linux-stable/mm/mempool.c
Linus Torvalds fb46e22a9e Many singleton patches against the MM code. The patch series which
are included in this merge do the following:
 
 - Peng Zhang has done some mapletree maintainance work in the
   series
 
 	"maple_tree: add mt_free_one() and mt_attr() helpers"
 	"Some cleanups of maple tree"
 
 - In the series "mm: use memmap_on_memory semantics for dax/kmem"
   Vishal Verma has altered the interworking between memory-hotplug
   and dax/kmem so that newly added 'device memory' can more easily
   have its memmap placed within that newly added memory.
 
 - Matthew Wilcox continues folio-related work (including a few
   fixes) in the patch series
 
 	"Add folio_zero_tail() and folio_fill_tail()"
 	"Make folio_start_writeback return void"
 	"Fix fault handler's handling of poisoned tail pages"
 	"Convert aops->error_remove_page to ->error_remove_folio"
 	"Finish two folio conversions"
 	"More swap folio conversions"
 
 - Kefeng Wang has also contributed folio-related work in the series
 
 	"mm: cleanup and use more folio in page fault"
 
 - Jim Cromie has improved the kmemleak reporting output in the
   series "tweak kmemleak report format".
 
 - In the series "stackdepot: allow evicting stack traces" Andrey
   Konovalov to permits clients (in this case KASAN) to cause
   eviction of no longer needed stack traces.
 
 - Charan Teja Kalla has fixed some accounting issues in the page
   allocator's atomic reserve calculations in the series "mm:
   page_alloc: fixes for high atomic reserve caluculations".
 
 - Dmitry Rokosov has added to the samples/ dorectory some sample
   code for a userspace memcg event listener application.  See the
   series "samples: introduce cgroup events listeners".
 
 - Some mapletree maintanance work from Liam Howlett in the series
   "maple_tree: iterator state changes".
 
 - Nhat Pham has improved zswap's approach to writeback in the
   series "workload-specific and memory pressure-driven zswap
   writeback".
 
 - DAMON/DAMOS feature and maintenance work from SeongJae Park in
   the series
 
 	"mm/damon: let users feed and tame/auto-tune DAMOS"
 	"selftests/damon: add Python-written DAMON functionality tests"
 	"mm/damon: misc updates for 6.8"
 
 - Yosry Ahmed has improved memcg's stats flushing in the series
   "mm: memcg: subtree stats flushing and thresholds".
 
 - In the series "Multi-size THP for anonymous memory" Ryan Roberts
   has added a runtime opt-in feature to transparent hugepages which
   improves performance by allocating larger chunks of memory during
   anonymous page faults.
 
 - Matthew Wilcox has also contributed some cleanup and maintenance
   work against eh buffer_head code int he series "More buffer_head
   cleanups".
 
 - Suren Baghdasaryan has done work on Andrea Arcangeli's series
   "userfaultfd move option".  UFFDIO_MOVE permits userspace heap
   compaction algorithms to move userspace's pages around rather than
   UFFDIO_COPY'a alloc/copy/free.
 
 - Stefan Roesch has developed a "KSM Advisor", in the series
   "mm/ksm: Add ksm advisor".  This is a governor which tunes KSM's
   scanning aggressiveness in response to userspace's current needs.
 
 - Chengming Zhou has optimized zswap's temporary working memory
   use in the series "mm/zswap: dstmem reuse optimizations and
   cleanups".
 
 - Matthew Wilcox has performed some maintenance work on the
   writeback code, both code and within filesystems.  The series is
   "Clean up the writeback paths".
 
 - Andrey Konovalov has optimized KASAN's handling of alloc and
   free stack traces for secondary-level allocators, in the series
   "kasan: save mempool stack traces".
 
 - Andrey also performed some KASAN maintenance work in the series
   "kasan: assorted clean-ups".
 
 - David Hildenbrand has gone to town on the rmap code.  Cleanups,
   more pte batching, folio conversions and more.  See the series
   "mm/rmap: interface overhaul".
 
 - Kinsey Ho has contributed some maintenance work on the MGLRU
   code in the series "mm/mglru: Kconfig cleanup".
 
