linux-stable/include/linux/hugetlb.h
Greg Kroah-Hartman b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00

619 lines
17 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_HUGETLB_H
#define _LINUX_HUGETLB_H
#include <linux/mm_types.h>
#include <linux/mmdebug.h>
#include <linux/fs.h>
#include <linux/hugetlb_inline.h>
#include <linux/cgroup.h>
#include <linux/list.h>
#include <linux/kref.h>
#include <asm/pgtable.h>
struct ctl_table;
struct user_struct;
struct mmu_gather;
#ifndef is_hugepd
/*
* Some architectures requires a hugepage directory format that is
* required to support multiple hugepage sizes. For example
* a4fe3ce76 "powerpc/mm: Allow more flexible layouts for hugepage pagetables"
* introduced the same on powerpc. This allows for a more flexible hugepage
* pagetable layout.
*/
typedef struct { unsigned long pd; } hugepd_t;
#define is_hugepd(hugepd) (0)
#define __hugepd(x) ((hugepd_t) { (x) })
static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
unsigned pdshift, unsigned long end,
int write, struct page **pages, int *nr)
{
return 0;
}
#else
extern int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
unsigned pdshift, unsigned long end,
int write, struct page **pages, int *nr);
#endif
#ifdef CONFIG_HUGETLB_PAGE
#include <linux/mempolicy.h>
#include <linux/shm.h>
#include <asm/tlbflush.h>
struct hugepage_subpool {
spinlock_t lock;
long count;
long max_hpages; /* Maximum huge pages or -1 if no maximum. */
long used_hpages; /* Used count against maximum, includes */
/* both alloced and reserved pages. */
struct hstate *hstate;
long min_hpages; /* Minimum huge pages or -1 if no minimum. */
long rsv_hpages; /* Pages reserved against global pool to */
/* sasitfy minimum size. */
};
struct resv_map {
struct kref refs;
spinlock_t lock;
struct list_head regions;
long adds_in_progress;
struct list_head region_cache;
long region_cache_count;
};
extern struct resv_map *resv_map_alloc(void);
void resv_map_release(struct kref *ref);
extern spinlock_t hugetlb_lock;
extern int hugetlb_max_hstate __read_mostly;
#define for_each_hstate(h) \
for ((h) = hstates; (h) < &hstates[hugetlb_max_hstate]; (h)++)
struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
long min_hpages);
void hugepage_put_subpool(struct hugepage_subpool *spool);
void reset_vma_resv_huge_pages(struct vm_area_struct *vma);
int hugetlb_sysctl_handler(struct ctl_table *, int, void __user *, size_t *, loff_t *);
int hugetlb_overcommit_handler(struct ctl_table *, int, void __user *, size_t *, loff_t *);
int hugetlb_treat_movable_handler(struct ctl_table *, int, void __user *, size_t *, loff_t *);
#ifdef CONFIG_NUMA
int hugetlb_mempolicy_sysctl_handler(struct ctl_table *, int,
void __user *, size_t *, loff_t *);
#endif
int copy_hugetlb_page_range(struct mm_struct *, struct mm_struct *, struct vm_area_struct *);
long follow_hugetlb_page(struct mm_struct *, struct vm_area_struct *,
struct page **, struct vm_area_struct **,
unsigned long *, unsigned long *, long, unsigned int,
int *);
void unmap_hugepage_range(struct vm_area_struct *,
unsigned long, unsigned long, struct page *);
void __unmap_hugepage_range_final(struct mmu_gather *tlb,
struct vm_area_struct *vma,
unsigned long start, unsigned long end,
struct page *ref_page);
void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
unsigned long start, unsigned long end,
struct page *ref_page);
void hugetlb_report_meminfo(struct seq_file *);
int hugetlb_report_node_meminfo(int, char *);
void hugetlb_show_meminfo(void);
unsigned long hugetlb_total_pages(void);
int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long address, unsigned int flags);
int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm, pte_t *dst_pte,
struct vm_area_struct *dst_vma,
