mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2024-10-30 08:02:30 +00:00
271a3d3a4b
This lifts the restriction that 0 size extents must not overlap with other extents, which means we can now sort extents and non extents the same way, and will let us simplify a bunch of other stuff as well. Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
1106 lines
27 KiB
C
1106 lines
27 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
|
|
* Copyright (C) 2014 Datera Inc.
|
|
*/
|
|
|
|
#include "bcachefs.h"
|
|
#include "alloc.h"
|
|
#include "bkey_methods.h"
|
|
#include "btree_locking.h"
|
|
#include "btree_update_interior.h"
|
|
#include "btree_io.h"
|
|
#include "btree_gc.h"
|
|
#include "buckets.h"
|
|
#include "clock.h"
|
|
#include "debug.h"
|
|
#include "error.h"
|
|
#include "extents.h"
|
|
#include "journal.h"
|
|
#include "keylist.h"
|
|
#include "move.h"
|
|
#include "replicas.h"
|
|
#include "super-io.h"
|
|
#include "trace.h"
|
|
|
|
#include <linux/slab.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/freezer.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/preempt.h>
|
|
#include <linux/rcupdate.h>
|
|
#include <linux/sched/task.h>
|
|
|
|
struct range_checks {
|
|
struct range_level {
|
|
struct bpos min;
|
|
struct bpos max;
|
|
} l[BTREE_MAX_DEPTH];
|
|
unsigned depth;
|
|
};
|
|
|
|
static void btree_node_range_checks_init(struct range_checks *r, unsigned depth)
|
|
{
|
|
unsigned i;
|
|
|
|
for (i = 0; i < BTREE_MAX_DEPTH; i++)
|
|
r->l[i].min = r->l[i].max = POS_MIN;
|
|
r->depth = depth;
|
|
}
|
|
|
|
static void btree_node_range_checks(struct bch_fs *c, struct btree *b,
|
|
struct range_checks *r)
|
|
{
|
|
struct range_level *l = &r->l[b->level];
|
|
|
|
struct bpos expected_min = bkey_cmp(l->min, l->max)
|
|
? btree_type_successor(b->btree_id, l->max)
|
|
: l->max;
|
|
|
|
bch2_fs_inconsistent_on(bkey_cmp(b->data->min_key, expected_min), c,
|
|
"btree node has incorrect min key: %llu:%llu != %llu:%llu",
|
|
b->data->min_key.inode,
|
|
b->data->min_key.offset,
|
|
expected_min.inode,
|
|
expected_min.offset);
|
|
|
|
l->max = b->data->max_key;
|
|
|
|
if (b->level > r->depth) {
|
|
l = &r->l[b->level - 1];
|
|
|
|
bch2_fs_inconsistent_on(bkey_cmp(b->data->min_key, l->min), c,
|
|
"btree node min doesn't match min of child nodes: %llu:%llu != %llu:%llu",
|
|
b->data->min_key.inode,
|
|
b->data->min_key.offset,
|
|
l->min.inode,
|
|
l->min.offset);
|
|
|
|
bch2_fs_inconsistent_on(bkey_cmp(b->data->max_key, l->max), c,
|
|
"btree node max doesn't match max of child nodes: %llu:%llu != %llu:%llu",
|
|
b->data->max_key.inode,
|
|
b->data->max_key.offset,
|
|
l->max.inode,
|
|
l->max.offset);
|
|
|
|
if (bkey_cmp(b->data->max_key, POS_MAX))
|
|
l->min = l->max =
|
|
btree_type_successor(b->btree_id,
|
|
b->data->max_key);
|
|
}
|
|
}
|
|
|
|
u8 bch2_btree_key_recalc_oldest_gen(struct bch_fs *c, struct bkey_s_c k)
|
|
{
|
|
const struct bch_extent_ptr *ptr;
|
|
u8 max_stale = 0;
|
|
|
|
if (bkey_extent_is_data(k.k)) {
|
|
struct bkey_s_c_extent e = bkey_s_c_to_extent(k);
|
|
|
|
extent_for_each_ptr(e, ptr) {
|
|
struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev);
|
|
size_t b = PTR_BUCKET_NR(ca, ptr);
|
|
|
|
if (gen_after(ca->oldest_gens[b], ptr->gen))
|
|
ca->oldest_gens[b] = ptr->gen;
|
|
|
|
max_stale = max(max_stale, ptr_stale(ca, ptr));
|
|
}
|
|
}
|
|
|
|
return max_stale;
|
|
}
|
|
|
|
/*
|
|
* For runtime mark and sweep:
|
|
*/
|
|
static u8 bch2_gc_mark_key(struct bch_fs *c, enum bkey_type type,
|
|
struct bkey_s_c k, unsigned flags)
|
|
{
|
|
struct gc_pos pos = { 0 };
|
|
u8 ret = 0;
|
|
|
|
switch (type) {
|
|
case BKEY_TYPE_BTREE:
|
|
bch2_mark_key(c, k, c->opts.btree_node_size,
|
|
BCH_DATA_BTREE, pos, NULL,
|
|
