGE_SHIFT,
|
|
((entry->start + range_len - 1) >> PAGE_SHIFT) -
|
|
(entry->start >> PAGE_SHIFT) + 1);
|
|
/*
|
|
* Here we may not defrag any range if holes are punched before
|
|
* we locked the pages.
|
|
* But that's fine, it only affects the @sectors_defragged
|
|
* accounting.
|
|
*/
|
|
ret = defrag_one_range(inode, entry->start, range_len,
|
|
extent_thresh, newer_than, do_compress,
|
|
last_scanned_ret);
|
|
if (ret < 0)
|
|
break;
|
|
*sectors_defragged += range_len >>
|
|
inode->root->fs_info->sectorsize_bits;
|
|
}
|
|
out:
|
|
list_for_each_entry_safe(entry, tmp, &target_list, list) {
|
|
list_del_init(&entry->list);
|
|
kfree(entry);
|
|
}
|
|
if (ret >= 0)
|
|
*last_scanned_ret = max(*last_scanned_ret, start + len);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Entry point to file defragmentation.
|
|
*
|
|
* @inode: inode to be defragged
|
|
* @ra: readahead state (can be NUL)
|
|
* @range: defrag options including range and flags
|
|
* @newer_than: minimum transid to defrag
|
|
* @max_to_defrag: max number of sectors to be defragged, if 0, the whole inode
|
|
* will be defragged.
|
|
*
|
|
* Return <0 for error.
|
|
* Return >=0 for the number of sectors defragged, and range->start will be updated
|
|
* to indicate the file offset where next defrag should be started at.
|
|
* (Mostly for autodefrag, which sets @max_to_defrag thus we may exit early without
|
|
* defragging all the range).
|
|
*/
|
|
int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra,
|
|
struct btrfs_ioctl_defrag_range_args *range,
|
|
u64 newer_than, unsigned long max_to_defrag)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
unsigned long sectors_defragged = 0;
|
|
u64 isize = i_size_read(inode);
|
|
u64 cur;
|
|
u64 last_byte;
|
|
bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
|
|
bool ra_allocated = false;
|
|
int compress_type = BTRFS_COMPRESS_ZLIB;
|
|
int ret = 0;
|
|
u32 extent_thresh = range->extent_thresh;
|
|
pgoff_t start_index;
|
|
|
|
if (isize == 0)
|
|
return 0;
|
|
|
|
if (range->start >= isize)
|
|
return -EINVAL;
|
|
|
|
if (do_compress) {
|
|
if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
|
|
return -EINVAL;
|
|
if (range->compress_type)
|
|
compress_type = range->compress_type;
|
|
}
|
|
|
|
if (extent_thresh == 0)
|
|
extent_thresh = SZ_256K;
|
|
|
|
if (range->start + range->len > range->start) {
|
|
/* Got a specific range */
|
|
last_byte = min(isize, range->start + range->len);
|
|
} else {
|
|
/* Defrag until file end */
|
|
last_byte = isize;
|
|
}
|
|
|
|
/* Align the range */
|
|
cur = round_down(range->start, fs_info->sectorsize);
|
|
last_byte = round_up(last_byte, fs_info->sectorsize) - 1;
|
|
|
|
/*
|
|
* If we were not given a ra, allocate a readahead context. As
|
|
* readahead is just an optimization, defrag will work without it so
|
|
* we don't error out.
|
|
*/
|
|
if (!ra) {
|
|
ra_allocated = true;
|
|
ra = kzalloc(sizeof(*ra), GFP_KERNEL);
|
|
if (ra)
|
|
file_ra_state_init(ra, inode->i_mapping);
|
|
}
|
|
|
|
/*
|
|
* Make writeback start from the beginning of the range, so that the
|
|
* defrag range can be written sequentially.
|
|
*/
|
|
start_index = cur >> PAGE_SHIFT;
|
|
if (start_index < inode->i_mapping->writeback_index)
|
|
inode->i_mapping->writeback_index = start_index;
|
|
|
|
while (cur < last_byte) {
|
|
const unsigned long prev_sectors_defragged = sectors_defragged;
|
|
u64 last_scanned = cur;
|
|
u64 cluster_end;
|
|
|
|
if (btrfs_defrag_cancelled(fs_info)) {
|
|
ret = -EAGAIN;
|
|
break;
|
|
}
|
|
|
|
/* We want the cluster end at page boundary when possible */
|
|
cluster_end = (((cur >> PAGE_SHIFT) +
|
|
(SZ_256K >> PAGE_SHIFT)) << PAGE_SHIFT) - 1;
|
|
cluster_end = min(cluster_end, last_byte);
|
|
|
|
btrfs_inode_lock(inode, 0);
|
|
if (IS_SWAPFILE(inode)) {
|
|
ret = -ETXTBSY;
|
|
btrfs_inode_unlock(inode, 0);
|
|
break;
|
|
}
|
|
if (!(inode->i_sb->s_flags & SB_ACTIVE)) {
|
|
btrfs_inode_unlock(inode, 0);
|
|
break;
|
|
}
|
|
if (do_compress)
|
|
BTRFS_I(inode)->defrag_compress = compress_type;
|
|
ret = defrag_one_cluster(BTRFS_I(inode), ra, cur,
|
|
cluster_end + 1 - cur, extent_thresh,
|
|
newer_than, do_compress, §ors_defragged,
|
|
max_to_defrag, &last_scanned);
|
|
|
|
if (sectors_defragged > prev_sectors_defragged)
|
|
balance_dirty_pages_ratelimited(inode->i_mapping);
|
|
|
|
btrfs_inode_unlock(inode, 0);
|
|
if (ret < 0)
|
|
break;
|
|
cur = max(cluster_end + 1, last_scanned);
|
|
if (ret > 0) {
|
|
ret = 0;
|
|
break;
|
|
}
|
|
cond_resched();
|
|
}
|
|
|
|
if (ra_allocated)
|
|
kfree(ra);
|
|
/*
|
|
* Update range.start for autodefrag, this will indicate where to start
|
|
* in next run.
|
|
*/
|
|
range->start = cur;
|
|
if (sectors_defragged) {
|
|
/*
|
|
* We have defragged some sectors, for compression case they
|
|
* need to be written back immediately.
|
|
*/
|
|
if (range->flags & BTRFS_DEFRAG_RANGE_START_IO) {
|
|
filemap_flush(inode->i_mapping);
|
|
if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
|
|
&BTRFS_I(inode)->runtime_flags))
|
|
filemap_flush(inode->i_mapping);
|
|
}
|
|
if (range->compress_type == BTRFS_COMPRESS_LZO)
|
|
btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
|
|
else if (range->compress_type == BTRFS_COMPRESS_ZSTD)
|
|
btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
|
|
ret = sectors_defragged;
|
|
}
|
|
if (do_compress) {
|
|
btrfs_inode_lock(inode, 0);
|
|
BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
|
|
btrfs_inode_unlock(inode, 0);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Try to start exclusive operation @type or cancel it if it's running.
|
|
*
|
|
* Return:
|
|
* 0 - normal mode, newly claimed op started
|
|
* >0 - normal mode, something else is running,
|
|
* return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
|
|
* ECANCELED - cancel mode, successful cancel
|
|
* ENOTCONN - cancel mode, operation not running anymore
|
|
*/
|
|
static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
|
|
enum btrfs_exclusive_operation type, bool cancel)
|
|
{
|
|
if (!cancel) {
|
|
/* Start normal op */
|
|
if (!btrfs_exclop_start(fs_info, type))
|
|
return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
|
|
/* Exclusive operation is now claimed */
|
|
return 0;
|
|
}
|
|
|
|
/* Cancel running op */
|
|
if (btrfs_exclop_start_try_lock(fs_info, type)) {
|
|
/*
|
|
* This blocks any exclop finish from setting it to NONE, so we
|
|
* request cancellation. Either it runs and we will wait for it,
|
|
* or it has finished and no waiting will happen.
|
|
*/
|
|
atomic_inc(&fs_info->reloc_cancel_req);
|
|
btrfs_exclop_start_unlock(fs_info);
|
|
|
|
if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
|
|
wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
|
|
TASK_INTERRUPTIBLE);
|
|
|
|
return -ECANCELED;
|
|
}
|
|
|
|
/* Something else is running or none */
|
|
return -ENOTCONN;
|
|
}
|
|
|
|
static noinline int btrfs_ioctl_resize(struct file *file,
|
|
void __user *arg)
|
|
{
|
|
BTRFS_DEV_LOOKUP_ARGS(args);
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
u64 new_size;
|
|
u64 old_size;
|
|
u64 devid = 1;
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_ioctl_vol_args *vol_args;
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_device *device = NULL;
|
|
char *sizestr;
|
|
char *retptr;
|
|
char *devstr = NULL;
|
|
int ret = 0;
|
|
int mod = 0;
|
|
bool cancel;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
ret = mnt_want_write_file(file);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* Read the arguments before checking exclusivity to be able to
|
|
* distinguish regular resize and cancel
|
|
*/
|
|
vol_args = memdup_user(arg, sizeof(*vol_args));
|
|
if (IS_ERR(vol_args)) {
|
|
ret = PTR_ERR(vol_args);
|
|
goto out_drop;
|
|
}
|
|
vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
|
|
sizestr = vol_args->name;
|
|
cancel = (strcmp("cancel", sizestr) == 0);
|
|
ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
|
|
if (ret)
|
|
goto out_free;
|
|
/* Exclusive operation is now claimed */
|
|
|
|
devstr = strchr(sizestr, ':');
|
|
if (devstr) {
|
|
sizestr = devstr + 1;
|
|
*devstr = '\0';
|
|
devstr = vol_args->name;
|
|
ret = kstrtoull(devstr, 10, &devid);
|
|
if (ret)
|
|
goto out_finish;
|
|
if (!devid) {
|
|
ret = -EINVAL;
|
|
goto out_finish;
|
|
}
|
|
btrfs_info(fs_info, "resizing devid %llu", devid);
|
|
}
|
|
|
|
args.devid = devid;
|
|
device = btrfs_find_device(fs_info->fs_devices, &args);
|
|
if (!device) {
|
|
btrfs_info(fs_info, "resizer unable to find device %llu",
|
|
devid);
|
|
ret = -ENODEV;
|
|
goto out_finish;
|
|
}
|
|
|
|
if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
|
|
btrfs_info(fs_info,
|
|
"resizer unable to apply on readonly device %llu",
|
|
devid);
|
|
ret = -EPERM;
|
|
goto out_finish;
|
|
}
|
|
|
|
if (!strcmp(sizestr, "max"))
|
|
new_size = bdev_nr_bytes(device->bdev);
|
|
else {
|
|
if (sizestr[0] == '-') {
|
|
mod = -1;
|
|
sizestr++;
|
|
} else if (sizestr[0] == '+') {
|
|
mod = 1;
|
|
sizestr++;
|
|
}
|
|
new_size = memparse(sizestr, &retptr);
|
|
if (*retptr != '\0' || new_size == 0) {
|
|
ret = -EINVAL;
|
|
goto out_finish;
|
|
}
|
|
}
|
|
|
|
if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
|
|
ret = -EPERM;
|
|
goto out_finish;
|
|
}
|
|
|
|
old_size = btrfs_device_get_total_bytes(device);
|
|
|
|
if (mod < 0) {
|
|
if (new_size > old_size) {
|
|
ret = -EINVAL;
|
|
goto out_finish;
|
|
}
|
|
new_size = old_size - new_size;
|
|
} else if (mod > 0) {
|
|
if (new_size > ULLONG_MAX - old_size) {
|
|
ret = -ERANGE;
|
|
goto out_finish;
|
|
}
|
|
new_size = old_size + new_size;
|
|
}
|
|
|
|
if (new_size < SZ_256M) {
|
|
ret = -EINVAL;
|
|
goto out_finish;
|
|
}
|
|
if (new_size > bdev_nr_bytes(device->bdev)) {
|
|
ret = -EFBIG;
|
|
goto out_finish;
|
|
}
|
|
|
|
new_size = round_down(new_size, fs_info->sectorsize);
|
|
|
|
if (new_size > old_size) {
|
|
trans = btrfs_start_transaction(root, 0);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
goto out_finish;
|
|
}
|
|
ret = btrfs_grow_device(trans, device, new_size);
|
|
btrfs_commit_transaction(trans);
|
|
} else if (new_size < old_size) {
|
|
ret = btrfs_shrink_device(device, new_size);
|
|
} /* equal, nothing need to do */
|
|
|
|
if (ret == 0 && new_size != old_size)
|
|
btrfs_info_in_rcu(fs_info,
|
|
"resize device %s (devid %llu) from %llu to %llu",
|
|
rcu_str_deref(device->name), device->devid,
|
|
old_size, new_size);
|
|
out_finish:
|
|
btrfs_exclop_finish(fs_info);
|
|
out_free:
|
|
kfree(vol_args);
|
|
out_drop:
|
|
mnt_drop_write_file(file);
|
|
return ret;
|
|
}
|
|
|
|
static noinline int __btrfs_ioctl_snap_create(struct file *file,
|
|
struct user_namespace *mnt_userns,
|
|
const char *name, unsigned long fd, int subvol,
|
|
bool readonly,
|
|
struct btrfs_qgroup_inherit *inherit)
|
|
{
|
|
int namelen;
|
|
int ret = 0;
|
|
|
|
if (!S_ISDIR(file_inode(file)->i_mode))
|
|
return -ENOTDIR;
|
|
|
|
ret = mnt_want_write_file(file);
|
|
if (ret)
|
|
goto out;
|
|
|
|
namelen = strlen(name);
|
|
if (strchr(name, '/')) {
|
|
ret = -EINVAL;
|
|
goto out_drop_write;
|
|
}
|
|
|
|
if (name[0] == '.' &&
|
|
(namelen == 1 || (name[1] == '.' && namelen == 2))) {
|
|
ret = -EEXIST;
|
|
goto out_drop_write;
|
|
}
|
|
|
|
if (subvol) {
|
|
ret = btrfs_mksubvol(&file->f_path, mnt_userns, name,
|
|
namelen, NULL, readonly, inherit);
|
|
} else {
|
|
struct fd src = fdget(fd);
|
|
struct inode *src_inode;
|
|
if (!src.file) {
|
|
ret = -EINVAL;
|
|
goto out_drop_write;
|
|
}
|
|
|
|
src_inode = file_inode(src.file);
|
|
if (src_inode->i_sb != file_inode(file)->i_sb) {
|
|
btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
|
|
"Snapshot src from another FS");
|
|
ret = -EXDEV;
|
|
} else if (!inode_owner_or_capable(mnt_userns, src_inode)) {
|
|
/*
|
|
* Subvolume creation is not restricted, but snapshots
|
|
* are limited to own subvolumes only
|
|
*/
|
|
ret = -EPERM;
|
|
} else {
|
|
ret = btrfs_mksnapshot(&file->f_path, mnt_userns,
|
|
name, namelen,
|
|
BTRFS_I(src_inode)->root,
|
|
readonly, inherit);
|
|
}
|
|
fdput(src);
|
|
}
|
|
out_drop_write:
|
|