unsigned long dst_addr,
unsigned long src_addr,
struct page **pagep);
int hugetlb_reserve_pages(struct inode *inode, long from, long to,
struct vm_area_struct *vma,
vm_flags_t vm_flags);
long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
long freed);
bool isolate_huge_page(struct page *page, struct list_head *list);
void putback_active_hugepage(struct page *page);
void free_huge_page(struct page *page);
void hugetlb_fix_reserve_counts(struct inode *inode);
extern struct mutex *hugetlb_fault_mutex_table;
u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
struct vm_area_struct *vma,
struct address_space *mapping,
pgoff_t idx, unsigned long address);
pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud);
extern int hugepages_treat_as_movable;
extern int sysctl_hugetlb_shm_group;
extern struct list_head huge_boot_pages;
/* arch callbacks */
pte_t *huge_pte_alloc(struct mm_struct *mm,
unsigned long addr, unsigned long sz);
pte_t *huge_pte_offset(struct mm_struct *mm,
unsigned long addr, unsigned long sz);
int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep);
struct page *follow_huge_addr(struct mm_struct *mm, unsigned long address,
int write);
struct page *follow_huge_pd(struct vm_area_struct *vma,
unsigned long address, hugepd_t hpd,
int flags, int pdshift);
struct page *follow_huge_pmd(struct mm_struct *mm, unsigned long address,
pmd_t *pmd, int flags);
struct page *follow_huge_pud(struct mm_struct *mm, unsigned long address,
pud_t *pud, int flags);
struct page *follow_huge_pgd(struct mm_struct *mm, unsigned long address,
pgd_t *pgd, int flags);
int pmd_huge(pmd_t pmd);
int pud_huge(pud_t pud);
unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
unsigned long address, unsigned long end, pgprot_t newprot);
bool is_hugetlb_entry_migration(pte_t pte);
#else /* !CONFIG_HUGETLB_PAGE */
static inline void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
{
}
static inline unsigned long hugetlb_total_pages(void)
{
return 0;
}
#define follow_hugetlb_page(m,v,p,vs,a,b,i,w,n) ({ BUG(); 0; })
#define follow_huge_addr(mm, addr, write) ERR_PTR(-EINVAL)
#define copy_hugetlb_page_range(src, dst, vma) ({ BUG(); 0; })
static inline void hugetlb_report_meminfo(struct seq_file *m)
{
}
#define hugetlb_report_node_meminfo(n, buf) 0
static inline void hugetlb_show_meminfo(void)
{
}
#define follow_huge_pd(vma, addr, hpd, flags, pdshift) NULL
#define follow_huge_pmd(mm, addr, pmd, flags) NULL
#define follow_huge_pud(mm, addr, pud, flags) NULL
#define follow_huge_pgd(mm, addr, pgd, flags) NULL
#define prepare_hugepage_range(file, addr, len) (-EINVAL)
#define pmd_huge(x) 0
#define pud_huge(x) 0
#define is_hugepage_only_range(mm, addr, len) 0
#define hugetlb_free_pgd_range(tlb, addr, end, floor, ceiling) ({BUG(); 0; })
#define hugetlb_fault(mm, vma, addr, flags) ({ BUG(); 0; })
#define hugetlb_mcopy_atomic_pte(dst_mm, dst_pte, dst_vma, dst_addr, \
src_addr, pagep) ({ BUG(); 0; })
#define huge_pte_offset(mm, address, sz) 0
static inline bool isolate_huge_page(struct page *page, struct list_head *list)
{
return false;
}
#define putback_active_hugepage(p) do {} while (0)
static inline unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
unsigned long address, unsigned long end, pgprot_t newprot)
{
return 0;
}
static inline void __unmap_hugepage_range_final(struct mmu_gather *tlb,
struct vm_area_struct *vma, unsigned long start,
unsigned long end, struct page *ref_page)
{
BUG();
}
static inline void __unmap_hugepage_range(struct mmu_gather *tlb,
struct vm_area_struct *vma, unsigned long start,
unsigned long end, struct page *ref_page)
{
BUG();
}
#endif /* !CONFIG_HUGETLB_PAGE */
/*
* hugepages at page global directory. If arch support
* hugepages at pgd level, they need to define this.