0, flags|
|
|
BCH_BUCKET_MARK_MAY_MAKE_UNAVAILABLE|
|
|
BCH_BUCKET_MARK_GC_LOCK_HELD);
|
|
break;
|
|
case BKEY_TYPE_EXTENTS:
|
|
bch2_mark_key(c, k, k.k->size, BCH_DATA_USER, pos, NULL,
|
|
0, flags|
|
|
BCH_BUCKET_MARK_MAY_MAKE_UNAVAILABLE|
|
|
BCH_BUCKET_MARK_GC_LOCK_HELD);
|
|
ret = bch2_btree_key_recalc_oldest_gen(c, k);
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int bch2_btree_mark_key_initial(struct bch_fs *c, enum bkey_type type,
|
|
struct bkey_s_c k)
|
|
{
|
|
enum bch_data_type data_type = type == BKEY_TYPE_BTREE
|
|
? BCH_DATA_BTREE : BCH_DATA_USER;
|
|
int ret = 0;
|
|
|
|
BUG_ON(journal_seq_verify(c) &&
|
|
k.k->version.lo > journal_cur_seq(&c->journal));
|
|
|
|
if (test_bit(BCH_FS_REBUILD_REPLICAS, &c->flags) ||
|
|
fsck_err_on(!bch2_bkey_replicas_marked(c, data_type, k), c,
|
|
"superblock not marked as containing replicas (type %u)",
|
|
data_type)) {
|
|
ret = bch2_mark_bkey_replicas(c, data_type, k);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
switch (k.k->type) {
|
|
case BCH_EXTENT:
|
|
case BCH_EXTENT_CACHED: {
|
|
struct bkey_s_c_extent e = bkey_s_c_to_extent(k);
|
|
const struct bch_extent_ptr *ptr;
|
|
|
|
extent_for_each_ptr(e, ptr) {
|
|
struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev);
|
|
size_t b = PTR_BUCKET_NR(ca, ptr);
|
|
struct bucket *g = PTR_BUCKET(ca, ptr);
|
|
|
|
if (mustfix_fsck_err_on(!g->mark.gen_valid, c,
|
|
"found ptr with missing gen in alloc btree,\n"
|
|
"type %s gen %u",
|
|
bch2_data_types[data_type],
|
|
ptr->gen)) {
|
|
g->_mark.gen = ptr->gen;
|
|
g->_mark.gen_valid = 1;
|
|
set_bit(b, ca->buckets_dirty);
|
|
}
|
|
|
|
if (mustfix_fsck_err_on(gen_cmp(ptr->gen, g->mark.gen) > 0, c,
|
|
"%s ptr gen in the future: %u > %u",
|
|
bch2_data_types[data_type],
|
|
ptr->gen, g->mark.gen)) {
|
|
g->_mark.gen = ptr->gen;
|
|
g->_mark.gen_valid = 1;
|
|
set_bit(b, ca->buckets_dirty);
|
|
set_bit(BCH_FS_FIXED_GENS, &c->flags);
|
|
}
|
|
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
atomic64_set(&c->key_version,
|
|
max_t(u64, k.k->version.lo,
|
|
atomic64_read(&c->key_version)));
|
|
|
|
bch2_gc_mark_key(c, type, k, BCH_BUCKET_MARK_NOATOMIC);
|
|
fsck_err:
|
|
return ret;
|
|
}
|
|
|
|
static unsigned btree_gc_mark_node(struct bch_fs *c, struct btree *b)
|
|
{
|
|
enum bkey_type type = btree_node_type(b);
|
|
struct btree_node_iter iter;
|
|
struct bkey unpacked;
|
|
struct bkey_s_c k;
|
|
u8 stale = 0;
|
|
|
|
if (btree_node_has_ptrs(b))
|
|
for_each_btree_node_key_unpack(b, k, &iter,
|
|
&unpacked) {
|
|
bch2_bkey_debugcheck(c, b, k);
|
|
stale = max(stale, bch2_gc_mark_key(c, type, k, 0));
|
|
}
|
|
|
|
return stale;
|
|
}
|
|
|
|
static inline void __gc_pos_set(struct bch_fs *c, struct gc_pos new_pos)
|
|
{
|
|
preempt_disable();
|
|
write_seqcount_begin(&c->gc_pos_lock);
|
|
c->gc_pos = new_pos;
|
|
write_seqcount_end(&c->gc_pos_lock);
|
|
preempt_enable();
|
|
}
|
|
|
|
static inline void gc_pos_set(struct bch_fs *c, struct gc_pos new_pos)
|
|
{
|
|
BUG_ON(gc_pos_cmp(new_pos, c->gc_pos) <= 0);
|
|
__gc_pos_set(c, new_pos);
|
|
}
|
|
|
|
static int bch2_gc_btree(struct bch_fs *c, enum btree_id btree_id)
|
|
{
|
|
struct btree_iter iter;
|
|
struct btree *b;
|
|
struct range_checks r;
|
|
unsigned depth = btree_id == BTREE_ID_EXTENTS ? 0 : 1;
|
|
unsigned max_stale;
|
|
int ret = 0;
|
|
|
|
gc_pos_set(c, gc_pos_btree(btree_id, POS_MIN, 0));
|
|
|
|
if (!c->btree_roots[btree_id].b)
|
|
return 0;
|
|
|
|
/*
|
|
* if expensive_debug_checks is on, run range_checks on all leaf nodes:
|
|
*/
|
|
if (expensive_debug_checks(c))
|
|
depth = 0;
|
|
|
|
btree_node_range_checks_init(&r, depth);
|
|
|
|
__for_each_btree_node(&iter, c, btree_id, POS_MIN,
|
|
0, depth, BTREE_ITER_PREFETCH, b) {
|
|
