linux-stable/mm/mempolicy.c
Linus Torvalds ecae0bd517 Many singleton patches against the MM code. The patch series which are
included in this merge do the following:
 
 - Kemeng Shi has contributed some compation maintenance work in the
   series "Fixes and cleanups to compaction".
 
 - Joel Fernandes has a patchset ("Optimize mremap during mutual
   alignment within PMD") which fixes an obscure issue with mremap()'s
   pagetable handling during a subsequent exec(), based upon an
   implementation which Linus suggested.
 
 - More DAMON/DAMOS maintenance and feature work from SeongJae Park i the
   following patch series:
 
 	mm/damon: misc fixups for documents, comments and its tracepoint
 	mm/damon: add a tracepoint for damos apply target regions
 	mm/damon: provide pseudo-moving sum based access rate
 	mm/damon: implement DAMOS apply intervals
 	mm/damon/core-test: Fix memory leaks in core-test
 	mm/damon/sysfs-schemes: Do DAMOS tried regions update for only one apply interval
 
 - In the series "Do not try to access unaccepted memory" Adrian Hunter
   provides some fixups for the recently-added "unaccepted memory' feature.
   To increase the feature's checking coverage.  "Plug a few gaps where
   RAM is exposed without checking if it is unaccepted memory".
 
 - In the series "cleanups for lockless slab shrink" Qi Zheng has done
   some maintenance work which is preparation for the lockless slab
   shrinking code.
 
 - Qi Zheng has redone the earlier (and reverted) attempt to make slab
   shrinking lockless in the series "use refcount+RCU method to implement
   lockless slab shrink".
 
 - David Hildenbrand contributes some maintenance work for the rmap code
   in the series "Anon rmap cleanups".
 
 - Kefeng Wang does more folio conversions and some maintenance work in
   the migration code.  Series "mm: migrate: more folio conversion and
   unification".
 
 - Matthew Wilcox has fixed an issue in the buffer_head code which was
   causing long stalls under some heavy memory/IO loads.  Some cleanups
   were added on the way.  Series "Add and use bdev_getblk()".
 
 - In the series "Use nth_page() in place of direct struct page
   manipulation" Zi Yan has fixed a potential issue with the direct
   manipulation of hugetlb page frames.
 
 - In the series "mm: hugetlb: Skip initialization of gigantic tail
   struct pages if freed by HVO" has improved our handling of gigantic
   pages in the hugetlb vmmemmep optimizaton code.  This provides
   significant boot time improvements when significant amounts of gigantic
   pages are in use.
 
 - Matthew Wilcox has sent the series "Small hugetlb cleanups" - code
   rationalization and folio conversions in the hugetlb code.
 
 - Yin Fengwei has improved mlock()'s handling of large folios in the
   series "support large folio for mlock"
 
 - In the series "Expose swapcache stat for memcg v1" Liu Shixin has
   added statistics for memcg v1 users which are available (and useful)
   under memcg v2.
 
 - Florent Revest has enhanced the MDWE (Memory-Deny-Write-Executable)
   prctl so that userspace may direct the kernel to not automatically
   propagate the denial to child processes.  The series is named "MDWE
   without inheritance".
 
 - Kefeng Wang has provided the series "mm: convert numa balancing
   functions to use a folio" which does what it says.
 
 - In the series "mm/ksm: add fork-exec support for prctl" Stefan Roesch
   makes is possible for a process to propagate KSM treatment across
   exec().
 
 - Huang Ying has enhanced memory tiering's calculation of memory
   distances.  This is used to permit the dax/kmem driver to use "high
   bandwidth memory" in addition to Optane Data Center Persistent Memory
   Modules (DCPMM).  The series is named "memory tiering: calculate
   abstract distance based on ACPI HMAT"
 
 - In the series "Smart scanning mode for KSM" Stefan Roesch has
   optimized KSM by teaching it to retain and use some historical
   information from previous scans.
 
 - Yosry Ahmed has fixed some inconsistencies in memcg statistics in the
   series "mm: memcg: fix tracking of pending stats updates values".
 
 - In the series "Implement IOCTL to get and optionally clear info about
   PTEs" Peter Xu has added an ioctl to /proc/<pid>/pagemap which permits
   us to atomically read-then-clear page softdirty state.  This is mainly
   used by CRIU.
 
 - Hugh Dickins contributed the series "shmem,tmpfs: general maintenance"
   - a bunch of relatively minor maintenance tweaks to this code.
 
 - Matthew Wilcox has increased the use of the VMA lock over file-backed
   page faults in the series "Handle more faults under the VMA lock".  Some
   rationalizations of the fault path became possible as a result.
 
 - In the series "mm/rmap: convert page_move_anon_rmap() to
   folio_move_anon_rmap()" David Hildenbrand has implemented some cleanups
   and folio conversions.
 
 - In the series "various improvements to the GUP interface" Lorenzo
   Stoakes has simplified and improved the GUP interface with an eye to
   providing groundwork for future improvements.
 
 - Andrey Konovalov has sent along the series "kasan: assorted fixes and
   improvements" which does those things.
 
 - Some page allocator maintenance work from Kemeng Shi in the series
   "Two minor cleanups to break_down_buddy_pages".
 
 - In thes series "New selftest for mm" Breno Leitao has developed
   another MM self test which tickles a race we had between madvise() and
   page faults.
 
 - In the series "Add folio_end_read" Matthew Wilcox provides cleanups
   and an optimization to the core pagecache code.
 
 - Nhat Pham has added memcg accounting for hugetlb memory in the series
   "hugetlb memcg accounting".
 
 - Cleanups and rationalizations to the pagemap code from Lorenzo
   Stoakes, in the series "Abstract vma_merge() and split_vma()".
 
 - Audra Mitchell has fixed issues in the procfs page_owner code's new
   timestamping feature which was causing some misbehaviours.  In the
   series "Fix page_owner's use of free timestamps".
 
 - Lorenzo Stoakes has fixed the handling of new mappings of sealed files
   in the series "permit write-sealed memfd read-only shared mappings".
 
 - Mike Kravetz has optimized the hugetlb vmemmap optimization in the
   series "Batch hugetlb vmemmap modification operations".
 
 - Some buffer_head folio conversions and cleanups from Matthew Wilcox in
   the series "Finish the create_empty_buffers() transition".
 
 - As a page allocator performance optimization Huang Ying has added
   automatic tuning to the allocator's per-cpu-pages feature, in the series
   "mm: PCP high auto-tuning".
 
 - Roman Gushchin has contributed the patchset "mm: improve performance
   of accounted kernel memory allocations" which improves their performance
   by ~30% as measured by a micro-benchmark.
 
 - folio conversions from Kefeng Wang in the series "mm: convert page
   cpupid functions to folios".
 
 - Some kmemleak fixups in Liu Shixin's series "Some bugfix about
   kmemleak".
 
 - Qi Zheng has improved our handling of memoryless nodes by keeping them
   off the allocation fallback list.  This is done in the series "handle
   memoryless nodes more appropriately".
 
 - khugepaged conversions from Vishal Moola in the series "Some
   khugepaged folio conversions".
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZULEMwAKCRDdBJ7gKXxA
 jhQHAQCYpD3g849x69DmHnHWHm/EHQLvQmRMDeYZI+nx/sCJOwEAw4AKg0Oemv9y
 FgeUPAD1oasg6CP+INZvCj34waNxwAc=
 =E+Y4
 -----END PGP SIGNATURE-----

Merge tag 'mm-stable-2023-11-01-14-33' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

Pull MM updates from Andrew Morton:
 "Many singleton patches against the MM code. The patch series which are
  included in this merge do the following:

   - Kemeng Shi has contributed some compation maintenance work in the
     series 'Fixes and cleanups to compaction'

   - Joel Fernandes has a patchset ('Optimize mremap during mutual
     alignment within PMD') which fixes an obscure issue with mremap()'s
     pagetable handling during a subsequent exec(), based upon an
     implementation which Linus suggested

   - More DAMON/DAMOS maintenance and feature work from SeongJae Park i
     the following patch series:

	mm/damon: misc fixups for documents, comments and its tracepoint
	mm/damon: add a tracepoint for damos apply target regions
	mm/damon: provide pseudo-moving sum based access rate
	mm/damon: implement DAMOS apply intervals
	mm/damon/core-test: Fix memory leaks in core-test
	mm/damon/sysfs-schemes: Do DAMOS tried regions update for only one apply interval

   - In the series 'Do not try to access unaccepted memory' Adrian
     Hunter provides some fixups for the recently-added 'unaccepted
     memory' feature. To increase the feature's checking coverage. 'Plug
     a few gaps where RAM is exposed without checking if it is
     unaccepted memory'

   - In the series 'cleanups for lockless slab shrink' Qi Zheng has done
     some maintenance work which is preparation for the lockless slab
     shrinking code

   - Qi Zheng has redone the earlier (and reverted) attempt to make slab
     shrinking lockless in the series 'use refcount+RCU method to
     implement lockless slab shrink'

   - David Hildenbrand contributes some maintenance work for the rmap
     code in the series 'Anon rmap cleanups'

   - Kefeng Wang does more folio conversions and some maintenance work
     in the migration code. Series 'mm: migrate: more folio conversion
     and unification'

   - Matthew Wilcox has fixed an issue in the buffer_head code which was
     causing long stalls under some heavy memory/IO loads. Some cleanups
     were added on the way. Series 'Add and use bdev_getblk()'

   - In the series 'Use nth_page() in place of direct struct page
     manipulation' Zi Yan has fixed a potential issue with the direct
     manipulation of hugetlb page frames

   - In the series 'mm: hugetlb: Skip initialization of gigantic tail
     struct pages if freed by HVO' has improved our handling of gigantic
     pages in the hugetlb vmmemmep optimizaton code. This provides
     significant boot time improvements when significant amounts of
     gigantic pages are in use

   - Matthew Wilcox has sent the series 'Small hugetlb cleanups' - code
     rationalization and folio conversions in the hugetlb code

   - Yin Fengwei has improved mlock()'s handling of large folios in the
     series 'support large folio for mlock'

   - In the series 'Expose swapcache stat for memcg v1' Liu Shixin has
     added statistics for memcg v1 users which are available (and
     useful) under memcg v2

   - Florent Revest has enhanced the MDWE (Memory-Deny-Write-Executable)
     prctl so that userspace may direct the kernel to not automatically
     propagate the denial to child processes. The series is named 'MDWE
     without inheritance'

   - Kefeng Wang has provided the series 'mm: convert numa balancing
     functions to use a folio' which does what it says

   - In the series 'mm/ksm: add fork-exec support for prctl' Stefan
     Roesch makes is possible for a process to propagate KSM treatment
     across exec()

   - Huang Ying has enhanced memory tiering's calculation of memory
     distances. This is used to permit the dax/kmem driver to use 'high
     bandwidth memory' in addition to Optane Data Center Persistent
     Memory Modules (DCPMM). The series is named 'memory tiering:
     calculate abstract distance based on ACPI HMAT'

   - In the series 'Smart scanning mode for KSM' Stefan Roesch has
     optimized KSM by teaching it to retain and use some historical
     information from previous scans

   - Yosry Ahmed has fixed some inconsistencies in memcg statistics in
     the series 'mm: memcg: fix tracking of pending stats updates
     values'

   - In the series 'Implement IOCTL to get and optionally clear info
     about PTEs' Peter Xu has added an ioctl to /proc/<pid>/pagemap
     which permits us to atomically read-then-clear page softdirty
     state. This is mainly used by CRIU

   - Hugh Dickins contributed the series 'shmem,tmpfs: general
     maintenance', a bunch of relatively minor maintenance tweaks to
     this code

   - Matthew Wilcox has increased the use of the VMA lock over
     file-backed page faults in the series 'Handle more faults under the
     VMA lock'. Some rationalizations of the fault path became possible
     as a result

   - In the series 'mm/rmap: convert page_move_anon_rmap() to
     folio_move_anon_rmap()' David Hildenbrand has implemented some
     cleanups and folio conversions

   - In the series 'various improvements to the GUP interface' Lorenzo
     Stoakes has simplified and improved the GUP interface with an eye
     to providing groundwork for future improvements

   - Andrey Konovalov has sent along the series 'kasan: assorted fixes
     and improvements' which does those things