 - Matthew Wilcox has contributed lruvec page accounting code
   cleanups in the series "Remove some lruvec page accounting
   functions".
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZZyF2wAKCRDdBJ7gKXxA
 jjWjAP42LHvGSjp5M+Rs2rKFL0daBQsrlvy6/jCHUequSdWjSgEAmOx7bc5fbF27
 Oa8+DxGM9C+fwqZ/7YxU2w/WuUmLPgU=
 =0NHs
 -----END PGP SIGNATURE-----

Merge tag 'mm-stable-2024-01-08-15-31' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

Pull MM updates from Andrew Morton:
 "Many singleton patches against the MM code. The patch series which are
  included in this merge do the following:

   - Peng Zhang has done some mapletree maintainance work in the series

	'maple_tree: add mt_free_one() and mt_attr() helpers'
	'Some cleanups of maple tree'

   - In the series 'mm: use memmap_on_memory semantics for dax/kmem'
     Vishal Verma has altered the interworking between memory-hotplug
     and dax/kmem so that newly added 'device memory' can more easily
     have its memmap placed within that newly added memory.

   - Matthew Wilcox continues folio-related work (including a few fixes)
     in the patch series

	'Add folio_zero_tail() and folio_fill_tail()'
	'Make folio_start_writeback return void'
	'Fix fault handler's handling of poisoned tail pages'
	'Convert aops->error_remove_page to ->error_remove_folio'
	'Finish two folio conversions'
	'More swap folio conversions'

   - Kefeng Wang has also contributed folio-related work in the series

	'mm: cleanup and use more folio in page fault'

   - Jim Cromie has improved the kmemleak reporting output in the series
     'tweak kmemleak report format'.

   - In the series 'stackdepot: allow evicting stack traces' Andrey
     Konovalov to permits clients (in this case KASAN) to cause eviction
     of no longer needed stack traces.

   - Charan Teja Kalla has fixed some accounting issues in the page
     allocator's atomic reserve calculations in the series 'mm:
     page_alloc: fixes for high atomic reserve caluculations'.

   - Dmitry Rokosov has added to the samples/ dorectory some sample code
     for a userspace memcg event listener application. See the series
     'samples: introduce cgroup events listeners'.

   - Some mapletree maintanance work from Liam Howlett in the series
     'maple_tree: iterator state changes'.

   - Nhat Pham has improved zswap's approach to writeback in the series
     'workload-specific and memory pressure-driven zswap writeback'.

   - DAMON/DAMOS feature and maintenance work from SeongJae Park in the
     series

	'mm/damon: let users feed and tame/auto-tune DAMOS'
	'selftests/damon: add Python-written DAMON functionality tests'
	'mm/damon: misc updates for 6.8'

   - Yosry Ahmed has improved memcg's stats flushing in the series 'mm:
     memcg: subtree stats flushing and thresholds'.

   - In the series 'Multi-size THP for anonymous memory' Ryan Roberts
     has added a runtime opt-in feature to transparent hugepages which
     improves performance by allocating larger chunks of memory during
     anonymous page faults.

   - Matthew Wilcox has also contributed some cleanup and maintenance
     work against eh buffer_head code int he series 'More buffer_head
     cleanups'.

   - Suren Baghdasaryan has done work on Andrea Arcangeli's series
     'userfaultfd move option'. UFFDIO_MOVE permits userspace heap
     compaction algorithms to move userspace's pages around rather than
     UFFDIO_COPY'a alloc/copy/free.

   - Stefan Roesch has developed a 'KSM Advisor', in the series 'mm/ksm:
     Add ksm advisor'. This is a governor which tunes KSM's scanning
     aggressiveness in response to userspace's current needs.

   - Chengming Zhou has optimized zswap's temporary working memory use
     in the series 'mm/zswap: dstmem reuse optimizations and cleanups'.

   - Matthew Wilcox has performed some maintenance work on the writeback
     code, both code and within filesystems. The series is 'Clean up the
     writeback paths'.

   - Andrey Konovalov has optimized KASAN's handling of alloc and free
     stack traces for secondary-level allocators, in the series 'kasan:
     save mempool stack traces'.

   - Andrey also performed some KASAN maintenance work in the series
     'kasan: assorted clean-ups'.

   - David Hildenbrand has gone to town on the rmap code. Cleanups, more
     pte batching, folio conversions and more. See the series 'mm/rmap:
     interface overhaul'.

