linux-stable/include/linux/percpu-refcount.h
Ming Lei 2b0d3d3e4f percpu_ref: reduce memory footprint of percpu_ref in fast path
'struct percpu_ref' is often embedded into one user structure, and the
instance is usually referenced in fast path, however actually only
'percpu_count_ptr' is needed in fast path.

So move other fields into one new structure of 'percpu_ref_data', and
allocate it dynamically via kzalloc(), then memory footprint of
'percpu_ref' in fast path is reduced a lot and becomes suitable to put
into hot cacheline of user structure.

Signed-off-by: Ming Lei <ming.lei@redhat.com>
Tested-by: Veronika Kabatova <vkabatov@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Sagi Grimberg <sagi@grimberg.me>
Cc: Tejun Heo <tj@kernel.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Bart Van Assche <bvanassche@acm.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2020-10-06 07:29:36 -06:00

355 lines
11 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
/*
* Percpu refcounts:
* (C) 2012 Google, Inc.
* Author: Kent Overstreet <koverstreet@google.com>
*
* This implements a refcount with similar semantics to atomic_t - atomic_inc(),
* atomic_dec_and_test() - but percpu.
*
* There's one important difference between percpu refs and normal atomic_t
* refcounts; you have to keep track of your initial refcount, and then when you
* start shutting down you call percpu_ref_kill() _before_ dropping the initial
* refcount.
*
* The refcount will have a range of 0 to ((1U << 31) - 1), i.e. one bit less
* than an atomic_t - this is because of the way shutdown works, see
* percpu_ref_kill()/PERCPU_COUNT_BIAS.
*
* Before you call percpu_ref_kill(), percpu_ref_put() does not check for the
* refcount hitting 0 - it can't, if it was in percpu mode. percpu_ref_kill()
* puts the ref back in single atomic_t mode, collecting the per cpu refs and
* issuing the appropriate barriers, and then marks the ref as shutting down so
* that percpu_ref_put() will check for the ref hitting 0. After it returns,
* it's safe to drop the initial ref.
*
* USAGE:
*
* See fs/aio.c for some example usage; it's used there for struct kioctx, which
* is created when userspaces calls io_setup(), and destroyed when userspace
* calls io_destroy() or the process exits.
*
* In the aio code, kill_ioctx() is called when we wish to destroy a kioctx; it
* removes the kioctx from the proccess's table of kioctxs and kills percpu_ref.
* After that, there can't be any new users of the kioctx (from lookup_ioctx())
* and it's then safe to drop the initial ref with percpu_ref_put().
*
* Note that the free path, free_ioctx(), needs to go through explicit call_rcu()
* to synchronize with RCU protected lookup_ioctx(). percpu_ref operations don't
* imply RCU grace periods of any kind and if a user wants to combine percpu_ref
* with RCU protection, it must be done explicitly.
*
* Code that does a two stage shutdown like this often needs some kind of
* explicit synchronization to ensure the initial refcount can only be dropped
* once - percpu_ref_kill() does this for you, it returns true once and false if
* someone else already called it. The aio code uses it this way, but it's not
* necessary if the code has some other mechanism to synchronize teardown.
* around.
*/
#ifndef _LINUX_PERCPU_REFCOUNT_H
#define _LINUX_PERCPU_REFCOUNT_H
#include <linux/atomic.h>
#include <linux/kernel.h>
#include <linux/percpu.h>
#include <linux/rcupdate.h>
#include <linux/gfp.h>
struct percpu_ref;
typedef void (percpu_ref_func_t)(struct percpu_ref *);
/* flags set in the lower bits of percpu_ref->percpu_count_ptr */
enum {
__PERCPU_REF_ATOMIC = 1LU << 0, /* operating in atomic mode */
__PERCPU_REF_DEAD = 1LU << 1, /* (being) killed */
__PERCPU_REF_ATOMIC_DEAD = __PERCPU_REF_ATOMIC | __PERCPU_REF_DEAD,
__PERCPU_REF_FLAG_BITS = 2,
};
/* @flags for percpu_ref_init() */
enum {
/*
* Start w/ ref == 1 in atomic mode. Can be switched to percpu
* operation using percpu_ref_switch_to_percpu(). If initialized
* with this flag, the ref will stay in atomic mode until
* percpu_ref_switch_to_percpu() is invoked on it.