   - Some page allocator maintenance work from Kemeng Shi in the series
     'Two minor cleanups to break_down_buddy_pages'

   - In thes series 'New selftest for mm' Breno Leitao has developed
     another MM self test which tickles a race we had between madvise()
     and page faults

   - In the series 'Add folio_end_read' Matthew Wilcox provides cleanups
     and an optimization to the core pagecache code

   - Nhat Pham has added memcg accounting for hugetlb memory in the
     series 'hugetlb memcg accounting'

   - Cleanups and rationalizations to the pagemap code from Lorenzo
     Stoakes, in the series 'Abstract vma_merge() and split_vma()'

   - Audra Mitchell has fixed issues in the procfs page_owner code's new
     timestamping feature which was causing some misbehaviours. In the
     series 'Fix page_owner's use of free timestamps'

   - Lorenzo Stoakes has fixed the handling of new mappings of sealed
     files in the series 'permit write-sealed memfd read-only shared
     mappings'

   - Mike Kravetz has optimized the hugetlb vmemmap optimization in the
     series 'Batch hugetlb vmemmap modification operations'

   - Some buffer_head folio conversions and cleanups from Matthew Wilcox
     in the series 'Finish the create_empty_buffers() transition'

   - As a page allocator performance optimization Huang Ying has added
     automatic tuning to the allocator's per-cpu-pages feature, in the
     series 'mm: PCP high auto-tuning'

   - Roman Gushchin has contributed the patchset 'mm: improve
     performance of accounted kernel memory allocations' which improves
     their performance by ~30% as measured by a micro-benchmark

   - folio conversions from Kefeng Wang in the series 'mm: convert page
     cpupid functions to folios'

   - Some kmemleak fixups in Liu Shixin's series 'Some bugfix about
     kmemleak'

   - Qi Zheng has improved our handling of memoryless nodes by keeping
     them off the allocation fallback list. This is done in the series
     'handle memoryless nodes more appropriately'

   - khugepaged conversions from Vishal Moola in the series 'Some
     khugepaged folio conversions'"

[ bcachefs conflicts with the dynamically allocated shrinkers have been
  resolved as per Stephen Rothwell in

     https://lore.kernel.org/all/20230913093553.4290421e@canb.auug.org.au/

  with help from Qi Zheng.

  The clone3 test filtering conflict was half-arsed by yours truly ]

* tag 'mm-stable-2023-11-01-14-33' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (406 commits)
  mm/damon/sysfs: update monitoring target regions for online input commit
  mm/damon/sysfs: remove requested targets when online-commit inputs
  selftests: add a sanity check for zswap
  Documentation: maple_tree: fix word spelling error
  mm/vmalloc: fix the unchecked dereference warning in vread_iter()
  zswap: export compression failure stats
  Documentation: ubsan: drop "the" from article title
  mempolicy: migration attempt to match interleave nodes
  mempolicy: mmap_lock is not needed while migrating folios
  mempolicy: alloc_pages_mpol() for NUMA policy without vma
  mm: add page_rmappable_folio() wrapper
  mempolicy: remove confusing MPOL_MF_LAZY dead code
  mempolicy: mpol_shared_policy_init() without pseudo-vma
  mempolicy trivia: use pgoff_t in shared mempolicy tree
  mempolicy trivia: slightly more consistent naming
  mempolicy trivia: delete those ancient pr_debug()s
  mempolicy: fix migrate_pages(2) syscall return nr_failed
  kernfs: drop shared NUMA mempolicy hooks
  hugetlbfs: drop shared NUMA mempolicy pretence
  mm/damon/sysfs-test: add a unit test for damon_sysfs_set_targets()
  ...
2023-11-02 19:38:47 -10:00