   - Kinsey Ho has contributed some maintenance work on the MGLRU code
     in the series 'mm/mglru: Kconfig cleanup'.

   - Matthew Wilcox has contributed lruvec page accounting code cleanups
     in the series 'Remove some lruvec page accounting functions'"

* tag 'mm-stable-2024-01-08-15-31' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (361 commits)
  mm, treewide: rename MAX_ORDER to MAX_PAGE_ORDER
  mm, treewide: introduce NR_PAGE_ORDERS
  selftests/mm: add separate UFFDIO_MOVE test for PMD splitting
  selftests/mm: skip test if application doesn't has root privileges
  selftests/mm: conform test to TAP format output
  selftests: mm: hugepage-mmap: conform to TAP format output
  selftests/mm: gup_test: conform test to TAP format output
  mm/selftests: hugepage-mremap: conform test to TAP format output
  mm/vmstat: move pgdemote_* out of CONFIG_NUMA_BALANCING
  mm: zsmalloc: return -ENOSPC rather than -EINVAL in zs_malloc while size is too large
  mm/memcontrol: remove __mod_lruvec_page_state()
  mm/khugepaged: use a folio more in collapse_file()
  slub: use a folio in __kmalloc_large_node
  slub: use folio APIs in free_large_kmalloc()
  slub: use alloc_pages_node() in alloc_slab_page()
  mm: remove inc/dec lruvec page state functions
  mm: ratelimit stat flush from workingset shrinker
  kasan: stop leaking stack trace handles
  mm/mglru: remove CONFIG_TRANSPARENT_HUGEPAGE
  mm/mglru: add dummy pmd_dirty()
  ...
2024-01-09 11:18:47 -08:00