mnt_drop_write_file(file);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static noinline int btrfs_ioctl_snap_create(struct file *file,
|
|
void __user *arg, int subvol)
|
|
{
|
|
struct btrfs_ioctl_vol_args *vol_args;
|
|
int ret;
|
|
|
|
if (!S_ISDIR(file_inode(file)->i_mode))
|
|
return -ENOTDIR;
|
|
|
|
vol_args = memdup_user(arg, sizeof(*vol_args));
|
|
if (IS_ERR(vol_args))
|
|
return PTR_ERR(vol_args);
|
|
vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
|
|
|
|
ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file),
|
|
vol_args->name, vol_args->fd, subvol,
|
|
false, NULL);
|
|
|
|
kfree(vol_args);
|
|
return ret;
|
|
}
|
|
|
|
static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
|
|
void __user *arg, int subvol)
|
|
{
|
|
struct btrfs_ioctl_vol_args_v2 *vol_args;
|
|
int ret;
|
|
bool readonly = false;
|
|
struct btrfs_qgroup_inherit *inherit = NULL;
|
|
|
|
if (!S_ISDIR(file_inode(file)->i_mode))
|
|
return -ENOTDIR;
|
|
|
|
vol_args = memdup_user(arg, sizeof(*vol_args));
|
|
if (IS_ERR(vol_args))
|
|
return PTR_ERR(vol_args);
|
|
vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
|
|
|
|
if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
|
|
ret = -EOPNOTSUPP;
|
|
goto free_args;
|
|
}
|
|
|
|
if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
|
|
readonly = true;
|
|
if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
|
|
u64 nums;
|
|
|
|
if (vol_args->size < sizeof(*inherit) ||
|
|
vol_args->size > PAGE_SIZE) {
|
|
ret = -EINVAL;
|
|
goto free_args;
|
|
}
|
|
inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
|
|
if (IS_ERR(inherit)) {
|
|
ret = PTR_ERR(inherit);
|
|
goto free_args;
|
|
}
|
|
|
|
if (inherit->num_qgroups > PAGE_SIZE ||
|
|
inherit->num_ref_copies > PAGE_SIZE ||
|
|
inherit->num_excl_copies > PAGE_SIZE) {
|
|
ret = -EINVAL;
|
|
goto free_inherit;
|
|
}
|
|
|
|
nums = inherit->num_qgroups + 2 * inherit->num_ref_copies +
|
|
2 * inherit->num_excl_copies;
|
|
if (vol_args->size != struct_size(inherit, qgroups, nums)) {
|
|
ret = -EINVAL;
|
|
goto free_inherit;
|
|
}
|
|
}
|
|
|
|
ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file),
|
|
vol_args->name, vol_args->fd, subvol,
|
|
readonly, inherit);
|
|
if (ret)
|
|
goto free_inherit;
|
|
free_inherit:
|
|
kfree(inherit);
|
|
free_args:
|
|
kfree(vol_args);
|
|
return ret;
|
|
}
|
|
|
|
static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode,
|
|
void __user *arg)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
int ret = 0;
|
|
u64 flags = 0;
|
|
|
|
if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
|
|
return -EINVAL;
|
|
|
|
down_read(&fs_info->subvol_sem);
|
|
if (btrfs_root_readonly(root))
|
|
flags |= BTRFS_SUBVOL_RDONLY;
|
|
up_read(&fs_info->subvol_sem);
|
|
|
|
if (copy_to_user(arg, &flags, sizeof(flags)))
|
|
ret = -EFAULT;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
|
|
void __user *arg)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_trans_handle *trans;
|
|
u64 root_flags;
|
|
u64 flags;
|
|
int ret = 0;
|
|
|
|
if (!inode_owner_or_capable(file_mnt_user_ns(file), inode))
|
|
return -EPERM;
|
|
|
|
ret = mnt_want_write_file(file);
|
|
if (ret)
|
|
goto out;
|
|
|
|
if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
|
|
ret = -EINVAL;
|
|
goto out_drop_write;
|
|
}
|
|
|
|
if (copy_from_user(&flags, arg, sizeof(flags))) {
|
|
ret = -EFAULT;
|
|
goto out_drop_write;
|
|
}
|
|
|
|
if (flags & ~BTRFS_SUBVOL_RDONLY) {
|
|
ret = -EOPNOTSUPP;
|
|
goto out_drop_write;
|
|
}
|
|
|
|
down_write(&fs_info->subvol_sem);
|
|
|
|
/* nothing to do */
|
|
if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
|
|
goto out_drop_sem;
|
|
|
|
root_flags = btrfs_root_flags(&root->root_item);
|
|
if (flags & BTRFS_SUBVOL_RDONLY) {
|
|
btrfs_set_root_flags(&root->root_item,
|
|
root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
|
|
} else {
|
|
/*
|
|
* Block RO -> RW transition if this subvolume is involved in
|
|
* send
|
|
*/
|
|
spin_lock(&root->root_item_lock);
|
|
if (root->send_in_progress == 0) {
|
|
btrfs_set_root_flags(&root->root_item,
|
|
root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
|
|
spin_unlock(&root->root_item_lock);
|
|
} else {
|
|
spin_unlock(&root->root_item_lock);
|
|
btrfs_warn(fs_info,
|
|
"Attempt to set subvolume %llu read-write during send",
|
|
root->root_key.objectid);
|
|
ret = -EPERM;
|
|
goto out_drop_sem;
|
|
}
|
|
}
|
|
|
|
trans = btrfs_start_transaction(root, 1);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
goto out_reset;
|
|
}
|
|
|
|
ret = btrfs_update_root(trans, fs_info->tree_root,
|
|
&root->root_key, &root->root_item);
|
|
if (ret < 0) {
|
|
btrfs_end_transaction(trans);
|
|
goto out_reset;
|
|
}
|
|
|
|
ret = btrfs_commit_transaction(trans);
|
|
|
|
out_reset:
|
|
if (ret)
|
|
btrfs_set_root_flags(&root->root_item, root_flags);
|
|
out_drop_sem:
|
|
up_write(&fs_info->subvol_sem);
|
|
out_drop_write:
|
|
mnt_drop_write_file(file);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static noinline int key_in_sk(struct btrfs_key *key,
|
|
struct btrfs_ioctl_search_key *sk)
|
|
{
|
|
struct btrfs_key test;
|
|
int ret;
|
|
|
|
test.objectid = sk->min_objectid;
|
|
test.type = sk->min_type;
|
|
test.offset = sk->min_offset;
|
|
|
|
ret = btrfs_comp_cpu_keys(key, &test);
|
|
if (ret < 0)
|
|
return 0;
|
|
|
|
test.objectid = sk->max_objectid;
|
|
test.type = sk->max_type;
|
|
test.offset = sk->max_offset;
|
|
|
|
ret = btrfs_comp_cpu_keys(key, &test);
|
|
if (ret > 0)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
static noinline int copy_to_sk(struct btrfs_path *path,
|
|
struct btrfs_key *key,
|
|
struct btrfs_ioctl_search_key *sk,
|
|
size_t *buf_size,
|
|
char __user *ubuf,
|
|
unsigned long *sk_offset,
|
|
int *num_found)
|
|
{
|
|
u64 found_transid;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_ioctl_search_header sh;
|
|
struct btrfs_key test;
|
|
unsigned long item_off;
|
|
unsigned long item_len;
|
|
int nritems;
|
|
int i;
|
|
int slot;
|
|
int ret = 0;
|
|
|
|
leaf = path->nodes[0];
|
|
slot = path->slots[0];
|
|
nritems = btrfs_header_nritems(leaf);
|
|
|
|
if (btrfs_header_generation(leaf) > sk->max_transid) {
|
|
i = nritems;
|
|
goto advance_key;
|
|
}
|
|
found_transid = btrfs_header_generation(leaf);
|
|
|
|
for (i = slot; i < nritems; i++) {
|
|
item_off = btrfs_item_ptr_offset(leaf, i);
|
|
item_len = btrfs_item_size(leaf, i);
|
|
|
|
btrfs_item_key_to_cpu(leaf, key, i);
|
|
if (!key_in_sk(key, sk))
|
|
continue;
|
|
|
|
if (sizeof(sh) + item_len > *buf_size) {
|
|
if (*num_found) {
|
|
ret = 1;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* return one empty item back for v1, which does not
|
|
* handle -EOVERFLOW
|
|
*/
|
|
|
|
*buf_size = sizeof(sh) + item_len;
|
|
item_len = 0;
|
|
ret = -EOVERFLOW;
|
|
}
|
|
|
|
if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
|
|
ret = 1;
|
|
goto out;
|
|
}
|
|
|
|
sh.objectid = key->objectid;
|
|
sh.offset = key->offset;
|
|
sh.type = key->type;
|
|
sh.len = item_len;
|
|
sh.transid = found_transid;
|
|
|
|
/*
|
|
* Copy search result header. If we fault then loop again so we
|
|
* can fault in the pages and -EFAULT there if there's a
|
|
* problem. Otherwise we'll fault and then copy the buffer in
|
|
* properly this next time through
|
|
*/
|
|
if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
|
|
*sk_offset += sizeof(sh);
|
|
|
|
if (item_len) {
|
|
char __user *up = ubuf + *sk_offset;
|
|
/*
|
|
* Copy the item, same behavior as above, but reset the
|
|
* * sk_offset so we copy the full thing again.
|
|
*/
|
|
if (read_extent_buffer_to_user_nofault(leaf, up,
|
|
item_off, item_len)) {
|
|
ret = 0;
|
|
*sk_offset -= sizeof(sh);
|
|
goto out;
|
|
}
|
|
|
|
*sk_offset += item_len;
|
|
}
|
|
(*num_found)++;
|
|
|
|
if (ret) /* -EOVERFLOW from above */
|
|
goto out;
|
|
|
|
if (*num_found >= sk->nr_items) {
|
|
ret = 1;
|
|
goto out;
|
|
}
|
|
}
|
|
advance_key:
|
|
ret = 0;
|
|
test.objectid = sk->max_objectid;
|
|
test.type = sk->max_type;
|
|
test.offset = sk->max_offset;
|
|
if (btrfs_comp_cpu_keys(key, &test) >= 0)
|
|
ret = 1;
|
|
else if (key->offset < (u64)-1)
|
|
key->offset++;
|
|
else if (key->type < (u8)-1) {
|
|
key->offset = 0;
|
|
key->type++;
|
|
} else if (key->objectid < (u64)-1) {
|
|
key->offset = 0;
|
|
key->type = 0;
|
|
key->objectid++;
|
|
} else
|
|
ret = 1;
|
|
out:
|
|
/*
|
|
* 0: all items from this leaf copied, continue with next
|
|
* 1: * more items can be copied, but unused buffer is too small
|
|
* * all items were found
|
|
* Either way, it will stops the loop which iterates to the next
|
|
* leaf
|
|
* -EOVERFLOW: item was to large for buffer
|
|
* -EFAULT: could not copy extent buffer back to userspace
|
|
*/
|
|
return ret;
|
|
}
|
|
|
|
static noinline int search_ioctl(struct inode *inode,
|
|
struct btrfs_ioctl_search_key *sk,
|
|
size_t *buf_size,
|
|
char __user *ubuf)
|
|
{
|
|
struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_root *root;
|
|
struct btrfs_key key;
|
|
struct btrfs_path *path;
|
|
int ret;
|
|
int num_found = 0;
|
|
unsigned long sk_offset = 0;
|
|
|
|
if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
|
|
*buf_size = sizeof(struct btrfs_ioctl_search_header);
|
|
return -EOVERFLOW;
|
|
}
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
if (sk->tree_id == 0) {
|
|
/* search the root of the inode that was passed */
|
|
root = btrfs_grab_root(BTRFS_I(inode)->root);
|
|
} else {
|
|
root = btrfs_get_fs_root(info, sk->tree_id, true);
|
|
if (IS_ERR(root)) {
|
|
btrfs_free_path(path);
|
|
return PTR_ERR(root);
|
|
}
|
|
}
|
|
|
|
key.objectid = sk->min_objectid;
|
|
key.type = sk->min_type;
|
|
key.offset = sk->min_offset;
|
|
|
|
while (1) {
|
|
ret = -EFAULT;
|
|
/*
|
|
* Ensure that the whole user buffer is faulted in at sub-page
|
|
* granularity, otherwise the loop may live-lock.
|
|
*/
|
|
if (fault_in_subpage_writeable(ubuf + sk_offset,
|
|
*buf_size - sk_offset))
|
|
break;
|
|
|
|
ret = btrfs_search_forward(root, &key, path, sk->min_transid);
|
|
if (ret != 0) {
|
|
if (ret > 0)
|
|
ret = 0;
|
|
goto err;
|
|
}
|
|
ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
|
|
&sk_offset, &num_found);
|
|
btrfs_release_path(path);
|
|
if (ret)
|
|
break;
|
|
|
|
}
|
|
if (ret > 0)
|
|
ret = 0;
|
|
err:
|
|
sk->nr_items = num_found;
|
|
btrfs_put_root(root);
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
static noinline int btrfs_ioctl_tree_search(struct inode *inode,
|
|
void __user *argp)
|
|
{
|
|
struct btrfs_ioctl_search_args __user *uargs = argp;
|
|
struct btrfs_ioctl_search_key sk;
|
|
int ret;
|
|
size_t buf_size;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
|
|
return -EFAULT;
|
|
|
|
buf_size = sizeof(uargs->buf);
|
|
|
|
ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
|
|
|
|
/*
|
|
* In the origin implementation an overflow is handled by returning a
|
|
* search header with a len of zero, so reset ret.
|
|
*/
|
|
if (ret == -EOVERFLOW)
|
|
ret = 0;
|
|
|
|
if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
|
|
ret = -EFAULT;
|
|
return ret;
|
|
}
|
|
|
|
static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode,
|
|
void __user *argp)
|
|
{
|
|
struct btrfs_ioctl_search_args_v2 __user *uarg = argp;
|
|
struct btrfs_ioctl_search_args_v2 args;
|
|
int ret;
|
|
size_t buf_size;
|
|
const size_t buf_limit = SZ_16M;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
/* copy search header and buffer size */
|
|
if (copy_from_user(&args, uarg, sizeof(args)))
|
|
return -EFAULT;
|
|
|
|
buf_size = args.buf_size;
|
|
|
|
/* limit result size to 16MB */
|
|
if (buf_size > buf_limit)
|
|
buf_size = buf_limit;
|
|
|
|
ret = search_ioctl(inode, &args.key, &buf_size,
|
|
(char __user *)(&uarg->buf[0]));
|
|
if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
|
|
ret = -EFAULT;
|
|
else if (ret == -EOVERFLOW &&
|
|
copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
|
|
ret = -EFAULT;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Search INODE_REFs to identify path name of 'dirid' directory
|
|
* in a 'tree_id' tree. and sets path name to 'name'.