3069 lines
78 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Simple NUMA memory policy for the Linux kernel.
*
* Copyright 2003,2004 Andi Kleen, SuSE Labs.
* (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
*
* NUMA policy allows the user to give hints in which node(s) memory should
* be allocated.
*
* Support four policies per VMA and per process:
*
* The VMA policy has priority over the process policy for a page fault.
*
* interleave Allocate memory interleaved over a set of nodes,
* with normal fallback if it fails.
* For VMA based allocations this interleaves based on the
* offset into the backing object or offset into the mapping
* for anonymous memory. For process policy an process counter
* is used.
*
* bind Only allocate memory on a specific set of nodes,
* no fallback.
* FIXME: memory is allocated starting with the first node
* to the last. It would be better if bind would truly restrict
* the allocation to memory nodes instead
*
* preferred Try a specific node first before normal fallback.
* As a special case NUMA_NO_NODE here means do the allocation
* on the local CPU. This is normally identical to default,
* but useful to set in a VMA when you have a non default
* process policy.
*
* preferred many Try a set of nodes first before normal fallback. This is
* similar to preferred without the special case.
*
* default Allocate on the local node first, or when on a VMA
* use the process policy. This is what Linux always did
* in a NUMA aware kernel and still does by, ahem, default.
*
* The process policy is applied for most non interrupt memory allocations
* in that process' context. Interrupts ignore the policies and always
* try to allocate on the local CPU. The VMA policy is only applied for memory
* allocations for a VMA in the VM.
*
* Currently there are a few corner cases in swapping where the policy
* is not applied, but the majority should be handled. When process policy
* is used it is not remembered over swap outs/swap ins.
*
* Only the highest zone in the zone hierarchy gets policied. Allocations
* requesting a lower zone just use default policy. This implies that
* on systems with highmem kernel lowmem allocation don't get policied.
* Same with GFP_DMA allocations.
*
* For shmem/tmpfs shared memory the policy is shared between
* all users and remembered even when nobody has memory mapped.
*/
/* Notebook:
fix mmap readahead to honour policy and enable policy for any page cache
object
statistics for bigpages
global policy for page cache? currently it uses process policy. Requires
first item above.
handle mremap for shared memory (currently ignored for the policy)
grows down?
make bind policy root only? It can trigger oom much faster and the
kernel is not always grateful with that.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/mempolicy.h>
#include <linux/pagewalk.h>
#include <linux/highmem.h>
#include <linux/hugetlb.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/sched/mm.h>
#include <linux/sched/numa_balancing.h>
#include <linux/sched/task.h>
#include <linux/nodemask.h>
#include <linux/cpuset.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/export.h>
#include <linux/nsproxy.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/compat.h>
#include <linux/ptrace.h>
#include <linux/swap.h>
#include <linux/seq_file.h>
#include <linux/proc_fs.h>
#include <linux/migrate.h>
#include <linux/ksm.h>
#include <linux/rmap.h>
#include <linux/security.h>
#include <linux/syscalls.h>
#include <linux/ctype.h>
#include <linux/mm_inline.h>
#include <linux/mmu_notifier.h>
#include <linux/printk.h>
#include <linux/swapops.h>
#include <asm/tlbflush.h>
#include <asm/tlb.h>
#include <linux/uaccess.h>
#include "internal.h"
/* Internal flags */
#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
#define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
#define MPOL_MF_WRLOCK (MPOL_MF_INTERNAL << 2) /* Write-lock walked vmas */
static struct kmem_cache *policy_cache;
static struct kmem_cache *sn_cache;
/* Highest zone. An specific allocation for a zone below that is not
policied. */
enum zone_type policy_zone = 0;
/*
* run-time system-wide default policy => local allocation
*/
static struct mempolicy default_policy = {
.refcnt = ATOMIC_INIT(1), /* never free it */
.mode = MPOL_LOCAL,
};
static struct mempolicy preferred_node_policy[MAX_NUMNODES];
/**
* numa_nearest_node - Find nearest node by state
* @node: Node id to start the search
* @state: State to filter the search
*
* Lookup the closest node by distance if @nid is not in state.
*
* Return: this @node if it is in state, otherwise the closest node by distance
*/
int numa_nearest_node(int node, unsigned int state)
{
int min_dist = INT_MAX, dist, n, min_node;
if (state >= NR_NODE_STATES)
return -EINVAL;
if (node == NUMA_NO_NODE || node_state(node, state))
return node;
min_node = node;
for_each_node_state(n, state) {
dist = node_distance(node, n);
if (dist < min_dist) {
min_dist = dist;
min_node = n;
}
}
return min_node;
}
EXPORT_SYMBOL_GPL(numa_nearest_node);
struct mempolicy *get_task_policy(struct task_struct *p)
{
struct mempolicy *pol = p->mempolicy;
int node;
if (pol)
return pol;
node = numa_node_id();
if (node != NUMA_NO_NODE) {
pol = &preferred_node_policy[node];
/* preferred_node_policy is not initialised early in boot */
if (pol->mode)
return pol;
}
return &default_policy;
}
static const struct mempolicy_operations {
int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
} mpol_ops[MPOL_MAX];
static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
{
return pol->flags & MPOL_MODE_FLAGS;
}
static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
const nodemask_t *rel)
{
nodemask_t tmp;
nodes_fold(tmp, *orig, nodes_weight(*rel));
nodes_onto(*ret, tmp, *rel);
}
static int mpol_new_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
{
if (nodes_empty(*nodes))
return -EINVAL;
pol->nodes = *nodes;
return 0;
}
static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
{
if (nodes_empty(*nodes))
return -EINVAL;
nodes_clear(pol->nodes);
node_set(first_node(*nodes), pol->nodes);
return 0;
}
/*
* mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
* any, for the new policy. mpol_new() has already validated the nodes
* parameter with respect to the policy mode and flags.
*
* Must be called holding task's alloc_lock to protect task's mems_allowed
* and mempolicy. May also be called holding the mmap_lock for write.
*/
static int mpol_set_nodemask(struct mempolicy *pol,
const nodemask_t *nodes, struct nodemask_scratch *nsc)
{
int ret;
/*
* Default (pol==NULL) resp. local memory policies are not a
* subject of any remapping. They also do not need any special
* constructor.
*/
if (!pol || pol->mode == MPOL_LOCAL)
return 0;
/* Check N_MEMORY */
nodes_and(nsc->mask1,
cpuset_current_mems_allowed, node_states[N_MEMORY]);
VM_BUG_ON(!nodes);
if (pol->flags & MPOL_F_RELATIVE_NODES)
mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
else
nodes_and(nsc->mask2, *nodes, nsc->mask1);
if (mpol_store_user_nodemask(pol))
pol->w.user_nodemask = *nodes;
else
pol->w.cpuset_mems_allowed = cpuset_current_mems_allowed;
ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
return ret;
}
/*
* This function just creates a new policy, does some check and simple
* initialization. You must invoke mpol_set_nodemask() to set nodes.
*/
static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
nodemask_t *nodes)
{
struct mempolicy *policy;
if (mode == MPOL_DEFAULT) {
if (nodes && !nodes_empty(*nodes))
return ERR_PTR(-EINVAL);
return NULL;
}
VM_BUG_ON(!nodes);
/*
* MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
* MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
* All other modes require a valid pointer to a non-empty nodemask.
*/
if (mode == MPOL_PREFERRED) {
if (nodes_empty(*nodes)) {
if (((flags & MPOL_F_STATIC_NODES) ||
(flags & MPOL_F_RELATIVE_NODES)))
return ERR_PTR(-EINVAL);
mode = MPOL_LOCAL;
}
} else if (mode == MPOL_LOCAL) {
if (!nodes_empty(*nodes) ||
(flags & MPOL_F_STATIC_NODES) ||
(flags & MPOL_F_RELATIVE_NODES))
return ERR_PTR(-EINVAL);
} else if (nodes_empty(*nodes))
return ERR_PTR(-EINVAL);
policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
if (!policy)
return ERR_PTR(-ENOMEM);
atomic_set(&policy->refcnt, 1);
policy->mode = mode;
policy->flags = flags;
policy->home_node = NUMA_NO_NODE;
return policy;
}
/* Slow path of a mpol destructor. */
void __mpol_put(struct mempolicy *pol)
{
if (!atomic_dec_and_test(&pol->refcnt))
return;
kmem_cache_free(policy_cache, pol);
}
static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
{
}
static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
{
nodemask_t tmp;
if (pol->flags & MPOL_F_STATIC_NODES)
nodes_and(tmp, pol->w.user_nodemask, *nodes);
else if (pol->flags & MPOL_F_RELATIVE_NODES)
mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
else {
nodes_remap(tmp, pol->nodes, pol->w.cpuset_mems_allowed,
*nodes);
pol->w.cpuset_mems_allowed = *nodes;
}
if (nodes_empty(tmp))
tmp = *nodes;
pol->nodes = tmp;
}
static void mpol_rebind_preferred(struct mempolicy *pol,
const nodemask_t *nodes)
{
pol->w.cpuset_mems_allowed = *nodes;
}
/*
* mpol_rebind_policy - Migrate a policy to a different set of nodes
*
* Per-vma policies are protected by mmap_lock. Allocations using per-task
* policies are protected by task->mems_allowed_seq to prevent a premature
* OOM/allocation failure due to parallel nodemask modification.
*/
static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
{
if (!pol || pol->mode == MPOL_LOCAL)
return;
if (!mpol_store_user_nodemask(pol) &&
nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
return;
mpol_ops[pol->mode].rebind(pol, newmask);
}
/*
* Wrapper for mpol_rebind_policy() that just requires task
* pointer, and updates task mempolicy.
*
* Called with task's alloc_lock held.
*/
void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
{
mpol_rebind_policy(tsk->mempolicy, new);
}
/*
* Rebind each vma in mm to new nodemask.
*
* Call holding a reference to mm. Takes mm->mmap_lock during call.
*/
void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
{
struct vm_area_struct *vma;
VMA_ITERATOR(vmi, mm, 0);
mmap_write_lock(mm);
for_each_vma(vmi, vma) {
vma_start_write(vma);
mpol_rebind_policy(vma->vm_policy, new);
}
mmap_write_unlock(mm);
}
static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
[MPOL_DEFAULT] = {
.rebind = mpol_rebind_default,
},
[MPOL_INTERLEAVE] = {
.create = mpol_new_nodemask,
.rebind = mpol_rebind_nodemask,
},
[MPOL_PREFERRED] = {
.create = mpol_new_preferred,
.rebind = mpol_rebind_preferred,
},
[MPOL_BIND] = {
.create = mpol_new_nodemask,
.rebind = mpol_rebind_nodemask,
},
[MPOL_LOCAL] = {
.rebind = mpol_rebind_default,
},
[MPOL_PREFERRED_MANY] = {
.create = mpol_new_nodemask,
.rebind = mpol_rebind_preferred,
},
};
static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist,
unsigned long flags);
static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *pol,
pgoff_t ilx, int *nid);
static bool strictly_unmovable(unsigned long flags)
{
/*
* STRICT without MOVE flags lets do_mbind() fail immediately with -EIO
* if any misplaced page is found.
*/
return (flags & (MPOL_MF_STRICT | MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ==
MPOL_MF_STRICT;
}
struct migration_mpol { /* for alloc_migration_target_by_mpol() */
struct mempolicy *pol;
pgoff_t ilx;
};
struct queue_pages {
struct list_head *pagelist;
unsigned long flags;
nodemask_t *nmask;
unsigned long start;
unsigned long end;
struct vm_area_struct *first;
struct folio *large; /* note last large folio encountered */
long nr_failed; /* could not be isolated at this time */
};
/*
* Check if the folio's nid is in qp->nmask.
*
* If MPOL_MF_INVERT is set in qp->flags, check if the nid is
* in the invert of qp->nmask.
*/
static inline bool queue_folio_required(struct folio *folio,
struct queue_pages *qp)
{
int nid = folio_nid(folio);
unsigned long flags = qp->flags;
return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
}
static void queue_folios_pmd(pmd_t *pmd, struct mm_walk *walk)
{
struct folio *folio;
struct queue_pages *qp = walk->private;
if (unlikely(is_pmd_migration_entry(*pmd))) {
qp->nr_failed++;
return;
}
folio = pfn_folio(pmd_pfn(*pmd));
if (is_huge_zero_page(&folio->page)) {
walk->action = ACTION_CONTINUE;
return;
}