609 lines
17 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* linux/mm/mempool.c
*
* memory buffer pool support. Such pools are mostly used
* for guaranteed, deadlock-free memory allocations during
* extreme VM load.
*
* started by Ingo Molnar, Copyright (C) 2001
* debugging by David Rientjes, Copyright (C) 2015
*/
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/highmem.h>
#include <linux/kasan.h>
#include <linux/kmemleak.h>
#include <linux/export.h>
#include <linux/mempool.h>
#include <linux/writeback.h>
#include "slab.h"
#ifdef CONFIG_SLUB_DEBUG_ON
static void poison_error(mempool_t *pool, void *element, size_t size,
size_t byte)
{
const int nr = pool->curr_nr;
const int start = max_t(int, byte - (BITS_PER_LONG / 8), 0);
const int end = min_t(int, byte + (BITS_PER_LONG / 8), size);
int i;
pr_err("BUG: mempool element poison mismatch\n");
pr_err("Mempool %p size %zu\n", pool, size);
pr_err(" nr=%d @ %p: %s0x", nr, element, start > 0 ? "... " : "");
for (i = start; i < end; i++)
pr_cont("%x ", *(u8 *)(element + i));
pr_cont("%s\n", end < size ? "..." : "");
dump_stack();
}
static void __check_element(mempool_t *pool, void *element, size_t size)
{
u8 *obj = element;
size_t i;
for (i = 0; i < size; i++) {
u8 exp = (i < size - 1) ? POISON_FREE : POISON_END;
if (obj[i] != exp) {
poison_error(pool, element, size, i);
return;
}
}
memset(obj, POISON_INUSE, size);
}
static void check_element(mempool_t *pool, void *element)
{
/* Skip checking: KASAN might save its metadata in the element. */
if (kasan_enabled())
return;
/* Mempools backed by slab allocator */
if (pool->free == mempool_kfree) {
__check_element(pool, element, (size_t)pool->pool_data);
} else if (pool->free == mempool_free_slab) {
__check_element(pool, element, kmem_cache_size(pool->pool_data));
} else if (pool->free == mempool_free_pages) {
/* Mempools backed by page allocator */
int order = (int)(long)pool->pool_data;
void *addr = kmap_local_page((struct page *)element);
__check_element(pool, addr, 1UL << (PAGE_SHIFT + order));
kunmap_local(addr);
}
}
static void __poison_element(void *element, size_t size)
{
u8 *obj = element;
memset(obj, POISON_FREE, size - 1);
obj[size - 1] = POISON_END;
}
static void poison_element(mempool_t *pool, void *element)
{
/* Skip poisoning: KASAN might save its metadata in the element. */
if (kasan_enabled())
return;
/* Mempools backed by slab allocator */
if (pool->alloc == mempool_kmalloc) {
__poison_element(element, (size_t)pool->pool_data);
} else if (pool->alloc == mempool_alloc_slab) {
__poison_element(element, kmem_cache_size(pool->pool_data));
} else if (pool->alloc == mempool_alloc_pages) {
/* Mempools backed by page allocator */
int order = (int)(long)pool->pool_data;
void *addr = kmap_local_page((struct page *)element);
__poison_element(addr, 1UL << (PAGE_SHIFT + order));
kunmap_local(addr);
}
}
#else /* CONFIG_SLUB_DEBUG_ON */
static inline void check_element(mempool_t *pool, void *element)
{
}
static inline void poison_element(mempool_t *pool, void *element)
{
}
#endif /* CONFIG_SLUB_DEBUG_ON */
static __always_inline bool kasan_poison_element(mempool_t *pool, void *element)
{
if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc)
return kasan_mempool_poison_object(element);
else if (pool->alloc == mempool_alloc_pages)
return kasan_mempool_poison_pages(element,
(unsigned long)pool->pool_data);
return true;
}
static void kasan_unpoison_element(mempool_t *pool, void *element)
{
if (pool->alloc == mempool_kmalloc)
kasan_mempool_unpoison_object(element, (size_t)pool->pool_data);
else if (pool->alloc == mempool_alloc_slab)
kasan_mempool_unpoison_object(element,
kmem_cache_size(pool->pool_data));
else if (pool->alloc == mempool_alloc_pages)
kasan_mempool_unpoison_pages(element,
(unsigned long)pool->pool_data);
}
static __always_inline void add_element(mempool_t *pool, void *element)
{
BUG_ON(pool->curr_nr >= pool->min_nr);
poison_element(pool, element);
if (kasan_poison_element(pool, element))
pool->elements[pool->curr_nr++] = element;
}
static void *remove_element(mempool_t *pool)
{
void *element = pool->elements[--pool->curr_nr];
BUG_ON(pool->curr_nr < 0);
kasan_unpoison_element(pool, element);
check_element(pool, element);
