linux-stable/include/linux/balloon_compaction.h
Greg Kroah-Hartman b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00

196 lines
6.4 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
/*
* include/linux/balloon_compaction.h
*
* Common interface definitions for making balloon pages movable by compaction.
*
* Despite being perfectly possible to perform ballooned pages migration, they
* make a special corner case to compaction scans because balloon pages are not
* enlisted at any LRU list like the other pages we do compact / migrate.
*
* As the page isolation scanning step a compaction thread does is a lockless
* procedure (from a page standpoint), it might bring some racy situations while
* performing balloon page compaction. In order to sort out these racy scenarios
* and safely perform balloon's page compaction and migration we must, always,
* ensure following these three simple rules:
*
* i. when updating a balloon's page ->mapping element, strictly do it under
* the following lock order, independently of the far superior
* locking scheme (lru_lock, balloon_lock):
* +-page_lock(page);
* +--spin_lock_irq(&b_dev_info->pages_lock);
* ... page->mapping updates here ...
*
* ii. before isolating or dequeueing a balloon page from the balloon device
* pages list, the page reference counter must be raised by one and the
* extra refcount must be dropped when the page is enqueued back into
* the balloon device page list, thus a balloon page keeps its reference
* counter raised only while it is under our special handling;
*
* iii. after the lockless scan step have selected a potential balloon page for
* isolation, re-test the PageBalloon mark and the PagePrivate flag
* under the proper page lock, to ensure isolating a valid balloon page
* (not yet isolated, nor under release procedure)
*
* iv. isolation or dequeueing procedure must clear PagePrivate flag under
* page lock together with removing page from balloon device page list.
*
* The functions provided by this interface are placed to help on coping with
* the aforementioned balloon page corner case, as well as to ensure the simple
* set of exposed rules are satisfied while we are dealing with balloon pages
* compaction / migration.
*
* Copyright (C) 2012, Red Hat, Inc. Rafael Aquini <aquini@redhat.com>
*/
#ifndef _LINUX_BALLOON_COMPACTION_H
#define _LINUX_BALLOON_COMPACTION_H
#include <linux/pagemap.h>
#include <linux/page-flags.h>
#include <linux/migrate.h>
#include <linux/gfp.h>
#include <linux/err.h>
#include <linux/fs.h>
/*
* Balloon device information descriptor.
* This struct is used to allow the common balloon compaction interface
* procedures to find the proper balloon device holding memory pages they'll
* have to cope for page compaction / migration, as well as it serves the
* balloon driver as a page book-keeper for its registered balloon devices.
*/
struct balloon_dev_info {
unsigned long isolated_pages; /* # of isolated pages for migration */
spinlock_t pages_lock; /* Protection to pages list */
struct list_head pages; /* Pages enqueued & handled to Host */
int (*migratepage)(struct balloon_dev_info *, struct page *newpage,
struct page *page, enum migrate_mode mode);
struct inode *inode;
};
extern struct page *balloon_page_enqueue(struct balloon_dev_info *b_dev_info);
extern struct page *balloon_page_dequeue(struct balloon_dev_info *b_dev_info);
static inline void balloon_devinfo_init(struct balloon_dev_info *balloon)
{
balloon->isolated_pages = 0;
spin_lock_init(&balloon->pages_lock);
INIT_LIST_HEAD(&balloon->pages);
balloon->migratepage = NULL;
balloon->inode = NULL;
}
#ifdef CONFIG_BALLOON_COMPACTION
extern const struct address_space_operations balloon_aops;
extern bool balloon_page_isolate(struct page *page,
isolate_mode_t mode);
extern void balloon_page_putback(struct page *page);
extern int balloon_page_migrate(struct address_space *mapping,
struct page *newpage,
struct page *page, enum migrate_mode mode);
/*
* balloon_page_insert - insert a page into the balloon's page list and make
* the page->private assignment accordingly.
* @balloon : pointer to balloon device
* @page : page to be assigned as a 'balloon page'
*
* Caller must ensure the page is locked and the spin_lock protecting balloon
* pages list is held before inserting a page into the balloon device.
*/
static inline void balloon_page_insert(struct balloon_dev_info *balloon,
struct page *page)
{
__SetPageBalloon(page);
__SetPageMovable(page, balloon->inode->i_mapping);
set_page_private(page, (unsigned long)balloon);
list_add(&page->lru, &balloon->pages);
}
/*
* balloon_page_delete - delete a page from balloon's page list and clear
* the page->private assignement accordingly.
* @page : page to be released from balloon's page list
*
* Caller must ensure the page is locked and the spin_lock protecting balloon
* pages list is held before deleting a page from the balloon device.
*/
static inline void balloon_page_delete(struct page *page)
{
__ClearPageBalloon(page);
__ClearPageMovable(page);
set_page_private(page, 0);
/*
* No touch page.lru field once @page has been isolated
* because VM is using the field.
*/
if (!PageIsolated(page))
list_del(&page->lru);
}
/*
* balloon_page_device - get the b_dev_info descriptor for the balloon device
* that enqueues the given page.
*/
static inline struct balloon_dev_info *balloon_page_device(struct page *page)
{
return (struct balloon_dev_info *)page_private(page);
}
static inline gfp_t balloon_mapping_gfp_mask(void)
{
return GFP_HIGHUSER_MOVABLE;
}
#else /* !CONFIG_BALLOON_COMPACTION */
static inline void balloon_page_insert(struct balloon_dev_info *balloon,
struct page *page)
{
__SetPageBalloon(page);
list_add(&page->lru, &balloon->pages);
}
static inline void balloon_page_delete(struct page *page)
{
__ClearPageBalloon(page);
list_del(&page->lru);
}
static inline bool __is_movable_balloon_page(struct page *page)
{
return false;
}
static inline bool balloon_page_movable(struct page *page)
{
return false;
}
static inline bool isolated_balloon_page(struct page *page)
{
return false;
}
static inline bool balloon_page_isolate(struct page *page)
{
return false;
}
static inline void balloon_page_putback(struct page *page)
{
return;
}
static inline int balloon_page_migrate(struct page *newpage,
struct page *page, enum migrate_mode mode)
{
return 0;
}
static inline gfp_t balloon_mapping_gfp_mask(void)
{
return GFP_HIGHUSER;
}
#endif /* CONFIG_BALLOON_COMPACTION */
#endif /* _LINUX_BALLOON_COMPACTION_H */