if (!queue_folio_required(folio, qp))
return;
if (!(qp->flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ||
!vma_migratable(walk->vma) ||
!migrate_folio_add(folio, qp->pagelist, qp->flags))
qp->nr_failed++;
}
/*
* Scan through folios, checking if they satisfy the required conditions,
* moving them from LRU to local pagelist for migration if they do (or not).
*
* queue_folios_pte_range() has two possible return values:
* 0 - continue walking to scan for more, even if an existing folio on the
* wrong node could not be isolated and queued for migration.
* -EIO - only MPOL_MF_STRICT was specified, without MPOL_MF_MOVE or ..._ALL,
* and an existing folio was on a node that does not follow the policy.
*/
static int queue_folios_pte_range(pmd_t *pmd, unsigned long addr,
unsigned long end, struct mm_walk *walk)
{
struct vm_area_struct *vma = walk->vma;
struct folio *folio;
struct queue_pages *qp = walk->private;
unsigned long flags = qp->flags;
pte_t *pte, *mapped_pte;
pte_t ptent;
spinlock_t *ptl;
ptl = pmd_trans_huge_lock(pmd, vma);
if (ptl) {
queue_folios_pmd(pmd, walk);
spin_unlock(ptl);
goto out;
}
mapped_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
if (!pte) {
walk->action = ACTION_AGAIN;
return 0;
}
for (; addr != end; pte++, addr += PAGE_SIZE) {
ptent = ptep_get(pte);
if (pte_none(ptent))
continue;
if (!pte_present(ptent)) {
if (is_migration_entry(pte_to_swp_entry(ptent)))
qp->nr_failed++;
continue;
}
folio = vm_normal_folio(vma, addr, ptent);
if (!folio || folio_is_zone_device(folio))
continue;
/*
* vm_normal_folio() filters out zero pages, but there might
* still be reserved folios to skip, perhaps in a VDSO.
*/
if (folio_test_reserved(folio))
continue;
if (!queue_folio_required(folio, qp))
continue;
if (folio_test_large(folio)) {
/*
* A large folio can only be isolated from LRU once,
* but may be mapped by many PTEs (and Copy-On-Write may
* intersperse PTEs of other, order 0, folios). This is
* a common case, so don't mistake it for failure (but
* there can be other cases of multi-mapped pages which
* this quick check does not help to filter out - and a
* search of the pagelist might grow to be prohibitive).
*
* migrate_pages(&pagelist) returns nr_failed folios, so
* check "large" now so that queue_pages_range() returns
* a comparable nr_failed folios. This does imply that
* if folio could not be isolated for some racy reason
* at its first PTE, later PTEs will not give it another
* chance of isolation; but keeps the accounting simple.
*/
if (folio == qp->large)
continue;
qp->large = folio;
}
if (!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ||
!vma_migratable(vma) ||
!migrate_folio_add(folio, qp->pagelist, flags)) {
qp->nr_failed++;
if (strictly_unmovable(flags))
break;
}
}
pte_unmap_unlock(mapped_pte, ptl);
cond_resched();
out:
if (qp->nr_failed && strictly_unmovable(flags))
return -EIO;
return 0;
}
static int queue_folios_hugetlb(pte_t *pte, unsigned long hmask,
unsigned long addr, unsigned long end,
struct mm_walk *walk)
{
#ifdef CONFIG_HUGETLB_PAGE
struct queue_pages *qp = walk->private;
unsigned long flags = qp->flags;
struct folio *folio;
spinlock_t *ptl;
pte_t entry;
ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
entry = huge_ptep_get(pte);
if (!pte_present(entry)) {
if (unlikely(is_hugetlb_entry_migration(entry)))
qp->nr_failed++;
goto unlock;
}
folio = pfn_folio(pte_pfn(entry));
if (!queue_folio_required(folio, qp))
goto unlock;
if (!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) ||
!vma_migratable(walk->vma)) {
qp->nr_failed++;
goto unlock;
}
/*
* Unless MPOL_MF_MOVE_ALL, we try to avoid migrating a shared folio.
* Choosing not to migrate a shared folio is not counted as a failure.
*
* To check if the folio is shared, ideally we want to make sure
* every page is mapped to the same process. Doing that is very
* expensive, so check the estimated sharers of the folio instead.
*/
if ((flags & MPOL_MF_MOVE_ALL) ||
(folio_estimated_sharers(folio) == 1 && !hugetlb_pmd_shared(pte)))
if (!isolate_hugetlb(folio, qp->pagelist))
qp->nr_failed++;
unlock:
spin_unlock(ptl);
if (qp->nr_failed && strictly_unmovable(flags))
return -EIO;
#endif
return 0;
}
#ifdef CONFIG_NUMA_BALANCING
/*
* This is used to mark a range of virtual addresses to be inaccessible.
* These are later cleared by a NUMA hinting fault. Depending on these
* faults, pages may be migrated for better NUMA placement.
*
* This is assuming that NUMA faults are handled using PROT_NONE. If
* an architecture makes a different choice, it will need further
* changes to the core.
*/
unsigned long change_prot_numa(struct vm_area_struct *vma,
unsigned long addr, unsigned long end)
{
struct mmu_gather tlb;
long nr_updated;
tlb_gather_mmu(&tlb, vma->vm_mm);
nr_updated = change_protection(&tlb, vma, addr, end, MM_CP_PROT_NUMA);
if (nr_updated > 0)
count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
tlb_finish_mmu(&tlb);
return nr_updated;
}
#endif /* CONFIG_NUMA_BALANCING */
static int queue_pages_test_walk(unsigned long start, unsigned long end,
struct mm_walk *walk)
{
struct vm_area_struct *next, *vma = walk->vma;
struct queue_pages *qp = walk->private;
unsigned long endvma = vma->vm_end;
unsigned long flags = qp->flags;
/* range check first */
VM_BUG_ON_VMA(!range_in_vma(vma, start, end), vma);
if (!qp->first) {
qp->first = vma;
if (!(flags & MPOL_MF_DISCONTIG_OK) &&
(qp->start < vma->vm_start))
/* hole at head side of range */
return -EFAULT;
}
next = find_vma(vma->vm_mm, vma->vm_end);
if (!(flags & MPOL_MF_DISCONTIG_OK) &&
((vma->vm_end < qp->end) &&
(!next || vma->vm_end < next->vm_start)))
/* hole at middle or tail of range */
return -EFAULT;
/*
* Need check MPOL_MF_STRICT to return -EIO if possible
* regardless of vma_migratable
*/
if (!vma_migratable(vma) &&
!(flags & MPOL_MF_STRICT))
return 1;
if (endvma > end)
endvma = end;
/*
* Check page nodes, and queue pages to move, in the current vma.
* But if no moving, and no strict checking, the scan can be skipped.
*/
if (flags & (MPOL_MF_STRICT | MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
return 0;
return 1;
}
static const struct mm_walk_ops queue_pages_walk_ops = {
.hugetlb_entry = queue_folios_hugetlb,
.pmd_entry = queue_folios_pte_range,
.test_walk = queue_pages_test_walk,
.walk_lock = PGWALK_RDLOCK,
};
static const struct mm_walk_ops queue_pages_lock_vma_walk_ops = {
.hugetlb_entry = queue_folios_hugetlb,
.pmd_entry = queue_folios_pte_range,
.test_walk = queue_pages_test_walk,
.walk_lock = PGWALK_WRLOCK,
};
/*
* Walk through page tables and collect pages to be migrated.
*
* If pages found in a given range are not on the required set of @nodes,
* and migration is allowed, they are isolated and queued to @pagelist.
*
* queue_pages_range() may return:
* 0 - all pages already on the right node, or successfully queued for moving
* (or neither strict checking nor moving requested: only range checking).
* >0 - this number of misplaced folios could not be queued for moving
* (a hugetlbfs page or a transparent huge page being counted as 1).
* -EIO - a misplaced page found, when MPOL_MF_STRICT specified without MOVEs.
* -EFAULT - a hole in the memory range, when MPOL_MF_DISCONTIG_OK unspecified.
*/
static long
queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
nodemask_t *nodes, unsigned long flags,
struct list_head *pagelist)
{
int err;
struct queue_pages qp = {
.pagelist = pagelist,
.flags = flags,
.nmask = nodes,
.start = start,
.end = end,
.first = NULL,
};
const struct mm_walk_ops *ops = (flags & MPOL_MF_WRLOCK) ?
&queue_pages_lock_vma_walk_ops : &queue_pages_walk_ops;
err = walk_page_range(mm, start, end, ops, &qp);
if (!qp.first)
/* whole range in hole */
err = -EFAULT;
return err ? : qp.nr_failed;
}
/*
* Apply policy to a single VMA
* This must be called with the mmap_lock held for writing.
*/
static int vma_replace_policy(struct vm_area_struct *vma,
struct mempolicy *pol)
{
int err;
struct mempolicy *old;
struct mempolicy *new;
vma_assert_write_locked(vma);
new = mpol_dup(pol);
if (IS_ERR(new))
return PTR_ERR(new);
if (vma->vm_ops && vma->vm_ops->set_policy) {
err = vma->vm_ops->set_policy(vma, new);
if (err)
goto err_out;
}
old = vma->vm_policy;
vma->vm_policy = new; /* protected by mmap_lock */
mpol_put(old);
return 0;
err_out:
mpol_put(new);
return err;
}
/* Split or merge the VMA (if required) and apply the new policy */
static int mbind_range(struct vma_iterator *vmi, struct vm_area_struct *vma,
struct vm_area_struct **prev, unsigned long start,
unsigned long end, struct mempolicy *new_pol)
{
unsigned long vmstart, vmend;
vmend = min(end, vma->vm_end);
if (start > vma->vm_start) {
*prev = vma;
vmstart = start;
} else {
vmstart = vma->vm_start;
}
if (mpol_equal(vma->vm_policy, new_pol)) {
*prev = vma;
return 0;
}
vma = vma_modify_policy(vmi, *prev, vma, vmstart, vmend, new_pol);
if (IS_ERR(vma))
return PTR_ERR(vma);
*prev = vma;
return vma_replace_policy(vma, new_pol);
}
/* Set the process memory policy */
static long do_set_mempolicy(unsigned short mode, unsigned short flags,
nodemask_t *nodes)
{
struct mempolicy *new, *old;
NODEMASK_SCRATCH(scratch);
int ret;
if (!scratch)
return -ENOMEM;
new = mpol_new(mode, flags, nodes);
if (IS_ERR(new)) {
ret = PTR_ERR(new);
goto out;
}
task_lock(current);
ret = mpol_set_nodemask(new, nodes, scratch);
if (ret) {
task_unlock(current);
mpol_put(new);
goto out;
}
old = current->mempolicy;
current->mempolicy = new;
if (new && new->mode == MPOL_INTERLEAVE)
current->il_prev = MAX_NUMNODES-1;
task_unlock(current);
mpol_put(old);
ret = 0;
out:
NODEMASK_SCRATCH_FREE(scratch);
return ret;
}
/*
* Return nodemask for policy for get_mempolicy() query
*
* Called with task's alloc_lock held
*/
static void get_policy_nodemask(struct mempolicy *pol, nodemask_t *nodes)
{
nodes_clear(*nodes);
if (pol == &default_policy)
return;
switch (pol->mode) {
case MPOL_BIND:
case MPOL_INTERLEAVE:
case MPOL_PREFERRED:
case MPOL_PREFERRED_MANY:
*nodes = pol->nodes;
break;
case MPOL_LOCAL:
/* return empty node mask for local allocation */
break;
default:
BUG();
}
}
static int lookup_node(struct mm_struct *mm, unsigned long addr)
{
struct page *p = NULL;
int ret;
ret = get_user_pages_fast(addr & PAGE_MASK, 1, 0, &p);
if (ret > 0) {
ret = page_to_nid(p);
put_page(p);
}
return ret;
}
/* Retrieve NUMA policy */
static long do_get_mempolicy(int *policy, nodemask_t *nmask,
unsigned long addr, unsigned long flags)
{
int err;
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma = NULL;
struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
if (flags &
~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
return -EINVAL;
if (flags & MPOL_F_MEMS_ALLOWED) {
if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
return -EINVAL;
*policy = 0; /* just so it's initialized */
task_lock(current);
*nmask = cpuset_current_mems_allowed;
task_unlock(current);
return 0;
}
if (flags & MPOL_F_ADDR) {
pgoff_t ilx; /* ignored here */
/*
* Do NOT fall back to task policy if the
* vma/shared policy at addr is NULL. We
* want to return MPOL_DEFAULT in this case.
*/
mmap_read_lock(mm);
vma = vma_lookup(mm, addr);
if (!vma) {
mmap_read_unlock(mm);
return -EFAULT;
}
pol = __get_vma_policy(vma, addr, &ilx);
} else if (addr)
return -EINVAL;
if (!pol)
pol = &default_policy; /* indicates default behavior */
if (flags & MPOL_F_NODE) {
if (flags & MPOL_F_ADDR) {
/*
* Take a refcount on the mpol, because we are about to
* drop the mmap_lock, after which only "pol" remains
* valid, "vma" is stale.
*/
pol_refcount = pol;
vma = NULL;
mpol_get(pol);
mmap_read_unlock(mm);
err = lookup_node(mm, addr);
if (err < 0)
goto out;
*policy = err;
} else if (pol == current->mempolicy &&
pol->mode == MPOL_INTERLEAVE) {
*policy = next_node_in(current->il_prev, pol->nodes);
} else {
err = -EINVAL;
goto out;
}
} else {
*policy = pol == &default_policy ? MPOL_DEFAULT :
pol->mode;
/*
* Internal mempolicy flags must be masked off before exposing
* the policy to userspace.
*/
*policy |= (pol->flags & MPOL_MODE_FLAGS);
}
err = 0;
if (nmask) {
if (mpol_store_user_nodemask(pol)) {
*nmask = pol->w.user_nodemask;
} else {
task_lock(current);
get_policy_nodemask(pol, nmask);
task_unlock(current);
}
}
out:
mpol_cond_put(pol);
if (vma)
mmap_read_unlock(mm);
if (pol_refcount)
mpol_put(pol_refcount);
return err;
}
#ifdef CONFIG_MIGRATION