btree_node_range_checks(c, b, &r);
|
|
|
|
bch2_verify_btree_nr_keys(b);
|
|
|
|
max_stale = btree_gc_mark_node(c, b);
|
|
|
|
gc_pos_set(c, gc_pos_btree_node(b));
|
|
|
|
if (max_stale > 64)
|
|
bch2_btree_node_rewrite(c, &iter,
|
|
b->data->keys.seq,
|
|
BTREE_INSERT_USE_RESERVE|
|
|
BTREE_INSERT_NOWAIT|
|
|
BTREE_INSERT_GC_LOCK_HELD);
|
|
else if (!btree_gc_rewrite_disabled(c) &&
|
|
(btree_gc_always_rewrite(c) || max_stale > 16))
|
|
bch2_btree_node_rewrite(c, &iter,
|
|
b->data->keys.seq,
|
|
BTREE_INSERT_NOWAIT|
|
|
BTREE_INSERT_GC_LOCK_HELD);
|
|
|
|
bch2_btree_iter_cond_resched(&iter);
|
|
}
|
|
ret = bch2_btree_iter_unlock(&iter);
|
|
if (ret)
|
|
return ret;
|
|
|
|
mutex_lock(&c->btree_root_lock);
|
|
|
|
b = c->btree_roots[btree_id].b;
|
|
if (!btree_node_fake(b))
|
|
bch2_gc_mark_key(c, BKEY_TYPE_BTREE, bkey_i_to_s_c(&b->key), 0);
|
|
gc_pos_set(c, gc_pos_btree_root(b->btree_id));
|
|
|
|
mutex_unlock(&c->btree_root_lock);
|
|
return 0;
|
|
}
|
|
|
|
static void mark_metadata_sectors(struct bch_fs *c, struct bch_dev *ca,
|
|
u64 start, u64 end,
|
|
enum bch_data_type type,
|
|
unsigned flags)
|
|
{
|
|
u64 b = sector_to_bucket(ca, start);
|
|
|
|
do {
|
|
unsigned sectors =
|
|
min_t(u64, bucket_to_sector(ca, b + 1), end) - start;
|
|
|
|
bch2_mark_metadata_bucket(c, ca, b, type, sectors,
|
|
gc_phase(GC_PHASE_SB), flags);
|
|
b++;
|
|
start += sectors;
|
|
} while (start < end);
|
|
}
|
|
|
|
void bch2_mark_dev_superblock(struct bch_fs *c, struct bch_dev *ca,
|
|
unsigned flags)
|
|
{
|
|
struct bch_sb_layout *layout = &ca->disk_sb.sb->layout;
|
|
unsigned i;
|
|
u64 b;
|
|
|
|
/*
|
|
* This conditional is kind of gross, but we may be called from the
|
|
* device add path, before the new device has actually been added to the
|
|
* running filesystem:
|
|
*/
|
|
if (c) {
|
|
lockdep_assert_held(&c->sb_lock);
|
|
percpu_down_read(&c->usage_lock);
|
|
} else {
|
|
preempt_disable();
|
|
}
|
|
|
|
for (i = 0; i < layout->nr_superblocks; i++) {
|
|
u64 offset = le64_to_cpu(layout->sb_offset[i]);
|
|
|
|
if (offset == BCH_SB_SECTOR)
|
|
mark_metadata_sectors(c, ca, 0, BCH_SB_SECTOR,
|
|
BCH_DATA_SB, flags);
|
|
|
|
mark_metadata_sectors(c, ca, offset,
|
|
offset + (1 << layout->sb_max_size_bits),
|
|
BCH_DATA_SB, flags);
|
|
}
|
|
|
|
if (c)
|
|
spin_lock(&c->journal.lock);
|
|
|
|
for (i = 0; i < ca->journal.nr; i++) {
|
|
b = ca->journal.buckets[i];
|
|
bch2_mark_metadata_bucket(c, ca, b, BCH_DATA_JOURNAL,
|
|
ca->mi.bucket_size,
|
|
gc_phase(GC_PHASE_SB), flags);
|
|
}
|
|
|
|
if (c) {
|
|
spin_unlock(&c->journal.lock);
|
|
percpu_up_read(&c->usage_lock);
|
|
} else {
|
|
preempt_enable();
|
|
}
|
|
}
|
|
|
|
static void bch2_mark_superblocks(struct bch_fs *c)
|
|
{
|
|
struct bch_dev *ca;
|
|
unsigned i;
|
|
|
|
mutex_lock(&c->sb_lock);
|
|
gc_pos_set(c, gc_phase(GC_PHASE_SB));
|
|
|
|
for_each_online_member(ca, c, i)
|
|
bch2_mark_dev_superblock(c, ca,
|
|
BCH_BUCKET_MARK_MAY_MAKE_UNAVAILABLE|
|
|
BCH_BUCKET_MARK_GC_LOCK_HELD);
|
|
mutex_unlock(&c->sb_lock);
|
|
}
|
|
|
|
/* Also see bch2_pending_btree_node_free_insert_done() */
|
|
static void bch2_mark_pending_btree_node_frees(struct bch_fs *c)
|
|
{
|
|
struct gc_pos pos = { 0 };
|
|
struct bch_fs_usage stats = { 0 };
|
|
struct btree_update *as;
|
|
struct pending_btree_node_free *d;
|
|
|
|
mutex_lock(&c->btree_interior_update_lock);
|
|
gc_pos_set(c, gc_phase(GC_PHASE_PENDING_DELETE));
|
|
|
|
for_each_pending_btree_node_free(c, as, d)
|
|
if (d->index_update_done)
|
|
bch2_mark_key(c, bkey_i_to_s_c(&d->key),
|
|
c->opts.btree_node_size,
|
|
BCH_DATA_BTREE, pos,
|
|
&stats, 0,
|
|
BCH_BUCKET_MARK_MAY_MAKE_UNAVAILABLE|
|
|
BCH_BUCKET_MARK_GC_LOCK_HELD);
|
|
/*
|
|
* Don't apply stats - pending deletes aren't tracked in
