linux-stable/arch/arm/kernel/process.c
Linus Torvalds 93834c6419 Immutable branch with restart handler patches for v3.18
-----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABAgAGBQJUJQ8/AAoJEMsfJm/On5mBMNgP+QEUHpRKJaOGU3jX/ftHH/t3
 EoNUx7lZt6Q0c9MB2ySAxILYpWUujc9N0tDkRDyW7mTWunF8gEGiRN+iKaSbzcUN
 Y4VffRAbxBasIaBqRtpDl08ycODh6Xu1t8sAao03DdhnMNLGNNO79s3UFHsubdTC
 cXx9mfYR/2SHV/0BXiFvKi8ovdqUspdp9cyZO/qc0PVFGbsADx3MNGGzkvWfgvcE
 6vXnKnUkZrNl5JPiG77kTKZnDsjEMXggmA9DGWKijFCJjGIbuLiuIDf63Zp+eQ52
 mJMRA+ViP/dDgAxY1dkWBcF5nOBT1vTYwLfy69jEoQeHzcomiHVoDKmCSBOpeAEH
 G8VoasWKWYpYnlcOJb+XgkA3QTe6mOPgAPzNsbYr0Ep7hMFw66mOQgKbgi6k4Qts
 HHimG9pnBYpPlBUfvNh+6K4dHAm0C2IyoZyMhKWsyFH6hkhS8TVM8j0gPR8rTTmk
 0a9/e2vxcFnfBe3UAJaqzWRVFsBkOHrTNpG1hvID3Oq8IeywSBXw2VMSR93+mwaB
 sa/GCZKlqHGpOfmtILlhiXQX0E/tTHmcrI2VqyCpX0J2CW+MiGvkcGOwKHOJciSA
 Cj9D68y837QU/DCpMQ6ec/5wqWqZKz8yQb8kxb6vJcL19JcVKdAiPzbuOI49C3Ux
 YxDWoUutzDfVoUD5RhcJ
 =cP1w
 -----END PGP SIGNATURE-----

Merge tag 'restart-handler-for-v3.18' of git://git.kernel.org/pub/scm/linux/kernel/git/groeck/linux-staging

Pull restart handler infrastructure from Guenter Roeck:
 "This series was supposed to be pulled through various trees using it,
  and I did not plan to send a separate pull request.  As it turns out,
  the pinctrl tree did not merge with it, is now upstream, and uses it,
  meaning there are now build failures.

  Please pull this series directly to fix those build failures"

* tag 'restart-handler-for-v3.18' of git://git.kernel.org/pub/scm/linux/kernel/git/groeck/linux-staging:
  arm/arm64: unexport restart handlers
  watchdog: sunxi: register restart handler with kernel restart handler
  watchdog: alim7101: register restart handler with kernel restart handler
  watchdog: moxart: register restart handler with kernel restart handler
  arm: support restart through restart handler call chain
  arm64: support restart through restart handler call chain
  power/restart: call machine_restart instead of arm_pm_restart
  kernel: add support for kernel restart handler call chain
2014-10-10 16:38:02 -04:00

554 lines
13 KiB
C

/*
* linux/arch/arm/kernel/process.c
*
* Copyright (C) 1996-2000 Russell King - Converted to ARM.
* Original Copyright (C) 1995 Linus Torvalds
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <stdarg.h>
#include <linux/export.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/user.h>
#include <linux/delay.h>
#include <linux/reboot.h>
#include <linux/interrupt.h>
#include <linux/kallsyms.h>
#include <linux/init.h>
#include <linux/cpu.h>
#include <linux/elfcore.h>
#include <linux/pm.h>
#include <linux/tick.h>
#include <linux/utsname.h>
#include <linux/uaccess.h>
#include <linux/random.h>
#include <linux/hw_breakpoint.h>
#include <linux/leds.h>
#include <linux/reboot.h>
#include <asm/cacheflush.h>
#include <asm/idmap.h>
#include <asm/processor.h>
#include <asm/thread_notify.h>
#include <asm/stacktrace.h>
#include <asm/system_misc.h>
#include <asm/mach/time.h>
#include <asm/tls.h>
#ifdef CONFIG_CC_STACKPROTECTOR
#include <linux/stackprotector.h>
unsigned long __stack_chk_guard __read_mostly;
EXPORT_SYMBOL(__stack_chk_guard);
#endif
static const char *processor_modes[] __maybe_unused = {
"USER_26", "FIQ_26" , "IRQ_26" , "SVC_26" , "UK4_26" , "UK5_26" , "UK6_26" , "UK7_26" ,
"UK8_26" , "UK9_26" , "UK10_26", "UK11_26", "UK12_26", "UK13_26", "UK14_26", "UK15_26",
"USER_32", "FIQ_32" , "IRQ_32" , "SVC_32" , "UK4_32" , "UK5_32" , "UK6_32" , "ABT_32" ,
"UK8_32" , "UK9_32" , "UK10_32", "UND_32" , "UK12_32", "UK13_32", "UK14_32", "SYS_32"
};
static const char *isa_modes[] __maybe_unused = {
"ARM" , "Thumb" , "Jazelle", "ThumbEE"
};
extern void call_with_stack(void (*fn)(void *), void *arg, void *sp);
typedef void (*phys_reset_t)(unsigned long);
/*
* A temporary stack to use for CPU reset. This is static so that we
* don't clobber it with the identity mapping. When running with this
* stack, any references to the current task *will not work* so you
* should really do as little as possible before jumping to your reset
* code.