*/
#ifndef pgd_huge
#define pgd_huge(x) 0
#endif
#ifndef p4d_huge
#define p4d_huge(x) 0
#endif
#ifndef pgd_write
static inline int pgd_write(pgd_t pgd)
{
BUG();
return 0;
}
#endif
#ifndef pud_write
static inline int pud_write(pud_t pud)
{
BUG();
return 0;
}
#endif
#define HUGETLB_ANON_FILE "anon_hugepage"
enum {
/*
* The file will be used as an shm file so shmfs accounting rules
* apply
*/
HUGETLB_SHMFS_INODE = 1,
/*
* The file is being created on the internal vfs mount and shmfs
* accounting rules do not apply
*/
HUGETLB_ANONHUGE_INODE = 2,
};
#ifdef CONFIG_HUGETLBFS
struct hugetlbfs_sb_info {
long max_inodes; /* inodes allowed */
long free_inodes; /* inodes free */
spinlock_t stat_lock;
struct hstate *hstate;
struct hugepage_subpool *spool;
kuid_t uid;
kgid_t gid;
umode_t mode;
};
static inline struct hugetlbfs_sb_info *HUGETLBFS_SB(struct super_block *sb)
{
return sb->s_fs_info;
}
extern const struct file_operations hugetlbfs_file_operations;
extern const struct vm_operations_struct hugetlb_vm_ops;
struct file *hugetlb_file_setup(const char *name, size_t size, vm_flags_t acct,
struct user_struct **user, int creat_flags,
int page_size_log);
static inline bool is_file_hugepages(struct file *file)
{
if (file->f_op == &hugetlbfs_file_operations)
return true;
return is_file_shm_hugepages(file);
}
#else /* !CONFIG_HUGETLBFS */
#define is_file_hugepages(file) false
static inline struct file *
hugetlb_file_setup(const char *name, size_t size, vm_flags_t acctflag,
struct user_struct **user, int creat_flags,
int page_size_log)
{
return ERR_PTR(-ENOSYS);
}
#endif /* !CONFIG_HUGETLBFS */
#ifdef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
unsigned long len, unsigned long pgoff,
unsigned long flags);
#endif /* HAVE_ARCH_HUGETLB_UNMAPPED_AREA */
#ifdef CONFIG_HUGETLB_PAGE
#define HSTATE_NAME_LEN 32
/* Defines one hugetlb page size */
struct hstate {
int next_nid_to_alloc;
int next_nid_to_free;
unsigned int order;
unsigned long mask;
unsigned long max_huge_pages;
unsigned long nr_huge_pages;
unsigned long free_huge_pages;
unsigned long resv_huge_pages;
unsigned long surplus_huge_pages;
unsigned long nr_overcommit_huge_pages;
struct list_head hugepage_activelist;
struct list_head hugepage_freelists[MAX_NUMNODES];
unsigned int nr_huge_pages_node[MAX_NUMNODES];
unsigned int free_huge_pages_node[MAX_NUMNODES];
unsigned int surplus_huge_pages_node[MAX_NUMNODES];
#ifdef CONFIG_CGROUP_HUGETLB
/* cgroup control files */
struct cftype cgroup_files[5];
#endif
char name[HSTATE_NAME_LEN];
};
struct huge_bootmem_page {
struct list_head list;
struct hstate *hstate;
#ifdef CONFIG_HIGHMEM
phys_addr_t phys;
#endif
};
struct page *alloc_huge_page(struct vm_area_struct *vma,
unsigned long addr, int avoid_reserve);
struct page *alloc_huge_page_node(struct hstate *h, int nid);
struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
unsigned long addr, int avoid_reserve);
struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
nodemask_t *nmask);
int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
pgoff_t idx);
/* arch callback */
int __init __alloc_bootmem_huge_page(struct hstate *h);
int __init alloc_bootmem_huge_page(struct hstate *h);
void __init hugetlb_bad_size(void);
void __init hugetlb_add_hstate(unsigned order);
struct hstate *size_to_hstate(unsigned long size);
#ifndef HUGE_MAX_HSTATE
#define HUGE_MAX_HSTATE 1
#endif
extern struct hstate hstates[HUGE_MAX_HSTATE];
extern unsigned int default_hstate_idx;
#define default_hstate (hstates[default_hstate_idx])
static inline struct hstate *hstate_inode(struct inode *i)
{
return HUGETLBFS_SB(i->i_sb)->hstate;
}
static inline struct hstate *hstate_file(struct file *f)
{
return hstate_inode(file_inode(f));
}
static inline struct hstate *hstate_sizelog(int page_size_log)
{
if (!page_size_log)
return &default_hstate;
return size_to_hstate(1UL << page_size_log);
}
static inline struct hstate *hstate_vma(struct vm_area_struct *vma)
{
return hstate_file(vma->vm_file);
}
static inline unsigned long huge_page_size(struct hstate *h)
{
return (unsigned long)PAGE_SIZE << h->order;
}
extern unsigned long vma_kernel_pagesize(struct vm_area_struct *vma);
extern unsigned long vma_mmu_pagesize(struct vm_area_struct *vma);
static inline unsigned long huge_page_mask(struct hstate *h)
{
return h->mask;
}
static inline unsigned int huge_page_order(struct hstate *h)
{
return h->order;
}