|
|
* bch_alloc_stats:
|
|
*/
|
|
|
|
mutex_unlock(&c->btree_interior_update_lock);
|
|
}
|
|
|
|
static void bch2_mark_allocator_buckets(struct bch_fs *c)
|
|
{
|
|
struct bch_dev *ca;
|
|
struct open_bucket *ob;
|
|
size_t i, j, iter;
|
|
unsigned ci;
|
|
|
|
percpu_down_read(&c->usage_lock);
|
|
|
|
spin_lock(&c->freelist_lock);
|
|
gc_pos_set(c, gc_pos_alloc(c, NULL));
|
|
|
|
for_each_member_device(ca, c, ci) {
|
|
fifo_for_each_entry(i, &ca->free_inc, iter)
|
|
bch2_mark_alloc_bucket(c, ca, i, true,
|
|
gc_pos_alloc(c, NULL),
|
|
BCH_BUCKET_MARK_MAY_MAKE_UNAVAILABLE|
|
|
BCH_BUCKET_MARK_GC_LOCK_HELD);
|
|
|
|
|
|
|
|
for (j = 0; j < RESERVE_NR; j++)
|
|
fifo_for_each_entry(i, &ca->free[j], iter)
|
|
bch2_mark_alloc_bucket(c, ca, i, true,
|
|
gc_pos_alloc(c, NULL),
|
|
BCH_BUCKET_MARK_MAY_MAKE_UNAVAILABLE|
|
|
BCH_BUCKET_MARK_GC_LOCK_HELD);
|
|
}
|
|
|
|
spin_unlock(&c->freelist_lock);
|
|
|
|
for (ob = c->open_buckets;
|
|
ob < c->open_buckets + ARRAY_SIZE(c->open_buckets);
|
|
ob++) {
|
|
spin_lock(&ob->lock);
|
|
if (ob->valid) {
|
|
gc_pos_set(c, gc_pos_alloc(c, ob));
|
|
ca = bch_dev_bkey_exists(c, ob->ptr.dev);
|
|
bch2_mark_alloc_bucket(c, ca, PTR_BUCKET_NR(ca, &ob->ptr), true,
|
|
gc_pos_alloc(c, ob),
|
|
BCH_BUCKET_MARK_MAY_MAKE_UNAVAILABLE|
|
|
BCH_BUCKET_MARK_GC_LOCK_HELD);
|
|
}
|
|
spin_unlock(&ob->lock);
|
|
}
|
|
|
|
percpu_up_read(&c->usage_lock);
|
|
}
|
|
|
|
static void bch2_gc_start(struct bch_fs *c)
|
|
{
|
|
struct bch_dev *ca;
|
|
struct bucket_array *buckets;
|
|
struct bucket_mark new;
|
|
unsigned i;
|
|
size_t b;
|
|
int cpu;
|
|
|
|
percpu_down_write(&c->usage_lock);
|
|
|
|
/*
|
|
* Indicates to buckets code that gc is now in progress - done under
|
|
* usage_lock to avoid racing with bch2_mark_key():
|
|
*/
|
|
__gc_pos_set(c, gc_phase(GC_PHASE_START));
|
|
|
|
/* Save a copy of the existing bucket stats while we recompute them: */
|
|
for_each_member_device(ca, c, i) {
|
|
ca->usage_cached = __bch2_dev_usage_read(ca);
|
|
for_each_possible_cpu(cpu) {
|
|
struct bch_dev_usage *p =
|
|
per_cpu_ptr(ca->usage_percpu, cpu);
|
|
memset(p, 0, sizeof(*p));
|
|
}
|
|
}
|
|
|
|
c->usage_cached = __bch2_fs_usage_read(c);
|
|
for_each_possible_cpu(cpu) {
|
|
struct bch_fs_usage *p =
|
|
per_cpu_ptr(c->usage_percpu, cpu);
|
|
|
|
memset(p->replicas, 0, sizeof(p->replicas));
|
|
memset(p->buckets, 0, sizeof(p->buckets));
|
|
}
|
|
|
|
percpu_up_write(&c->usage_lock);
|
|
|
|
/* Clear bucket marks: */
|
|
for_each_member_device(ca, c, i) {
|
|
down_read(&ca->bucket_lock);
|
|
buckets = bucket_array(ca);
|
|
|
|
for (b = buckets->first_bucket; b < buckets->nbuckets; b++) {
|
|
bucket_cmpxchg(buckets->b + b, new, ({
|
|
new.owned_by_allocator = 0;
|
|
new.data_type = 0;
|
|
new.cached_sectors = 0;
|
|
new.dirty_sectors = 0;
|
|
}));
|
|
ca->oldest_gens[b] = new.gen;
|
|
}
|
|
up_read(&ca->bucket_lock);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* bch_gc - recompute bucket marks and oldest_gen, rewrite btree nodes
|
|
*/
|
|
void bch2_gc(struct bch_fs *c)
|
|
{
|
|
struct bch_dev *ca;
|
|
u64 start_time = local_clock();
|
|
unsigned i;
|
|
|
|
/*
|
|
* Walk _all_ references to buckets, and recompute them:
|
|
*
|
|
* Order matters here:
|
|
* - Concurrent GC relies on the fact that we have a total ordering for
|
|
* everything that GC walks - see gc_will_visit_node(),
|
|
* gc_will_visit_root()
|
|
*
|
|
* - also, references move around in the course of index updates and
|
|
* various other crap: everything needs to agree on the ordering
|
|
* references are allowed to move around in - e.g., we're allowed to
|
|
* start with a reference owned by an open_bucket (the allocator) and
|
|
* move it to the btree, but not the reverse.