*/
static u64 soft_restart_stack[16];
static void __soft_restart(void *addr)
{
phys_reset_t phys_reset;
/* Take out a flat memory mapping. */
setup_mm_for_reboot();
/* Clean and invalidate caches */
flush_cache_all();
/* Turn off caching */
cpu_proc_fin();
/* Push out any further dirty data, and ensure cache is empty */
flush_cache_all();
/* Switch to the identity mapping. */
phys_reset = (phys_reset_t)(unsigned long)virt_to_phys(cpu_reset);
phys_reset((unsigned long)addr);
/* Should never get here. */
BUG();
}
void soft_restart(unsigned long addr)
{
u64 *stack = soft_restart_stack + ARRAY_SIZE(soft_restart_stack);
/* Disable interrupts first */
raw_local_irq_disable();
local_fiq_disable();
/* Disable the L2 if we're the last man standing. */
if (num_online_cpus() == 1)
outer_disable();
/* Change to the new stack and continue with the reset. */
call_with_stack(__soft_restart, (void *)addr, (void *)stack);
/* Should never get here. */
BUG();
}
/*
* Function pointers to optional machine specific functions
*/
void (*pm_power_off)(void);
EXPORT_SYMBOL(pm_power_off);
void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
/*
* This is our default idle handler.
*/
void (*arm_pm_idle)(void);
/*
* Called from the core idle loop.
*/
void arch_cpu_idle(void)
{
if (arm_pm_idle)
arm_pm_idle();
else
cpu_do_idle();
local_irq_enable();
}
void arch_cpu_idle_prepare(void)
{
local_fiq_enable();
}
void arch_cpu_idle_enter(void)
{
ledtrig_cpu(CPU_LED_IDLE_START);
#ifdef CONFIG_PL310_ERRATA_769419
wmb();
#endif
}
void arch_cpu_idle_exit(void)
{
ledtrig_cpu(CPU_LED_IDLE_END);
}
#ifdef CONFIG_HOTPLUG_CPU
void arch_cpu_idle_dead(void)
{
cpu_die();
}
#endif
/*
* Called by kexec, immediately prior to machine_kexec().
*
* This must completely disable all secondary CPUs; simply causing those CPUs
* to execute e.g. a RAM-based pin loop is not sufficient. This allows the
* kexec'd kernel to use any and all RAM as it sees fit, without having to
* avoid any code or data used by any SW CPU pin loop. The CPU hotplug
* functionality embodied in disable_nonboot_cpus() to achieve this.
*/
void machine_shutdown(void)
{
disable_nonboot_cpus();
}
/*
* Halting simply requires that the secondary CPUs stop performing any
* activity (executing tasks, handling interrupts). smp_send_stop()
* achieves this.
*/
void machine_halt(void)
{
local_irq_disable();
smp_send_stop();
local_irq_disable();
while (1);
}
/*
* Power-off simply requires that the secondary CPUs stop performing any
* activity (executing tasks, handling interrupts). smp_send_stop()
* achieves this. When the system power is turned off, it will take all CPUs
* with it.
*/
void machine_power_off(void)
{
local_irq_disable();
smp_send_stop();
if (pm_power_off)
pm_power_off();
}
/*
* Restart requires that the secondary CPUs stop performing any activity
* while the primary CPU resets the system. Systems with a single CPU can
* use soft_restart() as their machine descriptor's .restart hook, since that
* will cause the only available CPU to reset. Systems with multiple CPUs must
* provide a HW restart implementation, to ensure that all CPUs reset at once.
* This is required so that any code running after reset on the primary CPU
* doesn't have to co-ordinate with other CPUs to ensure they aren't still
* executing pre-reset code, and using RAM that the primary CPU's code wishes
* to use. Implementing such co-ordination would be essentially impossible.