|
|
*/
|
|
static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
|
|
u64 tree_id, u64 dirid, char *name)
|
|
{
|
|
struct btrfs_root *root;
|
|
struct btrfs_key key;
|
|
char *ptr;
|
|
int ret = -1;
|
|
int slot;
|
|
int len;
|
|
int total_len = 0;
|
|
struct btrfs_inode_ref *iref;
|
|
struct extent_buffer *l;
|
|
struct btrfs_path *path;
|
|
|
|
if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
|
|
name[0]='\0';
|
|
return 0;
|
|
}
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
|
|
|
|
root = btrfs_get_fs_root(info, tree_id, true);
|
|
if (IS_ERR(root)) {
|
|
ret = PTR_ERR(root);
|
|
root = NULL;
|
|
goto out;
|
|
}
|
|
|
|
key.objectid = dirid;
|
|
key.type = BTRFS_INODE_REF_KEY;
|
|
key.offset = (u64)-1;
|
|
|
|
while (1) {
|
|
ret = btrfs_search_backwards(root, &key, path);
|
|
if (ret < 0)
|
|
goto out;
|
|
else if (ret > 0) {
|
|
ret = -ENOENT;
|
|
goto out;
|
|
}
|
|
|
|
l = path->nodes[0];
|
|
slot = path->slots[0];
|
|
|
|
iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
|
|
len = btrfs_inode_ref_name_len(l, iref);
|
|
ptr -= len + 1;
|
|
total_len += len + 1;
|
|
if (ptr < name) {
|
|
ret = -ENAMETOOLONG;
|
|
goto out;
|
|
}
|
|
|
|
*(ptr + len) = '/';
|
|
read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
|
|
|
|
if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
|
|
break;
|
|
|
|
btrfs_release_path(path);
|
|
key.objectid = key.offset;
|
|
key.offset = (u64)-1;
|
|
dirid = key.objectid;
|
|
}
|
|
memmove(name, ptr, total_len);
|
|
name[total_len] = '\0';
|
|
ret = 0;
|
|
out:
|
|
btrfs_put_root(root);
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_search_path_in_tree_user(struct user_namespace *mnt_userns,
|
|
struct inode *inode,
|
|
struct btrfs_ioctl_ino_lookup_user_args *args)
|
|
{
|
|
struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
|
|
struct super_block *sb = inode->i_sb;
|
|
struct btrfs_key upper_limit = BTRFS_I(inode)->location;
|
|
u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
|
|
u64 dirid = args->dirid;
|
|
unsigned long item_off;
|
|
unsigned long item_len;
|
|
struct btrfs_inode_ref *iref;
|
|
struct btrfs_root_ref *rref;
|
|
struct btrfs_root *root = NULL;
|
|
struct btrfs_path *path;
|
|
struct btrfs_key key, key2;
|
|
struct extent_buffer *leaf;
|
|
struct inode *temp_inode;
|
|
char *ptr;
|
|
int slot;
|
|
int len;
|
|
int total_len = 0;
|
|
int ret;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* If the bottom subvolume does not exist directly under upper_limit,
|
|
* construct the path in from the bottom up.
|
|
*/
|
|
if (dirid != upper_limit.objectid) {
|
|
ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
|
|
|
|
root = btrfs_get_fs_root(fs_info, treeid, true);
|
|
if (IS_ERR(root)) {
|
|
ret = PTR_ERR(root);
|
|
goto out;
|
|
}
|
|
|
|
key.objectid = dirid;
|
|
key.type = BTRFS_INODE_REF_KEY;
|
|
key.offset = (u64)-1;
|
|
while (1) {
|
|
ret = btrfs_search_backwards(root, &key, path);
|
|
if (ret < 0)
|
|
goto out_put;
|
|
else if (ret > 0) {
|
|
ret = -ENOENT;
|
|
goto out_put;
|
|
}
|
|
|
|
leaf = path->nodes[0];
|
|
slot = path->slots[0];
|
|
|
|
iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
|
|
len = btrfs_inode_ref_name_len(leaf, iref);
|
|
ptr -= len + 1;
|
|
total_len += len + 1;
|
|
if (ptr < args->path) {
|
|
ret = -ENAMETOOLONG;
|
|
goto out_put;
|
|
}
|
|
|
|
*(ptr + len) = '/';
|
|
read_extent_buffer(leaf, ptr,
|
|
(unsigned long)(iref + 1), len);
|
|
|
|
/* Check the read+exec permission of this directory */
|
|
ret = btrfs_previous_item(root, path, dirid,
|
|
BTRFS_INODE_ITEM_KEY);
|
|
if (ret < 0) {
|
|
goto out_put;
|
|
} else if (ret > 0) {
|
|
ret = -ENOENT;
|
|
goto out_put;
|
|
}
|
|
|
|
leaf = path->nodes[0];
|
|
slot = path->slots[0];
|
|
btrfs_item_key_to_cpu(leaf, &key2, slot);
|
|
if (key2.objectid != dirid) {
|
|
ret = -ENOENT;
|
|
goto out_put;
|
|
}
|
|
|
|
temp_inode = btrfs_iget(sb, key2.objectid, root);
|
|
if (IS_ERR(temp_inode)) {
|
|
ret = PTR_ERR(temp_inode);
|
|
goto out_put;
|
|
}
|
|
ret = inode_permission(mnt_userns, temp_inode,
|
|
MAY_READ | MAY_EXEC);
|
|
iput(temp_inode);
|
|
if (ret) {
|
|
ret = -EACCES;
|
|
goto out_put;
|
|
}
|
|
|
|
if (key.offset == upper_limit.objectid)
|
|
break;
|
|
if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
|
|
ret = -EACCES;
|
|
goto out_put;
|
|
}
|
|
|
|
btrfs_release_path(path);
|
|
key.objectid = key.offset;
|
|
key.offset = (u64)-1;
|
|
dirid = key.objectid;
|
|
}
|
|
|
|
memmove(args->path, ptr, total_len);
|
|
args->path[total_len] = '\0';
|
|
btrfs_put_root(root);
|
|
root = NULL;
|
|
btrfs_release_path(path);
|
|
}
|
|
|
|
/* Get the bottom subvolume's name from ROOT_REF */
|
|
key.objectid = treeid;
|
|
key.type = BTRFS_ROOT_REF_KEY;
|
|
key.offset = args->treeid;
|
|
ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
|
|
if (ret < 0) {
|
|
goto out;
|
|
} else if (ret > 0) {
|
|
ret = -ENOENT;
|
|
goto out;
|
|
}
|
|
|
|
leaf = path->nodes[0];
|
|
slot = path->slots[0];
|
|
btrfs_item_key_to_cpu(leaf, &key, slot);
|
|
|
|
item_off = btrfs_item_ptr_offset(leaf, slot);
|
|
item_len = btrfs_item_size(leaf, slot);
|
|
/* Check if dirid in ROOT_REF corresponds to passed dirid */
|
|
rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
|
|
if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/* Copy subvolume's name */
|
|
item_off += sizeof(struct btrfs_root_ref);
|
|
item_len -= sizeof(struct btrfs_root_ref);
|
|
read_extent_buffer(leaf, args->name, item_off, item_len);
|
|
args->name[item_len] = 0;
|
|
|
|
out_put:
|
|
btrfs_put_root(root);
|
|
out:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root,
|
|
void __user *argp)
|
|
{
|
|
struct btrfs_ioctl_ino_lookup_args *args;
|
|
int ret = 0;
|
|
|
|
args = memdup_user(argp, sizeof(*args));
|
|
if (IS_ERR(args))
|
|
return PTR_ERR(args);
|
|
|
|
/*
|
|
* Unprivileged query to obtain the containing subvolume root id. The
|
|
* path is reset so it's consistent with btrfs_search_path_in_tree.
|
|
*/
|
|
if (args->treeid == 0)
|
|
args->treeid = root->root_key.objectid;
|
|
|
|
if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
|
|
args->name[0] = 0;
|
|
goto out;
|
|
}
|
|
|
|
if (!capable(CAP_SYS_ADMIN)) {
|
|
ret = -EPERM;
|
|
goto out;
|
|
}
|
|
|
|
ret = btrfs_search_path_in_tree(root->fs_info,
|
|
args->treeid, args->objectid,
|
|
args->name);
|
|
|
|
out:
|
|
if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
|
|
ret = -EFAULT;
|
|
|
|
kfree(args);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Version of ino_lookup ioctl (unprivileged)
|
|
*
|
|
* The main differences from ino_lookup ioctl are:
|
|
*
|
|
* 1. Read + Exec permission will be checked using inode_permission() during
|
|
* path construction. -EACCES will be returned in case of failure.
|
|
* 2. Path construction will be stopped at the inode number which corresponds
|
|
* to the fd with which this ioctl is called. If constructed path does not
|
|
* exist under fd's inode, -EACCES will be returned.
|
|
* 3. The name of bottom subvolume is also searched and filled.
|
|
*/
|
|
static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
|
|
{
|
|
struct btrfs_ioctl_ino_lookup_user_args *args;
|
|
struct inode *inode;
|
|
int ret;
|
|
|
|
args = memdup_user(argp, sizeof(*args));
|
|
if (IS_ERR(args))
|
|
return PTR_ERR(args);
|
|
|
|
inode = file_inode(file);
|
|
|
|
if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
|
|
BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
|
|
/*
|
|
* The subvolume does not exist under fd with which this is
|
|
* called
|
|
*/
|
|
kfree(args);
|
|
return -EACCES;
|
|
}
|
|
|
|
ret = btrfs_search_path_in_tree_user(file_mnt_user_ns(file), inode, args);
|
|
|
|
if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
|
|
ret = -EFAULT;
|
|
|
|
kfree(args);
|
|
return ret;
|
|
}
|
|
|
|
/* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
|
|
static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp)
|
|
{
|
|
struct btrfs_ioctl_get_subvol_info_args *subvol_info;
|
|
struct btrfs_fs_info *fs_info;
|
|
struct btrfs_root *root;
|
|
struct btrfs_path *path;
|
|
struct btrfs_key key;
|
|
struct btrfs_root_item *root_item;
|
|
struct btrfs_root_ref *rref;
|
|
struct extent_buffer *leaf;
|
|
unsigned long item_off;
|
|
unsigned long item_len;
|
|
int slot;
|
|
int ret = 0;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
|
|
if (!subvol_info) {
|
|
btrfs_free_path(path);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
fs_info = BTRFS_I(inode)->root->fs_info;
|
|
|
|
/* Get root_item of inode's subvolume */
|
|
key.objectid = BTRFS_I(inode)->root->root_key.objectid;
|
|
root = btrfs_get_fs_root(fs_info, key.objectid, true);
|
|
if (IS_ERR(root)) {
|
|
ret = PTR_ERR(root);
|
|
goto out_free;
|
|
}
|
|
root_item = &root->root_item;
|
|
|
|
subvol_info->treeid = key.objectid;
|
|
|
|
subvol_info->generation = btrfs_root_generation(root_item);
|
|
subvol_info->flags = btrfs_root_flags(root_item);
|
|
|
|
memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
|
|
memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
|
|
BTRFS_UUID_SIZE);
|
|
memcpy(subvol_info->received_uuid, root_item->received_uuid,
|
|
BTRFS_UUID_SIZE);
|
|
|
|
subvol_info->ctransid = btrfs_root_ctransid(root_item);
|
|
subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
|
|
subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
|
|
|
|
subvol_info->otransid = btrfs_root_otransid(root_item);
|
|
subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
|
|
subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
|
|
|
|
subvol_info->stransid = btrfs_root_stransid(root_item);
|
|
subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
|
|
subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
|
|
|
|
subvol_info->rtransid = btrfs_root_rtransid(root_item);
|
|
subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
|
|
subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
|
|
|
|
if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
|
|
/* Search root tree for ROOT_BACKREF of this subvolume */
|
|
key.type = BTRFS_ROOT_BACKREF_KEY;
|
|
key.offset = 0;
|
|
ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
|
|
if (ret < 0) {
|
|
goto out;
|
|
} else if (path->slots[0] >=
|
|
btrfs_header_nritems(path->nodes[0])) {
|
|
ret = btrfs_next_leaf(fs_info->tree_root, path);
|
|
if (ret < 0) {
|
|
goto out;
|
|
} else if (ret > 0) {
|
|
ret = -EUCLEAN;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
leaf = path->nodes[0];
|
|
slot = path->slots[0];
|
|
btrfs_item_key_to_cpu(leaf, &key, slot);
|
|
if (key.objectid == subvol_info->treeid &&
|
|
key.type == BTRFS_ROOT_BACKREF_KEY) {
|
|
subvol_info->parent_id = key.offset;
|
|
|
|
rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
|
|
subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
|
|
|
|
item_off = btrfs_item_ptr_offset(leaf, slot)
|
|
+ sizeof(struct btrfs_root_ref);
|
|
item_len = btrfs_item_size(leaf, slot)
|
|
- sizeof(struct btrfs_root_ref);
|
|
read_extent_buffer(leaf, subvol_info->name,
|
|
item_off, item_len);
|
|
} else {
|
|
ret = -ENOENT;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
|
|
ret = -EFAULT;
|
|
|
|
out:
|
|
btrfs_put_root(root);
|
|
out_free:
|
|
btrfs_free_path(path);
|
|
kfree(subvol_info);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Return ROOT_REF information of the subvolume containing this inode
|
|
* except the subvolume name.