return element;
}
/**
* mempool_exit - exit a mempool initialized with mempool_init()
* @pool: pointer to the memory pool which was initialized with
* mempool_init().
*
* Free all reserved elements in @pool and @pool itself. This function
* only sleeps if the free_fn() function sleeps.
*
* May be called on a zeroed but uninitialized mempool (i.e. allocated with
* kzalloc()).
*/
void mempool_exit(mempool_t *pool)
{
while (pool->curr_nr) {
void *element = remove_element(pool);
pool->free(element, pool->pool_data);
}
kfree(pool->elements);
pool->elements = NULL;
}
EXPORT_SYMBOL(mempool_exit);
/**
* mempool_destroy - deallocate a memory pool
* @pool: pointer to the memory pool which was allocated via
* mempool_create().
*
* Free all reserved elements in @pool and @pool itself. This function
* only sleeps if the free_fn() function sleeps.
*/
void mempool_destroy(mempool_t *pool)
{
if (unlikely(!pool))
return;
mempool_exit(pool);
kfree(pool);
}
EXPORT_SYMBOL(mempool_destroy);
int mempool_init_node(mempool_t *pool, int min_nr, mempool_alloc_t *alloc_fn,
mempool_free_t *free_fn, void *pool_data,
gfp_t gfp_mask, int node_id)
{
spin_lock_init(&pool->lock);
pool->min_nr = min_nr;
pool->pool_data = pool_data;
pool->alloc = alloc_fn;
pool->free = free_fn;
init_waitqueue_head(&pool->wait);
pool->elements = kmalloc_array_node(min_nr, sizeof(void *),
gfp_mask, node_id);
if (!pool->elements)
return -ENOMEM;
/*
* First pre-allocate the guaranteed number of buffers.
*/
while (pool->curr_nr < pool->min_nr) {
void *element;
element = pool->alloc(gfp_mask, pool->pool_data);
if (unlikely(!element)) {
mempool_exit(pool);
return -ENOMEM;
}
add_element(pool, element);
}
return 0;
}
EXPORT_SYMBOL(mempool_init_node);
/**
* mempool_init - initialize a memory pool
* @pool: pointer to the memory pool that should be initialized
* @min_nr: the minimum number of elements guaranteed to be
* allocated for this pool.
* @alloc_fn: user-defined element-allocation function.
* @free_fn: user-defined element-freeing function.
* @pool_data: optional private data available to the user-defined functions.
*
* Like mempool_create(), but initializes the pool in (i.e. embedded in another
* structure).
*
* Return: %0 on success, negative error code otherwise.
*/
int mempool_init(mempool_t *pool, int min_nr, mempool_alloc_t *alloc_fn,
mempool_free_t *free_fn, void *pool_data)
{
return mempool_init_node(pool, min_nr, alloc_fn, free_fn,
pool_data, GFP_KERNEL, NUMA_NO_NODE);
}
EXPORT_SYMBOL(mempool_init);
/**
* mempool_create - create a memory pool
* @min_nr: the minimum number of elements guaranteed to be
* allocated for this pool.
* @alloc_fn: user-defined element-allocation function.
* @free_fn: user-defined element-freeing function.
* @pool_data: optional private data available to the user-defined functions.
*
* this function creates and allocates a guaranteed size, preallocated
* memory pool. The pool can be used from the mempool_alloc() and mempool_free()
* functions. This function might sleep. Both the alloc_fn() and the free_fn()
* functions might sleep - as long as the mempool_alloc() function is not called
* from IRQ contexts.
*
* Return: pointer to the created memory pool object or %NULL on error.
*/
mempool_t *mempool_create(int min_nr, mempool_alloc_t *alloc_fn,
mempool_free_t *free_fn, void *pool_data)
{
return mempool_create_node(min_nr, alloc_fn, free_fn, pool_data,
GFP_KERNEL, NUMA_NO_NODE);
}
EXPORT_SYMBOL(mempool_create);
mempool_t *mempool_create_node(int min_nr, mempool_alloc_t *alloc_fn,
mempool_free_t *free_fn, void *pool_data,
gfp_t gfp_mask, int node_id)
{
mempool_t *pool;
pool = kzalloc_node(sizeof(*pool), gfp_mask, node_id);
if (!pool)
return NULL;
if (mempool_init_node(pool, min_nr, alloc_fn, free_fn, pool_data,
gfp_mask, node_id)) {
kfree(pool);
return NULL;
}
return pool;
}
EXPORT_SYMBOL(mempool_create_node);
/**
* mempool_resize - resize an existing memory pool
* @pool: pointer to the memory pool which was allocated via
* mempool_create().
* @new_min_nr: the new minimum number of elements guaranteed to be
* allocated for this pool.
*
* This function shrinks/grows the pool. In the case of growing,
* it cannot be guaranteed that the pool will be grown to the new