|
|
*
|
|
* This is necessary to ensure that gc doesn't miss references that
|
|
* move around - if references move backwards in the ordering GC
|
|
* uses, GC could skip past them
|
|
*/
|
|
trace_gc_start(c);
|
|
|
|
/*
|
|
* Do this before taking gc_lock - bch2_disk_reservation_get() blocks on
|
|
* gc_lock if sectors_available goes to 0:
|
|
*/
|
|
bch2_recalc_sectors_available(c);
|
|
|
|
down_write(&c->gc_lock);
|
|
if (test_bit(BCH_FS_GC_FAILURE, &c->flags))
|
|
goto out;
|
|
|
|
bch2_gc_start(c);
|
|
|
|
bch2_mark_superblocks(c);
|
|
|
|
/* Walk btree: */
|
|
for (i = 0; i < BTREE_ID_NR; i++) {
|
|
int ret = bch2_gc_btree(c, i);
|
|
if (ret) {
|
|
bch_err(c, "btree gc failed: %d", ret);
|
|
set_bit(BCH_FS_GC_FAILURE, &c->flags);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
bch2_mark_pending_btree_node_frees(c);
|
|
bch2_mark_allocator_buckets(c);
|
|
|
|
/* Indicates that gc is no longer in progress: */
|
|
gc_pos_set(c, gc_phase(GC_PHASE_DONE));
|
|
c->gc_count++;
|
|
out:
|
|
up_write(&c->gc_lock);
|
|
trace_gc_end(c);
|
|
bch2_time_stats_update(&c->times[BCH_TIME_btree_gc], start_time);
|
|
|
|
/*
|
|
* Wake up allocator in case it was waiting for buckets
|
|
* because of not being able to inc gens
|
|
*/
|
|
for_each_member_device(ca, c, i)
|
|
bch2_wake_allocator(ca);
|
|
|
|
/*
|
|
* At startup, allocations can happen directly instead of via the
|
|
* allocator thread - issue wakeup in case they blocked on gc_lock:
|
|
*/
|
|
closure_wake_up(&c->freelist_wait);
|
|
}
|
|
|
|
/* Btree coalescing */
|
|
|
|
static void recalc_packed_keys(struct btree *b)
|
|
{
|
|
struct bkey_packed *k;
|
|
|
|
memset(&b->nr, 0, sizeof(b->nr));
|
|
|
|
BUG_ON(b->nsets != 1);
|
|
|
|
for (k = btree_bkey_first(b, b->set);
|
|
k != btree_bkey_last(b, b->set);
|
|
k = bkey_next(k))
|
|
btree_keys_account_key_add(&b->nr, 0, k);
|
|
}
|
|
|
|
static void bch2_coalesce_nodes(struct bch_fs *c, struct btree_iter *iter,
|
|
struct btree *old_nodes[GC_MERGE_NODES])
|
|
{
|
|
struct btree *parent = btree_node_parent(iter, old_nodes[0]);
|
|
unsigned i, nr_old_nodes, nr_new_nodes, u64s = 0;
|
|
unsigned blocks = btree_blocks(c) * 2 / 3;
|
|
struct btree *new_nodes[GC_MERGE_NODES];
|
|
struct btree_update *as;
|
|
struct keylist keylist;
|
|
struct bkey_format_state format_state;
|
|
struct bkey_format new_format;
|
|
|
|
memset(new_nodes, 0, sizeof(new_nodes));
|
|
bch2_keylist_init(&keylist, NULL);
|
|
|
|
/* Count keys that are not deleted */
|
|
for (i = 0; i < GC_MERGE_NODES && old_nodes[i]; i++)
|
|
u64s += old_nodes[i]->nr.live_u64s;
|
|
|
|
nr_old_nodes = nr_new_nodes = i;
|
|
|
|
/* Check if all keys in @old_nodes could fit in one fewer node */
|
|
if (nr_old_nodes <= 1 ||
|
|
__vstruct_blocks(struct btree_node, c->block_bits,
|
|
DIV_ROUND_UP(u64s, nr_old_nodes - 1)) > blocks)
|
|
return;
|
|
|
|
/* Find a format that all keys in @old_nodes can pack into */
|
|
bch2_bkey_format_init(&format_state);
|
|
|
|
for (i = 0; i < nr_old_nodes; i++)
|
|
__bch2_btree_calc_format(&format_state, old_nodes[i]);
|
|
|
|
new_format = bch2_bkey_format_done(&format_state);
|
|
|
|
/* Check if repacking would make any nodes too big to fit */
|
|
for (i = 0; i < nr_old_nodes; i++)
|
|
if (!bch2_btree_node_format_fits(c, old_nodes[i], &new_format)) {
|
|
trace_btree_gc_coalesce_fail(c,
|
|
BTREE_GC_COALESCE_FAIL_FORMAT_FITS);
|
|
return;
|
|
}
|
|
|
|
if (bch2_keylist_realloc(&keylist, NULL, 0,
|
|
(BKEY_U64s + BKEY_EXTENT_U64s_MAX) * nr_old_nodes)) {
|
|
trace_btree_gc_coalesce_fail(c,
|
|
BTREE_GC_COALESCE_FAIL_KEYLIST_REALLOC);
|
|
return;
|
|
}
|
|
|
|
as = bch2_btree_update_start(c, iter->btree_id,
|
|
btree_update_reserve_required(c, parent) + nr_old_nodes,
|
|
BTREE_INSERT_NOFAIL|
|
|
BTREE_INSERT_USE_RESERVE,
|
|
NULL);
|
|
if (IS_ERR(as)) {
|
|
trace_btree_gc_coalesce_fail(c,
|
|
BTREE_GC_COALESCE_FAIL_RESERVE_GET);
|
|
bch2_keylist_free(&keylist, NULL);
|
|
return;
|
|
}
|
|
|
|
trace_btree_gc_coalesce(c, old_nodes[0]);
|
|
|
|
for (i = 0; i < nr_old_nodes; i++)
|
|
bch2_btree_interior_update_will_free_node(as, old_nodes[i]);
|
|
|
|
/* Repack everything with @new_format and sort down to one bset */
|
|
for (i = 0; i < nr_old_nodes; i++)
|
|
new_nodes[i] =
|
|
__bch2_btree_node_alloc_replacement(as, old_nodes[i],
|
|
new_format);
|
|
|
|
/*
|
|
* Conceptually we concatenate the nodes together and slice them
|
|
* up at different boundaries.