static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist,
unsigned long flags)
{
/*
* Unless MPOL_MF_MOVE_ALL, we try to avoid migrating a shared folio.
* Choosing not to migrate a shared folio is not counted as a failure.
*
* To check if the folio is shared, ideally we want to make sure
* every page is mapped to the same process. Doing that is very
* expensive, so check the estimated sharers of the folio instead.
*/
if ((flags & MPOL_MF_MOVE_ALL) || folio_estimated_sharers(folio) == 1) {
if (folio_isolate_lru(folio)) {
list_add_tail(&folio->lru, foliolist);
node_stat_mod_folio(folio,
NR_ISOLATED_ANON + folio_is_file_lru(folio),
folio_nr_pages(folio));
} else {
/*
* Non-movable folio may reach here. And, there may be
* temporary off LRU folios or non-LRU movable folios.
* Treat them as unmovable folios since they can't be
* isolated, so they can't be moved at the moment.
*/
return false;
}
}
return true;
}
/*
* Migrate pages from one node to a target node.
* Returns error or the number of pages not migrated.
*/
static long migrate_to_node(struct mm_struct *mm, int source, int dest,
int flags)
{
nodemask_t nmask;
struct vm_area_struct *vma;
LIST_HEAD(pagelist);
long nr_failed;
long err = 0;
struct migration_target_control mtc = {
.nid = dest,
.gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
};
nodes_clear(nmask);
node_set(source, nmask);
VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
mmap_read_lock(mm);
vma = find_vma(mm, 0);
/*
* This does not migrate the range, but isolates all pages that
* need migration. Between passing in the full user address
* space range and MPOL_MF_DISCONTIG_OK, this call cannot fail,
* but passes back the count of pages which could not be isolated.
*/
nr_failed = queue_pages_range(mm, vma->vm_start, mm->task_size, &nmask,
flags | MPOL_MF_DISCONTIG_OK, &pagelist);
mmap_read_unlock(mm);
if (!list_empty(&pagelist)) {
err = migrate_pages(&pagelist, alloc_migration_target, NULL,
(unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
if (err)
putback_movable_pages(&pagelist);
}
if (err >= 0)
err += nr_failed;
return err;
}
/*
* Move pages between the two nodesets so as to preserve the physical
* layout as much as possible.
*
* Returns the number of page that could not be moved.
*/
int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
const nodemask_t *to, int flags)
{
long nr_failed = 0;
long err = 0;
nodemask_t tmp;
lru_cache_disable();
/*
* Find a 'source' bit set in 'tmp' whose corresponding 'dest'
* bit in 'to' is not also set in 'tmp'. Clear the found 'source'
* bit in 'tmp', and return that <source, dest> pair for migration.
* The pair of nodemasks 'to' and 'from' define the map.
*
* If no pair of bits is found that way, fallback to picking some
* pair of 'source' and 'dest' bits that are not the same. If the
* 'source' and 'dest' bits are the same, this represents a node
* that will be migrating to itself, so no pages need move.
*
* If no bits are left in 'tmp', or if all remaining bits left
* in 'tmp' correspond to the same bit in 'to', return false
* (nothing left to migrate).
*
* This lets us pick a pair of nodes to migrate between, such that
* if possible the dest node is not already occupied by some other
* source node, minimizing the risk of overloading the memory on a
* node that would happen if we migrated incoming memory to a node
* before migrating outgoing memory source that same node.
*
* A single scan of tmp is sufficient. As we go, we remember the
* most recent <s, d> pair that moved (s != d). If we find a pair
* that not only moved, but what's better, moved to an empty slot
* (d is not set in tmp), then we break out then, with that pair.
* Otherwise when we finish scanning from_tmp, we at least have the
* most recent <s, d> pair that moved. If we get all the way through
* the scan of tmp without finding any node that moved, much less
* moved to an empty node, then there is nothing left worth migrating.
*/
tmp = *from;
while (!nodes_empty(tmp)) {
int s, d;
int source = NUMA_NO_NODE;
int dest = 0;
for_each_node_mask(s, tmp) {
/*
* do_migrate_pages() tries to maintain the relative
* node relationship of the pages established between
* threads and memory areas.
*
* However if the number of source nodes is not equal to
* the number of destination nodes we can not preserve
* this node relative relationship. In that case, skip
* copying memory from a node that is in the destination
* mask.
*
* Example: [2,3,4] -> [3,4,5] moves everything.
* [0-7] - > [3,4,5] moves only 0,1,2,6,7.
*/
if ((nodes_weight(*from) != nodes_weight(*to)) &&
(node_isset(s, *to)))
continue;
d = node_remap(s, *from, *to);
if (s == d)
continue;
source = s; /* Node moved. Memorize */
dest = d;
/* dest not in remaining from nodes? */
if (!node_isset(dest, tmp))
break;
}
if (source == NUMA_NO_NODE)
break;
node_clear(source, tmp);
err = migrate_to_node(mm, source, dest, flags);
if (err > 0)
nr_failed += err;
if (err < 0)
break;
}
lru_cache_enable();
if (err < 0)
return err;
return (nr_failed < INT_MAX) ? nr_failed : INT_MAX;
}
/*
* Allocate a new folio for page migration, according to NUMA mempolicy.
*/
static struct folio *alloc_migration_target_by_mpol(struct folio *src,
unsigned long private)
{
struct migration_mpol *mmpol = (struct migration_mpol *)private;
struct mempolicy *pol = mmpol->pol;
pgoff_t ilx = mmpol->ilx;
struct page *page;
unsigned int order;
int nid = numa_node_id();
gfp_t gfp;
order = folio_order(src);
ilx += src->index >> order;
if (folio_test_hugetlb(src)) {
nodemask_t *nodemask;
struct hstate *h;
h = folio_hstate(src);
gfp = htlb_alloc_mask(h);
nodemask = policy_nodemask(gfp, pol, ilx, &nid);
return alloc_hugetlb_folio_nodemask(h, nid, nodemask, gfp);
}
if (folio_test_large(src))
gfp = GFP_TRANSHUGE;
else
gfp = GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL | __GFP_COMP;
page = alloc_pages_mpol(gfp, order, pol, ilx, nid);
return page_rmappable_folio(page);
}
#else
static bool migrate_folio_add(struct folio *folio, struct list_head *foliolist,
unsigned long flags)
{
return false;
}
int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
const nodemask_t *to, int flags)
{
return -ENOSYS;
}
static struct folio *alloc_migration_target_by_mpol(struct folio *src,
unsigned long private)
{
return NULL;
}
#endif
static long do_mbind(unsigned long start, unsigned long len,
unsigned short mode, unsigned short mode_flags,
nodemask_t *nmask, unsigned long flags)
{
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma, *prev;
struct vma_iterator vmi;
struct migration_mpol mmpol;
struct mempolicy *new;
unsigned long end;
long err;
long nr_failed;
LIST_HEAD(pagelist);
if (flags & ~(unsigned long)MPOL_MF_VALID)
return -EINVAL;
if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
return -EPERM;
if (start & ~PAGE_MASK)
return -EINVAL;
if (mode == MPOL_DEFAULT)
flags &= ~MPOL_MF_STRICT;
len = PAGE_ALIGN(len);
end = start + len;
if (end < start)
return -EINVAL;
if (end == start)
return 0;
new = mpol_new(mode, mode_flags, nmask);
if (IS_ERR(new))
return PTR_ERR(new);
/*
* If we are using the default policy then operation
* on discontinuous address spaces is okay after all
*/
if (!new)
flags |= MPOL_MF_DISCONTIG_OK;
if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
lru_cache_disable();
{
NODEMASK_SCRATCH(scratch);
if (scratch) {
mmap_write_lock(mm);
err = mpol_set_nodemask(new, nmask, scratch);
if (err)
mmap_write_unlock(mm);
} else
err = -ENOMEM;
NODEMASK_SCRATCH_FREE(scratch);
}
if (err)
goto mpol_out;
/*
* Lock the VMAs before scanning for pages to migrate,
* to ensure we don't miss a concurrently inserted page.
*/
nr_failed = queue_pages_range(mm, start, end, nmask,
flags | MPOL_MF_INVERT | MPOL_MF_WRLOCK, &pagelist);
if (nr_failed < 0) {
err = nr_failed;
nr_failed = 0;
} else {
vma_iter_init(&vmi, mm, start);
prev = vma_prev(&vmi);
for_each_vma_range(vmi, vma, end) {
err = mbind_range(&vmi, vma, &prev, start, end, new);
if (err)
break;
}
}
if (!err && !list_empty(&pagelist)) {
/* Convert MPOL_DEFAULT's NULL to task or default policy */
if (!new) {
new = get_task_policy(current);
mpol_get(new);
}
mmpol.pol = new;
mmpol.ilx = 0;
/*
* In the interleaved case, attempt to allocate on exactly the
* targeted nodes, for the first VMA to be migrated; for later
* VMAs, the nodes will still be interleaved from the targeted
* nodemask, but one by one may be selected differently.
*/
if (new->mode == MPOL_INTERLEAVE) {
struct page *page;
unsigned int order;
unsigned long addr = -EFAULT;
list_for_each_entry(page, &pagelist, lru) {
if (!PageKsm(page))
break;
}
if (!list_entry_is_head(page, &pagelist, lru)) {
vma_iter_init(&vmi, mm, start);
for_each_vma_range(vmi, vma, end) {
addr = page_address_in_vma(page, vma);
if (addr != -EFAULT)
break;
}
}
if (addr != -EFAULT) {
order = compound_order(page);
/* We already know the pol, but not the ilx */
mpol_cond_put(get_vma_policy(vma, addr, order,
&mmpol.ilx));
/* Set base from which to increment by index */
mmpol.ilx -= page->index >> order;
}
}
}
mmap_write_unlock(mm);
if (!err && !list_empty(&pagelist)) {
nr_failed |= migrate_pages(&pagelist,
alloc_migration_target_by_mpol, NULL,
(unsigned long)&mmpol, MIGRATE_SYNC,
MR_MEMPOLICY_MBIND, NULL);
}
if (nr_failed && (flags & MPOL_MF_STRICT))
err = -EIO;
if (!list_empty(&pagelist))
putback_movable_pages(&pagelist);
mpol_out:
mpol_put(new);
if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
lru_cache_enable();
return err;
}
/*
* User space interface with variable sized bitmaps for nodelists.
*/
static int get_bitmap(unsigned long *mask, const unsigned long __user *nmask,
unsigned long maxnode)
{
unsigned long nlongs = BITS_TO_LONGS(maxnode);
int ret;
if (in_compat_syscall())
ret = compat_get_bitmap(mask,
(const compat_ulong_t __user *)nmask,
maxnode);
else
ret = copy_from_user(mask, nmask,
nlongs * sizeof(unsigned long));
if (ret)
return -EFAULT;
if (maxnode % BITS_PER_LONG)
mask[nlongs - 1] &= (1UL << (maxnode % BITS_PER_LONG)) - 1;
return 0;
}
/* Copy a node mask from user space. */
static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
unsigned long maxnode)
{
--maxnode;
nodes_clear(*nodes);
if (maxnode == 0 || !nmask)
return 0;
if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
return -EINVAL;
/*
* When the user specified more nodes than supported just check
* if the non supported part is all zero, one word at a time,
* starting at the end.
*/
while (maxnode > MAX_NUMNODES) {
unsigned long bits = min_t(unsigned long, maxnode, BITS_PER_LONG);
unsigned long t;
if (get_bitmap(&t, &nmask[(maxnode - 1) / BITS_PER_LONG], bits))
return -EFAULT;
if (maxnode - bits >= MAX_NUMNODES) {
maxnode -= bits;
} else {
maxnode = MAX_NUMNODES;
t &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
}
if (t)
return -EINVAL;
}
return get_bitmap(nodes_addr(*nodes), nmask, maxnode);
}
/* Copy a kernel node mask to user space */
static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
nodemask_t *nodes)
{
unsigned long copy = ALIGN(maxnode-1, 64) / 8;
unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
bool compat = in_compat_syscall();
if (compat)
nbytes = BITS_TO_COMPAT_LONGS(nr_node_ids) * sizeof(compat_long_t);
if (copy > nbytes) {
if (copy > PAGE_SIZE)
return -EINVAL;
if (clear_user((char __user *)mask + nbytes, copy - nbytes))
return -EFAULT;
copy = nbytes;
maxnode = nr_node_ids;
}
if (compat)
return compat_put_bitmap((compat_ulong_t __user *)mask,
nodes_addr(*nodes), maxnode);
return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
}
/* Basic parameter sanity check used by both mbind() and set_mempolicy() */
static inline int sanitize_mpol_flags(int *mode, unsigned short *flags)
{
*flags = *mode & MPOL_MODE_FLAGS;
*mode &= ~MPOL_MODE_FLAGS;
if ((unsigned int)(*mode) >= MPOL_MAX)
return -EINVAL;
if ((*flags & MPOL_F_STATIC_NODES) && (*flags & MPOL_F_RELATIVE_NODES))
return -EINVAL;
if (*flags & MPOL_F_NUMA_BALANCING) {
if (*mode != MPOL_BIND)
return -EINVAL;
*flags |= (MPOL_F_MOF | MPOL_F_MORON);
}
return 0;
}
static long kernel_mbind(unsigned long start, unsigned long len,
unsigned long mode, const unsigned long __user *nmask,
unsigned long maxnode, unsigned int flags)
{
unsigned short mode_flags;
nodemask_t nodes;
int lmode = mode;
int err;
start = untagged_addr(start);
err = sanitize_mpol_flags(&lmode, &mode_flags);
if (err)
return err;
err = get_nodes(&nodes, nmask, maxnode);