|
|
*/
|
|
static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root,
|
|
void __user *argp)
|
|
{
|
|
struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
|
|
struct btrfs_root_ref *rref;
|
|
struct btrfs_path *path;
|
|
struct btrfs_key key;
|
|
struct extent_buffer *leaf;
|
|
u64 objectid;
|
|
int slot;
|
|
int ret;
|
|
u8 found;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
rootrefs = memdup_user(argp, sizeof(*rootrefs));
|
|
if (IS_ERR(rootrefs)) {
|
|
btrfs_free_path(path);
|
|
return PTR_ERR(rootrefs);
|
|
}
|
|
|
|
objectid = root->root_key.objectid;
|
|
key.objectid = objectid;
|
|
key.type = BTRFS_ROOT_REF_KEY;
|
|
key.offset = rootrefs->min_treeid;
|
|
found = 0;
|
|
|
|
root = root->fs_info->tree_root;
|
|
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
|
|
if (ret < 0) {
|
|
goto out;
|
|
} else if (path->slots[0] >=
|
|
btrfs_header_nritems(path->nodes[0])) {
|
|
ret = btrfs_next_leaf(root, path);
|
|
if (ret < 0) {
|
|
goto out;
|
|
} else if (ret > 0) {
|
|
ret = -EUCLEAN;
|
|
goto out;
|
|
}
|
|
}
|
|
while (1) {
|
|
leaf = path->nodes[0];
|
|
slot = path->slots[0];
|
|
|
|
btrfs_item_key_to_cpu(leaf, &key, slot);
|
|
if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
|
|
if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
|
|
ret = -EOVERFLOW;
|
|
goto out;
|
|
}
|
|
|
|
rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
|
|
rootrefs->rootref[found].treeid = key.offset;
|
|
rootrefs->rootref[found].dirid =
|
|
btrfs_root_ref_dirid(leaf, rref);
|
|
found++;
|
|
|
|
ret = btrfs_next_item(root, path);
|
|
if (ret < 0) {
|
|
goto out;
|
|
} else if (ret > 0) {
|
|
ret = -EUCLEAN;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
out:
|
|
if (!ret || ret == -EOVERFLOW) {
|
|
rootrefs->num_items = found;
|
|
/* update min_treeid for next search */
|
|
if (found)
|
|
rootrefs->min_treeid =
|
|
rootrefs->rootref[found - 1].treeid + 1;
|
|
if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
|
|
ret = -EFAULT;
|
|
}
|
|
|
|
kfree(rootrefs);
|
|
btrfs_free_path(path);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static noinline int btrfs_ioctl_snap_destroy(struct file *file,
|
|
void __user *arg,
|
|
bool destroy_v2)
|
|
{
|
|
struct dentry *parent = file->f_path.dentry;
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
|
|
struct dentry *dentry;
|
|
struct inode *dir = d_inode(parent);
|
|
struct inode *inode;
|
|
struct btrfs_root *root = BTRFS_I(dir)->root;
|
|
struct btrfs_root *dest = NULL;
|
|
struct btrfs_ioctl_vol_args *vol_args = NULL;
|
|
struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
|
|
struct user_namespace *mnt_userns = file_mnt_user_ns(file);
|
|
char *subvol_name, *subvol_name_ptr = NULL;
|
|
int subvol_namelen;
|
|
int err = 0;
|
|
bool destroy_parent = false;
|
|
|
|
/* We don't support snapshots with extent tree v2 yet. */
|
|
if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
|
|
btrfs_err(fs_info,
|
|
"extent tree v2 doesn't support snapshot deletion yet");
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
if (destroy_v2) {
|
|
vol_args2 = memdup_user(arg, sizeof(*vol_args2));
|
|
if (IS_ERR(vol_args2))
|
|
return PTR_ERR(vol_args2);
|
|
|
|
if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
|
|
err = -EOPNOTSUPP;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* If SPEC_BY_ID is not set, we are looking for the subvolume by
|
|
* name, same as v1 currently does.
|
|
*/
|
|
if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
|
|
vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0;
|
|
subvol_name = vol_args2->name;
|
|
|
|
err = mnt_want_write_file(file);
|
|
if (err)
|
|
goto out;
|
|
} else {
|
|
struct inode *old_dir;
|
|
|
|
if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
err = mnt_want_write_file(file);
|
|
if (err)
|
|
goto out;
|
|
|
|
dentry = btrfs_get_dentry(fs_info->sb,
|
|
BTRFS_FIRST_FREE_OBJECTID,
|
|
vol_args2->subvolid, 0, 0);
|
|
if (IS_ERR(dentry)) {
|
|
err = PTR_ERR(dentry);
|
|
goto out_drop_write;
|
|
}
|
|
|
|
/*
|
|
* Change the default parent since the subvolume being
|
|
* deleted can be outside of the current mount point.
|
|
*/
|
|
parent = btrfs_get_parent(dentry);
|
|
|
|
/*
|
|
* At this point dentry->d_name can point to '/' if the
|
|
* subvolume we want to destroy is outsite of the
|
|
* current mount point, so we need to release the
|
|
* current dentry and execute the lookup to return a new
|
|
* one with ->d_name pointing to the
|
|
* <mount point>/subvol_name.
|
|
*/
|
|
dput(dentry);
|
|
if (IS_ERR(parent)) {
|
|
err = PTR_ERR(parent);
|
|
goto out_drop_write;
|
|
}
|
|
old_dir = dir;
|
|
dir = d_inode(parent);
|
|
|
|
/*
|
|
* If v2 was used with SPEC_BY_ID, a new parent was
|
|
* allocated since the subvolume can be outside of the
|
|
* current mount point. Later on we need to release this
|
|
* new parent dentry.
|
|
*/
|
|
destroy_parent = true;
|
|
|
|
/*
|
|
* On idmapped mounts, deletion via subvolid is
|
|
* restricted to subvolumes that are immediate
|
|
* ancestors of the inode referenced by the file
|
|
* descriptor in the ioctl. Otherwise the idmapping
|
|
* could potentially be abused to delete subvolumes
|
|
* anywhere in the filesystem the user wouldn't be able
|
|
* to delete without an idmapped mount.
|
|
*/
|
|
if (old_dir != dir && mnt_userns != &init_user_ns) {
|
|
err = -EOPNOTSUPP;
|
|
goto free_parent;
|
|
}
|
|
|
|
subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
|
|
fs_info, vol_args2->subvolid);
|
|
if (IS_ERR(subvol_name_ptr)) {
|
|
err = PTR_ERR(subvol_name_ptr);
|
|
goto free_parent;
|
|
}
|
|
/* subvol_name_ptr is already nul terminated */
|
|
subvol_name = (char *)kbasename(subvol_name_ptr);
|
|
}
|
|
} else {
|
|
vol_args = memdup_user(arg, sizeof(*vol_args));
|
|
if (IS_ERR(vol_args))
|
|
return PTR_ERR(vol_args);
|
|
|
|
vol_args->name[BTRFS_PATH_NAME_MAX] = 0;
|
|
subvol_name = vol_args->name;
|
|
|
|
err = mnt_want_write_file(file);
|
|
if (err)
|
|
goto out;
|
|
}
|
|
|
|
subvol_namelen = strlen(subvol_name);
|
|
|
|
if (strchr(subvol_name, '/') ||
|
|
strncmp(subvol_name, "..", subvol_namelen) == 0) {
|
|
err = -EINVAL;
|
|
goto free_subvol_name;
|
|
}
|
|
|
|
if (!S_ISDIR(dir->i_mode)) {
|
|
err = -ENOTDIR;
|
|
goto free_subvol_name;
|
|
}
|
|
|
|
err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
|
|
if (err == -EINTR)
|
|
goto free_subvol_name;
|
|
dentry = lookup_one(mnt_userns, subvol_name, parent, subvol_namelen);
|
|
if (IS_ERR(dentry)) {
|
|
err = PTR_ERR(dentry);
|
|
goto out_unlock_dir;
|
|
}
|
|
|
|
if (d_really_is_negative(dentry)) {
|
|
err = -ENOENT;
|
|
goto out_dput;
|
|
}
|
|
|
|
inode = d_inode(dentry);
|
|
dest = BTRFS_I(inode)->root;
|
|
if (!capable(CAP_SYS_ADMIN)) {
|
|
/*
|
|
* Regular user. Only allow this with a special mount
|
|
* option, when the user has write+exec access to the
|
|
* subvol root, and when rmdir(2) would have been
|
|
* allowed.
|
|
*
|
|
* Note that this is _not_ check that the subvol is
|
|
* empty or doesn't contain data that we wouldn't
|
|
* otherwise be able to delete.
|
|
*
|
|
* Users who want to delete empty subvols should try
|
|
* rmdir(2).
|
|
*/
|
|
err = -EPERM;
|
|
if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
|
|
goto out_dput;
|
|
|
|
/*
|
|
* Do not allow deletion if the parent dir is the same
|
|
* as the dir to be deleted. That means the ioctl
|
|
* must be called on the dentry referencing the root
|
|
* of the subvol, not a random directory contained
|
|
* within it.
|
|
*/
|
|
err = -EINVAL;
|
|
if (root == dest)
|
|
goto out_dput;
|
|
|
|
err = inode_permission(mnt_userns, inode, MAY_WRITE | MAY_EXEC);
|
|
if (err)
|
|
goto out_dput;
|
|
}
|
|
|
|
/* check if subvolume may be deleted by a user */
|
|
err = btrfs_may_delete(mnt_userns, dir, dentry, 1);
|
|
if (err)
|
|
goto out_dput;
|
|
|
|
if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
|
|
err = -EINVAL;
|
|
goto out_dput;
|
|
}
|
|
|
|
btrfs_inode_lock(inode, 0);
|
|
err = btrfs_delete_subvolume(dir, dentry);
|
|
btrfs_inode_unlock(inode, 0);
|
|
if (!err)
|
|
d_delete_notify(dir, dentry);
|
|
|
|
out_dput:
|
|
dput(dentry);
|
|
out_unlock_dir:
|
|
btrfs_inode_unlock(dir, 0);
|
|
free_subvol_name:
|
|
kfree(subvol_name_ptr);
|
|
free_parent:
|
|
if (destroy_parent)
|
|
dput(parent);
|
|
out_drop_write:
|
|
mnt_drop_write_file(file);
|
|
out:
|
|
kfree(vol_args2);
|
|
kfree(vol_args);
|
|
return err;
|
|
}
|
|
|
|
static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_ioctl_defrag_range_args range = {0};
|
|
int ret;
|
|
|
|
ret = mnt_want_write_file(file);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (btrfs_root_readonly(root)) {
|
|
ret = -EROFS;
|
|
goto out;
|
|
}
|
|
|
|
switch (inode->i_mode & S_IFMT) {
|
|
case S_IFDIR:
|
|
if (!capable(CAP_SYS_ADMIN)) {
|
|
ret = -EPERM;
|
|
goto out;
|
|
}
|
|
ret = btrfs_defrag_root(root);
|
|
break;
|
|
case S_IFREG:
|
|
/*
|
|
* Note that this does not check the file descriptor for write
|
|
* access. This prevents defragmenting executables that are
|
|
* running and allows defrag on files open in read-only mode.
|
|
*/
|
|
if (!capable(CAP_SYS_ADMIN) &&
|
|
inode_permission(&init_user_ns, inode, MAY_WRITE)) {
|
|
ret = -EPERM;
|
|
goto out;
|
|
}
|
|
|
|
if (argp) {
|
|
if (copy_from_user(&range, argp, sizeof(range))) {
|
|
ret = -EFAULT;
|
|
goto out;
|
|
}
|
|
/* compression requires us to start the IO */
|
|
if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
|
|
range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
|
|
range.extent_thresh = (u32)-1;
|
|
}
|
|
} else {
|
|
/* the rest are all set to zero by kzalloc */
|
|
range.len = (u64)-1;
|
|
}
|
|
ret = btrfs_defrag_file(file_inode(file), &file->f_ra,
|
|
&range, BTRFS_OLDEST_GENERATION, 0);
|
|
if (ret > 0)
|
|
ret = 0;
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
}
|
|
out:
|
|
mnt_drop_write_file(file);
|
|
return ret;
|
|
}
|
|
|
|
static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
|
|
{
|
|
struct btrfs_ioctl_vol_args *vol_args;
|
|
bool restore_op = false;
|
|
int ret;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
|
|
btrfs_err(fs_info, "device add not supported on extent tree v2 yet");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) {
|
|
if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD))
|
|
return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
|
|
|
|
/*
|
|
* We can do the device add because we have a paused balanced,
|
|
* change the exclusive op type and remember we should bring
|
|
* back the paused balance
|
|
*/
|
|
fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD;
|
|
btrfs_exclop_start_unlock(fs_info);
|
|
restore_op = true;
|
|
}
|
|
|
|
vol_args = memdup_user(arg, sizeof(*vol_args));
|
|
if (IS_ERR(vol_args)) {
|
|
ret = PTR_ERR(vol_args);
|
|
goto out;
|
|
}
|
|
|
|
vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
|
|
ret = btrfs_init_new_device(fs_info, vol_args->name);
|
|
|
|
if (!ret)
|
|
btrfs_info(fs_info, "disk added %s", vol_args->name);
|
|
|
|
kfree(vol_args);
|
|
out:
|
|
if (restore_op)
|
|
btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
|
|
else
|
|
btrfs_exclop_finish(fs_info);
|
|
return ret;
|
|
}
|
|
|
|
static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
|
|
{
|
|
BTRFS_DEV_LOOKUP_ARGS(args);
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_ioctl_vol_args_v2 *vol_args;
|
|
struct block_device *bdev = NULL;
|
|
fmode_t mode;
|
|
int ret;
|
|
bool cancel = false;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
vol_args = memdup_user(arg, sizeof(*vol_args));
|
|
if (IS_ERR(vol_args))
|
|
return PTR_ERR(vol_args);
|
|
|
|
if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
|
|
ret = -EOPNOTSUPP;
|
|
goto out;
|
|
}
|
|
|
|
vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
|
|
if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
|
|
args.devid = vol_args->devid;
|
|
} else if (!strcmp("cancel", vol_args->name)) {
|
|
cancel = true;
|
|
} else {
|
|
ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
ret = mnt_want_write_file(file);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
|
|
cancel);
|
|
if (ret)
|
|
goto err_drop;
|
|
|
|
/* Exclusive operation is now claimed */
|
|
ret = btrfs_rm_device(fs_info, &args, &bdev, &mode);
|
|
|
|
btrfs_exclop_finish(fs_info);
|
|
|
|
if (!ret) {
|
|