|
|
*/
|
|
for (i = nr_new_nodes - 1; i > 0; --i) {
|
|
struct btree *n1 = new_nodes[i];
|
|
struct btree *n2 = new_nodes[i - 1];
|
|
|
|
struct bset *s1 = btree_bset_first(n1);
|
|
struct bset *s2 = btree_bset_first(n2);
|
|
struct bkey_packed *k, *last = NULL;
|
|
|
|
/* Calculate how many keys from @n2 we could fit inside @n1 */
|
|
u64s = 0;
|
|
|
|
for (k = s2->start;
|
|
k < vstruct_last(s2) &&
|
|
vstruct_blocks_plus(n1->data, c->block_bits,
|
|
u64s + k->u64s) <= blocks;
|
|
k = bkey_next(k)) {
|
|
last = k;
|
|
u64s += k->u64s;
|
|
}
|
|
|
|
if (u64s == le16_to_cpu(s2->u64s)) {
|
|
/* n2 fits entirely in n1 */
|
|
n1->key.k.p = n1->data->max_key = n2->data->max_key;
|
|
|
|
memcpy_u64s(vstruct_last(s1),
|
|
s2->start,
|
|
le16_to_cpu(s2->u64s));
|
|
le16_add_cpu(&s1->u64s, le16_to_cpu(s2->u64s));
|
|
|
|
set_btree_bset_end(n1, n1->set);
|
|
|
|
six_unlock_write(&n2->lock);
|
|
bch2_btree_node_free_never_inserted(c, n2);
|
|
six_unlock_intent(&n2->lock);
|
|
|
|
memmove(new_nodes + i - 1,
|
|
new_nodes + i,
|
|
sizeof(new_nodes[0]) * (nr_new_nodes - i));
|
|
new_nodes[--nr_new_nodes] = NULL;
|
|
} else if (u64s) {
|
|
/* move part of n2 into n1 */
|
|
n1->key.k.p = n1->data->max_key =
|
|
bkey_unpack_pos(n1, last);
|
|
|
|
n2->data->min_key =
|
|
btree_type_successor(iter->btree_id,
|
|
n1->data->max_key);
|
|
|
|
memcpy_u64s(vstruct_last(s1),
|
|
s2->start, u64s);
|
|
le16_add_cpu(&s1->u64s, u64s);
|
|
|
|
memmove(s2->start,
|
|
vstruct_idx(s2, u64s),
|
|
(le16_to_cpu(s2->u64s) - u64s) * sizeof(u64));
|
|
s2->u64s = cpu_to_le16(le16_to_cpu(s2->u64s) - u64s);
|
|
|
|
set_btree_bset_end(n1, n1->set);
|
|
set_btree_bset_end(n2, n2->set);
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < nr_new_nodes; i++) {
|
|
struct btree *n = new_nodes[i];
|
|
|
|
recalc_packed_keys(n);
|
|
btree_node_reset_sib_u64s(n);
|
|
|
|
bch2_btree_build_aux_trees(n);
|
|
six_unlock_write(&n->lock);
|
|
|
|
bch2_btree_node_write(c, n, SIX_LOCK_intent);
|
|
}
|
|
|
|
/*
|
|
* The keys for the old nodes get deleted. We don't want to insert keys
|
|
* that compare equal to the keys for the new nodes we'll also be
|
|
* inserting - we can't because keys on a keylist must be strictly
|
|
* greater than the previous keys, and we also don't need to since the
|
|
* key for the new node will serve the same purpose (overwriting the key
|
|
* for the old node).