*/
void machine_restart(char *cmd)
{
local_irq_disable();
smp_send_stop();
if (arm_pm_restart)
arm_pm_restart(reboot_mode, cmd);
else
do_kernel_restart(cmd);
/* Give a grace period for failure to restart of 1s */
mdelay(1000);
/* Whoops - the platform was unable to reboot. Tell the user! */
printk("Reboot failed -- System halted\n");
local_irq_disable();
while (1);
}
void __show_regs(struct pt_regs *regs)
{
unsigned long flags;
char buf[64];
show_regs_print_info(KERN_DEFAULT);
print_symbol("PC is at %s\n", instruction_pointer(regs));
print_symbol("LR is at %s\n", regs->ARM_lr);
printk("pc : [<%08lx>] lr : [<%08lx>] psr: %08lx\n"
"sp : %08lx ip : %08lx fp : %08lx\n",
regs->ARM_pc, regs->ARM_lr, regs->ARM_cpsr,
regs->ARM_sp, regs->ARM_ip, regs->ARM_fp);
printk("r10: %08lx r9 : %08lx r8 : %08lx\n",
regs->ARM_r10, regs->ARM_r9,
regs->ARM_r8);
printk("r7 : %08lx r6 : %08lx r5 : %08lx r4 : %08lx\n",
regs->ARM_r7, regs->ARM_r6,
regs->ARM_r5, regs->ARM_r4);
printk("r3 : %08lx r2 : %08lx r1 : %08lx r0 : %08lx\n",
regs->ARM_r3, regs->ARM_r2,
regs->ARM_r1, regs->ARM_r0);
flags = regs->ARM_cpsr;
buf[0] = flags & PSR_N_BIT ? 'N' : 'n';
buf[1] = flags & PSR_Z_BIT ? 'Z' : 'z';
buf[2] = flags & PSR_C_BIT ? 'C' : 'c';
buf[3] = flags & PSR_V_BIT ? 'V' : 'v';
buf[4] = '\0';
#ifndef CONFIG_CPU_V7M
printk("Flags: %s IRQs o%s FIQs o%s Mode %s ISA %s Segment %s\n",
buf, interrupts_enabled(regs) ? "n" : "ff",
fast_interrupts_enabled(regs) ? "n" : "ff",
processor_modes[processor_mode(regs)],
isa_modes[isa_mode(regs)],
get_fs() == get_ds() ? "kernel" : "user");
#else
printk("xPSR: %08lx\n", regs->ARM_cpsr);
#endif
#ifdef CONFIG_CPU_CP15
{
unsigned int ctrl;
buf[0] = '\0';
#ifdef CONFIG_CPU_CP15_MMU
{
unsigned int transbase, dac;
asm("mrc p15, 0, %0, c2, c0\n\t"
"mrc p15, 0, %1, c3, c0\n"
: "=r" (transbase), "=r" (dac));
snprintf(buf, sizeof(buf), " Table: %08x DAC: %08x",
transbase, dac);
}
#endif
asm("mrc p15, 0, %0, c1, c0\n" : "=r" (ctrl));
printk("Control: %08x%s\n", ctrl, buf);
}
#endif
}
void show_regs(struct pt_regs * regs)
{
__show_regs(regs);
dump_stack();
}
ATOMIC_NOTIFIER_HEAD(thread_notify_head);
EXPORT_SYMBOL_GPL(thread_notify_head);
/*
* Free current thread data structures etc..
*/
void exit_thread(void)
{
thread_notify(THREAD_NOTIFY_EXIT, current_thread_info());
}
void flush_thread(void)
{
struct thread_info *thread = current_thread_info();
struct task_struct *tsk = current;
flush_ptrace_hw_breakpoint(tsk);
memset(thread->used_cp, 0, sizeof(thread->used_cp));
memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
memset(&thread->fpstate, 0, sizeof(union fp_state));
flush_tls();
thread_notify(THREAD_NOTIFY_FLUSH, thread);
}
void release_thread(struct task_struct *dead_task)
{
}
asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
int
copy_thread(unsigned long clone_flags, unsigned long stack_start,
unsigned long stk_sz, struct task_struct *p)
{
struct thread_info *thread = task_thread_info(p);
struct pt_regs *childregs = task_pt_regs(p);
memset(&thread->cpu_context, 0, sizeof(struct cpu_context_save));
if (likely(!(p->flags & PF_KTHREAD))) {
*childregs = *current_pt_regs();
childregs->ARM_r0 = 0;
if (stack_start)
childregs->ARM_sp = stack_start;
} else {
memset(childregs, 0, sizeof(struct pt_regs));
thread->cpu_context.r4 = stk_sz;
thread->cpu_context.r5 = stack_start;
childregs->ARM_cpsr = SVC_MODE;
}
thread->cpu_context.pc = (unsigned long)ret_from_fork;
thread->cpu_context.sp = (unsigned long)childregs;
clear_ptrace_hw_breakpoint(p);
if (clone_flags & CLONE_SETTLS)
thread->tp_value[0] = childregs->ARM_r3;
thread->tp_value[1] = get_tpuser();
thread_notify(THREAD_NOTIFY_COPY, thread);
return 0;
}
/*
* Fill in the task's elfregs structure for a core dump.