if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
|
|
btrfs_info(fs_info, "device deleted: id %llu",
|
|
vol_args->devid);
|
|
else
|
|
btrfs_info(fs_info, "device deleted: %s",
|
|
vol_args->name);
|
|
}
|
|
err_drop:
|
|
mnt_drop_write_file(file);
|
|
if (bdev)
|
|
blkdev_put(bdev, mode);
|
|
out:
|
|
btrfs_put_dev_args_from_path(&args);
|
|
kfree(vol_args);
|
|
return ret;
|
|
}
|
|
|
|
static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
|
|
{
|
|
BTRFS_DEV_LOOKUP_ARGS(args);
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_ioctl_vol_args *vol_args;
|
|
struct block_device *bdev = NULL;
|
|
fmode_t mode;
|
|
int ret;
|
|
bool cancel = false;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
vol_args = memdup_user(arg, sizeof(*vol_args));
|
|
if (IS_ERR(vol_args))
|
|
return PTR_ERR(vol_args);
|
|
|
|
vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
|
|
if (!strcmp("cancel", vol_args->name)) {
|
|
cancel = true;
|
|
} else {
|
|
ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
ret = mnt_want_write_file(file);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
|
|
cancel);
|
|
if (ret == 0) {
|
|
ret = btrfs_rm_device(fs_info, &args, &bdev, &mode);
|
|
if (!ret)
|
|
btrfs_info(fs_info, "disk deleted %s", vol_args->name);
|
|
btrfs_exclop_finish(fs_info);
|
|
}
|
|
|
|
mnt_drop_write_file(file);
|
|
if (bdev)
|
|
blkdev_put(bdev, mode);
|
|
out:
|
|
btrfs_put_dev_args_from_path(&args);
|
|
kfree(vol_args);
|
|
return ret;
|
|
}
|
|
|
|
static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
|
|
void __user *arg)
|
|
{
|
|
struct btrfs_ioctl_fs_info_args *fi_args;
|
|
struct btrfs_device *device;
|
|
struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
|
|
u64 flags_in;
|
|
int ret = 0;
|
|
|
|
fi_args = memdup_user(arg, sizeof(*fi_args));
|
|
if (IS_ERR(fi_args))
|
|
return PTR_ERR(fi_args);
|
|
|
|
flags_in = fi_args->flags;
|
|
memset(fi_args, 0, sizeof(*fi_args));
|
|
|
|
rcu_read_lock();
|
|
fi_args->num_devices = fs_devices->num_devices;
|
|
|
|
list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
|
|
if (device->devid > fi_args->max_id)
|
|
fi_args->max_id = device->devid;
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
|
|
fi_args->nodesize = fs_info->nodesize;
|
|
fi_args->sectorsize = fs_info->sectorsize;
|
|
fi_args->clone_alignment = fs_info->sectorsize;
|
|
|
|
if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
|
|
fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
|
|
fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
|
|
fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
|
|
}
|
|
|
|
if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
|
|
fi_args->generation = fs_info->generation;
|
|
fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
|
|
}
|
|
|
|
if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
|
|
memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
|
|
sizeof(fi_args->metadata_uuid));
|
|
fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
|
|
}
|
|
|
|
if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
|
|
ret = -EFAULT;
|
|
|
|
kfree(fi_args);
|
|
return ret;
|
|
}
|
|
|
|
static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
|
|
void __user *arg)
|
|
{
|
|
BTRFS_DEV_LOOKUP_ARGS(args);
|
|
struct btrfs_ioctl_dev_info_args *di_args;
|
|
struct btrfs_device *dev;
|
|
int ret = 0;
|
|
|
|
di_args = memdup_user(arg, sizeof(*di_args));
|
|
if (IS_ERR(di_args))
|
|
return PTR_ERR(di_args);
|
|
|
|
args.devid = di_args->devid;
|
|
if (!btrfs_is_empty_uuid(di_args->uuid))
|
|
args.uuid = di_args->uuid;
|
|
|
|
rcu_read_lock();
|
|
dev = btrfs_find_device(fs_info->fs_devices, &args);
|
|
if (!dev) {
|
|
ret = -ENODEV;
|
|
goto out;
|
|
}
|
|
|
|
di_args->devid = dev->devid;
|
|
di_args->bytes_used = btrfs_device_get_bytes_used(dev);
|
|
di_args->total_bytes = btrfs_device_get_total_bytes(dev);
|
|
memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
|
|
if (dev->name) {
|
|
strncpy(di_args->path, rcu_str_deref(dev->name),
|
|
sizeof(di_args->path) - 1);
|
|
di_args->path[sizeof(di_args->path) - 1] = 0;
|
|
} else {
|
|
di_args->path[0] = '\0';
|
|
}
|
|
|
|
out:
|
|
rcu_read_unlock();
|
|
if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
|
|
ret = -EFAULT;
|
|
|
|
kfree(di_args);
|
|
return ret;
|
|
}
|
|
|
|
static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_root *new_root;
|
|
struct btrfs_dir_item *di;
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_path *path = NULL;
|
|
struct btrfs_disk_key disk_key;
|
|
u64 objectid = 0;
|
|
u64 dir_id;
|
|
int ret;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
ret = mnt_want_write_file(file);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (copy_from_user(&objectid, argp, sizeof(objectid))) {
|
|
ret = -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
if (!objectid)
|
|
objectid = BTRFS_FS_TREE_OBJECTID;
|
|
|
|
new_root = btrfs_get_fs_root(fs_info, objectid, true);
|
|
if (IS_ERR(new_root)) {
|
|
ret = PTR_ERR(new_root);
|
|
goto out;
|
|
}
|
|
if (!is_fstree(new_root->root_key.objectid)) {
|
|
ret = -ENOENT;
|
|
goto out_free;
|
|
}
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path) {
|
|
ret = -ENOMEM;
|
|
goto out_free;
|
|
}
|
|
|
|
trans = btrfs_start_transaction(root, 1);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
goto out_free;
|
|
}
|
|
|
|
dir_id = btrfs_super_root_dir(fs_info->super_copy);
|
|
di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
|
|
dir_id, "default", 7, 1);
|
|
if (IS_ERR_OR_NULL(di)) {
|
|
btrfs_release_path(path);
|
|
btrfs_end_transaction(trans);
|
|
btrfs_err(fs_info,
|
|
"Umm, you don't have the default diritem, this isn't going to work");
|
|
ret = -ENOENT;
|
|
goto out_free;
|
|
}
|
|
|
|
btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
|
|
btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
|
|
btrfs_mark_buffer_dirty(path->nodes[0]);
|
|
btrfs_release_path(path);
|
|
|
|
btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
|
|
btrfs_end_transaction(trans);
|
|
out_free:
|
|
btrfs_put_root(new_root);
|
|
btrfs_free_path(path);
|
|
out:
|
|
mnt_drop_write_file(file);
|
|
return ret;
|
|
}
|
|
|
|
static void get_block_group_info(struct list_head *groups_list,
|
|
struct btrfs_ioctl_space_info *space)
|
|
{
|
|
struct btrfs_block_group *block_group;
|
|
|
|
space->total_bytes = 0;
|
|
space->used_bytes = 0;
|
|
space->flags = 0;
|
|
list_for_each_entry(block_group, groups_list, list) {
|
|
space->flags = block_group->flags;
|
|
space->total_bytes += block_group->length;
|
|
space->used_bytes += block_group->used;
|
|
}
|
|
}
|
|
|
|
static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
|
|
void __user *arg)
|
|
{
|
|
struct btrfs_ioctl_space_args space_args;
|
|
struct btrfs_ioctl_space_info space;
|
|
struct btrfs_ioctl_space_info *dest;
|
|
struct btrfs_ioctl_space_info *dest_orig;
|
|
struct btrfs_ioctl_space_info __user *user_dest;
|
|
struct btrfs_space_info *info;
|
|
static const u64 types[] = {
|
|
BTRFS_BLOCK_GROUP_DATA,
|
|
BTRFS_BLOCK_GROUP_SYSTEM,
|
|
BTRFS_BLOCK_GROUP_METADATA,
|
|
BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
|
|
};
|
|
int num_types = 4;
|
|
int alloc_size;
|
|
int ret = 0;
|
|
u64 slot_count = 0;
|
|
int i, c;
|
|
|
|
if (copy_from_user(&space_args,
|
|
(struct btrfs_ioctl_space_args __user *)arg,
|
|
sizeof(space_args)))
|
|
return -EFAULT;
|
|
|
|
for (i = 0; i < num_types; i++) {
|
|
struct btrfs_space_info *tmp;
|
|
|
|
info = NULL;
|
|
list_for_each_entry(tmp, &fs_info->space_info, list) {
|
|
if (tmp->flags == types[i]) {
|
|
info = tmp;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!info)
|
|
continue;
|
|
|
|
down_read(&info->groups_sem);
|
|
for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
|
|
if (!list_empty(&info->block_groups[c]))
|
|
slot_count++;
|
|
}
|
|
up_read(&info->groups_sem);
|
|
}
|
|
|
|
/*
|
|
* Global block reserve, exported as a space_info
|
|
*/
|
|
slot_count++;
|
|
|
|
/* space_slots == 0 means they are asking for a count */
|
|
if (space_args.space_slots == 0) {
|
|
space_args.total_spaces = slot_count;
|
|
goto out;
|
|
}
|
|
|
|
slot_count = min_t(u64, space_args.space_slots, slot_count);
|
|
|
|
alloc_size = sizeof(*dest) * slot_count;
|
|
|
|
/* we generally have at most 6 or so space infos, one for each raid
|
|
* level. So, a whole page should be more than enough for everyone
|
|
*/
|
|
if (alloc_size > PAGE_SIZE)
|
|
return -ENOMEM;
|
|
|
|
space_args.total_spaces = 0;
|
|
dest = kmalloc(alloc_size, GFP_KERNEL);
|
|
if (!dest)
|
|
return -ENOMEM;
|
|
dest_orig = dest;
|
|
|
|
/* now we have a buffer to copy into */
|
|
for (i = 0; i < num_types; i++) {
|
|
struct btrfs_space_info *tmp;
|
|
|
|
if (!slot_count)
|
|
break;
|
|
|
|
info = NULL;
|
|
list_for_each_entry(tmp, &fs_info->space_info, list) {
|
|
if (tmp->flags == types[i]) {
|
|
info = tmp;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!info)
|
|
continue;
|
|
down_read(&info->groups_sem);
|
|
for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
|
|
if (!list_empty(&info->block_groups[c])) {
|
|
get_block_group_info(&info->block_groups[c],
|
|
&space);
|
|
memcpy(dest, &space, sizeof(space));
|
|
dest++;
|
|
space_args.total_spaces++;
|
|
slot_count--;
|
|
}
|
|
if (!slot_count)
|
|
break;
|
|
}
|
|
up_read(&info->groups_sem);
|
|
}
|
|
|
|
/*
|
|
* Add global block reserve
|
|
*/
|
|
if (slot_count) {
|
|
struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
|
|
|
|
spin_lock(&block_rsv->lock);
|
|
space.total_bytes = block_rsv->size;
|
|
space.used_bytes = block_rsv->size - block_rsv->reserved;
|
|
spin_unlock(&block_rsv->lock);
|
|
space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
|
|
memcpy(dest, &space, sizeof(space));
|
|
space_args.total_spaces++;
|
|
}
|
|
|
|
user_dest = (struct btrfs_ioctl_space_info __user *)
|
|
(arg + sizeof(struct btrfs_ioctl_space_args));
|
|
|
|
if (copy_to_user(user_dest, dest_orig, alloc_size))
|
|
ret = -EFAULT;
|
|
|
|
kfree(dest_orig);
|
|
out:
|
|
if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
|
|
ret = -EFAULT;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
|
|
void __user *argp)
|
|
{
|
|
struct btrfs_trans_handle *trans;
|
|
u64 transid;
|
|
|
|
trans = btrfs_attach_transaction_barrier(root);
|
|
if (IS_ERR(trans)) {
|
|
if (PTR_ERR(trans) != -ENOENT)
|
|
return PTR_ERR(trans);
|
|
|
|
/* No running transaction, don't bother */
|
|
transid = root->fs_info->last_trans_committed;
|
|
goto out;
|
|
}
|
|
transid = trans->transid;
|
|
btrfs_commit_transaction_async(trans);
|
|
out:
|
|
if (argp)
|
|
if (copy_to_user(argp, &transid, sizeof(transid)))
|
|
return -EFAULT;
|
|
return 0;
|
|
}
|
|
|
|
static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
|
|
void __user *argp)
|
|
{
|
|
u64 transid;
|
|
|
|
if (argp) {
|
|
if (copy_from_user(&transid, argp, sizeof(transid)))
|
|
return -EFAULT;
|
|
} else {
|
|
transid = 0; /* current trans */
|
|
}
|
|
return btrfs_wait_for_commit(fs_info, transid);
|
|
}
|
|
|
|
static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
|
|
{
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
|
|
struct btrfs_ioctl_scrub_args *sa;
|
|
int ret;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
|
|
btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet");
|
|
return -EINVAL;
|
|
}
|
|
|
|
sa = memdup_user(arg, sizeof(*sa));
|
|
if (IS_ERR(sa))
|
|
return PTR_ERR(sa);
|
|
|
|
if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
|
|
ret = mnt_want_write_file(file);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
|
|
&sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
|
|
0);
|
|
|
|
/*
|
|
* Copy scrub args to user space even if btrfs_scrub_dev() returned an
|
|
* error. This is important as it allows user space to know how much
|
|
* progress scrub has done. For example, if scrub is canceled we get
|
|
* -ECANCELED from btrfs_scrub_dev() and return that error back to user
|
|
* space. Later user space can inspect the progress from the structure
|
|
* btrfs_ioctl_scrub_args and resume scrub from where it left off
|
|
* previously (btrfs-progs does this).
|
|
* If we fail to copy the btrfs_ioctl_scrub_args structure to user space
|
|
* then return -EFAULT to signal the structure was not copied or it may
|
|
* be corrupt and unreliable due to a partial copy.