* size immediately, but new mempool_free() calls will refill it.
* This function may sleep.
*
* Note, the caller must guarantee that no mempool_destroy is called
* while this function is running. mempool_alloc() & mempool_free()
* might be called (eg. from IRQ contexts) while this function executes.
*
* Return: %0 on success, negative error code otherwise.
*/
int mempool_resize(mempool_t *pool, int new_min_nr)
{
void *element;
void **new_elements;
unsigned long flags;
BUG_ON(new_min_nr <= 0);
might_sleep();
spin_lock_irqsave(&pool->lock, flags);
if (new_min_nr <= pool->min_nr) {
while (new_min_nr < pool->curr_nr) {
element = remove_element(pool);
spin_unlock_irqrestore(&pool->lock, flags);
pool->free(element, pool->pool_data);
spin_lock_irqsave(&pool->lock, flags);
}
pool->min_nr = new_min_nr;
goto out_unlock;
}
spin_unlock_irqrestore(&pool->lock, flags);
/* Grow the pool */
new_elements = kmalloc_array(new_min_nr, sizeof(*new_elements),
GFP_KERNEL);
if (!new_elements)
return -ENOMEM;
spin_lock_irqsave(&pool->lock, flags);
if (unlikely(new_min_nr <= pool->min_nr)) {
/* Raced, other resize will do our work */
spin_unlock_irqrestore(&pool->lock, flags);
kfree(new_elements);
goto out;
}
memcpy(new_elements, pool->elements,
pool->curr_nr * sizeof(*new_elements));
kfree(pool->elements);
pool->elements = new_elements;
pool->min_nr = new_min_nr;
while (pool->curr_nr < pool->min_nr) {
spin_unlock_irqrestore(&pool->lock, flags);
element = pool->alloc(GFP_KERNEL, pool->pool_data);
if (!element)
goto out;
spin_lock_irqsave(&pool->lock, flags);
if (pool->curr_nr < pool->min_nr) {
add_element(pool, element);
} else {
spin_unlock_irqrestore(&pool->lock, flags);
pool->free(element, pool->pool_data); /* Raced */
goto out;
}
}
out_unlock:
spin_unlock_irqrestore(&pool->lock, flags);
out:
return 0;
}
EXPORT_SYMBOL(mempool_resize);
/**
* mempool_alloc - allocate an element from a specific memory pool
* @pool: pointer to the memory pool which was allocated via
* mempool_create().
* @gfp_mask: the usual allocation bitmask.
*
* this function only sleeps if the alloc_fn() function sleeps or
* returns NULL. Note that due to preallocation, this function
* *never* fails when called from process contexts. (it might
* fail if called from an IRQ context.)
* Note: using __GFP_ZERO is not supported.
*
* Return: pointer to the allocated element or %NULL on error.
*/
void *mempool_alloc(mempool_t *pool, gfp_t gfp_mask)
{
void *element;
unsigned long flags;
wait_queue_entry_t wait;
gfp_t gfp_temp;
VM_WARN_ON_ONCE(gfp_mask & __GFP_ZERO);
might_alloc(gfp_mask);
gfp_mask |= __GFP_NOMEMALLOC; /* don't allocate emergency reserves */
gfp_mask |= __GFP_NORETRY; /* don't loop in __alloc_pages */
gfp_mask |= __GFP_NOWARN; /* failures are OK */
gfp_temp = gfp_mask & ~(__GFP_DIRECT_RECLAIM|__GFP_IO);
repeat_alloc:
element = pool->alloc(gfp_temp, pool->pool_data);
if (likely(element != NULL))
return element;
spin_lock_irqsave(&pool->lock, flags);
if (likely(pool->curr_nr)) {
element = remove_element(pool);
spin_unlock_irqrestore(&pool->lock, flags);
/* paired with rmb in mempool_free(), read comment there */
smp_wmb();
/*
* Update the allocation stack trace as this is more useful
* for debugging.
*/
kmemleak_update_trace(element);
return element;
}
/*
* We use gfp mask w/o direct reclaim or IO for the first round. If
* alloc failed with that and @pool was empty, retry immediately.
*/
if (gfp_temp != gfp_mask) {
spin_unlock_irqrestore(&pool->lock, flags);
gfp_temp = gfp_mask;
goto repeat_alloc;
}
/* We must not sleep if !__GFP_DIRECT_RECLAIM */
if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
spin_unlock_irqrestore(&pool->lock, flags);
return NULL;
}
/* Let's wait for someone else to return an element to @pool */
init_wait(&wait);
prepare_to_wait(&pool->wait, &wait, TASK_UNINTERRUPTIBLE);
spin_unlock_irqrestore(&pool->lock, flags);
/*
* FIXME: this should be io_schedule(). The timeout is there as a
* workaround for some DM problems in 2.6.18.
*/
io_schedule_timeout(5*HZ);
finish_wait(&pool->wait, &wait);
goto repeat_alloc;
}
EXPORT_SYMBOL(mempool_alloc);
/**
* mempool_alloc_preallocated - allocate an element from preallocated elements
* belonging to a specific memory pool