if (err)
return err;
return do_mbind(start, len, lmode, mode_flags, &nodes, flags);
}
SYSCALL_DEFINE4(set_mempolicy_home_node, unsigned long, start, unsigned long, len,
unsigned long, home_node, unsigned long, flags)
{
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma, *prev;
struct mempolicy *new, *old;
unsigned long end;
int err = -ENOENT;
VMA_ITERATOR(vmi, mm, start);
start = untagged_addr(start);
if (start & ~PAGE_MASK)
return -EINVAL;
/*
* flags is used for future extension if any.
*/
if (flags != 0)
return -EINVAL;
/*
* Check home_node is online to avoid accessing uninitialized
* NODE_DATA.
*/
if (home_node >= MAX_NUMNODES || !node_online(home_node))
return -EINVAL;
len = PAGE_ALIGN(len);
end = start + len;
if (end < start)
return -EINVAL;
if (end == start)
return 0;
mmap_write_lock(mm);
prev = vma_prev(&vmi);
for_each_vma_range(vmi, vma, end) {
/*
* If any vma in the range got policy other than MPOL_BIND
* or MPOL_PREFERRED_MANY we return error. We don't reset
* the home node for vmas we already updated before.
*/
old = vma_policy(vma);
if (!old) {
prev = vma;
continue;
}
if (old->mode != MPOL_BIND && old->mode != MPOL_PREFERRED_MANY) {
err = -EOPNOTSUPP;
break;
}
new = mpol_dup(old);
if (IS_ERR(new)) {
err = PTR_ERR(new);
break;
}
vma_start_write(vma);
new->home_node = home_node;
err = mbind_range(&vmi, vma, &prev, start, end, new);
mpol_put(new);
if (err)
break;
}
mmap_write_unlock(mm);
return err;
}
SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
unsigned long, mode, const unsigned long __user *, nmask,
unsigned long, maxnode, unsigned int, flags)
{
return kernel_mbind(start, len, mode, nmask, maxnode, flags);
}
/* Set the process memory policy */
static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
unsigned long maxnode)
{
unsigned short mode_flags;
nodemask_t nodes;
int lmode = mode;
int err;
err = sanitize_mpol_flags(&lmode, &mode_flags);
if (err)
return err;
err = get_nodes(&nodes, nmask, maxnode);
if (err)
return err;
return do_set_mempolicy(lmode, mode_flags, &nodes);
}
SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
unsigned long, maxnode)
{
return kernel_set_mempolicy(mode, nmask, maxnode);
}
static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
const unsigned long __user *old_nodes,
const unsigned long __user *new_nodes)
{
struct mm_struct *mm = NULL;
struct task_struct *task;
nodemask_t task_nodes;
int err;
nodemask_t *old;
nodemask_t *new;
NODEMASK_SCRATCH(scratch);
if (!scratch)
return -ENOMEM;
old = &scratch->mask1;
new = &scratch->mask2;
err = get_nodes(old, old_nodes, maxnode);
if (err)
goto out;
err = get_nodes(new, new_nodes, maxnode);
if (err)
goto out;
/* Find the mm_struct */
rcu_read_lock();
task = pid ? find_task_by_vpid(pid) : current;
if (!task) {
rcu_read_unlock();
err = -ESRCH;
goto out;
}
get_task_struct(task);
err = -EINVAL;
/*
* Check if this process has the right to modify the specified process.
* Use the regular "ptrace_may_access()" checks.
*/
if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
rcu_read_unlock();
err = -EPERM;
goto out_put;
}
rcu_read_unlock();
task_nodes = cpuset_mems_allowed(task);
/* Is the user allowed to access the target nodes? */
if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
err = -EPERM;
goto out_put;
}
task_nodes = cpuset_mems_allowed(current);
nodes_and(*new, *new, task_nodes);
if (nodes_empty(*new))
goto out_put;
err = security_task_movememory(task);
if (err)
goto out_put;
mm = get_task_mm(task);
put_task_struct(task);
if (!mm) {
err = -EINVAL;
goto out;
}
err = do_migrate_pages(mm, old, new,
capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
mmput(mm);
out:
NODEMASK_SCRATCH_FREE(scratch);
return err;
out_put:
put_task_struct(task);
goto out;
}
SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
const unsigned long __user *, old_nodes,
const unsigned long __user *, new_nodes)
{
return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
}
/* Retrieve NUMA policy */
static int kernel_get_mempolicy(int __user *policy,
unsigned long __user *nmask,
unsigned long maxnode,
unsigned long addr,
unsigned long flags)
{
int err;
int pval;
nodemask_t nodes;
if (nmask != NULL && maxnode < nr_node_ids)
return -EINVAL;
addr = untagged_addr(addr);
err = do_get_mempolicy(&pval, &nodes, addr, flags);
if (err)
return err;
if (policy && put_user(pval, policy))
return -EFAULT;
if (nmask)
err = copy_nodes_to_user(nmask, maxnode, &nodes);
return err;
}
SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
unsigned long __user *, nmask, unsigned long, maxnode,
unsigned long, addr, unsigned long, flags)
{
return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
}
bool vma_migratable(struct vm_area_struct *vma)
{
if (vma->vm_flags & (VM_IO | VM_PFNMAP))
return false;
/*
* DAX device mappings require predictable access latency, so avoid
* incurring periodic faults.
*/
if (vma_is_dax(vma))
return false;
if (is_vm_hugetlb_page(vma) &&
!hugepage_migration_supported(hstate_vma(vma)))
return false;
/*
* Migration allocates pages in the highest zone. If we cannot
* do so then migration (at least from node to node) is not
* possible.
*/
if (vma->vm_file &&
gfp_zone(mapping_gfp_mask(vma->vm_file->f_mapping))
< policy_zone)
return false;
return true;
}
struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
unsigned long addr, pgoff_t *ilx)
{
*ilx = 0;
return (vma->vm_ops && vma->vm_ops->get_policy) ?
vma->vm_ops->get_policy(vma, addr, ilx) : vma->vm_policy;
}
/*
* get_vma_policy(@vma, @addr, @order, @ilx)
* @vma: virtual memory area whose policy is sought
* @addr: address in @vma for shared policy lookup
* @order: 0, or appropriate huge_page_order for interleaving
* @ilx: interleave index (output), for use only when MPOL_INTERLEAVE
*
* Returns effective policy for a VMA at specified address.
* Falls back to current->mempolicy or system default policy, as necessary.
* Shared policies [those marked as MPOL_F_SHARED] require an extra reference
* count--added by the get_policy() vm_op, as appropriate--to protect against
* freeing by another task. It is the caller's responsibility to free the
* extra reference for shared policies.
*/
struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
unsigned long addr, int order, pgoff_t *ilx)
{
struct mempolicy *pol;
pol = __get_vma_policy(vma, addr, ilx);
if (!pol)
pol = get_task_policy(current);
if (pol->mode == MPOL_INTERLEAVE) {
*ilx += vma->vm_pgoff >> order;
*ilx += (addr - vma->vm_start) >> (PAGE_SHIFT + order);
}
return pol;
}
bool vma_policy_mof(struct vm_area_struct *vma)
{
struct mempolicy *pol;
if (vma->vm_ops && vma->vm_ops->get_policy) {
bool ret = false;
pgoff_t ilx; /* ignored here */
pol = vma->vm_ops->get_policy(vma, vma->vm_start, &ilx);
if (pol && (pol->flags & MPOL_F_MOF))
ret = true;
mpol_cond_put(pol);
return ret;
}
pol = vma->vm_policy;
if (!pol)
pol = get_task_policy(current);
return pol->flags & MPOL_F_MOF;
}
bool apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
{
enum zone_type dynamic_policy_zone = policy_zone;
BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
/*
* if policy->nodes has movable memory only,
* we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
*
* policy->nodes is intersect with node_states[N_MEMORY].
* so if the following test fails, it implies
* policy->nodes has movable memory only.
*/
if (!nodes_intersects(policy->nodes, node_states[N_HIGH_MEMORY]))
dynamic_policy_zone = ZONE_MOVABLE;
return zone >= dynamic_policy_zone;
}
/* Do dynamic interleaving for a process */
static unsigned int interleave_nodes(struct mempolicy *policy)
{
unsigned int nid;
nid = next_node_in(current->il_prev, policy->nodes);
if (nid < MAX_NUMNODES)
current->il_prev = nid;
return nid;
}
/*
* Depending on the memory policy provide a node from which to allocate the
* next slab entry.
*/
unsigned int mempolicy_slab_node(void)
{
struct mempolicy *policy;
int node = numa_mem_id();
if (!in_task())
return node;
policy = current->mempolicy;
if (!policy)
return node;
switch (policy->mode) {
case MPOL_PREFERRED:
return first_node(policy->nodes);
case MPOL_INTERLEAVE:
return interleave_nodes(policy);
case MPOL_BIND:
case MPOL_PREFERRED_MANY:
{
struct zoneref *z;
/*
* Follow bind policy behavior and start allocation at the
* first node.
*/
struct zonelist *zonelist;
enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
z = first_zones_zonelist(zonelist, highest_zoneidx,
&policy->nodes);
return z->zone ? zone_to_nid(z->zone) : node;
}
case MPOL_LOCAL:
return node;
default:
BUG();
}
}
/*
* Do static interleaving for interleave index @ilx. Returns the ilx'th
* node in pol->nodes (starting from ilx=0), wrapping around if ilx
* exceeds the number of present nodes.
*/
static unsigned int interleave_nid(struct mempolicy *pol, pgoff_t ilx)
{
nodemask_t nodemask = pol->nodes;
unsigned int target, nnodes;
int i;
int nid;
/*
* The barrier will stabilize the nodemask in a register or on
* the stack so that it will stop changing under the code.
*
* Between first_node() and next_node(), pol->nodes could be changed
* by other threads. So we put pol->nodes in a local stack.
*/
barrier();
nnodes = nodes_weight(nodemask);
if (!nnodes)
return numa_node_id();
target = ilx % nnodes;
nid = first_node(nodemask);
for (i = 0; i < target; i++)
nid = next_node(nid, nodemask);
return nid;
}
/*
* Return a nodemask representing a mempolicy for filtering nodes for
* page allocation, together with preferred node id (or the input node id).
*/
static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *pol,
pgoff_t ilx, int *nid)
{
nodemask_t *nodemask = NULL;
switch (pol->mode) {
case MPOL_PREFERRED:
/* Override input node id */
*nid = first_node(pol->nodes);
break;
case MPOL_PREFERRED_MANY:
nodemask = &pol->nodes;
if (pol->home_node != NUMA_NO_NODE)
*nid = pol->home_node;
break;
case MPOL_BIND:
/* Restrict to nodemask (but not on lower zones) */
if (apply_policy_zone(pol, gfp_zone(gfp)) &&
cpuset_nodemask_valid_mems_allowed(&pol->nodes))
nodemask = &pol->nodes;
if (pol->home_node != NUMA_NO_NODE)
*nid = pol->home_node;
/*
* __GFP_THISNODE shouldn't even be used with the bind policy
* because we might easily break the expectation to stay on the
* requested node and not break the policy.
*/
WARN_ON_ONCE(gfp & __GFP_THISNODE);
break;
case MPOL_INTERLEAVE:
/* Override input node id */
*nid = (ilx == NO_INTERLEAVE_INDEX) ?
interleave_nodes(pol) : interleave_nid(pol, ilx);
break;
}
return nodemask;
}
#ifdef CONFIG_HUGETLBFS
/*
* huge_node(@vma, @addr, @gfp_flags, @mpol)
* @vma: virtual memory area whose policy is sought
* @addr: address in @vma for shared policy lookup and interleave policy
* @gfp_flags: for requested zone
* @mpol: pointer to mempolicy pointer for reference counted mempolicy
* @nodemask: pointer to nodemask pointer for 'bind' and 'prefer-many' policy
*
* Returns a nid suitable for a huge page allocation and a pointer
* to the struct mempolicy for conditional unref after allocation.
* If the effective policy is 'bind' or 'prefer-many', returns a pointer
* to the mempolicy's @nodemask for filtering the zonelist.
*/
int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
struct mempolicy **mpol, nodemask_t **nodemask)
{
pgoff_t ilx;
int nid;
nid = numa_node_id();
*mpol = get_vma_policy(vma, addr, hstate_vma(vma)->order, &ilx);
*nodemask = policy_nodemask(gfp_flags, *mpol, ilx, &nid);
return nid;
}
/*
* init_nodemask_of_mempolicy
*
* If the current task's mempolicy is "default" [NULL], return 'false'
* to indicate default policy. Otherwise, extract the policy nodemask
* for 'bind' or 'interleave' policy into the argument nodemask, or
* initialize the argument nodemask to contain the single node for
* 'preferred' or 'local' policy and return 'true' to indicate presence
* of non-default mempolicy.
*
* We don't bother with reference counting the mempolicy [mpol_get/put]
* because the current task is examining it's own mempolicy and a task's
* mempolicy is only ever changed by the task itself.
*
* N.B., it is the caller's responsibility to free a returned nodemask.
*/
bool init_nodemask_of_mempolicy(nodemask_t *mask)
{
struct mempolicy *mempolicy;
if (!(mask && current->mempolicy))
return false;
task_lock(current);
mempolicy = current->mempolicy;
switch (mempolicy->mode) {
case MPOL_PREFERRED:
case MPOL_PREFERRED_MANY:
case MPOL_BIND:
case MPOL_INTERLEAVE:
*mask = mempolicy->nodes;
break;
case MPOL_LOCAL:
init_nodemask_of_node(mask, numa_node_id());
break;
default:
BUG();
}
task_unlock(current);
return true;
}
#endif
/*
* mempolicy_in_oom_domain
*
* If tsk's mempolicy is "bind", check for intersection between mask and
* the policy nodemask. Otherwise, return true for all other policies
* including "interleave", as a tsk with "interleave" policy may have
* memory allocated from all nodes in system.
*
* Takes task_lock(tsk) to prevent freeing of its mempolicy.
*/
bool mempolicy_in_oom_domain(struct task_struct *tsk,
const nodemask_t *mask)
{
struct mempolicy *mempolicy;
bool ret = true;
if (!mask)
return ret;
task_lock(tsk);
mempolicy = tsk->mempolicy;
if (mempolicy && mempolicy->mode == MPOL_BIND)
ret = nodes_intersects(mempolicy->nodes, *mask);
task_unlock(tsk);
return ret;
}
static struct page *alloc_pages_preferred_many(gfp_t gfp, unsigned int order,
int nid, nodemask_t *nodemask)
{
struct page *page;
gfp_t preferred_gfp;
/*
* This is a two pass approach. The first pass will only try the
* preferred nodes but skip the direct reclaim and allow the
* allocation to fail, while the second pass will try all the
* nodes in system.
*/
preferred_gfp = gfp | __GFP_NOWARN;
preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
page = __alloc_pages(preferred_gfp, order, nid, nodemask);
if (!page)
page = __alloc_pages(gfp, order, nid, NULL);
return page;
}
/**
* alloc_pages_mpol - Allocate pages according to NUMA mempolicy.
* @gfp: GFP flags.
* @order: Order of the page allocation.
* @pol: Pointer to the NUMA mempolicy.
* @ilx: Index for interleave mempolicy (also distinguishes alloc_pages()).
* @nid: Preferred node (usually numa_node_id() but @mpol may override it).
*
* Return: The page on success or NULL if allocation fails.
*/
struct page *alloc_pages_mpol(gfp_t gfp, unsigned int order,
struct mempolicy *pol, pgoff_t ilx, int nid)
{
nodemask_t *nodemask;
struct page *page;
nodemask = policy_nodemask(gfp, pol, ilx, &nid);
if (pol->mode == MPOL_PREFERRED_MANY)
return alloc_pages_preferred_many(gfp, order, nid, nodemask);
if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
/* filter "hugepage" allocation, unless from alloc_pages() */
order == HPAGE_PMD_ORDER && ilx != NO_INTERLEAVE_INDEX) {
/*
* For hugepage allocation and non-interleave policy which
* allows the current node (or other explicitly preferred
* node) we only try to allocate from the current/preferred
* node and don't fall back to other nodes, as the cost of
* remote accesses would likely offset THP benefits.
*
* If the policy is interleave or does not allow the current
* node in its nodemask, we allocate the standard way.
*/
if (pol->mode != MPOL_INTERLEAVE &&
(!nodemask || node_isset(nid, *nodemask))) {
/*
* First, try to allocate THP only on local node, but
* don't reclaim unnecessarily, just compact.
*/
page = __alloc_pages_node(nid,
gfp | __GFP_THISNODE | __GFP_NORETRY, order);
if (page || !(gfp & __GFP_DIRECT_RECLAIM))
return page;
/*
* If hugepage allocations are configured to always
* synchronous compact or the vma has been madvised
* to prefer hugepage backing, retry allowing remote
* memory with both reclaim and compact as well.
*/
}
}
page = __alloc_pages(gfp, order, nid, nodemask);
if (unlikely(pol->mode == MPOL_INTERLEAVE) && page) {
/* skip NUMA_INTERLEAVE_HIT update if numa stats is disabled */
if (static_branch_likely(&vm_numa_stat_key) &&
page_to_nid(page) == nid) {
preempt_disable();
__count_numa_event(page_zone(page), NUMA_INTERLEAVE_HIT);
preempt_enable();
}
}
return page;
}
/**
* vma_alloc_folio - Allocate a folio for a VMA.
* @gfp: GFP flags.
* @order: Order of the folio.
* @vma: Pointer to VMA.
* @addr: Virtual address of the allocation. Must be inside @vma.
* @hugepage: Unused (was: For hugepages try only preferred node if possible).
*
* Allocate a folio for a specific address in @vma, using the appropriate
* NUMA policy. The caller must hold the mmap_lock of the mm_struct of the
* VMA to prevent it from going away. Should be used for all allocations
* for folios that will be mapped into user space, excepting hugetlbfs, and
* excepting where direct use of alloc_pages_mpol() is more appropriate.
*
* Return: The folio on success or NULL if allocation fails.
*/
struct folio *vma_alloc_folio(gfp_t gfp, int order, struct vm_area_struct *vma,
unsigned long addr, bool hugepage)
{
struct mempolicy *pol;
pgoff_t ilx;
struct page *page;
pol = get_vma_policy(vma, addr, order, &ilx);
page = alloc_pages_mpol(gfp | __GFP_COMP, order,
pol, ilx, numa_node_id());
mpol_cond_put(pol);
return page_rmappable_folio(page);
}
EXPORT_SYMBOL(vma_alloc_folio);
/**
* alloc_pages - Allocate pages.
* @gfp: GFP flags.
* @order: Power of two of number of pages to allocate.
*
* Allocate 1 << @order contiguous pages. The physical address of the
* first page is naturally aligned (eg an order-3 allocation will be aligned
* to a multiple of 8 * PAGE_SIZE bytes). The NUMA policy of the current
* process is honoured when in process context.
*
* Context: Can be called from any context, providing the appropriate GFP
* flags are used.
* Return: The page on success or NULL if allocation fails.
*/
struct page *alloc_pages(gfp_t gfp, unsigned int order)
{
struct mempolicy *pol = &default_policy;
/*
* No reference counting needed for current->mempolicy
* nor system default_policy
*/
if (!in_interrupt() && !(gfp & __GFP_THISNODE))
pol = get_task_policy(current);
return alloc_pages_mpol(gfp, order,
pol, NO_INTERLEAVE_INDEX, numa_node_id());
}
EXPORT_SYMBOL(alloc_pages);
struct folio *folio_alloc(gfp_t gfp, unsigned int order)
{
return page_rmappable_folio(alloc_pages(gfp | __GFP_COMP, order));
}
EXPORT_SYMBOL(folio_alloc);
static unsigned long alloc_pages_bulk_array_interleave(gfp_t gfp,
struct mempolicy *pol, unsigned long nr_pages,
struct page **page_array)
{
int nodes;
unsigned long nr_pages_per_node;
int delta;
int i;
unsigned long nr_allocated;
unsigned long total_allocated = 0;
nodes = nodes_weight(pol->nodes);
nr_pages_per_node = nr_pages / nodes;
delta = nr_pages - nodes * nr_pages_per_node;
for (i = 0; i < nodes; i++) {
if (delta) {
nr_allocated = __alloc_pages_bulk(gfp,
interleave_nodes(pol), NULL,
nr_pages_per_node + 1, NULL,
page_array);
delta--;
} else {
nr_allocated = __alloc_pages_bulk(gfp,
interleave_nodes(pol), NULL,
nr_pages_per_node, NULL, page_array);
}
page_array += nr_allocated;
total_allocated += nr_allocated;
}
return total_allocated;
}
static unsigned long alloc_pages_bulk_array_preferred_many(gfp_t gfp, int nid,
struct mempolicy *pol, unsigned long nr_pages,
struct page **page_array)
{
gfp_t preferred_gfp;
unsigned long nr_allocated = 0;
preferred_gfp = gfp | __GFP_NOWARN;
preferred_gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
nr_allocated = __alloc_pages_bulk(preferred_gfp, nid, &pol->nodes,
nr_pages, NULL, page_array);
if (nr_allocated < nr_pages)
nr_allocated += __alloc_pages_bulk(gfp, numa_node_id(), NULL,
nr_pages - nr_allocated, NULL,
page_array + nr_allocated);
return nr_allocated;
}
/* alloc pages bulk and mempolicy should be considered at the
* same time in some situation such as vmalloc.
*
* It can accelerate memory allocation especially interleaving
* allocate memory.
*/
unsigned long alloc_pages_bulk_array_mempolicy(gfp_t gfp,
unsigned long nr_pages, struct page **page_array)
{
struct mempolicy *pol = &default_policy;
nodemask_t *nodemask;
int nid;
if (!in_interrupt() && !(gfp & __GFP_THISNODE))
pol = get_task_policy(current);
if (pol->mode == MPOL_INTERLEAVE)
return alloc_pages_bulk_array_interleave(gfp, pol,
nr_pages, page_array);
if (pol->mode == MPOL_PREFERRED_MANY)
return alloc_pages_bulk_array_preferred_many(gfp,
numa_node_id(), pol, nr_pages, page_array);
nid = numa_node_id();
nodemask = policy_nodemask(gfp, pol, NO_INTERLEAVE_INDEX, &nid);
return __alloc_pages_bulk(gfp, nid, nodemask,
nr_pages, NULL, page_array);
}
int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
{
struct mempolicy *pol = mpol_dup(src->vm_policy);
if (IS_ERR(pol))
return PTR_ERR(pol);
dst->vm_policy = pol;
return 0;
}
/*
* If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
* rebinds the mempolicy its copying by calling mpol_rebind_policy()
* with the mems_allowed returned by cpuset_mems_allowed(). This
* keeps mempolicies cpuset relative after its cpuset moves. See
* further kernel/cpuset.c update_nodemask().
*
* current's mempolicy may be rebinded by the other task(the task that changes
* cpuset's mems), so we needn't do rebind work for current task.
*/
/* Slow path of a mempolicy duplicate */
struct mempolicy *__mpol_dup(struct mempolicy *old)
{
struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
if (!new)
return ERR_PTR(-ENOMEM);
/* task's mempolicy is protected by alloc_lock */
if (old == current->mempolicy) {
task_lock(current);
*new = *old;
task_unlock(current);
} else
*new = *old;
if (current_cpuset_is_being_rebound()) {
nodemask_t mems = cpuset_mems_allowed(current);
mpol_rebind_policy(new, &mems);
}
atomic_set(&new->refcnt, 1);
return new;
}
/* Slow path of a mempolicy comparison */
bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
{
if (!a || !b)
return false;
if (a->mode != b->mode)
return false;
if (a->flags != b->flags)
return false;
if (a->home_node != b->home_node)
return false;
if (mpol_store_user_nodemask(a))
if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
return false;
switch (a->mode) {
case MPOL_BIND:
case MPOL_INTERLEAVE:
case MPOL_PREFERRED:
case MPOL_PREFERRED_MANY:
return !!nodes_equal(a->nodes, b->nodes);
case MPOL_LOCAL:
return true;
default:
BUG();
return false;
}
}
/*
* Shared memory backing store policy support.
*
* Remember policies even when nobody has shared memory mapped.
* The policies are kept in Red-Black tree linked from the inode.
* They are protected by the sp->lock rwlock, which should be held
* for any accesses to the tree.
*/
/*
* lookup first element intersecting start-end. Caller holds sp->lock for
* reading or for writing
*/
static struct sp_node *sp_lookup(struct shared_policy *sp,
pgoff_t start, pgoff_t end)
{
struct rb_node *n = sp->root.rb_node;
while (n) {
struct sp_node *p = rb_entry(n, struct sp_node, nd);
if (start >= p->end)
n = n->rb_right;
else if (end <= p->start)
n = n->rb_left;
else
break;
}
if (!n)
return NULL;
for (;;) {
struct sp_node *w = NULL;
struct rb_node *prev = rb_prev(n);
if (!prev)
break;
w = rb_entry(prev, struct sp_node, nd);
if (w->end <= start)
break;
n = prev;
}
return rb_entry(n, struct sp_node, nd);
}
/*
* Insert a new shared policy into the list. Caller holds sp->lock for
* writing.
*/
static void sp_insert(struct shared_policy *sp, struct sp_node *new)
{
struct rb_node **p = &sp->root.rb_node;
struct rb_node *parent = NULL;
struct sp_node *nd;
while (*p) {
parent = *p;
nd = rb_entry(parent, struct sp_node, nd);
if (new->start < nd->start)
p = &(*p)->rb_left;
else if (new->end > nd->end)
p = &(*p)->rb_right;
else
BUG();
}
rb_link_node(&new->nd, parent, p);
rb_insert_color(&new->nd, &sp->root);
}
/* Find shared policy intersecting idx */
struct mempolicy *mpol_shared_policy_lookup(struct shared_policy *sp,
pgoff_t idx)
{
struct mempolicy *pol = NULL;
struct sp_node *sn;
if (!sp->root.rb_node)
return NULL;
read_lock(&sp->lock);
sn = sp_lookup(sp, idx, idx+1);
if (sn) {
mpol_get(sn->policy);
pol = sn->policy;
}
read_unlock(&sp->lock);
return pol;
}
static void sp_free(struct sp_node *n)
{
mpol_put(n->policy);
kmem_cache_free(sn_cache, n);
}
/**
* mpol_misplaced - check whether current folio node is valid in policy
*
* @folio: folio to be checked
* @vma: vm area where folio mapped
* @addr: virtual address in @vma for shared policy lookup and interleave policy
*
* Lookup current policy node id for vma,addr and "compare to" folio's
* node id. Policy determination "mimics" alloc_page_vma().
* Called from fault path where we know the vma and faulting address.
*
* Return: NUMA_NO_NODE if the page is in a node that is valid for this
* policy, or a suitable node ID to allocate a replacement folio from.
*/
int mpol_misplaced(struct folio *folio, struct vm_area_struct *vma,
unsigned long addr)
{
struct mempolicy *pol;
pgoff_t ilx;
struct zoneref *z;
int curnid = folio_nid(folio);
int thiscpu = raw_smp_processor_id();
int thisnid = cpu_to_node(thiscpu);