|
|
*/
|
|
if (copy_to_user(arg, sa, sizeof(*sa)))
|
|
ret = -EFAULT;
|
|
|
|
if (!(sa->flags & BTRFS_SCRUB_READONLY))
|
|
mnt_drop_write_file(file);
|
|
out:
|
|
kfree(sa);
|
|
return ret;
|
|
}
|
|
|
|
static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
|
|
{
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
return btrfs_scrub_cancel(fs_info);
|
|
}
|
|
|
|
static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
|
|
void __user *arg)
|
|
{
|
|
struct btrfs_ioctl_scrub_args *sa;
|
|
int ret;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
sa = memdup_user(arg, sizeof(*sa));
|
|
if (IS_ERR(sa))
|
|
return PTR_ERR(sa);
|
|
|
|
ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
|
|
|
|
if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
|
|
ret = -EFAULT;
|
|
|
|
kfree(sa);
|
|
return ret;
|
|
}
|
|
|
|
static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
|
|
void __user *arg)
|
|
{
|
|
struct btrfs_ioctl_get_dev_stats *sa;
|
|
int ret;
|
|
|
|
sa = memdup_user(arg, sizeof(*sa));
|
|
if (IS_ERR(sa))
|
|
return PTR_ERR(sa);
|
|
|
|
if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
|
|
kfree(sa);
|
|
return -EPERM;
|
|
}
|
|
|
|
ret = btrfs_get_dev_stats(fs_info, sa);
|
|
|
|
if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
|
|
ret = -EFAULT;
|
|
|
|
kfree(sa);
|
|
return ret;
|
|
}
|
|
|
|
static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
|
|
void __user *arg)
|
|
{
|
|
struct btrfs_ioctl_dev_replace_args *p;
|
|
int ret;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
|
|
btrfs_err(fs_info, "device replace not supported on extent tree v2 yet");
|
|
return -EINVAL;
|
|
}
|
|
|
|
p = memdup_user(arg, sizeof(*p));
|
|
if (IS_ERR(p))
|
|
return PTR_ERR(p);
|
|
|
|
switch (p->cmd) {
|
|
case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
|
|
if (sb_rdonly(fs_info->sb)) {
|
|
ret = -EROFS;
|
|
goto out;
|
|
}
|
|
if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
|
|
ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
|
|
} else {
|
|
ret = btrfs_dev_replace_by_ioctl(fs_info, p);
|
|
btrfs_exclop_finish(fs_info);
|
|
}
|
|
break;
|
|
case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
|
|
btrfs_dev_replace_status(fs_info, p);
|
|
ret = 0;
|
|
break;
|
|
case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
|
|
p->result = btrfs_dev_replace_cancel(fs_info);
|
|
ret = 0;
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
|
|
ret = -EFAULT;
|
|
out:
|
|
kfree(p);
|
|
return ret;
|
|
}
|
|
|
|
static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
|
|
{
|
|
int ret = 0;
|
|
int i;
|
|
u64 rel_ptr;
|
|
int size;
|
|
struct btrfs_ioctl_ino_path_args *ipa = NULL;
|
|
struct inode_fs_paths *ipath = NULL;
|
|
struct btrfs_path *path;
|
|
|
|
if (!capable(CAP_DAC_READ_SEARCH))
|
|
return -EPERM;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
ipa = memdup_user(arg, sizeof(*ipa));
|
|
if (IS_ERR(ipa)) {
|
|
ret = PTR_ERR(ipa);
|
|
ipa = NULL;
|
|
goto out;
|
|
}
|
|
|
|
size = min_t(u32, ipa->size, 4096);
|
|
ipath = init_ipath(size, root, path);
|
|
if (IS_ERR(ipath)) {
|
|
ret = PTR_ERR(ipath);
|
|
ipath = NULL;
|
|
goto out;
|
|
}
|
|
|
|
ret = paths_from_inode(ipa->inum, ipath);
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
|
|
rel_ptr = ipath->fspath->val[i] -
|
|
(u64)(unsigned long)ipath->fspath->val;
|
|
ipath->fspath->val[i] = rel_ptr;
|
|
}
|
|
|
|
ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
|
|
ipath->fspath, size);
|
|
if (ret) {
|
|
ret = -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
out:
|
|
btrfs_free_path(path);
|
|
free_ipath(ipath);
|
|
kfree(ipa);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
|
|
void __user *arg, int version)
|
|
{
|
|
int ret = 0;
|
|
int size;
|
|
struct btrfs_ioctl_logical_ino_args *loi;
|
|
struct btrfs_data_container *inodes = NULL;
|
|
struct btrfs_path *path = NULL;
|
|
bool ignore_offset;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
loi = memdup_user(arg, sizeof(*loi));
|
|
if (IS_ERR(loi))
|
|
return PTR_ERR(loi);
|
|
|
|
if (version == 1) {
|
|
ignore_offset = false;
|
|
size = min_t(u32, loi->size, SZ_64K);
|
|
} else {
|
|
/* All reserved bits must be 0 for now */
|
|
if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
|
|
ret = -EINVAL;
|
|
goto out_loi;
|
|
}
|
|
/* Only accept flags we have defined so far */
|
|
if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
|
|
ret = -EINVAL;
|
|
goto out_loi;
|
|
}
|
|
ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
|
|
size = min_t(u32, loi->size, SZ_16M);
|
|
}
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
inodes = init_data_container(size);
|
|
if (IS_ERR(inodes)) {
|
|
ret = PTR_ERR(inodes);
|
|
inodes = NULL;
|
|
goto out;
|
|
}
|
|
|
|
ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
|
|
inodes, ignore_offset);
|
|
if (ret == -EINVAL)
|
|
ret = -ENOENT;
|
|
if (ret < 0)
|
|
goto out;
|
|
|
|
ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
|
|
size);
|
|
if (ret)
|
|
ret = -EFAULT;
|
|
|
|
out:
|
|
btrfs_free_path(path);
|
|
kvfree(inodes);
|
|
out_loi:
|
|
kfree(loi);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_ioctl_balance_args *bargs)
|
|
{
|
|
struct btrfs_balance_control *bctl = fs_info->balance_ctl;
|
|
|
|
bargs->flags = bctl->flags;
|
|
|
|
if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
|
|
bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
|
|
if (atomic_read(&fs_info->balance_pause_req))
|
|
bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
|
|
if (atomic_read(&fs_info->balance_cancel_req))
|
|
bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
|
|
|
|
memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
|
|
memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
|
|
memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
|
|
|
|
spin_lock(&fs_info->balance_lock);
|
|
memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
|
|
spin_unlock(&fs_info->balance_lock);
|
|
}
|
|
|
|
/**
|
|
* Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as
|
|
* required.
|
|
*
|
|
* @fs_info: the filesystem
|
|
* @excl_acquired: ptr to boolean value which is set to false in case balance
|
|
* is being resumed
|
|
*
|
|
* Return 0 on success in which case both fs_info::balance is acquired as well
|
|
* as exclusive ops are blocked. In case of failure return an error code.
|
|
*/
|
|
static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired)
|
|
{
|
|
int ret;
|
|
|
|
/*
|
|
* Exclusive operation is locked. Three possibilities:
|
|
* (1) some other op is running
|
|
* (2) balance is running
|
|
* (3) balance is paused -- special case (think resume)
|
|
*/
|
|
while (1) {
|
|
if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
|
|
*excl_acquired = true;
|
|
mutex_lock(&fs_info->balance_mutex);
|
|
return 0;
|
|
}
|
|
|
|
mutex_lock(&fs_info->balance_mutex);
|
|
if (fs_info->balance_ctl) {
|
|
/* This is either (2) or (3) */
|
|
if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
|
|
/* This is (2) */
|
|
ret = -EINPROGRESS;
|
|
goto out_failure;
|
|
|
|
} else {
|
|
mutex_unlock(&fs_info->balance_mutex);
|
|
/*
|
|
* Lock released to allow other waiters to
|
|
* continue, we'll reexamine the status again.
|
|
*/
|
|
mutex_lock(&fs_info->balance_mutex);
|
|
|
|
if (fs_info->balance_ctl &&
|
|
!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
|
|
/* This is (3) */
|
|
*excl_acquired = false;
|
|
return 0;
|
|
}
|
|
}
|
|
} else {
|
|
/* This is (1) */
|
|
ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
|
|
goto out_failure;
|
|
}
|
|
|
|
mutex_unlock(&fs_info->balance_mutex);
|
|
}
|
|
|
|
out_failure:
|
|
mutex_unlock(&fs_info->balance_mutex);
|
|
*excl_acquired = false;
|
|
return ret;
|
|
}
|
|
|
|
static long btrfs_ioctl_balance(struct file *file, void __user *arg)
|
|
{
|
|
struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct btrfs_ioctl_balance_args *bargs;
|
|
struct btrfs_balance_control *bctl;
|
|
bool need_unlock = true;
|
|
int ret;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
ret = mnt_want_write_file(file);
|
|
if (ret)
|
|
return ret;
|
|
|
|
bargs = memdup_user(arg, sizeof(*bargs));
|
|
if (IS_ERR(bargs)) {
|
|
ret = PTR_ERR(bargs);
|
|
bargs = NULL;
|
|
goto out;
|
|
}
|
|
|
|
ret = btrfs_try_lock_balance(fs_info, &need_unlock);
|
|
if (ret)
|
|
goto out;
|
|
|
|
lockdep_assert_held(&fs_info->balance_mutex);
|
|
|
|
if (bargs->flags & BTRFS_BALANCE_RESUME) {
|
|
if (!fs_info->balance_ctl) {
|
|
ret = -ENOTCONN;
|
|
goto out_unlock;
|
|
}
|
|
|
|
bctl = fs_info->balance_ctl;
|
|
spin_lock(&fs_info->balance_lock);
|
|
bctl->flags |= BTRFS_BALANCE_RESUME;
|
|
spin_unlock(&fs_info->balance_lock);
|
|
btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE);
|
|
|
|
goto do_balance;
|
|
}
|
|
|
|
if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
|
|
ret = -EINVAL;
|
|
goto out_unlock;
|
|
}
|
|
|
|
if (fs_info->balance_ctl) {
|
|
ret = -EINPROGRESS;
|
|
goto out_unlock;
|
|
}
|
|
|
|
bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
|
|
if (!bctl) {
|
|
ret = -ENOMEM;
|
|
goto out_unlock;
|
|
}
|
|
|
|
memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
|
|
memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
|
|
memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
|
|
|
|
bctl->flags = bargs->flags;
|
|
do_balance:
|
|
/*
|
|
* Ownership of bctl and exclusive operation goes to btrfs_balance.
|
|
* bctl is freed in reset_balance_state, or, if restriper was paused
|
|
* all the way until unmount, in free_fs_info. The flag should be
|
|
* cleared after reset_balance_state.
|
|
*/
|
|
need_unlock = false;
|
|
|
|
ret = btrfs_balance(fs_info, bctl, bargs);
|
|
bctl = NULL;
|
|
|
|
if (ret == 0 || ret == -ECANCELED) {
|
|
if (copy_to_user(arg, bargs, sizeof(*bargs)))
|
|
ret = -EFAULT;
|
|
}
|
|
|
|
kfree(bctl);
|
|
out_unlock:
|
|
mutex_unlock(&fs_info->balance_mutex);
|
|
if (need_unlock)
|
|
btrfs_exclop_finish(fs_info);
|
|
out:
|
|
mnt_drop_write_file(file);
|
|
kfree(bargs);
|
|
return ret;
|
|
}
|
|
|
|
static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
|
|
{
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
switch (cmd) {
|
|
case BTRFS_BALANCE_CTL_PAUSE:
|
|
return btrfs_pause_balance(fs_info);
|
|
case BTRFS_BALANCE_CTL_CANCEL:
|
|
return btrfs_cancel_balance(fs_info);
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
|
|
void __user *arg)
|
|
{
|
|
struct btrfs_ioctl_balance_args *bargs;
|
|
int ret = 0;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
mutex_lock(&fs_info->balance_mutex);
|
|
if (!fs_info->balance_ctl) {
|
|
ret = -ENOTCONN;
|
|
goto out;
|
|
}
|
|
|
|
bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
|
|
if (!bargs) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
btrfs_update_ioctl_balance_args(fs_info, bargs);
|
|
|
|
if (copy_to_user(arg, bargs, sizeof(*bargs)))
|
|
ret = -EFAULT;
|
|
|
|
kfree(bargs);
|
|
out:
|
|
mutex_unlock(&fs_info->balance_mutex);
|
|
return ret;
|
|
}
|
|
|
|
static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_ioctl_quota_ctl_args *sa;
|
|
int ret;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
ret = mnt_want_write_file(file);
|
|
if (ret)
|
|
return ret;
|
|
|
|
sa = memdup_user(arg, sizeof(*sa));
|
|
if (IS_ERR(sa)) {
|
|
ret = PTR_ERR(sa);
|
|
goto drop_write;
|
|
}
|
|
|
|
down_write(&fs_info->subvol_sem);
|
|
|
|
switch (sa->cmd) {
|
|
case BTRFS_QUOTA_CTL_ENABLE:
|
|
ret = btrfs_quota_enable(fs_info);
|
|
break;
|
|
case BTRFS_QUOTA_CTL_DISABLE:
|
|
ret = btrfs_quota_disable(fs_info);
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
kfree(sa);
|
|
up_write(&fs_info->subvol_sem);
|
|
drop_write:
|
|
mnt_drop_write_file(file);
|
|
return ret;
|
|
}
|
|
|
|
static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_ioctl_qgroup_assign_args *sa;
|
|
struct btrfs_trans_handle *trans;
|
|
int ret;
|
|
int err;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
ret = mnt_want_write_file(file);
|
|
if (ret)
|
|
return ret;
|
|
|
|
sa = memdup_user(arg, sizeof(*sa));
|
|
if (IS_ERR(sa)) {
|
|
ret = PTR_ERR(sa);
|
|
goto drop_write;
|
|
}
|
|
|
|
trans = btrfs_join_transaction(root);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
goto out;
|
|
}
|
|
|
|
if (sa->assign) {
|
|
ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
|
|
} else {
|
|
ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
|
|
}
|
|
|
|
/* update qgroup status and info */
|
|
err = btrfs_run_qgroups(trans);
|
|
if (err < 0)
|
|
btrfs_handle_fs_error(fs_info, err,
|
|
"failed to update qgroup status and info");
|
|
err = btrfs_end_transaction(trans);
|
|
if (err && !ret)
|
|
ret = err;
|
|
|
|
out:
|
|
kfree(sa);
|
|
drop_write:
|
|
mnt_drop_write_file(file);
|
|
return ret;
|
|
}
|
|
|
|
static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_ioctl_qgroup_create_args *sa;
|
|
struct btrfs_trans_handle *trans;