* @pool: pointer to the memory pool which was allocated via
* mempool_create().
*
* This function is similar to mempool_alloc, but it only attempts allocating
* an element from the preallocated elements. It does not sleep and immediately
* returns if no preallocated elements are available.
*
* Return: pointer to the allocated element or %NULL if no elements are
* available.
*/
void *mempool_alloc_preallocated(mempool_t *pool)
{
void *element;
unsigned long flags;
spin_lock_irqsave(&pool->lock, flags);
if (likely(pool->curr_nr)) {
element = remove_element(pool);
spin_unlock_irqrestore(&pool->lock, flags);
/* paired with rmb in mempool_free(), read comment there */
smp_wmb();
/*
* Update the allocation stack trace as this is more useful
* for debugging.
*/
kmemleak_update_trace(element);
return element;
}
spin_unlock_irqrestore(&pool->lock, flags);
return NULL;
}
EXPORT_SYMBOL(mempool_alloc_preallocated);
/**
* mempool_free - return an element to the pool.
* @element: pool element pointer.
* @pool: pointer to the memory pool which was allocated via
* mempool_create().
*
* this function only sleeps if the free_fn() function sleeps.
*/
void mempool_free(void *element, mempool_t *pool)
{
unsigned long flags;
if (unlikely(element == NULL))
return;
/*
* Paired with the wmb in mempool_alloc(). The preceding read is
* for @element and the following @pool->curr_nr. This ensures
* that the visible value of @pool->curr_nr is from after the
* allocation of @element. This is necessary for fringe cases
* where @element was passed to this task without going through
* barriers.
*
* For example, assume @p is %NULL at the beginning and one task
* performs "p = mempool_alloc(...);" while another task is doing
* "while (!p) cpu_relax(); mempool_free(p, ...);". This function
* may end up using curr_nr value which is from before allocation
* of @p without the following rmb.
*/
smp_rmb();
/*
* For correctness, we need a test which is guaranteed to trigger
* if curr_nr + #allocated == min_nr. Testing curr_nr < min_nr
* without locking achieves that and refilling as soon as possible
* is desirable.
*
* Because curr_nr visible here is always a value after the
* allocation of @element, any task which decremented curr_nr below
* min_nr is guaranteed to see curr_nr < min_nr unless curr_nr gets
* incremented to min_nr afterwards. If curr_nr gets incremented
* to min_nr after the allocation of @element, the elements
* allocated after that are subject to the same guarantee.
*
* Waiters happen iff curr_nr is 0 and the above guarantee also
* ensures that there will be frees which return elements to the
* pool waking up the waiters.
*/
if (unlikely(READ_ONCE(pool->curr_nr) < pool->min_nr)) {
spin_lock_irqsave(&pool->lock, flags);
if (likely(pool->curr_nr < pool->min_nr)) {
add_element(pool, element);
spin_unlock_irqrestore(&pool->lock, flags);
wake_up(&pool->wait);
return;
}
spin_unlock_irqrestore(&pool->lock, flags);
}
pool->free(element, pool->pool_data);
}
EXPORT_SYMBOL(mempool_free);
/*
* A commonly used alloc and free fn.
*/
void *mempool_alloc_slab(gfp_t gfp_mask, void *pool_data)
{
struct kmem_cache *mem = pool_data;
VM_BUG_ON(mem->ctor);
return kmem_cache_alloc(mem, gfp_mask);
}
EXPORT_SYMBOL(mempool_alloc_slab);
void mempool_free_slab(void *element, void *pool_data)
{
struct kmem_cache *mem = pool_data;
kmem_cache_free(mem, element);
}
EXPORT_SYMBOL(mempool_free_slab);
/*
* A commonly used alloc and free fn that kmalloc/kfrees the amount of memory
* specified by pool_data
*/
void *mempool_kmalloc(gfp_t gfp_mask, void *pool_data)
{
size_t size = (size_t)pool_data;
return kmalloc(size, gfp_mask);
}
EXPORT_SYMBOL(mempool_kmalloc);
void mempool_kfree(void *element, void *pool_data)
{
kfree(element);
}
EXPORT_SYMBOL(mempool_kfree);
/*
* A simple mempool-backed page allocator that allocates pages
* of the order specified by pool_data.
*/
void *mempool_alloc_pages(gfp_t gfp_mask, void *pool_data)
{
int order = (int)(long)pool_data;
return alloc_pages(gfp_mask, order);
}
EXPORT_SYMBOL(mempool_alloc_pages);
void mempool_free_pages(void *element, void *pool_data)
{
int order = (int)(long)pool_data;
__free_pages(element, order);
}
EXPORT_SYMBOL(mempool_free_pages);