*/
int dump_task_regs(struct task_struct *t, elf_gregset_t *elfregs)
{
elf_core_copy_regs(elfregs, task_pt_regs(t));
return 1;
}
/*
* fill in the fpe structure for a core dump...
*/
int dump_fpu (struct pt_regs *regs, struct user_fp *fp)
{
struct thread_info *thread = current_thread_info();
int used_math = thread->used_cp[1] | thread->used_cp[2];
if (used_math)
memcpy(fp, &thread->fpstate.soft, sizeof (*fp));
return used_math != 0;
}
EXPORT_SYMBOL(dump_fpu);
unsigned long get_wchan(struct task_struct *p)
{
struct stackframe frame;
unsigned long stack_page;
int count = 0;
if (!p || p == current || p->state == TASK_RUNNING)
return 0;
frame.fp = thread_saved_fp(p);
frame.sp = thread_saved_sp(p);
frame.lr = 0; /* recovered from the stack */
frame.pc = thread_saved_pc(p);
stack_page = (unsigned long)task_stack_page(p);
do {
if (frame.sp < stack_page ||
frame.sp >= stack_page + THREAD_SIZE ||
unwind_frame(&frame) < 0)
return 0;
if (!in_sched_functions(frame.pc))
return frame.pc;
} while (count ++ < 16);
return 0;
}
unsigned long arch_randomize_brk(struct mm_struct *mm)
{
unsigned long range_end = mm->brk + 0x02000000;
return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
}
#ifdef CONFIG_MMU
#ifdef CONFIG_KUSER_HELPERS
/*
* The vectors page is always readable from user space for the
* atomic helpers. Insert it into the gate_vma so that it is visible
* through ptrace and /proc/<pid>/mem.
*/
static struct vm_area_struct gate_vma = {
.vm_start = 0xffff0000,
.vm_end = 0xffff0000 + PAGE_SIZE,
.vm_flags = VM_READ | VM_EXEC | VM_MAYREAD | VM_MAYEXEC,
};
static int __init gate_vma_init(void)
{
gate_vma.vm_page_prot = PAGE_READONLY_EXEC;
return 0;
}
arch_initcall(gate_vma_init);
struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
{
return &gate_vma;
}
int in_gate_area(struct mm_struct *mm, unsigned long addr)
{
return (addr >= gate_vma.vm_start) && (addr < gate_vma.vm_end);
}
int in_gate_area_no_mm(unsigned long addr)
{
return in_gate_area(NULL, addr);
}
#define is_gate_vma(vma) ((vma) == &gate_vma)
#else
#define is_gate_vma(vma) 0
#endif
const char *arch_vma_name(struct vm_area_struct *vma)
{
return is_gate_vma(vma) ? "[vectors]" : NULL;
}
/* If possible, provide a placement hint at a random offset from the
* stack for the signal page.
*/
static unsigned long sigpage_addr(const struct mm_struct *mm,
unsigned int npages)
{
unsigned long offset;
unsigned long first;
unsigned long last;
unsigned long addr;
unsigned int slots;
first = PAGE_ALIGN(mm->start_stack);
last = TASK_SIZE - (npages << PAGE_SHIFT);
/* No room after stack? */
if (first > last)
return 0;
/* Just enough room? */
if (first == last)
return first;
slots = ((last - first) >> PAGE_SHIFT) + 1;
offset = get_random_int() % slots;
addr = first + (offset << PAGE_SHIFT);
return addr;
}
static struct page *signal_page;
extern struct page *get_signal_page(void);
static const struct vm_special_mapping sigpage_mapping = {
.name = "[sigpage]",
.pages = &signal_page,
};
int arch_setup_additional_pages(struct linux_binprm *bprm, int uses_interp)
{
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma;
unsigned long addr;
unsigned long hint;
int ret = 0;
if (!signal_page)
signal_page = get_signal_page();
if (!signal_page)
return -ENOMEM;
down_write(&mm->mmap_sem);
hint = sigpage_addr(mm, 1);
addr = get_unmapped_area(NULL, hint, PAGE_SIZE, 0, 0);
if (IS_ERR_VALUE(addr)) {
ret = addr;
goto up_fail;
}
vma = _install_special_mapping(mm, addr, PAGE_SIZE,
VM_READ | VM_EXEC | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC,
&sigpage_mapping);
if (IS_ERR(vma)) {
ret = PTR_ERR(vma);
goto up_fail;
}
mm->context.sigpage = addr;
up_fail:
up_write(&mm->mmap_sem);
return ret;
}
#endif