|
|
int ret;
|
|
int err;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
ret = mnt_want_write_file(file);
|
|
if (ret)
|
|
return ret;
|
|
|
|
sa = memdup_user(arg, sizeof(*sa));
|
|
if (IS_ERR(sa)) {
|
|
ret = PTR_ERR(sa);
|
|
goto drop_write;
|
|
}
|
|
|
|
if (!sa->qgroupid) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
trans = btrfs_join_transaction(root);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
goto out;
|
|
}
|
|
|
|
if (sa->create) {
|
|
ret = btrfs_create_qgroup(trans, sa->qgroupid);
|
|
} else {
|
|
ret = btrfs_remove_qgroup(trans, sa->qgroupid);
|
|
}
|
|
|
|
err = btrfs_end_transaction(trans);
|
|
if (err && !ret)
|
|
ret = err;
|
|
|
|
out:
|
|
kfree(sa);
|
|
drop_write:
|
|
mnt_drop_write_file(file);
|
|
return ret;
|
|
}
|
|
|
|
static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_ioctl_qgroup_limit_args *sa;
|
|
struct btrfs_trans_handle *trans;
|
|
int ret;
|
|
int err;
|
|
u64 qgroupid;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
ret = mnt_want_write_file(file);
|
|
if (ret)
|
|
return ret;
|
|
|
|
sa = memdup_user(arg, sizeof(*sa));
|
|
if (IS_ERR(sa)) {
|
|
ret = PTR_ERR(sa);
|
|
goto drop_write;
|
|
}
|
|
|
|
trans = btrfs_join_transaction(root);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
goto out;
|
|
}
|
|
|
|
qgroupid = sa->qgroupid;
|
|
if (!qgroupid) {
|
|
/* take the current subvol as qgroup */
|
|
qgroupid = root->root_key.objectid;
|
|
}
|
|
|
|
ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
|
|
|
|
err = btrfs_end_transaction(trans);
|
|
if (err && !ret)
|
|
ret = err;
|
|
|
|
out:
|
|
kfree(sa);
|
|
drop_write:
|
|
mnt_drop_write_file(file);
|
|
return ret;
|
|
}
|
|
|
|
static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_ioctl_quota_rescan_args *qsa;
|
|
int ret;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
ret = mnt_want_write_file(file);
|
|
if (ret)
|
|
return ret;
|
|
|
|
qsa = memdup_user(arg, sizeof(*qsa));
|
|
if (IS_ERR(qsa)) {
|
|
ret = PTR_ERR(qsa);
|
|
goto drop_write;
|
|
}
|
|
|
|
if (qsa->flags) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
ret = btrfs_qgroup_rescan(fs_info);
|
|
|
|
out:
|
|
kfree(qsa);
|
|
drop_write:
|
|
mnt_drop_write_file(file);
|
|
return ret;
|
|
}
|
|
|
|
static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
|
|
void __user *arg)
|
|
{
|
|
struct btrfs_ioctl_quota_rescan_args qsa = {0};
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
|
|
qsa.flags = 1;
|
|
qsa.progress = fs_info->qgroup_rescan_progress.objectid;
|
|
}
|
|
|
|
if (copy_to_user(arg, &qsa, sizeof(qsa)))
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
|
|
void __user *arg)
|
|
{
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
return btrfs_qgroup_wait_for_completion(fs_info, true);
|
|
}
|
|
|
|
static long _btrfs_ioctl_set_received_subvol(struct file *file,
|
|
struct user_namespace *mnt_userns,
|
|
struct btrfs_ioctl_received_subvol_args *sa)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_root_item *root_item = &root->root_item;
|
|
struct btrfs_trans_handle *trans;
|
|
struct timespec64 ct = current_time(inode);
|
|
int ret = 0;
|
|
int received_uuid_changed;
|
|
|
|
if (!inode_owner_or_capable(mnt_userns, inode))
|
|
return -EPERM;
|
|
|
|
ret = mnt_want_write_file(file);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
down_write(&fs_info->subvol_sem);
|
|
|
|
if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (btrfs_root_readonly(root)) {
|
|
ret = -EROFS;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* 1 - root item
|
|
* 2 - uuid items (received uuid + subvol uuid)
|
|
*/
|
|
trans = btrfs_start_transaction(root, 3);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
trans = NULL;
|
|
goto out;
|
|
}
|
|
|
|
sa->rtransid = trans->transid;
|
|
sa->rtime.sec = ct.tv_sec;
|
|
sa->rtime.nsec = ct.tv_nsec;
|
|
|
|
received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
|
|
BTRFS_UUID_SIZE);
|
|
if (received_uuid_changed &&
|
|
!btrfs_is_empty_uuid(root_item->received_uuid)) {
|
|
ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
|
|
BTRFS_UUID_KEY_RECEIVED_SUBVOL,
|
|
root->root_key.objectid);
|
|
if (ret && ret != -ENOENT) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
btrfs_end_transaction(trans);
|
|
goto out;
|
|
}
|
|
}
|
|
memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
|
|
btrfs_set_root_stransid(root_item, sa->stransid);
|
|
btrfs_set_root_rtransid(root_item, sa->rtransid);
|
|
btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
|
|
btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
|
|
btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
|
|
btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
|
|
|
|
ret = btrfs_update_root(trans, fs_info->tree_root,
|
|
&root->root_key, &root->root_item);
|
|
if (ret < 0) {
|
|
btrfs_end_transaction(trans);
|
|
goto out;
|
|
}
|
|
if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
|
|
ret = btrfs_uuid_tree_add(trans, sa->uuid,
|
|
BTRFS_UUID_KEY_RECEIVED_SUBVOL,
|
|
root->root_key.objectid);
|
|
if (ret < 0 && ret != -EEXIST) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
btrfs_end_transaction(trans);
|
|
goto out;
|
|
}
|
|
}
|
|
ret = btrfs_commit_transaction(trans);
|
|
out:
|
|
up_write(&fs_info->subvol_sem);
|
|
mnt_drop_write_file(file);
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_64BIT
|
|
static long btrfs_ioctl_set_received_subvol_32(struct file *file,
|
|
void __user *arg)
|
|
{
|
|
struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
|
|
struct btrfs_ioctl_received_subvol_args *args64 = NULL;
|
|
int ret = 0;
|
|
|
|
args32 = memdup_user(arg, sizeof(*args32));
|
|
if (IS_ERR(args32))
|
|
return PTR_ERR(args32);
|
|
|
|
args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
|
|
if (!args64) {
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
|
|
args64->stransid = args32->stransid;
|
|
args64->rtransid = args32->rtransid;
|
|
args64->stime.sec = args32->stime.sec;
|
|
args64->stime.nsec = args32->stime.nsec;
|
|
args64->rtime.sec = args32->rtime.sec;
|
|
args64->rtime.nsec = args32->rtime.nsec;
|
|
args64->flags = args32->flags;
|
|
|
|
ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), args64);
|
|
if (ret)
|
|
goto out;
|
|
|
|
memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
|
|
args32->stransid = args64->stransid;
|
|
args32->rtransid = args64->rtransid;
|
|
args32->stime.sec = args64->stime.sec;
|
|
args32->stime.nsec = args64->stime.nsec;
|
|
args32->rtime.sec = args64->rtime.sec;
|
|
args32->rtime.nsec = args64->rtime.nsec;
|
|
args32->flags = args64->flags;
|
|
|
|
ret = copy_to_user(arg, args32, sizeof(*args32));
|
|
if (ret)
|
|
ret = -EFAULT;
|
|
|
|
out:
|
|
kfree(args32);
|
|
kfree(args64);
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
static long btrfs_ioctl_set_received_subvol(struct file *file,
|
|
void __user *arg)
|
|
{
|
|
struct btrfs_ioctl_received_subvol_args *sa = NULL;
|
|
int ret = 0;
|
|
|
|
sa = memdup_user(arg, sizeof(*sa));
|
|
if (IS_ERR(sa))
|
|
return PTR_ERR(sa);
|
|
|
|
ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), sa);
|
|
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = copy_to_user(arg, sa, sizeof(*sa));
|
|
if (ret)
|
|
ret = -EFAULT;
|
|
|
|
out:
|
|
kfree(sa);
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
|
|
void __user *arg)
|
|
{
|
|
size_t len;
|
|
int ret;
|
|
char label[BTRFS_LABEL_SIZE];
|
|
|
|
spin_lock(&fs_info->super_lock);
|
|
memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
|
|
spin_unlock(&fs_info->super_lock);
|
|
|
|
len = strnlen(label, BTRFS_LABEL_SIZE);
|
|
|
|
if (len == BTRFS_LABEL_SIZE) {
|
|
btrfs_warn(fs_info,
|
|
"label is too long, return the first %zu bytes",
|
|
--len);
|
|
}
|
|
|
|
ret = copy_to_user(arg, label, len);
|
|
|
|
return ret ? -EFAULT : 0;
|
|
}
|
|
|
|
static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_super_block *super_block = fs_info->super_copy;
|
|
struct btrfs_trans_handle *trans;
|
|
char label[BTRFS_LABEL_SIZE];
|
|
int ret;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
if (copy_from_user(label, arg, sizeof(label)))
|
|
return -EFAULT;
|
|
|
|
if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
|
|
btrfs_err(fs_info,
|
|
"unable to set label with more than %d bytes",
|
|
BTRFS_LABEL_SIZE - 1);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = mnt_want_write_file(file);
|
|
if (ret)
|
|
return ret;
|
|
|
|
trans = btrfs_start_transaction(root, 0);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
goto out_unlock;
|
|
}
|
|
|
|
spin_lock(&fs_info->super_lock);
|
|
strcpy(super_block->label, label);
|
|
spin_unlock(&fs_info->super_lock);
|
|
ret = btrfs_commit_transaction(trans);
|
|
|
|
out_unlock:
|
|
mnt_drop_write_file(file);
|
|
return ret;
|
|
}
|
|
|
|
#define INIT_FEATURE_FLAGS(suffix) \
|
|
{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
|
|
.compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
|
|
.incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
|
|
|
|
int btrfs_ioctl_get_supported_features(void __user *arg)
|
|
{
|
|
static const struct btrfs_ioctl_feature_flags features[3] = {
|
|
INIT_FEATURE_FLAGS(SUPP),
|
|
INIT_FEATURE_FLAGS(SAFE_SET),
|
|
INIT_FEATURE_FLAGS(SAFE_CLEAR)
|
|
};
|
|
|
|
if (copy_to_user(arg, &features, sizeof(features)))
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
|
|
void __user *arg)
|
|
{
|
|
struct btrfs_super_block *super_block = fs_info->super_copy;
|
|
struct btrfs_ioctl_feature_flags features;
|
|
|
|
features.compat_flags = btrfs_super_compat_flags(super_block);
|
|
features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
|
|
features.incompat_flags = btrfs_super_incompat_flags(super_block);
|
|
|
|
if (copy_to_user(arg, &features, sizeof(features)))
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int check_feature_bits(struct btrfs_fs_info *fs_info,
|
|
enum btrfs_feature_set set,
|
|
u64 change_mask, u64 flags, u64 supported_flags,
|
|
u64 safe_set, u64 safe_clear)
|
|
{
|
|
const char *type = btrfs_feature_set_name(set);
|
|
char *names;
|
|
u64 disallowed, unsupported;
|
|
u64 set_mask = flags & change_mask;
|
|
u64 clear_mask = ~flags & change_mask;
|
|
|
|
unsupported = set_mask & ~supported_flags;
|
|
if (unsupported) {
|
|
names = btrfs_printable_features(set, unsupported);
|
|
if (names) {
|
|
btrfs_warn(fs_info,
|
|
"this kernel does not support the %s feature bit%s",
|
|
names, strchr(names, ',') ? "s" : "");
|
|
kfree(names);
|
|
} else
|
|
btrfs_warn(fs_info,
|
|
"this kernel does not support %s bits 0x%llx",
|
|
type, unsupported);
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
disallowed = set_mask & ~safe_set;
|
|
if (disallowed) {
|
|
names = btrfs_printable_features(set, disallowed);
|
|
if (names) {
|
|
btrfs_warn(fs_info,
|
|
"can't set the %s feature bit%s while mounted",
|
|
names, strchr(names, ',') ? "s" : "");
|
|
kfree(names);
|
|
} else
|
|
btrfs_warn(fs_info,
|
|
"can't set %s bits 0x%llx while mounted",
|
|
type, disallowed);
|
|
return -EPERM;
|
|
}
|
|
|
|
disallowed = clear_mask & ~safe_clear;
|
|
if (disallowed) {
|
|
names = btrfs_printable_features(set, disallowed);
|
|
if (names) {
|
|
btrfs_warn(fs_info,
|
|
"can't clear the %s feature bit%s while mounted",
|
|
names, strchr(names, ',') ? "s" : "");
|
|
kfree(names);
|
|
} else
|
|
btrfs_warn(fs_info,
|
|
"can't clear %s bits 0x%llx while mounted",
|
|
type, disallowed);
|
|
return -EPERM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define check_feature(fs_info, change_mask, flags, mask_base) \
|
|
check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \
|
|
BTRFS_FEATURE_ ## mask_base ## _SUPP, \
|
|
BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
|
|
BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
|
|
|
|
static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
struct btrfs_super_block *super_block = fs_info->super_copy;
|
|
struct btrfs_ioctl_feature_flags flags[2];
|
|
struct btrfs_trans_handle *trans;
|
|
u64 newflags;
|
|
int ret;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
if (copy_from_user(flags, arg, sizeof(flags)))
|
|
return -EFAULT;
|
|
|
|
/* Nothing to do */
|
|
if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
|
|
!flags[0].incompat_flags)
|
|
return 0;
|
|
|
|
ret = check_feature(fs_info, flags[0].compat_flags,
|
|
flags[1].compat_flags, COMPAT);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = check_feature(fs_info, flags[0].compat_ro_flags,
|
|
flags[1].compat_ro_flags, COMPAT_RO);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = check_feature(fs_info, flags[0].incompat_flags,
|
|
flags[1].incompat_flags, INCOMPAT);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = mnt_want_write_file(file);
|
|
if (ret)
|
|
return ret;
|
|
|
|
trans = btrfs_start_transaction(root, 0);
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
goto out_drop_write;