static inline unsigned huge_page_shift(struct hstate *h)
{
return h->order + PAGE_SHIFT;
}
static inline bool hstate_is_gigantic(struct hstate *h)
{
return huge_page_order(h) >= MAX_ORDER;
}
static inline unsigned int pages_per_huge_page(struct hstate *h)
{
return 1 << h->order;
}
static inline unsigned int blocks_per_huge_page(struct hstate *h)
{
return huge_page_size(h) / 512;
}
#include <asm/hugetlb.h>
#ifndef arch_make_huge_pte
static inline pte_t arch_make_huge_pte(pte_t entry, struct vm_area_struct *vma,
struct page *page, int writable)
{
return entry;
}
#endif
static inline struct hstate *page_hstate(struct page *page)
{
VM_BUG_ON_PAGE(!PageHuge(page), page);
return size_to_hstate(PAGE_SIZE << compound_order(page));
}
static inline unsigned hstate_index_to_shift(unsigned index)
{
return hstates[index].order + PAGE_SHIFT;
}
static inline int hstate_index(struct hstate *h)
{
return h - hstates;
}
pgoff_t __basepage_index(struct page *page);
/* Return page->index in PAGE_SIZE units */
static inline pgoff_t basepage_index(struct page *page)
{
if (!PageCompound(page))
return page->index;
return __basepage_index(page);
}
extern int dissolve_free_huge_page(struct page *page);
extern int dissolve_free_huge_pages(unsigned long start_pfn,
unsigned long end_pfn);
static inline bool hugepage_migration_supported(struct hstate *h)
{
#ifdef CONFIG_ARCH_ENABLE_HUGEPAGE_MIGRATION
if ((huge_page_shift(h) == PMD_SHIFT) ||
(huge_page_shift(h) == PGDIR_SHIFT))
return true;
else
return false;
#else
return false;
#endif
}
static inline spinlock_t *huge_pte_lockptr(struct hstate *h,
struct mm_struct *mm, pte_t *pte)
{
if (huge_page_size(h) == PMD_SIZE)
return pmd_lockptr(mm, (pmd_t *) pte);
VM_BUG_ON(huge_page_size(h) == PAGE_SIZE);
return &mm->page_table_lock;
}
#ifndef hugepages_supported
/*
* Some platform decide whether they support huge pages at boot
* time. Some of them, such as powerpc, set HPAGE_SHIFT to 0
* when there is no such support
*/
#define hugepages_supported() (HPAGE_SHIFT != 0)
#endif
void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm);
static inline void hugetlb_count_add(long l, struct mm_struct *mm)
{
atomic_long_add(l, &mm->hugetlb_usage);
}
static inline void hugetlb_count_sub(long l, struct mm_struct *mm)
{
atomic_long_sub(l, &mm->hugetlb_usage);
}
#ifndef set_huge_swap_pte_at
static inline void set_huge_swap_pte_at(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, pte_t pte, unsigned long sz)
{
set_huge_pte_at(mm, addr, ptep, pte);
}
#endif
#else /* CONFIG_HUGETLB_PAGE */
struct hstate {};
#define alloc_huge_page(v, a, r) NULL
#define alloc_huge_page_node(h, nid) NULL
#define alloc_huge_page_nodemask(h, preferred_nid, nmask) NULL
#define alloc_huge_page_noerr(v, a, r) NULL
#define alloc_bootmem_huge_page(h) NULL
#define hstate_file(f) NULL
#define hstate_sizelog(s) NULL
#define hstate_vma(v) NULL
#define hstate_inode(i) NULL
#define page_hstate(page) NULL
#define huge_page_size(h) PAGE_SIZE
#define huge_page_mask(h) PAGE_MASK
#define vma_kernel_pagesize(v) PAGE_SIZE
#define vma_mmu_pagesize(v) PAGE_SIZE
#define huge_page_order(h) 0
#define huge_page_shift(h) PAGE_SHIFT
static inline bool hstate_is_gigantic(struct hstate *h)
{
return false;
}
static inline unsigned int pages_per_huge_page(struct hstate *h)
{
return 1;
}
static inline unsigned hstate_index_to_shift(unsigned index)
{
return 0;
}
static inline int hstate_index(struct hstate *h)
{
return 0;
}
static inline pgoff_t basepage_index(struct page *page)
{
return page->index;
}
static inline int dissolve_free_huge_page(struct page *page)
{
return 0;
}
static inline int dissolve_free_huge_pages(unsigned long start_pfn,
unsigned long end_pfn)
{
return 0;
}
static inline bool hugepage_migration_supported(struct hstate *h)
{
return false;
}
static inline spinlock_t *huge_pte_lockptr(struct hstate *h,
struct mm_struct *mm, pte_t *pte)
{
return &mm->page_table_lock;
}
static inline void hugetlb_report_usage(struct seq_file *f, struct mm_struct *m)
{
}
static inline void hugetlb_count_sub(long l, struct mm_struct *mm)
{
}
static inline void set_huge_swap_pte_at(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, pte_t pte, unsigned long sz)
{
}
#endif /* CONFIG_HUGETLB_PAGE */
static inline spinlock_t *huge_pte_lock(struct hstate *h,
struct mm_struct *mm, pte_t *pte)
{
spinlock_t *ptl;
ptl = huge_pte_lockptr(h, mm, pte);
spin_lock(ptl);
return ptl;
}
#endif /* _LINUX_HUGETLB_H */