* Implies ALLOW_REINIT.
*/
PERCPU_REF_INIT_ATOMIC = 1 << 0,
/*
* Start dead w/ ref == 0 in atomic mode. Must be revived with
* percpu_ref_reinit() before used. Implies INIT_ATOMIC and
* ALLOW_REINIT.
*/
PERCPU_REF_INIT_DEAD = 1 << 1,
/*
* Allow switching from atomic mode to percpu mode.
*/
PERCPU_REF_ALLOW_REINIT = 1 << 2,
};
struct percpu_ref_data {
atomic_long_t count;
percpu_ref_func_t *release;
percpu_ref_func_t *confirm_switch;
bool force_atomic:1;
bool allow_reinit:1;
struct rcu_head rcu;
struct percpu_ref *ref;
};
struct percpu_ref {
/*
* The low bit of the pointer indicates whether the ref is in percpu
* mode; if set, then get/put will manipulate the atomic_t.
*/
unsigned long percpu_count_ptr;
/*
* 'percpu_ref' is often embedded into user structure, and only
* 'percpu_count_ptr' is required in fast path, move other fields
* into 'percpu_ref_data', so we can reduce memory footprint in
* fast path.
*/
struct percpu_ref_data *data;
};
int __must_check percpu_ref_init(struct percpu_ref *ref,
percpu_ref_func_t *release, unsigned int flags,
gfp_t gfp);
void percpu_ref_exit(struct percpu_ref *ref);
void percpu_ref_switch_to_atomic(struct percpu_ref *ref,
percpu_ref_func_t *confirm_switch);
void percpu_ref_switch_to_atomic_sync(struct percpu_ref *ref);
void percpu_ref_switch_to_percpu(struct percpu_ref *ref);
void percpu_ref_kill_and_confirm(struct percpu_ref *ref,
percpu_ref_func_t *confirm_kill);
void percpu_ref_resurrect(struct percpu_ref *ref);
void percpu_ref_reinit(struct percpu_ref *ref);
bool percpu_ref_is_zero(struct percpu_ref *ref);
/**
* percpu_ref_kill - drop the initial ref
* @ref: percpu_ref to kill
*
* Must be used to drop the initial ref on a percpu refcount; must be called
* precisely once before shutdown.
*
* Switches @ref into atomic mode before gathering up the percpu counters
* and dropping the initial ref.
*
* There are no implied RCU grace periods between kill and release.
*/
static inline void percpu_ref_kill(struct percpu_ref *ref)
{
percpu_ref_kill_and_confirm(ref, NULL);
}
/*
* Internal helper. Don't use outside percpu-refcount proper. The
* function doesn't return the pointer and let the caller test it for NULL
* because doing so forces the compiler to generate two conditional
* branches as it can't assume that @ref->percpu_count is not NULL.
*/
static inline bool __ref_is_percpu(struct percpu_ref *ref,
unsigned long __percpu **percpu_countp)
{
unsigned long percpu_ptr;
/*
* The value of @ref->percpu_count_ptr is tested for
* !__PERCPU_REF_ATOMIC, which may be set asynchronously, and then
* used as a pointer. If the compiler generates a separate fetch
* when using it as a pointer, __PERCPU_REF_ATOMIC may be set in
* between contaminating the pointer value, meaning that
* READ_ONCE() is required when fetching it.
*
* The dependency ordering from the READ_ONCE() pairs
* with smp_store_release() in __percpu_ref_switch_to_percpu().
*/
percpu_ptr = READ_ONCE(ref->percpu_count_ptr);
/*
* Theoretically, the following could test just ATOMIC; however,
* then we'd have to mask off DEAD separately as DEAD may be
* visible without ATOMIC if we race with percpu_ref_kill(). DEAD
* implies ATOMIC anyway. Test them together.
*/
if (unlikely(percpu_ptr & __PERCPU_REF_ATOMIC_DEAD))
return false;
*percpu_countp = (unsigned long __percpu *)percpu_ptr;
return true;
}
/**
* percpu_ref_get_many - increment a percpu refcount
* @ref: percpu_ref to get
* @nr: number of references to get
*
* Analogous to atomic_long_add().
*
* This function is safe to call as long as @ref is between init and exit.