|
|
}
|
|
|
|
spin_lock(&fs_info->super_lock);
|
|
newflags = btrfs_super_compat_flags(super_block);
|
|
newflags |= flags[0].compat_flags & flags[1].compat_flags;
|
|
newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
|
|
btrfs_set_super_compat_flags(super_block, newflags);
|
|
|
|
newflags = btrfs_super_compat_ro_flags(super_block);
|
|
newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
|
|
newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
|
|
btrfs_set_super_compat_ro_flags(super_block, newflags);
|
|
|
|
newflags = btrfs_super_incompat_flags(super_block);
|
|
newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
|
|
newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
|
|
btrfs_set_super_incompat_flags(super_block, newflags);
|
|
spin_unlock(&fs_info->super_lock);
|
|
|
|
ret = btrfs_commit_transaction(trans);
|
|
out_drop_write:
|
|
mnt_drop_write_file(file);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int _btrfs_ioctl_send(struct inode *inode, void __user *argp, bool compat)
|
|
{
|
|
struct btrfs_ioctl_send_args *arg;
|
|
int ret;
|
|
|
|
if (compat) {
|
|
#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
|
|
struct btrfs_ioctl_send_args_32 args32;
|
|
|
|
ret = copy_from_user(&args32, argp, sizeof(args32));
|
|
if (ret)
|
|
return -EFAULT;
|
|
arg = kzalloc(sizeof(*arg), GFP_KERNEL);
|
|
if (!arg)
|
|
return -ENOMEM;
|
|
arg->send_fd = args32.send_fd;
|
|
arg->clone_sources_count = args32.clone_sources_count;
|
|
arg->clone_sources = compat_ptr(args32.clone_sources);
|
|
arg->parent_root = args32.parent_root;
|
|
arg->flags = args32.flags;
|
|
memcpy(arg->reserved, args32.reserved,
|
|
sizeof(args32.reserved));
|
|
#else
|
|
return -ENOTTY;
|
|
#endif
|
|
} else {
|
|
arg = memdup_user(argp, sizeof(*arg));
|
|
if (IS_ERR(arg))
|
|
return PTR_ERR(arg);
|
|
}
|
|
ret = btrfs_ioctl_send(inode, arg);
|
|
kfree(arg);
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp,
|
|
bool compat)
|
|
{
|
|
struct btrfs_ioctl_encoded_io_args args = { 0 };
|
|
size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args,
|
|
flags);
|
|
size_t copy_end;
|
|
struct iovec iovstack[UIO_FASTIOV];
|
|
struct iovec *iov = iovstack;
|
|
struct iov_iter iter;
|
|
loff_t pos;
|
|
struct kiocb kiocb;
|
|
ssize_t ret;
|
|
|
|
if (!capable(CAP_SYS_ADMIN)) {
|
|
ret = -EPERM;
|
|
goto out_acct;
|
|
}
|
|
|
|
if (compat) {
|
|
#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
|
|
struct btrfs_ioctl_encoded_io_args_32 args32;
|
|
|
|
copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32,
|
|
flags);
|
|
if (copy_from_user(&args32, argp, copy_end)) {
|
|
ret = -EFAULT;
|
|
goto out_acct;
|
|
}
|
|
args.iov = compat_ptr(args32.iov);
|
|
args.iovcnt = args32.iovcnt;
|
|
args.offset = args32.offset;
|
|
args.flags = args32.flags;
|
|
#else
|
|
return -ENOTTY;
|
|
#endif
|
|
} else {
|
|
copy_end = copy_end_kernel;
|
|
if (copy_from_user(&args, argp, copy_end)) {
|
|
ret = -EFAULT;
|
|
goto out_acct;
|
|
}
|
|
}
|
|
if (args.flags != 0) {
|
|
ret = -EINVAL;
|
|
goto out_acct;
|
|
}
|
|
|
|
ret = import_iovec(READ, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
|
|
&iov, &iter);
|
|
if (ret < 0)
|
|
goto out_acct;
|
|
|
|
if (iov_iter_count(&iter) == 0) {
|
|
ret = 0;
|
|
goto out_iov;
|
|
}
|
|
pos = args.offset;
|
|
ret = rw_verify_area(READ, file, &pos, args.len);
|
|
if (ret < 0)
|
|
goto out_iov;
|
|
|
|
init_sync_kiocb(&kiocb, file);
|
|
kiocb.ki_pos = pos;
|
|
|
|
ret = btrfs_encoded_read(&kiocb, &iter, &args);
|
|
if (ret >= 0) {
|
|
fsnotify_access(file);
|
|
if (copy_to_user(argp + copy_end,
|
|
(char *)&args + copy_end_kernel,
|
|
sizeof(args) - copy_end_kernel))
|
|
ret = -EFAULT;
|
|
}
|
|
|
|
out_iov:
|
|
kfree(iov);
|
|
out_acct:
|
|
if (ret > 0)
|
|
add_rchar(current, ret);
|
|
inc_syscr(current);
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat)
|
|
{
|
|
struct btrfs_ioctl_encoded_io_args args;
|
|
struct iovec iovstack[UIO_FASTIOV];
|
|
struct iovec *iov = iovstack;
|
|
struct iov_iter iter;
|
|
loff_t pos;
|
|
struct kiocb kiocb;
|
|
ssize_t ret;
|
|
|
|
if (!capable(CAP_SYS_ADMIN)) {
|
|
ret = -EPERM;
|
|
goto out_acct;
|
|
}
|
|
|
|
if (!(file->f_mode & FMODE_WRITE)) {
|
|
ret = -EBADF;
|
|
goto out_acct;
|
|
}
|
|
|
|
if (compat) {
|
|
#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
|
|
struct btrfs_ioctl_encoded_io_args_32 args32;
|
|
|
|
if (copy_from_user(&args32, argp, sizeof(args32))) {
|
|
ret = -EFAULT;
|
|
goto out_acct;
|
|
}
|
|
args.iov = compat_ptr(args32.iov);
|
|
args.iovcnt = args32.iovcnt;
|
|
args.offset = args32.offset;
|
|
args.flags = args32.flags;
|
|
args.len = args32.len;
|
|
args.unencoded_len = args32.unencoded_len;
|
|
args.unencoded_offset = args32.unencoded_offset;
|
|
args.compression = args32.compression;
|
|
args.encryption = args32.encryption;
|
|
memcpy(args.reserved, args32.reserved, sizeof(args.reserved));
|
|
#else
|
|
return -ENOTTY;
|
|
#endif
|
|
} else {
|
|
if (copy_from_user(&args, argp, sizeof(args))) {
|
|
ret = -EFAULT;
|
|
goto out_acct;
|
|
}
|
|
}
|
|
|
|
ret = -EINVAL;
|
|
if (args.flags != 0)
|
|
goto out_acct;
|
|
if (memchr_inv(args.reserved, 0, sizeof(args.reserved)))
|
|
goto out_acct;
|
|
if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE &&
|
|
args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE)
|
|
goto out_acct;
|
|
if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES ||
|
|
args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES)
|
|
goto out_acct;
|
|
if (args.unencoded_offset > args.unencoded_len)
|
|
goto out_acct;
|
|
if (args.len > args.unencoded_len - args.unencoded_offset)
|
|
goto out_acct;
|
|
|
|
ret = import_iovec(WRITE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
|
|
&iov, &iter);
|
|
if (ret < 0)
|
|
goto out_acct;
|
|
|
|
file_start_write(file);
|
|
|
|
if (iov_iter_count(&iter) == 0) {
|
|
ret = 0;
|
|
goto out_end_write;
|
|
}
|
|
pos = args.offset;
|
|
ret = rw_verify_area(WRITE, file, &pos, args.len);
|
|
if (ret < 0)
|
|
goto out_end_write;
|
|
|
|
init_sync_kiocb(&kiocb, file);
|
|
ret = kiocb_set_rw_flags(&kiocb, 0);
|
|
if (ret)
|
|
goto out_end_write;
|
|
kiocb.ki_pos = pos;
|
|
|
|
ret = btrfs_do_write_iter(&kiocb, &iter, &args);
|
|
if (ret > 0)
|
|
fsnotify_modify(file);
|
|
|
|
out_end_write:
|
|
file_end_write(file);
|
|
kfree(iov);
|
|
out_acct:
|
|
if (ret > 0)
|
|
add_wchar(current, ret);
|
|
inc_syscw(current);
|
|
return ret;
|
|
}
|
|
|
|
long btrfs_ioctl(struct file *file, unsigned int
|
|
cmd, unsigned long arg)
|
|
{
|
|
struct inode *inode = file_inode(file);
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
struct btrfs_root *root = BTRFS_I(inode)->root;
|
|
void __user *argp = (void __user *)arg;
|
|
|
|
switch (cmd) {
|
|
case FS_IOC_GETVERSION:
|
|
return btrfs_ioctl_getversion(inode, argp);
|
|
case FS_IOC_GETFSLABEL:
|
|
return btrfs_ioctl_get_fslabel(fs_info, argp);
|
|
case FS_IOC_SETFSLABEL:
|
|
return btrfs_ioctl_set_fslabel(file, argp);
|
|
case FITRIM:
|
|
return btrfs_ioctl_fitrim(fs_info, argp);
|
|
case BTRFS_IOC_SNAP_CREATE:
|
|
return btrfs_ioctl_snap_create(file, argp, 0);
|
|
case BTRFS_IOC_SNAP_CREATE_V2:
|
|
return btrfs_ioctl_snap_create_v2(file, argp, 0);
|
|
case BTRFS_IOC_SUBVOL_CREATE:
|
|
return btrfs_ioctl_snap_create(file, argp, 1);
|
|
case BTRFS_IOC_SUBVOL_CREATE_V2:
|
|
return btrfs_ioctl_snap_create_v2(file, argp, 1);
|
|
case BTRFS_IOC_SNAP_DESTROY:
|
|
return btrfs_ioctl_snap_destroy(file, argp, false);
|
|
case BTRFS_IOC_SNAP_DESTROY_V2:
|
|
return btrfs_ioctl_snap_destroy(file, argp, true);
|
|
case BTRFS_IOC_SUBVOL_GETFLAGS:
|
|
return btrfs_ioctl_subvol_getflags(inode, argp);
|
|
case BTRFS_IOC_SUBVOL_SETFLAGS:
|
|
return btrfs_ioctl_subvol_setflags(file, argp);
|
|
case BTRFS_IOC_DEFAULT_SUBVOL:
|
|
return btrfs_ioctl_default_subvol(file, argp);
|
|
case BTRFS_IOC_DEFRAG:
|
|
return btrfs_ioctl_defrag(file, NULL);
|
|
case BTRFS_IOC_DEFRAG_RANGE:
|
|
return btrfs_ioctl_defrag(file, argp);
|
|
case BTRFS_IOC_RESIZE:
|
|
return btrfs_ioctl_resize(file, argp);
|
|
case BTRFS_IOC_ADD_DEV:
|
|
return btrfs_ioctl_add_dev(fs_info, argp);
|
|
case BTRFS_IOC_RM_DEV:
|
|
return btrfs_ioctl_rm_dev(file, argp);
|
|
case BTRFS_IOC_RM_DEV_V2:
|
|
return btrfs_ioctl_rm_dev_v2(file, argp);
|
|
case BTRFS_IOC_FS_INFO:
|
|
return btrfs_ioctl_fs_info(fs_info, argp);
|
|
case BTRFS_IOC_DEV_INFO:
|
|
return btrfs_ioctl_dev_info(fs_info, argp);
|
|
case BTRFS_IOC_TREE_SEARCH:
|
|
return btrfs_ioctl_tree_search(inode, argp);
|
|
case BTRFS_IOC_TREE_SEARCH_V2:
|
|
return btrfs_ioctl_tree_search_v2(inode, argp);
|
|
case BTRFS_IOC_INO_LOOKUP:
|
|
return btrfs_ioctl_ino_lookup(root, argp);
|
|
case BTRFS_IOC_INO_PATHS:
|
|
return btrfs_ioctl_ino_to_path(root, argp);
|
|
case BTRFS_IOC_LOGICAL_INO:
|
|
return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
|
|
case BTRFS_IOC_LOGICAL_INO_V2:
|
|
return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
|
|
case BTRFS_IOC_SPACE_INFO:
|
|
return btrfs_ioctl_space_info(fs_info, argp);
|
|
case BTRFS_IOC_SYNC: {
|
|
int ret;
|
|
|
|
ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
|
|
if (ret)
|
|
return ret;
|
|
ret = btrfs_sync_fs(inode->i_sb, 1);
|
|
/*
|
|
* The transaction thread may want to do more work,
|
|
* namely it pokes the cleaner kthread that will start
|
|
* processing uncleaned subvols.
|
|
*/
|
|
wake_up_process(fs_info->transaction_kthread);
|
|
return ret;
|
|
}
|
|
case BTRFS_IOC_START_SYNC:
|
|
return btrfs_ioctl_start_sync(root, argp);
|
|
case BTRFS_IOC_WAIT_SYNC:
|
|
return btrfs_ioctl_wait_sync(fs_info, argp);
|
|
case BTRFS_IOC_SCRUB:
|
|
return btrfs_ioctl_scrub(file, argp);
|
|
case BTRFS_IOC_SCRUB_CANCEL:
|
|
return btrfs_ioctl_scrub_cancel(fs_info);
|
|
case BTRFS_IOC_SCRUB_PROGRESS:
|
|
return btrfs_ioctl_scrub_progress(fs_info, argp);
|
|
case BTRFS_IOC_BALANCE_V2:
|
|
return btrfs_ioctl_balance(file, argp);
|
|
case BTRFS_IOC_BALANCE_CTL:
|
|
return btrfs_ioctl_balance_ctl(fs_info, arg);
|
|
case BTRFS_IOC_BALANCE_PROGRESS:
|
|
return btrfs_ioctl_balance_progress(fs_info, argp);
|
|
case BTRFS_IOC_SET_RECEIVED_SUBVOL:
|
|
return btrfs_ioctl_set_received_subvol(file, argp);
|
|
#ifdef CONFIG_64BIT
|
|
case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
|
|
return btrfs_ioctl_set_received_subvol_32(file, argp);
|
|
#endif
|
|
case BTRFS_IOC_SEND:
|
|
return _btrfs_ioctl_send(inode, argp, false);
|
|
#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
|
|
case BTRFS_IOC_SEND_32:
|
|
return _btrfs_ioctl_send(inode, argp, true);
|
|
#endif
|
|
case BTRFS_IOC_GET_DEV_STATS:
|
|
return btrfs_ioctl_get_dev_stats(fs_info, argp);
|
|
case BTRFS_IOC_QUOTA_CTL:
|
|
return btrfs_ioctl_quota_ctl(file, argp);
|
|
case BTRFS_IOC_QGROUP_ASSIGN:
|
|
return btrfs_ioctl_qgroup_assign(file, argp);
|
|
case BTRFS_IOC_QGROUP_CREATE:
|
|
return btrfs_ioctl_qgroup_create(file, argp);
|
|
case BTRFS_IOC_QGROUP_LIMIT:
|
|
return btrfs_ioctl_qgroup_limit(file, argp);
|
|
case BTRFS_IOC_QUOTA_RESCAN:
|
|
return btrfs_ioctl_quota_rescan(file, argp);
|
|
case BTRFS_IOC_QUOTA_RESCAN_STATUS:
|
|
return btrfs_ioctl_quota_rescan_status(fs_info, argp);
|
|
case BTRFS_IOC_QUOTA_RESCAN_WAIT:
|
|
return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
|
|
case BTRFS_IOC_DEV_REPLACE:
|
|
return btrfs_ioctl_dev_replace(fs_info, argp);
|
|
case BTRFS_IOC_GET_SUPPORTED_FEATURES:
|
|
return btrfs_ioctl_get_supported_features(argp);
|
|
case BTRFS_IOC_GET_FEATURES:
|
|
return btrfs_ioctl_get_features(fs_info, argp);
|
|
case BTRFS_IOC_SET_FEATURES:
|
|
return btrfs_ioctl_set_features(file, argp);
|
|
case BTRFS_IOC_GET_SUBVOL_INFO:
|
|
return btrfs_ioctl_get_subvol_info(inode, argp);
|
|
case BTRFS_IOC_GET_SUBVOL_ROOTREF:
|
|
return btrfs_ioctl_get_subvol_rootref(root, argp);
|
|
case BTRFS_IOC_INO_LOOKUP_USER:
|
|
return btrfs_ioctl_ino_lookup_user(file, argp);
|
|
case FS_IOC_ENABLE_VERITY:
|
|
return fsverity_ioctl_enable(file, (const void __user *)argp);
|
|
case FS_IOC_MEASURE_VERITY:
|
|
return fsverity_ioctl_measure(file, argp);
|
|
case BTRFS_IOC_ENCODED_READ:
|
|
return btrfs_ioctl_encoded_read(file, argp, false);
|
|
case BTRFS_IOC_ENCODED_WRITE:
|
|
return btrfs_ioctl_encoded_write(file, argp, false);
|
|
#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
|
|
case BTRFS_IOC_ENCODED_READ_32:
|
|
return btrfs_ioctl_encoded_read(file, argp, true);
|
|
case BTRFS_IOC_ENCODED_WRITE_32:
|
|
return btrfs_ioctl_encoded_write(file, argp, true);
|
|
#endif
|
|
}
|
|
|
|
return -ENOTTY;
|
|
}
|
|
|
|
#ifdef CONFIG_COMPAT
|
|
long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
|
|
{
|
|
/*
|
|
* These all access 32-bit values anyway so no further
|
|
* handling is necessary.
|
|
*/
|
|
switch (cmd) {
|
|
case FS_IOC32_GETVERSION:
|
|
cmd = FS_IOC_GETVERSION;
|
|
break;
|
|
}
|
|
|
|
return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
|
|
}
|
|
#endif
|