|
|
*/
|
|
for (i = 0; i < nr_old_nodes; i++) {
|
|
struct bkey_i delete;
|
|
unsigned j;
|
|
|
|
for (j = 0; j < nr_new_nodes; j++)
|
|
if (!bkey_cmp(old_nodes[i]->key.k.p,
|
|
new_nodes[j]->key.k.p))
|
|
goto next;
|
|
|
|
bkey_init(&delete.k);
|
|
delete.k.p = old_nodes[i]->key.k.p;
|
|
bch2_keylist_add_in_order(&keylist, &delete);
|
|
next:
|
|
i = i;
|
|
}
|
|
|
|
/*
|
|
* Keys for the new nodes get inserted: bch2_btree_insert_keys() only
|
|
* does the lookup once and thus expects the keys to be in sorted order
|
|
* so we have to make sure the new keys are correctly ordered with
|
|
* respect to the deleted keys added in the previous loop
|
|
*/
|
|
for (i = 0; i < nr_new_nodes; i++)
|
|
bch2_keylist_add_in_order(&keylist, &new_nodes[i]->key);
|
|
|
|
/* Insert the newly coalesced nodes */
|
|
bch2_btree_insert_node(as, parent, iter, &keylist, 0);
|
|
|
|
BUG_ON(!bch2_keylist_empty(&keylist));
|
|
|
|
BUG_ON(iter->l[old_nodes[0]->level].b != old_nodes[0]);
|
|
|
|
bch2_btree_iter_node_replace(iter, new_nodes[0]);
|
|
|
|
for (i = 0; i < nr_new_nodes; i++)
|
|
bch2_btree_open_bucket_put(c, new_nodes[i]);
|
|
|
|
/* Free the old nodes and update our sliding window */
|
|
for (i = 0; i < nr_old_nodes; i++) {
|
|
bch2_btree_node_free_inmem(c, old_nodes[i], iter);
|
|
six_unlock_intent(&old_nodes[i]->lock);
|
|
|
|
/*
|
|
* the index update might have triggered a split, in which case
|
|
* the nodes we coalesced - the new nodes we just created -
|
|
* might not be sibling nodes anymore - don't add them to the
|
|
* sliding window (except the first):
|
|
*/
|
|
if (!i) {
|
|
old_nodes[i] = new_nodes[i];
|
|
} else {
|
|
old_nodes[i] = NULL;
|
|
if (new_nodes[i])
|
|
six_unlock_intent(&new_nodes[i]->lock);
|
|
}
|
|
}
|
|
|
|
bch2_btree_update_done(as);
|
|
bch2_keylist_free(&keylist, NULL);
|
|
}
|
|
|
|
static int bch2_coalesce_btree(struct bch_fs *c, enum btree_id btree_id)
|
|
{
|
|
struct btree_iter iter;
|
|
struct btree *b;
|
|
bool kthread = (current->flags & PF_KTHREAD) != 0;
|
|
unsigned i;
|
|
|
|
/* Sliding window of adjacent btree nodes */
|
|
struct btree *merge[GC_MERGE_NODES];
|
|
u32 lock_seq[GC_MERGE_NODES];
|
|
|
|
/*
|
|
* XXX: We don't have a good way of positively matching on sibling nodes
|
|
* that have the same parent - this code works by handling the cases
|
|
* where they might not have the same parent, and is thus fragile. Ugh.
|
|
*
|
|
* Perhaps redo this to use multiple linked iterators?
|
|
*/
|
|
memset(merge, 0, sizeof(merge));
|
|
|
|
__for_each_btree_node(&iter, c, btree_id, POS_MIN,
|
|
BTREE_MAX_DEPTH, 0,
|
|
BTREE_ITER_PREFETCH, b) {
|
|
memmove(merge + 1, merge,
|
|
sizeof(merge) - sizeof(merge[0]));
|
|
memmove(lock_seq + 1, lock_seq,
|
|
sizeof(lock_seq) - sizeof(lock_seq[0]));
|
|
|
|
merge[0] = b;
|
|
|
|
for (i = 1; i < GC_MERGE_NODES; i++) {
|
|
if (!merge[i] ||
|
|
!six_relock_intent(&merge[i]->lock, lock_seq[i]))
|
|
break;
|
|
|
|
if (merge[i]->level != merge[0]->level) {
|
|
six_unlock_intent(&merge[i]->lock);
|
|
break;
|
|
}
|
|
}
|
|
memset(merge + i, 0, (GC_MERGE_NODES - i) * sizeof(merge[0]));
|
|
|
|
bch2_coalesce_nodes(c, &iter, merge);
|
|
|
|
for (i = 1; i < GC_MERGE_NODES && merge[i]; i++) {
|
|
lock_seq[i] = merge[i]->lock.state.seq;
|
|
six_unlock_intent(&merge[i]->lock);
|
|
}
|
|
|
|
lock_seq[0] = merge[0]->lock.state.seq;
|
|
|
|
if (kthread && kthread_should_stop()) {
|
|
bch2_btree_iter_unlock(&iter);
|
|
return -ESHUTDOWN;
|
|
}
|
|
|
|
bch2_btree_iter_cond_resched(&iter);
|
|
|
|
/*
|
|
* If the parent node wasn't relocked, it might have been split
|
|
* and the nodes in our sliding window might not have the same
|
|
* parent anymore - blow away the sliding window:
|
|
*/
|
|
if (btree_iter_node(&iter, iter.level + 1) &&
|
|
!btree_node_intent_locked(&iter, iter.level + 1))
|
|
memset(merge + 1, 0,
|
|
(GC_MERGE_NODES - 1) * sizeof(merge[0]));
|
|
}
|
|
return bch2_btree_iter_unlock(&iter);
|
|
}
|
|
|
|
/**
|
|
* bch_coalesce - coalesce adjacent nodes with low occupancy
|
|
*/
|
|
void bch2_coalesce(struct bch_fs *c)
|
|
{
|
|
enum btree_id id;
|
|
|
|
if (test_bit(BCH_FS_GC_FAILURE, &c->flags))
|
|
return;
|
|
|
|
down_read(&c->gc_lock);
|
|
trace_gc_coalesce_start(c);
|
|
|
|