*/
static inline void percpu_ref_get_many(struct percpu_ref *ref, unsigned long nr)
{
unsigned long __percpu *percpu_count;
rcu_read_lock();
if (__ref_is_percpu(ref, &percpu_count))
this_cpu_add(*percpu_count, nr);
else
atomic_long_add(nr, &ref->data->count);
rcu_read_unlock();
}
/**
* percpu_ref_get - increment a percpu refcount
* @ref: percpu_ref to get
*
* Analagous to atomic_long_inc().
*
* This function is safe to call as long as @ref is between init and exit.
*/
static inline void percpu_ref_get(struct percpu_ref *ref)
{
percpu_ref_get_many(ref, 1);
}
/**
* percpu_ref_tryget_many - try to increment a percpu refcount
* @ref: percpu_ref to try-get
* @nr: number of references to get
*
* Increment a percpu refcount by @nr unless its count already reached zero.
* Returns %true on success; %false on failure.
*
* This function is safe to call as long as @ref is between init and exit.
*/
static inline bool percpu_ref_tryget_many(struct percpu_ref *ref,
unsigned long nr)
{
unsigned long __percpu *percpu_count;
bool ret;
rcu_read_lock();
if (__ref_is_percpu(ref, &percpu_count)) {
this_cpu_add(*percpu_count, nr);
ret = true;
} else {
ret = atomic_long_add_unless(&ref->data->count, nr, 0);
}
rcu_read_unlock();
return ret;
}
/**
* percpu_ref_tryget - try to increment a percpu refcount
* @ref: percpu_ref to try-get
*
* Increment a percpu refcount unless its count already reached zero.
* Returns %true on success; %false on failure.
*
* This function is safe to call as long as @ref is between init and exit.
*/
static inline bool percpu_ref_tryget(struct percpu_ref *ref)
{
return percpu_ref_tryget_many(ref, 1);
}
/**
* percpu_ref_tryget_live - try to increment a live percpu refcount
* @ref: percpu_ref to try-get
*
* Increment a percpu refcount unless it has already been killed. Returns
* %true on success; %false on failure.
*
* Completion of percpu_ref_kill() in itself doesn't guarantee that this
* function will fail. For such guarantee, percpu_ref_kill_and_confirm()
* should be used. After the confirm_kill callback is invoked, it's
* guaranteed that no new reference will be given out by
* percpu_ref_tryget_live().
*
* This function is safe to call as long as @ref is between init and exit.
*/
static inline bool percpu_ref_tryget_live(struct percpu_ref *ref)
{
unsigned long __percpu *percpu_count;
bool ret = false;
rcu_read_lock();
if (__ref_is_percpu(ref, &percpu_count)) {
this_cpu_inc(*percpu_count);
ret = true;
} else if (!(ref->percpu_count_ptr & __PERCPU_REF_DEAD)) {
ret = atomic_long_inc_not_zero(&ref->data->count);
}
rcu_read_unlock();
return ret;
}
/**
* percpu_ref_put_many - decrement a percpu refcount
* @ref: percpu_ref to put
* @nr: number of references to put
*
* Decrement the refcount, and if 0, call the release function (which was passed
* to percpu_ref_init())
*
* This function is safe to call as long as @ref is between init and exit.
*/
static inline void percpu_ref_put_many(struct percpu_ref *ref, unsigned long nr)
{
unsigned long __percpu *percpu_count;
rcu_read_lock();
if (__ref_is_percpu(ref, &percpu_count))
this_cpu_sub(*percpu_count, nr);
else if (unlikely(atomic_long_sub_and_test(nr, &ref->data->count)))
ref->data->release(ref);
rcu_read_unlock();
}
/**
* percpu_ref_put - decrement a percpu refcount
* @ref: percpu_ref to put
*
* Decrement the refcount, and if 0, call the release function (which was passed
* to percpu_ref_init())
*
* This function is safe to call as long as @ref is between init and exit.
*/
static inline void percpu_ref_put(struct percpu_ref *ref)
{
percpu_ref_put_many(ref, 1);
}
/**
* percpu_ref_is_dying - test whether a percpu refcount is dying or dead
* @ref: percpu_ref to test
*
* Returns %true if @ref is dying or dead.
*
* This function is safe to call as long as @ref is between init and exit
* and the caller is responsible for synchronizing against state changes.
*/
static inline bool percpu_ref_is_dying(struct percpu_ref *ref)
{
return ref->percpu_count_ptr & __PERCPU_REF_DEAD;
}
#endif