int polnid = NUMA_NO_NODE;
int ret = NUMA_NO_NODE;
pol = get_vma_policy(vma, addr, folio_order(folio), &ilx);
if (!(pol->flags & MPOL_F_MOF))
goto out;
switch (pol->mode) {
case MPOL_INTERLEAVE:
polnid = interleave_nid(pol, ilx);
break;
case MPOL_PREFERRED:
if (node_isset(curnid, pol->nodes))
goto out;
polnid = first_node(pol->nodes);
break;
case MPOL_LOCAL:
polnid = numa_node_id();
break;
case MPOL_BIND:
/* Optimize placement among multiple nodes via NUMA balancing */
if (pol->flags & MPOL_F_MORON) {
if (node_isset(thisnid, pol->nodes))
break;
goto out;
}
fallthrough;
case MPOL_PREFERRED_MANY:
/*
* use current page if in policy nodemask,
* else select nearest allowed node, if any.
* If no allowed nodes, use current [!misplaced].
*/
if (node_isset(curnid, pol->nodes))
goto out;
z = first_zones_zonelist(
node_zonelist(numa_node_id(), GFP_HIGHUSER),
gfp_zone(GFP_HIGHUSER),
&pol->nodes);
polnid = zone_to_nid(z->zone);
break;
default:
BUG();
}
/* Migrate the folio towards the node whose CPU is referencing it */
if (pol->flags & MPOL_F_MORON) {
polnid = thisnid;
if (!should_numa_migrate_memory(current, folio, curnid,
thiscpu))
goto out;
}
if (curnid != polnid)
ret = polnid;
out:
mpol_cond_put(pol);
return ret;
}
/*
* Drop the (possibly final) reference to task->mempolicy. It needs to be
* dropped after task->mempolicy is set to NULL so that any allocation done as
* part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
* policy.
*/
void mpol_put_task_policy(struct task_struct *task)
{
struct mempolicy *pol;
task_lock(task);
pol = task->mempolicy;
task->mempolicy = NULL;
task_unlock(task);
mpol_put(pol);
}
static void sp_delete(struct shared_policy *sp, struct sp_node *n)
{
rb_erase(&n->nd, &sp->root);
sp_free(n);
}
static void sp_node_init(struct sp_node *node, unsigned long start,
unsigned long end, struct mempolicy *pol)
{
node->start = start;
node->end = end;
node->policy = pol;
}
static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
struct mempolicy *pol)
{
struct sp_node *n;
struct mempolicy *newpol;
n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
if (!n)
return NULL;
newpol = mpol_dup(pol);
if (IS_ERR(newpol)) {
kmem_cache_free(sn_cache, n);
return NULL;
}
newpol->flags |= MPOL_F_SHARED;
sp_node_init(n, start, end, newpol);
return n;
}
/* Replace a policy range. */
static int shared_policy_replace(struct shared_policy *sp, pgoff_t start,
pgoff_t end, struct sp_node *new)
{
struct sp_node *n;
struct sp_node *n_new = NULL;
struct mempolicy *mpol_new = NULL;
int ret = 0;
restart:
write_lock(&sp->lock);
n = sp_lookup(sp, start, end);
/* Take care of old policies in the same range. */
while (n && n->start < end) {
struct rb_node *next = rb_next(&n->nd);
if (n->start >= start) {
if (n->end <= end)
sp_delete(sp, n);
else
n->start = end;
} else {
/* Old policy spanning whole new range. */
if (n->end > end) {
if (!n_new)
goto alloc_new;
*mpol_new = *n->policy;
atomic_set(&mpol_new->refcnt, 1);
sp_node_init(n_new, end, n->end, mpol_new);
n->end = start;
sp_insert(sp, n_new);
n_new = NULL;
mpol_new = NULL;
break;
} else
n->end = start;
}
if (!next)
break;
n = rb_entry(next, struct sp_node, nd);
}
if (new)
sp_insert(sp, new);
write_unlock(&sp->lock);
ret = 0;
err_out:
if (mpol_new)
mpol_put(mpol_new);
if (n_new)
kmem_cache_free(sn_cache, n_new);
return ret;
alloc_new:
write_unlock(&sp->lock);
ret = -ENOMEM;
n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
if (!n_new)
goto err_out;
mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
if (!mpol_new)
goto err_out;
atomic_set(&mpol_new->refcnt, 1);
goto restart;
}
/**
* mpol_shared_policy_init - initialize shared policy for inode
* @sp: pointer to inode shared policy
* @mpol: struct mempolicy to install
*
* Install non-NULL @mpol in inode's shared policy rb-tree.
* On entry, the current task has a reference on a non-NULL @mpol.
* This must be released on exit.
* This is called at get_inode() calls and we can use GFP_KERNEL.
*/
void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
{
int ret;
sp->root = RB_ROOT; /* empty tree == default mempolicy */
rwlock_init(&sp->lock);
if (mpol) {
struct sp_node *sn;
struct mempolicy *npol;
NODEMASK_SCRATCH(scratch);
if (!scratch)
goto put_mpol;
/* contextualize the tmpfs mount point mempolicy to this file */
npol = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
if (IS_ERR(npol))
goto free_scratch; /* no valid nodemask intersection */
task_lock(current);
ret = mpol_set_nodemask(npol, &mpol->w.user_nodemask, scratch);
task_unlock(current);
if (ret)
goto put_npol;
/* alloc node covering entire file; adds ref to file's npol */
sn = sp_alloc(0, MAX_LFS_FILESIZE >> PAGE_SHIFT, npol);
if (sn)
sp_insert(sp, sn);
put_npol:
mpol_put(npol); /* drop initial ref on file's npol */
free_scratch:
NODEMASK_SCRATCH_FREE(scratch);
put_mpol:
mpol_put(mpol); /* drop our incoming ref on sb mpol */
}
}
int mpol_set_shared_policy(struct shared_policy *sp,
struct vm_area_struct *vma, struct mempolicy *pol)
{
int err;
struct sp_node *new = NULL;
unsigned long sz = vma_pages(vma);
if (pol) {
new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, pol);
if (!new)
return -ENOMEM;
}
err = shared_policy_replace(sp, vma->vm_pgoff, vma->vm_pgoff + sz, new);
if (err && new)
sp_free(new);
return err;
}
/* Free a backing policy store on inode delete. */
void mpol_free_shared_policy(struct shared_policy *sp)
{
struct sp_node *n;
struct rb_node *next;
if (!sp->root.rb_node)
return;
write_lock(&sp->lock);
next = rb_first(&sp->root);
while (next) {
n = rb_entry(next, struct sp_node, nd);
next = rb_next(&n->nd);
sp_delete(sp, n);
}
write_unlock(&sp->lock);
}
#ifdef CONFIG_NUMA_BALANCING
static int __initdata numabalancing_override;
static void __init check_numabalancing_enable(void)
{
bool numabalancing_default = false;
if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
numabalancing_default = true;
/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
if (numabalancing_override)
set_numabalancing_state(numabalancing_override == 1);
if (num_online_nodes() > 1 && !numabalancing_override) {
pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
numabalancing_default ? "Enabling" : "Disabling");
set_numabalancing_state(numabalancing_default);
}
}
static int __init setup_numabalancing(char *str)
{
int ret = 0;
if (!str)
goto out;
if (!strcmp(str, "enable")) {
numabalancing_override = 1;
ret = 1;
} else if (!strcmp(str, "disable")) {
numabalancing_override = -1;
ret = 1;
}
out:
if (!ret)
pr_warn("Unable to parse numa_balancing=\n");
return ret;
}
__setup("numa_balancing=", setup_numabalancing);
#else
static inline void __init check_numabalancing_enable(void)
{
}
#endif /* CONFIG_NUMA_BALANCING */
void __init numa_policy_init(void)
{
nodemask_t interleave_nodes;
unsigned long largest = 0;
int nid, prefer = 0;
policy_cache = kmem_cache_create("numa_policy",
sizeof(struct mempolicy),
0, SLAB_PANIC, NULL);
sn_cache = kmem_cache_create("shared_policy_node",
sizeof(struct sp_node),
0, SLAB_PANIC, NULL);
for_each_node(nid) {
preferred_node_policy[nid] = (struct mempolicy) {
.refcnt = ATOMIC_INIT(1),
.mode = MPOL_PREFERRED,
.flags = MPOL_F_MOF | MPOL_F_MORON,
.nodes = nodemask_of_node(nid),
};
}
/*
* Set interleaving policy for system init. Interleaving is only
* enabled across suitably sized nodes (default is >= 16MB), or
* fall back to the largest node if they're all smaller.
*/
nodes_clear(interleave_nodes);
for_each_node_state(nid, N_MEMORY) {
unsigned long total_pages = node_present_pages(nid);
/* Preserve the largest node */
if (largest < total_pages) {
largest = total_pages;
prefer = nid;
}
/* Interleave this node? */
if ((total_pages << PAGE_SHIFT) >= (16 << 20))
node_set(nid, interleave_nodes);
}
/* All too small, use the largest */
if (unlikely(nodes_empty(interleave_nodes)))
node_set(prefer, interleave_nodes);
if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
pr_err("%s: interleaving failed\n", __func__);
check_numabalancing_enable();
}
/* Reset policy of current process to default */
void numa_default_policy(void)
{
do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
}
/*
* Parse and format mempolicy from/to strings
*/
static const char * const policy_modes[] =
{
[MPOL_DEFAULT] = "default",
[MPOL_PREFERRED] = "prefer",
[MPOL_BIND] = "bind",
[MPOL_INTERLEAVE] = "interleave",
[MPOL_LOCAL] = "local",
[MPOL_PREFERRED_MANY] = "prefer (many)",
};
#ifdef CONFIG_TMPFS
/**
* mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
* @str: string containing mempolicy to parse
* @mpol: pointer to struct mempolicy pointer, returned on success.
*
* Format of input:
* <mode>[=<flags>][:<nodelist>]
*
* Return: %0 on success, else %1
*/
int mpol_parse_str(char *str, struct mempolicy **mpol)
{
struct mempolicy *new = NULL;
unsigned short mode_flags;
nodemask_t nodes;
char *nodelist = strchr(str, ':');
char *flags = strchr(str, '=');
int err = 1, mode;
if (flags)
*flags++ = '\0'; /* terminate mode string */
if (nodelist) {
/* NUL-terminate mode or flags string */
*nodelist++ = '\0';
if (nodelist_parse(nodelist, nodes))
goto out;
if (!nodes_subset(nodes, node_states[N_MEMORY]))
goto out;
} else
nodes_clear(nodes);
mode = match_string(policy_modes, MPOL_MAX, str);
if (mode < 0)
goto out;
switch (mode) {
case MPOL_PREFERRED:
/*
* Insist on a nodelist of one node only, although later
* we use first_node(nodes) to grab a single node, so here
* nodelist (or nodes) cannot be empty.
*/
if (nodelist) {
char *rest = nodelist;
while (isdigit(*rest))
rest++;
if (*rest)
goto out;
if (nodes_empty(nodes))
goto out;
}
break;
case MPOL_INTERLEAVE:
/*
* Default to online nodes with memory if no nodelist
*/
if (!nodelist)
nodes = node_states[N_MEMORY];
break;
case MPOL_LOCAL:
/*
* Don't allow a nodelist; mpol_new() checks flags
*/
if (nodelist)
goto out;
break;
case MPOL_DEFAULT:
/*
* Insist on a empty nodelist
*/
if (!nodelist)
err = 0;
goto out;
case MPOL_PREFERRED_MANY:
case MPOL_BIND:
/*
* Insist on a nodelist
*/
if (!nodelist)
goto out;
}
mode_flags = 0;
if (flags) {
/*
* Currently, we only support two mutually exclusive
* mode flags.
*/
if (!strcmp(flags, "static"))
mode_flags |= MPOL_F_STATIC_NODES;
else if (!strcmp(flags, "relative"))
mode_flags |= MPOL_F_RELATIVE_NODES;
else
goto out;
}
new = mpol_new(mode, mode_flags, &nodes);
if (IS_ERR(new))
goto out;
/*
* Save nodes for mpol_to_str() to show the tmpfs mount options
* for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
*/
if (mode != MPOL_PREFERRED) {
new->nodes = nodes;
} else if (nodelist) {
nodes_clear(new->nodes);
node_set(first_node(nodes), new->nodes);
} else {
new->mode = MPOL_LOCAL;
}
/*
* Save nodes for contextualization: this will be used to "clone"
* the mempolicy in a specific context [cpuset] at a later time.
*/
new->w.user_nodemask = nodes;
err = 0;
out:
/* Restore string for error message */
if (nodelist)
*--nodelist = ':';
if (flags)
*--flags = '=';
if (!err)
*mpol = new;
return err;
}
#endif /* CONFIG_TMPFS */
/**
* mpol_to_str - format a mempolicy structure for printing
* @buffer: to contain formatted mempolicy string
* @maxlen: length of @buffer
* @pol: pointer to mempolicy to be formatted
*
* Convert @pol into a string. If @buffer is too short, truncate the string.
* Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
* longest flag, "relative", and to display at least a few node ids.
*/
void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
{
char *p = buffer;
nodemask_t nodes = NODE_MASK_NONE;
unsigned short mode = MPOL_DEFAULT;
unsigned short flags = 0;
if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
mode = pol->mode;
flags = pol->flags;
}
switch (mode) {
case MPOL_DEFAULT:
case MPOL_LOCAL:
break;
case MPOL_PREFERRED:
case MPOL_PREFERRED_MANY:
case MPOL_BIND:
case MPOL_INTERLEAVE:
nodes = pol->nodes;
break;
default:
WARN_ON_ONCE(1);
snprintf(p, maxlen, "unknown");
return;
}
p += snprintf(p, maxlen, "%s", policy_modes[mode]);
if (flags & MPOL_MODE_FLAGS) {
p += snprintf(p, buffer + maxlen - p, "=");
/*
* Currently, the only defined flags are mutually exclusive
*/
if (flags & MPOL_F_STATIC_NODES)
p += snprintf(p, buffer + maxlen - p, "static");
else if (flags & MPOL_F_RELATIVE_NODES)
p += snprintf(p, buffer + maxlen - p, "relative");
}
if (!nodes_empty(nodes))
p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
nodemask_pr_args(&nodes));
}