for (id = 0; id < BTREE_ID_NR; id++) {
|
|
int ret = c->btree_roots[id].b
|
|
? bch2_coalesce_btree(c, id)
|
|
: 0;
|
|
|
|
if (ret) {
|
|
if (ret != -ESHUTDOWN)
|
|
bch_err(c, "btree coalescing failed: %d", ret);
|
|
set_bit(BCH_FS_GC_FAILURE, &c->flags);
|
|
return;
|
|
}
|
|
}
|
|
|
|
trace_gc_coalesce_end(c);
|
|
up_read(&c->gc_lock);
|
|
}
|
|
|
|
static int bch2_gc_thread(void *arg)
|
|
{
|
|
struct bch_fs *c = arg;
|
|
struct io_clock *clock = &c->io_clock[WRITE];
|
|
unsigned long last = atomic_long_read(&clock->now);
|
|
unsigned last_kick = atomic_read(&c->kick_gc);
|
|
|
|
set_freezable();
|
|
|
|
while (1) {
|
|
while (1) {
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
|
|
if (kthread_should_stop()) {
|
|
__set_current_state(TASK_RUNNING);
|
|
return 0;
|
|
}
|
|
|
|
if (atomic_read(&c->kick_gc) != last_kick)
|
|
break;
|
|
|
|
if (c->btree_gc_periodic) {
|
|
unsigned long next = last + c->capacity / 16;
|
|
|
|
if (atomic_long_read(&clock->now) >= next)
|
|
break;
|
|
|
|
bch2_io_clock_schedule_timeout(clock, next);
|
|
} else {
|
|
schedule();
|
|
}
|
|
|
|
try_to_freeze();
|
|
}
|
|
__set_current_state(TASK_RUNNING);
|
|
|
|
last = atomic_long_read(&clock->now);
|
|
last_kick = atomic_read(&c->kick_gc);
|
|
|
|
bch2_gc(c);
|
|
|
|
debug_check_no_locks_held();
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void bch2_gc_thread_stop(struct bch_fs *c)
|
|
{
|
|
struct task_struct *p;
|
|
|
|
p = c->gc_thread;
|
|
c->gc_thread = NULL;
|
|
|
|
if (p) {
|
|
kthread_stop(p);
|
|
put_task_struct(p);
|
|
}
|
|
}
|
|
|
|
int bch2_gc_thread_start(struct bch_fs *c)
|
|
{
|
|
struct task_struct *p;
|
|
|
|
BUG_ON(c->gc_thread);
|
|
|
|
p = kthread_create(bch2_gc_thread, c, "bch_gc");
|
|
if (IS_ERR(p))
|
|
return PTR_ERR(p);
|
|
|
|
get_task_struct(p);
|
|
c->gc_thread = p;
|
|
wake_up_process(p);
|
|
return 0;
|
|
}
|
|
|
|
/* Initial GC computes bucket marks during startup */
|
|
|
|
static int bch2_initial_gc_btree(struct bch_fs *c, enum btree_id id)
|
|
{
|
|
struct btree_iter iter;
|
|
struct btree *b;
|
|
struct range_checks r;
|
|
int ret = 0;
|
|
|
|
btree_node_range_checks_init(&r, 0);
|
|
|
|
gc_pos_set(c, gc_pos_btree(id, POS_MIN, 0));
|
|
|
|
if (!c->btree_roots[id].b)
|
|
return 0;
|
|
|
|
b = c->btree_roots[id].b;
|
|
if (!btree_node_fake(b))
|
|
ret = bch2_btree_mark_key_initial(c, BKEY_TYPE_BTREE,
|
|
bkey_i_to_s_c(&b->key));
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* We have to hit every btree node before starting journal replay, in
|
|
* order for the journal seq blacklist machinery to work:
|
|
*/
|
|
for_each_btree_node(&iter, c, id, POS_MIN, BTREE_ITER_PREFETCH, b) {
|
|
btree_node_range_checks(c, b, &r);
|
|
|
|
if (btree_node_has_ptrs(b)) {
|
|
struct btree_node_iter node_iter;
|
|
struct bkey unpacked;
|
|
struct bkey_s_c k;
|
|
|
|
for_each_btree_node_key_unpack(b, k, &node_iter,
|
|
&unpacked) {
|
|
ret = bch2_btree_mark_key_initial(c,
|
|
btree_node_type(b), k);
|
|
if (ret)
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
bch2_btree_iter_cond_resched(&iter);
|
|
}
|
|
err:
|
|
return bch2_btree_iter_unlock(&iter) ?: ret;
|
|
}
|
|
|
|
int bch2_initial_gc(struct bch_fs *c, struct list_head *journal)
|
|
{
|
|
unsigned iter = 0;
|
|
enum btree_id id;
|
|
int ret = 0;
|
|
|
|
down_write(&c->gc_lock);
|
|
again:
|
|
bch2_gc_start(c);
|
|
|
|
bch2_mark_superblocks(c);
|
|
|
|
for (id = 0; id < BTREE_ID_NR; id++) {
|
|
ret = bch2_initial_gc_btree(c, id);
|
|
if (ret)
|
|
goto err;
|
|
}
|
|
|
|
ret = bch2_journal_mark(c, journal);
|
|
if (ret)
|
|
goto err;
|
|
|
|
if (test_bit(BCH_FS_FIXED_GENS, &c->flags)) {
|
|
if (iter++ > 2) {
|
|
bch_info(c, "Unable to fix bucket gens, looping");
|
|
ret = -EINVAL;
|
|
goto err;
|
|
}
|
|
|
|
bch_info(c, "Fixed gens, restarting initial mark and sweep:");
|
|
clear_bit(BCH_FS_FIXED_GENS, &c->flags);
|
|
goto again;
|
|
}
|
|
|
|
/*
|
|
* Skip past versions that might have possibly been used (as nonces),
|
|
* but hadn't had their pointers written:
|
|
*/
|
|
if (c->sb.encryption_type)
|
|
atomic64_add(1 << 16, &c->key_version);
|
|
|
|
gc_pos_set(c, gc_phase(GC_PHASE_DONE));
|
|
set_bit(BCH_FS_INITIAL_GC_DONE, &c->flags);
|
|
err:
|
|
up_write(&c->gc_lock);
|
|
return ret;
|
|
}
|